CN1618178A - 便携式终端的功率放大装置 - Google Patents

便携式终端的功率放大装置 Download PDF

Info

Publication number
CN1618178A
CN1618178A CNA028277856A CN02827785A CN1618178A CN 1618178 A CN1618178 A CN 1618178A CN A028277856 A CNA028277856 A CN A028277856A CN 02827785 A CN02827785 A CN 02827785A CN 1618178 A CN1618178 A CN 1618178A
Authority
CN
China
Prior art keywords
amplifier
power
output
power amplifier
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA028277856A
Other languages
English (en)
Other versions
CN100559719C (zh
Inventor
权泳佑
裵成濬
金正铉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Avago Technologies International Sales Pte Ltd
Original Assignee
WAVICS CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WAVICS CO Ltd filed Critical WAVICS CO Ltd
Publication of CN1618178A publication Critical patent/CN1618178A/zh
Application granted granted Critical
Publication of CN100559719C publication Critical patent/CN100559719C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0216Continuous control
    • H03F1/0233Continuous control by using a signal derived from the output signal, e.g. bootstrapping the voltage supply
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0288Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers using a main and one or several auxiliary peaking amplifiers whereby the load is connected to the main amplifier using an impedance inverter, e.g. Doherty amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/102A non-specified detector of a signal envelope being used in an amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/198A hybrid coupler being used as coupling circuit between stages of an amplifier circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/423Amplifier output adaptation especially for transmission line coupling purposes, e.g. impedance adaptation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/543A transmission line being used as coupling element between two amplifying stages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • H04B2001/045Circuits with power amplifiers with means for improving efficiency

Abstract

本发明涉及移动手持设备中的功率放大器,以提高功率放大器的效率和线性度特性。所述功率放大器通过以下方式来提高这些特性,控制峰值放大器的输入电压,从而根据从输出单元的输出功率的大小,在低输出功率方式下,使得功率放大器操作于多赫尔蒂方式,且使得在高输出功率方式下,峰值放大器的输入电压可增加到满足功率放大器的非线性操作要求的点。而且,由于仅控制峰值放大器的输入电压,可以用简单的方式来实现功率放大器。这样,功率放大器的尺寸变小,从而降低了功率放大器的成本。

Description

便携式终端的功率放大装置
技术领域
本发明涉及用于无线通信服务的移动手持设备(handset)中的功率放大器。更具体地说,本发明涉及移动手持设备中的功率放大器,其可提高效率和线性度。
背景技术
最近,随着用于无线通信服务的移动手持设备越来越小和越来越轻,对延长使用小尺寸电池的移动手持设备的通话时间也进行了很多的研究。
在常规的移动手持设备中,无线电频率(RF)功率放大器消耗了移动手持设备整体系统所消耗的电量的大部分。因此,低效率的RF功率放大器降低了整体系统的效率,从而减少了通话时间。
因此,大部分的努力集中于提高功率放大领域中的RF功率放大器的效率。一个方法是,作为电路引入多赫尔蒂型(Doherty-type)功率放大器,用于提高RF功率放大器的效率。
与其他的在整个低功率输出范围内效率低的常规功率放大器不同,多赫尔蒂型功率放大器被设计来在宽输出功率范围上保持最佳效率。由较小的晶体管组成的载波放大器的操作可在直到一定的低输出功率水平时仍保持最佳效率。峰值放大器与载波放大器协作运行,以维持高效率,直至所述功率放大器作为一个整体产生最大输出功率。当所述功率放大器在低功率输出范围内运行时,仅有载波放大器可操作;峰值放大器作为B类或C类被偏置,不运行。
理论上,上述多赫尔蒂型功率放大器被设计为在整个输出功率范围上满足线性技术指标并且保持高效率地操作。
然而,如上所述,由于多赫尔蒂型功率放大器包含彼此共同操作的载波放大器和峰值放大器,实际上,多赫尔蒂型功率放大器在保持高效率的整个功率范围不满足线性技术指标(例如,就相位或增益特性而言)。
总之,在现有技术中的上述多赫尔蒂型功率放大器中,很难预测装置的线性特性,且因为峰值放大器被偏置于如B类或C类的低DC电流水平,很难期待在这样的装置中提高线性度。
另一方面,近来为增加RF功率放大器的效率所作的研究中也引入了开关方式功率放大器。
所述开关方式功率放大器被设计来相应于其输出功率水平而在各种不同的方式下操作,以提高决定最大通话时间的效率和决定音质的线性度。在开关方式功率放大器中,开关用于调整功率传送的通路,从而使得功率放大器提供其输出功率,如果要求的输出功率水平低,则旁路所述功率级。反之,如果要求高输出功率水平,则通过开关来调整通路,使得所述功率放大器通过功率级提供其输出功率。
所述开关方式功率放大器也称为旁通开关功率放大器,因为它根据所要求的输出功率水平旁路所述功率级。一般地,在一个旁路开关功率放大器中,一个开关用于两个方式,即,单刀双掷(SPDT)开关用于为不同方式分出多个通路的场合,以指定相应的通路。而且,一般地,所述SPDT开关用在与各方式对应的相应通路结合处。
所述SPDT开关用于旁路开关功率放大器中,其处于出现方式分支以提高各方式间的隔离水平的点,从而优化各方式中的操作。
如上所述,因为现有技术中的所述旁路开关功率放大器使用大量的开关以根据输出功率的水平操作于不同的方式,由于置于所述功率级之前和之后的匹配单元的开关处的损耗,降低了输出功率。而且,在给定的输出功率水平上,增益和效率降低,且相邻通道功率比(ACPR)增加。
在功率放大器中,ACPR技术指标的满足是通过操作功率放大器于低于P1dB(1dB压缩输出功率)的输出功率水平的回退(back-off)来实现的。这样,在旁路开关功率放大器中,由于开关和满足ACPR技术指标所要求的回退操作所造成的损失,可得到的输出功率被限制于一定的程度。该限制在一定程度上降低了效率,从而导致电池寿命的减少。
而且,旁路开关功率放大器的缺点是,在放大器中必须使用大量的开关,增加了放大器的尺寸,而且,还增加了所述放大器的价格。
发明内容
本发明需要克服现有技术的缺点,以提供至少下文中所描述的优点。为了解决现有技术的上述问题,本发明的一个特定实施方式提供了一种在移动手持设备中的功率放大器,其通过根据输出功率水平控制例如施加于峰值放大器的输入DC偏置电压来提高效率和线性度。特别地,在低输出功率方式中,控制施加于所述峰值放大器的输入DC偏置电压,使得所述功率放大器操作于多赫尔蒂方式,在高输出功率方式中,控制施加于所述峰值放大器的输入DC偏置电压,使之增加,从而有效地管理所述功率放大器的非线性特性。
根据本发明的一个优选实施方式,移动手持设备中的功率放大器包括:相位差补偿装置,其与载波放大器的输入端和峰值放大器连接,用于补偿相差,以使在所述功率放大器的输出级的所述载波放大器和所述峰值放大器的输出功率的相位相等;输出匹配单元,用于将来自所述载波放大器和所述峰值放大器的输出功率传送到所述输出级;电压控制装置,用于监测传送到所述输出级的输出功率,根据检测的输出功率水平控制施加到所述峰值放大器的输入DC偏置电压。
在优选实施方式中,相位差补偿装置用例如3dB(分贝)混频耦合器(hybrid coupler)来实现,用于将特定输入功率分配到载波放大器和峰值放大器,使得所述载波放大器和所述峰值放大器间的干扰最小,且以下述方式传送信号,即,使施加于所述峰值放大器的输入功率的相位比施加于所述载波放大器的输入功率的相位基本上滞后于90度。
优选地,相位差补偿装置包括相位差补偿器,连接在功率放大器和峰值放大器的输入级之间,用于使施加于峰值放大器的输入信号的相位相对于施加于载波放大器输入信号的相位滞后90度。
在优选实施方式中,电压控制装置包括:包络检测器,用于检测从输出匹配单元传送到输出级的输出功率的电平;比较和确定单元,用于通过比较来确定包络检测器检测的输出功率是否偏离所述低输出功率范围;电压控制器,用于根据比较和确定单元的确定结果,控制施加于峰值放大器的输入DC偏置电压。
所述电压控制装置按照如下方式控制施加于所述峰值放大器的输入DC偏置电压,即,如果从输出匹配单元传送到输出级的输出功率水平在低输出功率范围之内,所述功率放大器操作于多赫尔蒂方式。反之,如果从输出匹配单元传送到输出级的输出功率水平偏离低输出功率范围,则所述电压控制装置按照如下方式控制施加到峰值放大器的输入DC偏置电压,即,将施加到峰值放大器的输入DC偏置电压增加到满足功率放大器的非线性特性的点。
附图说明
图1是一方框图,显示了根据本发明的一个优选实施例的移动手持设备中功率放大器的结构;
图2显示了可用于本发明的该优选实施例的3dB混频耦合器的等效电路;
图3是示于图1中的输出匹配单元的方框图;
图4显示了利用集总元件实现的输出匹配单元的等效电路;
图5显示了基于施加到峰值放大器的输入DC偏置电压的效率特性;
图6显示了基于施加到峰值放大器的输入DC偏置电压的非线性特性;
图7显示了响应于根据本发明的优选实施例的功率放大器的方式的效率特性;
图8显示了响应于根据本发明的优选实施例的功率放大器的方式的非线性特性;
图9显示了响应于根据本发明的功率放大器的方式的增益特性;和
图10的方框图显示了根据本发明的第二优选实施例的功率放大器的结构。
图中重要部件的代码说明
110:3dB混频耦合器            120:载波放大器
130:峰值放大器               140:输出匹配单元
150:包络检测器               160:数字电路单元
170:电压控制器                180:相位差补偿器
本发明的最佳实施方式
下面将参考附图对根据本发明的各种实施例的移动手持设备中示例的功率放大器进行详细说明。
图1显示了根据本发明的第一优选实施例的移动手持设备中功率放大器的结构。示于图1的所述功率放大器100包括混频耦合器110,载波放大器120,峰值放大器130,输出匹配单元140,包络检测器150,数字电路单元160和电压控制器170。
3dB混频耦合器110将一定的输入功率分配给载波放大器120和峰值放大器130,使得载波放大器120和峰值放大器130之间的干扰最小,且以下述方式传送信号,即,使峰值放大器130的输入功率的相位滞后于载波放大器120的输入功率的相位90°(λ/4)。相应地,发生在输出匹配单元140处的载波放大器120和峰值放大器130的输出功率相位之间的90°(λ/4)相位滞后被补偿,且输出功率的相位在输出级被均衡。
如上所述,3dB混频耦合器110对载波放大器120和峰值放大器130的输出功率相位差的补偿通过使输出级处输出功率的相位相等而获得最佳输出功率。
图2显示了根据本发明的优选实施例的3dB混频耦合器的等效电路。当信号被输入到3dB混频耦合器110(该耦合器具有约为3dB或更高的信号耦合)的输入级10后,该信号被传送到载波放大器输出端50和峰值放大器输出端60。此时,输出到载波放大器输出端50的信号和输出到峰值放大器输出端60的信号具有90°(λ/4,或四分之一波)的相位差。
例如,所述3dB混频耦合器110可用一传输线路实现,如,耦合的线耦合器,兰格(Lange)耦合器,支线耦合器或其他公知的耦合电路。作为另一个例子,3dB混频耦合器110可用一微波单块集成电路(MMIC)芯片来实现。在另一例子中,3dB混频耦合器110可用图2所示的集总元件111,112,113,114,115,116,117和118来实现。在又一例子中,3dB混频耦合器110可用低温共烧陶瓷(Low Temperature Co-fired Ceramic,LTCC)法来实现。
载波放大器120将从3dB混频耦合器110输出的信号放大,并输出该放大的信号。载波放大器120包括一晶体管,其尺寸可小于构成峰值放大器130的晶体管的尺寸。一个晶体管和另一晶体管的尺寸的比率部分地决定了输出功率范围,在此范围可保持最大效率。
峰值放大器130是用于放大从3dB混频耦合器110输出的信号且输出该放大信号的另一放大器,当低电平输入信号施加于载波放大器120上时,它基本上不操作。这通过按照如下方式调整施加于峰值放大器130的输入DC偏置电压来实现,即,峰值放大器130偏置为B类或C类,其中流有较小的直流电流。在峰值放大器130基本上不操作的低输出功率范围,载波放大器120的出端阻抗具有一较为恒定和高的值。结果,载波放大器120可获得最大效率的输出功率水平,其低于载波放大器120能够产生的最高输出功率水平。
输出匹配单元140包括:第一λ/4变压器(transformer)143,用于匹配从载波放大器120施加的输出功率的阻抗,并将从载波放大器120施加的输出功率传送到输出级70;第二λ/4变压器145,用于匹配从峰值放大器130施加的输出功率的阻抗,并将从峰值放大器130施加的输出功率传送到输出级70。
图3是示于图1中的输出匹配单元140的方框图。通过调整输出匹配单元140中的第一λ/4变压器143的α和第二λ/4变压器145的β,在峰值放大器130不操作的低输出功率范围,载波放大器120可在输出功率水平低于载波放大器120可产生的最高输出功率水平时实现最大效率。
如图3所示,第一λ/4变压器143和第二λ/4变压器145可用λ/4传输线(T-线)来实现,或使用图4中所示的集总元件143a,143b,143c,143d,...,145a,145b,145c,145d等,或其他类似元件来实现。可替代地,第一λ/4变压器143和第二λ/4变压器145可用LTCC方法实现。
包络检测器150检测从输出匹配单元140传送到输出级70的输出功率的水平。
数字电路单元160构成为决定由包络检测器150检测的输出功率水平是否偏离低输出功率范围Q,并根据决定的结果将控制信号施加到电压控制器170。
电压控制器170被构成为根据从数字电路单元160施加的控制信号来控制施加到峰值放大器130的输入DC偏置电压。
图5显示了基于例如施加到峰值放大器130的输入DC偏置电压的效率特性。
当电流开始在峰值放大器130中流动时,峰值放大器130开始操作。这改变了载波放大器120的输出阻抗,从而如图5中的D所指示的那样,将功率放大器100的效率优化为一特定常数水平。相应地,如图5中的曲线D所指示的那样,Power Added Efficiency(增加了功率的效率,PAE)从点P(峰值放大器130开始操作)至功率放大器100提供最高输出功率的点具有最大值。这样,如图所示,根据本发明的一个实施例,通过示例的功率放大器,与图5中曲线A指示的一般功率放大器的效率特性相比,实现了效率特性的提高。如上所述,这通过操作峰值放大器130为B类或C类来达到。
图6显示了当输入DC偏置电压施加到峰值放大器130时的非线性特性。很难预测整体非线性特性(如图6的曲线D所示)的值。因此,功率放大器的非线性失真就是不想要的。相应地,某一特定系统所需要的ACPR标准R可能不能维持到与点S相关的所期望的输出功率水平。
换句话说,如图5和图6所示,与相关技术中的已知一般的功率放大器相比,并且如果功率放大器100中的峰值放大器130操作于B类或C类(即,如果功率放大器100操作于典型的多赫尔蒂方式下),则功率放大器100的效率特性提高。然而,就线性度而言,当操作于高输出功率范围时,功率放大器具有更难以预测的值。
因此,根据本发明的一实施例的示例功率放大器在低输出功率范围如点Q处(在此处满足系统要求的ACPR标准R)满足高效和线性度的要求。通过设置施加于峰值放大器130的输入DC偏置电压,使得峰值放大器130操作于DC电流较小的B类或C类,从而使功率放大器100操作于多赫尔蒂方式,来满足标准R。另一方面,在高输出功率范围,通过使功率放大器100操作于操作范围(B或A,在此范围,施加到峰值放大器130的输入电压增加到满足功率放大器100的非线性技术指标的点R),来调整施加到峰值放大器130的输入DC偏置电压,从而使功率放大器实现最优线性度。
图7显示了相应于根据本发明的一个实施例的功率放大器的方式的效率特性。图8显示了相应于根据本发明的功率放大器的多种方式的非线性特性。图9显示了相应于根据本发明的功率放大器的方式的增益特性。在本发明中,载波放大器120和峰值放大器130可操作来使得不管方式如何都具有线性增益特性。然而,即使载波放大器120和峰值放大器130被实现为根据相关方式而以不同的线性增益特性操作,整体系统也不受影响。
图10是一个方框图,显示了根据本发明的第二优选实施例的移动手持设备中功率放大器的结构。根据本发明的第二优选实施例的功率放大器就结构和操作而言,基本上与第一优选实施例的功率放大器100相同。因此,第一和第二优选实施例的功率放大器中相同的部件用同一参考数字来表示。这样,这里省去了对第二优选实施例的功率放大器的详细描述。
如图10所示,另一根据第二优选实施例的功率放大器包括一相位差补偿器180,其取代了第一优选实施例的3dB混频耦合器110。所述相位差补偿器180连接于输入级10和峰值放大器130之间,以使施加到峰值放大器130的输入信号和施加到载波放大器120的输入信号具有90°(λ/4)的相位差。
如上所述,因为在相位差补偿器180的作用下,施加于峰值放大器130的输入信号和施加到载波放大器120的输入信号具有90°(λ/4)的相位差,当来自载波放大器120和峰值放大器130的输出功率在输出匹配单元140中会合时,没有相差,从而可得到最佳输出功率。
如果用相位差补偿器180来替代3dB混频耦合器110,则可用一个简单的传输线来实现相位差补偿器180。可替代地,因为简单的传输线可近似于电感值,相位差补偿器180可用集总元件来实现。这样,功率放大器可不用复杂的3dB混频耦合器110或放大器外的大型传输线来实现。而且,由于相位差补偿器180可集成于一单个芯片内,还可减小功率放大器100的整体尺寸和价格。
下面,将详细描述根据本发明实现的移动手持设备中功率放大器的操作。
包络检测器150检测传送到输出级70的输出功率的水平,并将检测结果提供给数字电路单元160。接着,数字电路单元160决定由包络检测器150检测的输出功率水平是否偏离低输出功率范围Q,并根据该决定的结果向电压控制器170施加一控制信号。如果传送到输出级70的输出功率的在低输出功率范围Q内(方式0),则使功率放大器100操作于多赫尔蒂方式(即,以便使峰值放大器130操作于B类或C类)。反之,如果传送到输出级70的输出功率的水平偏离低输出功率范围Q(即,在高输出功率范围)(方式1),则电压控制器170以如下方式控制施加到峰值放大器130的输入DC偏置电压,即,增加施加到峰值放大器130的输入DC偏置电压,使得ACPR提高到满足功率放大器100的非线性技术指标的点R。
尽管为了说明的目的已经披露了本发明的几个实施例,那些熟悉本领域的技术人员可能在不脱离附属的权利要求所披露的本发明的范围和精神的情况下,进行各种改进,增加和置换。
工业应用性
如上所述,本发明提供了移动手持设备中的功率放大器,其通过根据相关输出功率水平控制施加到峰值放大器的输入DC偏置电压,提高效率和线性度。特别地,在低输出功率方式下,控制去往峰值放大器的输入DC偏置电压,使得本发明的功率放大器操作于多赫尔蒂方式,并且在高输出功率方式时,控制去往峰值放大器的输入DC偏置电压使之增加,以满足功率放大器的非线性技术指标。
而且,根据本发明,功率放大器可通过简单的工艺来实现,由于仅控制施加到峰值放大器的输入DC偏置电压,可减小功率放大器的尺寸和价格。

Claims (12)

1.移动手持设备中的功率放大器,包括:
相位差补偿装置,其连接到载波放大器的输入端和峰值放大器的输入端,用于通过使来自所述载波放大器的载波输出功率信号和来自所述峰值放大器的峰值输出功率信号的相位均衡,来补偿相位差;
输出匹配单元,用于传送载波输出功率信号和峰值输出功率信号;和
电压控制装置,用于检测传送到功率放大器输出级的功率放大器输出功率信号的水平,并根据检测到的所述功率放大器输出功率信号的水平来控制施加到所述峰值放大器输入端的输入DC偏置电压。
2.根据权利要求1所述的功率放大器,其中所述相位差补偿装置是3dB混频耦合器,用于将特定输入功率分配到所述载波放大器和峰值放大器,以使所述载波放大器和峰值放大器间的干扰最小,并按如下的方式传送信号,即,使施加到所述峰值放大器的输入功率信号的相位与施加到所述载波放大器的输入功率的相位相差90°。
3.根据权利要求2所述的功率放大器,其中所述3dB混频耦合器是用集总元件实现的。
4.根据权利要求2所述的功率放大器,其中所述3dB混频耦合器是通过低温共烧陶瓷(LTCC)法实现的。
5.根据权利要求1所述的功率放大器,其中,所述相位差补偿装置包括:相位差补偿器,连接于所述功率放大器的输入级和所述峰值放大器的输入端之间,用于使施加于所述峰值放大器的输入信号的相位比施加到所述载波放大器的输入端的输入信号的相位滞后90°。
6.根据权利要求5所述的功率放大器,其中,所述相位差补偿器是用传输线来实现的。
7.根据权利要求5所述的功率放大器,其中,所述相位差补偿器是用集总元件来实现的。
8.根据权利要求1所述的功率放大器,其中,所述输出匹配单元是用集总元件来实现的。
9.根据权利要求1所述的功率放大器,其中,所述输出匹配单元是通过低温共烧陶瓷(LTCC)法实现的。
10.根据权利要求1所述的功率放大器,其中,所述电压控制装置包括:
包络检测器,用于检测从所述输出匹配单元传送到所述功率放大器输出级的功率放大器输出功率信号的水平;
比较和确定单元,用于通过比较来确定由所述包络检测器检测到的输出功率水平是否偏离低输出功率范围;和
电压控制器,用于根据由比较和确定单元做出的确定的结果比较,控制施加到所述峰值放大器的输入DC偏置电压。
11.根据权利要求1所述的功率放大器,其中所述电压控制装置:
如果从所述输出匹配单元传送到所述功率放大器的输出级的功率放大器输出功率信号的水平在低输出功率范围内,则所述电压控制装置控制施加到所述峰值放大器的输入DC偏置电压,使得所述功率放大器操作于多赫尔蒂放大方式;和
如果从所述输出匹配单元传送到所述功率放大器的输出级的功率放大器输出功率信号的水平偏离低输出功率范围,则所述电压控制装置控制施加到所述峰值放大器的输入DC偏置电压,使得施加到所述峰值放大器的输入DC偏置电压增加到满足所述功率放大器的非线性特性的点。
12.根据权利要求1所述的功率放大器,其中所述载波放大器和所述峰值放大器具有不同的增益特性。
CNB028277856A 2002-02-01 2002-02-04 便携式终端的功率放大装置 Expired - Fee Related CN100559719C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR2002/5924 2002-02-01
KR1020020005924A KR100553252B1 (ko) 2002-02-01 2002-02-01 휴대용 단말기의 전력 증폭 장치

Publications (2)

Publication Number Publication Date
CN1618178A true CN1618178A (zh) 2005-05-18
CN100559719C CN100559719C (zh) 2009-11-11

Family

ID=27656362

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028277856A Expired - Fee Related CN100559719C (zh) 2002-02-01 2002-02-04 便携式终端的功率放大装置

Country Status (9)

Country Link
US (5) US7345535B2 (zh)
EP (1) EP1476949B1 (zh)
JP (1) JP4252458B2 (zh)
KR (1) KR100553252B1 (zh)
CN (1) CN100559719C (zh)
AT (1) ATE435529T1 (zh)
CA (1) CA2474975A1 (zh)
DE (1) DE60232824D1 (zh)
WO (1) WO2003065599A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010022613A1 (zh) * 2008-08-25 2010-03-04 深圳华为通信技术有限公司 一种功率放大方法、装置和基站
CN102098006A (zh) * 2009-12-15 2011-06-15 Nxp股份有限公司 多尔蒂放大器
CN101388648B (zh) * 2007-09-14 2011-08-10 财团法人工业技术研究院 多频多模式功率放大电路以及其操作方法

Families Citing this family (163)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100553252B1 (ko) 2002-02-01 2006-02-20 아바고테크놀로지스코리아 주식회사 휴대용 단말기의 전력 증폭 장치
US8472897B1 (en) 2006-12-22 2013-06-25 Dali Systems Co. Ltd. Power amplifier predistortion methods and apparatus
US8380143B2 (en) 2002-05-01 2013-02-19 Dali Systems Co. Ltd Power amplifier time-delay invariant predistortion methods and apparatus
US8811917B2 (en) 2002-05-01 2014-08-19 Dali Systems Co. Ltd. Digital hybrid mode power amplifier system
US8064850B2 (en) * 2002-05-01 2011-11-22 Dali Systems Co., Ltd. High efficiency linearization power amplifier for wireless communication
US6985704B2 (en) 2002-05-01 2006-01-10 Dali Yang System and method for digital memorized predistortion for wireless communication
WO2004088837A2 (en) * 2003-03-28 2004-10-14 Andrew Corporation Doherty amplifier with output hybrid coupler
US6922102B2 (en) 2003-03-28 2005-07-26 Andrew Corporation High efficiency amplifier
WO2005043747A2 (en) * 2003-10-21 2005-05-12 Wavics, Inc. High linearity doherty communication amplifier with bias control
GB2412515B (en) * 2004-03-13 2007-08-08 Filtronic Plc A doherty amplifier
KR100543729B1 (ko) * 2004-03-24 2006-01-20 아바고테크놀로지스코리아 주식회사 열 방출 효율이 높고 두께는 물론 크기를 감소시킨 고주파모듈 패키지 및 그 조립 방법
US7884668B2 (en) * 2004-06-29 2011-02-08 Nxp B.V. Integrated doherty type amplifier arrangement with high power efficiency
US20060001485A1 (en) * 2004-07-02 2006-01-05 Icefyre Semiconductor Corporation Power amplifier
JP4715994B2 (ja) * 2004-08-26 2011-07-06 日本電気株式会社 ドハティ増幅器並列運転回路
JP4175545B2 (ja) * 2004-09-03 2008-11-05 ソニー・エリクソン・モバイルコミュニケーションズ株式会社 無線通信端末
US7327803B2 (en) 2004-10-22 2008-02-05 Parkervision, Inc. Systems and methods for vector power amplification
US7355470B2 (en) * 2006-04-24 2008-04-08 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including embodiments for amplifier class transitioning
US7148746B2 (en) 2004-10-26 2006-12-12 Andrew Corporation High efficiency amplifier
KR100654650B1 (ko) * 2004-11-25 2006-12-08 아바고테크놀로지스코리아 주식회사 하이브리드 커플러가 없는 직렬구조의 도허티 증폭기
US7248108B2 (en) * 2004-12-29 2007-07-24 Agere Systems Inc. Power amplifier employing thin film ferroelectric phase shift element
JP2006222551A (ja) * 2005-02-08 2006-08-24 Fujitsu Media Device Kk 電子回路装置
US7193473B2 (en) * 2005-03-24 2007-03-20 Cree, Inc. High power Doherty amplifier using multi-stage modules
US7474880B2 (en) * 2005-03-24 2009-01-06 Broadcom Corporation Linear and non-linear dual mode transmitter
JP4282655B2 (ja) * 2005-03-30 2009-06-24 株式会社東芝 無線送信機および増幅器
US7548733B2 (en) * 2005-03-31 2009-06-16 Broadcom Corporation Wireless transmitter having multiple power amplifier drivers (PADs) that are selectively biased to provide substantially linear magnitude and phase responses
US7295074B2 (en) * 2005-03-31 2007-11-13 Beceem Communications Inc. Doherty power amplifier with phase compensation
US7183858B2 (en) * 2005-03-31 2007-02-27 Broadcom Corporation Wireless transmitter having multiple programmable gain amplifiers (PGAs) with tuned impedance to provide substantially linear magnitude and phase responses
CN101180792A (zh) * 2005-05-20 2008-05-14 Nxp股份有限公司 高功率效率的集成多赫尔蒂型放大器结构
US7696841B2 (en) * 2005-06-23 2010-04-13 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Power amplifier utilizing quadrature hybrid for power dividing, combining and impedance matching
JP2007043305A (ja) * 2005-08-01 2007-02-15 Mitsubishi Electric Corp 高効率増幅器
JP2007053540A (ja) * 2005-08-17 2007-03-01 Nec Corp ドハティ型増幅器
WO2007046370A1 (ja) 2005-10-17 2007-04-26 Hitachi Kokusai Electric Inc. 非線形歪検出方法及び歪補償増幅装置
JP4792273B2 (ja) 2005-10-18 2011-10-12 株式会社日立国際電気 増幅器
US9106316B2 (en) * 2005-10-24 2015-08-11 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification
US8013675B2 (en) 2007-06-19 2011-09-06 Parkervision, Inc. Combiner-less multiple input single output (MISO) amplification with blended control
US7911272B2 (en) 2007-06-19 2011-03-22 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including blended control embodiments
US8334722B2 (en) 2007-06-28 2012-12-18 Parkervision, Inc. Systems and methods of RF power transmission, modulation and amplification
US7248110B2 (en) * 2005-12-06 2007-07-24 Harris Corporation Modified doherty amplifier
US7831221B2 (en) * 2005-12-13 2010-11-09 Andrew Llc Predistortion system and amplifier for addressing group delay modulation
ATE545198T1 (de) * 2005-12-30 2012-02-15 Ericsson Telefon Ab L M Effizienter zusammengesetzter verstärker
WO2007077409A1 (en) * 2006-01-05 2007-07-12 Filtronic Plc An active load pull amplifier
US7772925B2 (en) * 2006-03-31 2010-08-10 Freescale Semiconductor, Inc. Power amplifier with pre-distorter
US7414478B2 (en) * 2006-03-31 2008-08-19 Intel Corporation Integrated parallel power amplifier
US8031804B2 (en) 2006-04-24 2011-10-04 Parkervision, Inc. Systems and methods of RF tower transmission, modulation, and amplification, including embodiments for compensating for waveform distortion
US7937106B2 (en) * 2006-04-24 2011-05-03 ParkerVision, Inc, Systems and methods of RF power transmission, modulation, and amplification, including architectural embodiments of same
JP4831571B2 (ja) * 2006-05-02 2011-12-07 富士通株式会社 増幅器ユニット及びその故障検出方法
KR100749870B1 (ko) * 2006-06-07 2007-08-17 (주) 와이팜 도허티 전력 증폭 장치
JP2008035487A (ja) * 2006-06-19 2008-02-14 Renesas Technology Corp Rf電力増幅器
US7486136B2 (en) * 2006-09-26 2009-02-03 Infineon Technologies Ag Power amplifier
US7541866B2 (en) * 2006-09-29 2009-06-02 Nortel Networks Limited Enhanced doherty amplifier with asymmetrical semiconductors
US7956628B2 (en) * 2006-11-03 2011-06-07 International Business Machines Corporation Chip-based prober for high frequency measurements and methods of measuring
WO2008062371A2 (en) * 2006-11-23 2008-05-29 Nxp B.V. Integrated doherty type amplifier arrangement with high power efficiency
US20080122542A1 (en) * 2006-11-27 2008-05-29 Gregory Bowles Enhanced amplifier with auxiliary path bias modulation
JPWO2008075561A1 (ja) * 2006-12-19 2010-04-08 三菱電機株式会社 電力増幅装置
US9026067B2 (en) * 2007-04-23 2015-05-05 Dali Systems Co. Ltd. Remotely reconfigurable power amplifier system and method
EP3790244A1 (en) * 2006-12-26 2021-03-10 Dali Systems Co. Ltd. Method and system for baseband predistortion linearization in multi-channel wideband communication systems
US7620129B2 (en) * 2007-01-16 2009-11-17 Parkervision, Inc. RF power transmission, modulation, and amplification, including embodiments for generating vector modulation control signals
US7782765B2 (en) 2007-01-22 2010-08-24 Harris Stratex Networks Operating Corporation Distributed protection switching architecture for point-to-point microwave radio systems
US8095088B2 (en) * 2007-05-17 2012-01-10 Harris Stratex Networks Operating Corporation Compact wide dynamic range transmitter for point to point radio
US20080219246A1 (en) * 2007-03-08 2008-09-11 Northrop Grumman Space And Mission Systems Corp. System and method for switching using coordinated phase shifters
JP5474764B2 (ja) * 2007-04-23 2014-04-16 ダリ システムズ カンパニー リミテッド Nウェイ分散電力増幅器
US8274332B2 (en) 2007-04-23 2012-09-25 Dali Systems Co. Ltd. N-way Doherty distributed power amplifier with power tracking
WO2008144017A1 (en) 2007-05-18 2008-11-27 Parkervision, Inc. Systems and methods of rf power transmission, modulation, and amplification
US8224266B2 (en) * 2007-08-30 2012-07-17 Dali Systems Co., Ltd. Power amplifier predistortion methods and apparatus using envelope and phase detector
JP5169122B2 (ja) * 2007-10-09 2013-03-27 住友電気工業株式会社 ドハティ増幅装置
JP2009100429A (ja) * 2007-10-19 2009-05-07 Hitachi Kokusai Electric Inc ドハティ増幅器
US8013680B2 (en) * 2007-11-05 2011-09-06 Viasat, Inc. Distributed Doherty amplifiers
WO2009109808A2 (en) 2007-12-07 2009-09-11 Dali Systems Co. Ltd. Baseband-derived rf digital predistortion
JP4950083B2 (ja) * 2008-01-15 2012-06-13 ルネサスエレクトロニクス株式会社 高効率電力増幅器
JP2009260472A (ja) * 2008-04-14 2009-11-05 Mitsubishi Electric Corp 電力増幅器
KR101576558B1 (ko) * 2008-11-27 2015-12-10 삼성전자주식회사 위상을 제어할 수 있는 직교 신호 위상 제어기
US7961048B2 (en) 2008-12-12 2011-06-14 Samsung Electro-Mechanics Company Integrated power amplifiers for use in wireless communication devices
KR20100069454A (ko) * 2008-12-16 2010-06-24 삼성전자주식회사 도허티 전력 증폭기의 성능 개선 방법 및 장치
KR101066639B1 (ko) 2009-09-30 2011-09-22 주식회사 피플웍스 바이어스 혼합 전력 증폭 장치
US8447245B2 (en) * 2010-01-22 2013-05-21 Freescale Semiconductor, Inc. Radio frequency transmitter having an amplifier with power supply modulation
US20110193624A1 (en) * 2010-02-08 2011-08-11 Harris Corporation Tunable impedance inverter for doherty amplifier circuit
US9099961B2 (en) 2010-04-19 2015-08-04 Rf Micro Devices, Inc. Output impedance compensation of a pseudo-envelope follower power management system
WO2011133542A1 (en) 2010-04-19 2011-10-27 Rf Micro Devices, Inc. Pseudo-envelope following power management system
US9431974B2 (en) 2010-04-19 2016-08-30 Qorvo Us, Inc. Pseudo-envelope following feedback delay compensation
US8314654B2 (en) * 2010-05-17 2012-11-20 Alcatel Lucent Multi-band high-efficiency Doherty amplifier
US8410853B2 (en) * 2010-06-01 2013-04-02 Nxp B.V. Inductive circuit arrangement
EP2403135B1 (en) * 2010-06-24 2013-12-11 Alcatel Lucent Power amplifier for mobile telecommunications
JP5527047B2 (ja) * 2010-06-29 2014-06-18 富士通株式会社 増幅装置
CN105208083B (zh) 2010-09-14 2018-09-21 大力系统有限公司 用于发送信号的系统和分布式天线系统
US9954436B2 (en) 2010-09-29 2018-04-24 Qorvo Us, Inc. Single μC-buckboost converter with multiple regulated supply outputs
KR101128486B1 (ko) * 2010-11-23 2012-03-27 포항공과대학교 산학협력단 전력 증폭 장치
US8749309B2 (en) 2010-12-05 2014-06-10 Rf Micro Devices (Cayman Islands), Ltd. Gate-based output power level control power amplifier
WO2012118874A2 (en) * 2011-03-03 2012-09-07 Thomson Licensing Apparatus and method for processing a radio frequency signal
KR20140026458A (ko) 2011-04-08 2014-03-05 파커비전, 인크. Rf 전력 송신, 변조 및 증폭 시스템들 및 방법들
US9246460B2 (en) 2011-05-05 2016-01-26 Rf Micro Devices, Inc. Power management architecture for modulated and constant supply operation
US9247496B2 (en) 2011-05-05 2016-01-26 Rf Micro Devices, Inc. Power loop control based envelope tracking
US9379667B2 (en) 2011-05-05 2016-06-28 Rf Micro Devices, Inc. Multiple power supply input parallel amplifier based envelope tracking
US20130293295A1 (en) * 2011-05-17 2013-11-07 Electronics And Telecommunications Research Institute Compact rf power amplifier
EP2715867A4 (en) 2011-06-02 2014-12-17 Parkervision Inc ANTENNA CONTROL
US9263996B2 (en) 2011-07-20 2016-02-16 Rf Micro Devices, Inc. Quasi iso-gain supply voltage function for envelope tracking systems
US9484797B2 (en) 2011-10-26 2016-11-01 Qorvo Us, Inc. RF switching converter with ripple correction
US9294041B2 (en) 2011-10-26 2016-03-22 Rf Micro Devices, Inc. Average frequency control of switcher for envelope tracking
US9250643B2 (en) 2011-11-30 2016-02-02 Rf Micro Devices, Inc. Using a switching signal delay to reduce noise from a switching power supply
US9515621B2 (en) 2011-11-30 2016-12-06 Qorvo Us, Inc. Multimode RF amplifier system
US9041365B2 (en) 2011-12-01 2015-05-26 Rf Micro Devices, Inc. Multiple mode RF power converter
US9280163B2 (en) 2011-12-01 2016-03-08 Rf Micro Devices, Inc. Average power tracking controller
US9256234B2 (en) 2011-12-01 2016-02-09 Rf Micro Devices, Inc. Voltage offset loop for a switching controller
US9494962B2 (en) 2011-12-02 2016-11-15 Rf Micro Devices, Inc. Phase reconfigurable switching power supply
US9071211B1 (en) * 2011-12-15 2015-06-30 Anadigics, Inc. Compact doherty combiner
US9813036B2 (en) 2011-12-16 2017-11-07 Qorvo Us, Inc. Dynamic loadline power amplifier with baseband linearization
US9298198B2 (en) 2011-12-28 2016-03-29 Rf Micro Devices, Inc. Noise reduction for envelope tracking
CN102571131B (zh) * 2012-01-12 2017-02-15 中兴通讯股份有限公司 电源装置及其管理电源的方法和无线通信终端
US8964825B2 (en) * 2012-02-17 2015-02-24 International Business Machines Corporation Analog signal current integrators with tunable peaking function
US8717099B2 (en) 2012-03-16 2014-05-06 Infineon Technologies Ag Wideband doherty amplifier circuit with peaking impedance absorption
US8598951B1 (en) 2012-04-02 2013-12-03 Anadigics, Inc. Linear multi-mode power amplifier for dynamic supply operation
CN103580612A (zh) * 2012-08-10 2014-02-12 中兴通讯股份有限公司 功率放大管装置、多路射频功率放大电路及其实现方法
US8816775B2 (en) * 2012-09-13 2014-08-26 Freescale Semiconductor, Inc. Quiescent current determination using in-package voltage measurements
US9225231B2 (en) 2012-09-14 2015-12-29 Rf Micro Devices, Inc. Open loop ripple cancellation circuit in a DC-DC converter
EP2712076A1 (en) * 2012-09-19 2014-03-26 Alcatel-Lucent Power amplifier for mobile telecommunications
US9207692B2 (en) 2012-10-18 2015-12-08 Rf Micro Devices, Inc. Transitioning from envelope tracking to average power tracking
US8829998B2 (en) 2012-10-23 2014-09-09 Airspan Networks Inc. Doherty power amplifier
US9627975B2 (en) 2012-11-16 2017-04-18 Qorvo Us, Inc. Modulated power supply system and method with automatic transition between buck and boost modes
JP2014116757A (ja) * 2012-12-07 2014-06-26 Samsung Electronics Co Ltd 増幅回路及び通信装置
US9431969B2 (en) 2012-12-11 2016-08-30 Rf Micro Devices, Inc. Doherty power amplifier with tunable impedance load
US9300252B2 (en) 2013-01-24 2016-03-29 Rf Micro Devices, Inc. Communications based adjustments of a parallel amplifier power supply
US9203353B2 (en) 2013-03-14 2015-12-01 Rf Micro Devices, Inc. Noise conversion gain limited RF power amplifier
WO2014152903A2 (en) 2013-03-14 2014-09-25 Rf Micro Devices, Inc Envelope tracking power supply voltage dynamic range reduction
US9479118B2 (en) * 2013-04-16 2016-10-25 Rf Micro Devices, Inc. Dual instantaneous envelope tracking
US9397617B2 (en) * 2013-06-25 2016-07-19 Rf Micro Devices, Inc. Multi-broadband Doherty power amplifier
US9407214B2 (en) * 2013-06-28 2016-08-02 Cree, Inc. MMIC power amplifier
US9374005B2 (en) 2013-08-13 2016-06-21 Rf Micro Devices, Inc. Expanded range DC-DC converter
WO2015042142A1 (en) 2013-09-17 2015-03-26 Parkervision, Inc. Method, apparatus and system for rendering an information bearing function of time
US9948243B2 (en) 2013-09-30 2018-04-17 Qorvo Us, Inc. Reconfigurable load modulation amplifier
US9484865B2 (en) 2013-09-30 2016-11-01 Qorvo Us, Inc. Reconfigurable load modulation amplifier
US9369095B2 (en) 2014-01-27 2016-06-14 Rf Micro Devices, Inc. Unbalanced linear power amplifier
US9912298B2 (en) * 2014-05-13 2018-03-06 Skyworks Solutions, Inc. Systems and methods related to linear load modulated power amplifiers
US9614476B2 (en) 2014-07-01 2017-04-04 Qorvo Us, Inc. Group delay calibration of RF envelope tracking
US9800207B2 (en) 2014-08-13 2017-10-24 Skyworks Solutions, Inc. Doherty power amplifier combiner with tunable impedance termination circuit
CN105490645B (zh) * 2014-09-16 2018-06-26 上海诺基亚贝尔股份有限公司 一种高效的多赫迪功率放大器
US9899961B2 (en) 2015-02-15 2018-02-20 Skyworks Solutions, Inc. Enhanced amplifier efficiency through cascode current steering
KR101701025B1 (ko) * 2015-02-17 2017-02-01 삼성전기주식회사 전력증폭기용 입력 드라이버 및 송신기
WO2017001004A1 (en) * 2015-07-01 2017-01-05 Telefonaktiebolaget Lm Ericsson (Publ) Class-b/c doherty power amplifier
US9912297B2 (en) 2015-07-01 2018-03-06 Qorvo Us, Inc. Envelope tracking power converter circuitry
US9948240B2 (en) 2015-07-01 2018-04-17 Qorvo Us, Inc. Dual-output asynchronous power converter circuitry
US10489155B2 (en) * 2015-07-21 2019-11-26 Qualcomm Incorporated Mixed-width SIMD operations using even/odd register pairs for wide data elements
CN105281694A (zh) * 2015-08-07 2016-01-27 杭州中威电子股份有限公司 一种5.8GHz相位自适应功率放大器合路系统及其实现方法
US9973147B2 (en) 2016-05-10 2018-05-15 Qorvo Us, Inc. Envelope tracking power management circuit
EP3255796B1 (en) 2016-06-08 2020-01-08 NXP USA, Inc. Method and apparatus for generating a charge pump control signal
EP3312990B1 (en) * 2016-10-24 2019-12-11 NXP USA, Inc. Amplifier devices with input line termination circuits
JP7039826B2 (ja) * 2016-11-09 2022-03-23 サムソン エレクトロ-メカニックス カンパニーリミテッド. ドハティ型増幅器
US10379854B2 (en) * 2016-12-22 2019-08-13 Intel Corporation Processor instructions for determining two minimum and two maximum values
US11233483B2 (en) * 2017-02-02 2022-01-25 Macom Technology Solutions Holdings, Inc. 90-degree lumped and distributed Doherty impedance inverter
WO2018197918A1 (en) 2017-04-24 2018-11-01 Macom Technology Solutions Holdings, Inc. Improved efficiency, symmetrical doherty power amplifier
EP3616320B1 (en) 2017-04-24 2023-11-08 MACOM Technology Solutions Holdings, Inc. Inverted doherty power amplifier with large rf and instantaneous bandwidths
WO2019069115A1 (en) 2017-10-02 2019-04-11 Macom Technology Solutions Holdings, Inc. HIGH PERFORMANCE POWER AMPLIFIER WITHOUT CHARGE MODULATION
JP6729986B2 (ja) * 2017-11-15 2020-07-29 三菱電機株式会社 ドハティ増幅器及びドハティ増幅回路
WO2019170234A1 (en) * 2018-03-07 2019-09-12 Telefonaktiebolaget Lm Ericsson (Publ) Linear doherty power amplifier
US10476437B2 (en) 2018-03-15 2019-11-12 Qorvo Us, Inc. Multimode voltage tracker circuit
US11108360B2 (en) * 2018-07-20 2021-08-31 Qorvo Us, Inc. Doherty power amplifier system
JP7206754B2 (ja) 2018-09-27 2023-01-18 富士通株式会社 増幅装置、無線通信装置及び増幅装置の制御方法
WO2020072898A1 (en) 2018-10-05 2020-04-09 Macom Technology Solutions Holdings, Inc. Low-load-modulation power amplifier
CN109546987B (zh) * 2018-11-16 2021-09-03 西安电子科技大学 宽带有源移相器
EP3944493B1 (en) * 2019-04-25 2023-04-05 Mitsubishi Electric Corporation Doherty amplifier and communication device
US11201593B2 (en) 2019-12-11 2021-12-14 Qorvo Us, Inc. Doherty power amplifier system
WO2021137951A1 (en) 2019-12-30 2021-07-08 Macom Technology Solutions Holdings, Inc. Low-load-modulation broadband amplifier
US11588507B2 (en) * 2020-11-16 2023-02-21 Qorvo Us, Inc. Radio frequency front-end
KR20220085597A (ko) * 2020-12-15 2022-06-22 삼성전자주식회사 무선 통신 시스템에서 전력 증폭기 필터 및 이를 포함하는 전자 장치
KR20230022356A (ko) * 2021-08-06 2023-02-15 삼성전자주식회사 커플러를 이용한 전력 증폭기 및 이를 포함하는 전자 장치

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2210028A (en) 1936-04-01 1940-08-06 Bell Telephone Labor Inc Amplifier
GB2060297B (en) 1979-08-14 1983-09-01 Marconi Co Ltd Modulating amplifiers
US5420541A (en) * 1993-06-04 1995-05-30 Raytheon Company Microwave doherty amplifier
US5568086A (en) * 1995-05-25 1996-10-22 Motorola, Inc. Linear power amplifier for high efficiency multi-carrier performance
US5739723A (en) * 1995-12-04 1998-04-14 Motorola, Inc. Linear power amplifier using active bias for high efficiency and method thereof
US5757229A (en) 1996-06-28 1998-05-26 Motorola, Inc. Bias circuit for a power amplifier
US5786727A (en) * 1996-10-15 1998-07-28 Motorola, Inc. Multi-stage high efficiency linear power amplifier and method therefor
US5880633A (en) 1997-05-08 1999-03-09 Motorola, Inc. High efficiency power amplifier
US6097252A (en) * 1997-06-02 2000-08-01 Motorola, Inc. Method and apparatus for high efficiency power amplification
US5886575A (en) * 1997-09-30 1999-03-23 Motorola, Inc. Apparatus and method for amplifying a signal
US6084468A (en) * 1997-10-06 2000-07-04 Motorola, Inc. Method and apparatus for high efficiency wideband power amplification
US6285251B1 (en) * 1998-04-02 2001-09-04 Ericsson Inc. Amplification systems and methods using fixed and modulated power supply voltages and buck-boost control
US6128479A (en) * 1998-06-04 2000-10-03 Motorola, Inc. Radio frequency amplifier structure
HUP0200304A2 (en) * 1999-02-03 2002-05-29 Siemens Ag Integrated antenna coupler element
DE19907987C2 (de) * 1999-02-25 2001-05-23 Bayer Ag Weiche, thermoplastische Formmassen
JP2003503521A (ja) 1999-06-18 2003-01-28 イーストマン ケミカル カンパニー ナイロン6−シリコーンブレンド
US6262629B1 (en) 1999-07-06 2001-07-17 Motorola, Inc. High efficiency power amplifier having reduced output matching networks for use in portable devices
US6374092B1 (en) * 1999-12-04 2002-04-16 Motorola, Inc. Efficient multimode power amplifier
US6356149B1 (en) * 2000-04-10 2002-03-12 Motorola, Inc. Tunable inductor circuit, phase tuning circuit and applications thereof
US6320462B1 (en) * 2000-04-12 2001-11-20 Raytheon Company Amplifier circuit
US6731173B1 (en) * 2000-10-23 2004-05-04 Skyworks Solutions, Inc. Doherty bias circuit to dynamically compensate for process and environmental variations
US6396341B1 (en) * 2000-12-29 2002-05-28 Ericsson Inc. Class E Doherty amplifier topology for high efficiency signal transmitters
KR100546491B1 (ko) * 2001-03-21 2006-01-26 학교법인 포항공과대학교 초고주파 도허티 증폭기의 출력 정합 장치
US20020186079A1 (en) 2001-06-08 2002-12-12 Kobayashi Kevin W. Asymmetrically biased high linearity balanced amplifier
US6469581B1 (en) * 2001-06-08 2002-10-22 Trw Inc. HEMT-HBT doherty microwave amplifier
US6864742B2 (en) 2001-06-08 2005-03-08 Northrop Grumman Corporation Application of the doherty amplifier as a predistortion circuit for linearizing microwave amplifiers
US6791417B2 (en) 2002-01-28 2004-09-14 Cree Microwave, Inc. N-way RF power amplifier circuit with increased back-off capability and power added efficiency using selected phase lengths and output impedances
US6737922B2 (en) * 2002-01-28 2004-05-18 Cree Microwave, Inc. N-way RF power amplifier circuit with increased back-off capability and power added efficiency using unequal input power division
KR100553252B1 (ko) 2002-02-01 2006-02-20 아바고테크놀로지스코리아 주식회사 휴대용 단말기의 전력 증폭 장치
KR100450744B1 (ko) 2002-08-29 2004-10-01 학교법인 포항공과대학교 도허티 증폭기
WO2004062091A1 (en) * 2002-12-18 2004-07-22 Powerwave Technologies, Inc. Feed forward amplifier system using penalties and floors for optimal control
KR20040079597A (ko) * 2003-03-08 2004-09-16 학교법인 포항공과대학교 적응 바이어스 제어 기술을 이용한 초고주파 도허티증폭장치
US6922102B2 (en) 2003-03-28 2005-07-26 Andrew Corporation High efficiency amplifier
US20050134377A1 (en) 2003-12-23 2005-06-23 Dent Paul W. Doherty amplifier
KR100957417B1 (ko) * 2004-12-08 2010-05-11 삼성전자주식회사 무선 통신 시스템에서 스위칭 구조를 이용한 전력 증폭 장치 및 제어 방법
KR20060077818A (ko) * 2004-12-31 2006-07-05 학교법인 포항공과대학교 비대칭 전력 구동을 이용한 전력 증폭 장치

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101388648B (zh) * 2007-09-14 2011-08-10 财团法人工业技术研究院 多频多模式功率放大电路以及其操作方法
WO2010022613A1 (zh) * 2008-08-25 2010-03-04 深圳华为通信技术有限公司 一种功率放大方法、装置和基站
CN102098006A (zh) * 2009-12-15 2011-06-15 Nxp股份有限公司 多尔蒂放大器
CN102098006B (zh) * 2009-12-15 2015-03-04 Nxp股份有限公司 多尔蒂放大器

Also Published As

Publication number Publication date
US7061314B2 (en) 2006-06-13
US20050012547A1 (en) 2005-01-20
ATE435529T1 (de) 2009-07-15
JP2005516524A (ja) 2005-06-02
EP1476949A1 (en) 2004-11-17
CA2474975A1 (en) 2003-08-07
KR20030065873A (ko) 2003-08-09
US7109790B2 (en) 2006-09-19
US7304537B2 (en) 2007-12-04
US7345535B2 (en) 2008-03-18
KR100553252B1 (ko) 2006-02-20
US20040145416A1 (en) 2004-07-29
EP1476949B1 (en) 2009-07-01
EP1476949A4 (en) 2005-05-04
CN100559719C (zh) 2009-11-11
DE60232824D1 (de) 2009-08-13
WO2003065599A1 (en) 2003-08-07
JP4252458B2 (ja) 2009-04-08
US20070057722A1 (en) 2007-03-15
US20040183593A1 (en) 2004-09-23
US7053706B2 (en) 2006-05-30
US20040119533A1 (en) 2004-06-24

Similar Documents

Publication Publication Date Title
CN1618178A (zh) 便携式终端的功率放大装置
EP2297847B1 (en) Rf power amplifiers with linearization
CN1223080C (zh) 负载包络跟随放大器系统
CA2330395C (en) Power amplifier using upstream signal information
CN101534133B (zh) 一种无线收发信机
US8421539B2 (en) Multi-mode high efficiency linear power amplifier
KR101354222B1 (ko) 부하에 둔감한 고효율 전력 증폭기 회로 및 부하에 둔감한 고효율 전력 증폭기 회로 상에서 동작하는 방법
US7589589B2 (en) Power amplifying apparatus and mobile communication terminal
CN102792599A (zh) 用于功率放大器的可调谐匹配电路
KR20080034421A (ko) 비선형 증폭기를 이용한 고효율 rf 송신기 시스템
WO2010022613A1 (zh) 一种功率放大方法、装置和基站
US6680652B2 (en) Load switching for transmissions with different peak-to-average power ratios
CN101164229B (zh) 具有偏压控制的高度线性多赫蒂通信放大器
CN102064774A (zh) 一种功率放大电路实现方法及功率放大装置
KR20060064399A (ko) 이득과 선형성 개선을 위한 스위칭 구조를 이용한 전력증폭 장치
CN104393843A (zh) 采用多级式辅路放大器的Doherty功率放大器
CN104640011A (zh) 一种应用于ap的双频功放装置及ap设备
KR20100123615A (ko) 도허티 증폭기에서 피킹 증폭기의 성능을 최적화시키기 위한 장치 및 방법
KR100629244B1 (ko) 적어도 세개의 전원을 이용한 고주파 전력 증폭기 장치
KR20030005783A (ko) 이동 단말기용 고효율 전력증폭기
JP2000252843A (ja) 送信電力制御回路
KR20050110496A (ko) 가변 매칭을 이용한 전력 증폭기

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20090313

Address after: Singapore Singapore

Applicant after: WAVICS, Inc.

Address before: Seoul, South Kerean

Applicant before: Annwa hi tech Korea Ltd.

Effective date of registration: 20090313

Address after: Seoul, South Kerean

Applicant after: Annwa hi tech Korea Ltd.

Address before: Seoul

Applicant before: Vivex Corp.

ASS Succession or assignment of patent right

Owner name: AVAGO TECHNOLOGIES WIRELESS IP (SINGAPORE)PRIVATE

Free format text: FORMER OWNER: ANHUA HIGH SCIENCE HAN CO., LTD.

Effective date: 20090313

Owner name: ANHUA HIGH SCIENCE HAN CO., LTD.

Free format text: FORMER OWNER: WELFOCUS CO., LTD.

Effective date: 20090313

C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) CORPORAT

Free format text: FORMER OWNER: AVAGO TECHNOLOGIES WIRELESS IP

Effective date: 20130507

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20130507

Address after: Singapore Singapore

Patentee after: Avago Technologies General IP (Singapore) Pte. Ltd.

Address before: Singapore Singapore

Patentee before: WAVICS, Inc.

TR01 Transfer of patent right

Effective date of registration: 20181011

Address after: Singapore Singapore

Patentee after: Avago Technologies General IP (Singapore) Pte. Ltd.

Address before: Singapore Singapore

Patentee before: Avago Technologies General IP (Singapore) Pte. Ltd.

TR01 Transfer of patent right
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20091111

Termination date: 20210204