CN1632623A - 眼镜片 - Google Patents

眼镜片 Download PDF

Info

Publication number
CN1632623A
CN1632623A CNA2004101013522A CN200410101352A CN1632623A CN 1632623 A CN1632623 A CN 1632623A CN A2004101013522 A CNA2004101013522 A CN A2004101013522A CN 200410101352 A CN200410101352 A CN 200410101352A CN 1632623 A CN1632623 A CN 1632623A
Authority
CN
China
Prior art keywords
eyeglass
lens
aberration
diffraction
eye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2004101013522A
Other languages
English (en)
Inventor
P·A·皮尔斯
A·H·韦贝尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AMO Groningen BV
Original Assignee
Pharmacia Groningen BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=20283758&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN1632623(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Pharmacia Groningen BV filed Critical Pharmacia Groningen BV
Publication of CN1632623A publication Critical patent/CN1632623A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1876Diffractive Fresnel lenses; Zone plates; Kinoforms
    • G02B5/189Structurally combined with optical elements not having diffractive power
    • G02B5/1895Structurally combined with optical elements not having diffractive power such optical elements having dioptric power
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1613Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
    • A61F2/1637Correcting aberrations caused by inhomogeneities; correcting intrinsic aberrations, e.g. of the cornea, of the surface of the natural lens, aspheric, cylindrical, toric lenses
    • A61F2/164Aspheric lenses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1613Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
    • A61F2/1654Diffractive lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/024Methods of designing ophthalmic lenses
    • G02C7/028Special mathematical design techniques
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • G02C7/041Contact lenses for the eyes bifocal; multifocal
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C2202/00Generic optical aspects applicable to one or more of the subgroups of G02C7/00
    • G02C2202/06Special ophthalmologic or optometric aspects
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C2202/00Generic optical aspects applicable to one or more of the subgroups of G02C7/00
    • G02C2202/20Diffractive and Fresnel lenses or lens portions
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C2202/00Generic optical aspects applicable to one or more of the subgroups of G02C7/00
    • G02C2202/22Correction of higher order and chromatic aberrations, wave front measurement and calculation

Abstract

一种包括一个衍射部分的眼镜片和一种用于设计这种眼镜片的方法。根据本发明,上述镜片还包括一个折射部分,所述折射部分包括至少一个表面,上述镜片被构造成对至少一种类型的单色像差至少部分地补偿一个通过波前,上述单色像差由眼睛光学部分的至少其中之一引起。上述衍射部分对由眼睛光学部分的至少其中之一引起的色差,能至少部分地补偿一个通过波前。另外上述折射和衍射部分在一起提供所需要的透镜光学能力。

Description

眼镜片
技术领域
本发明涉及一种包括一个衍射部分的眼镜片,还涉及一种用于设计上述眼镜片的方法。
发明背景
通过眼睛的波前将这样受眼睛光学部分的影响,以致例如:将一种色差提供到波前上,原因是在眼睛的各光学部分中材料的折射率对不同的波长不同。这样,具有不同波长的光将被折射不同的量,并且它们将落在视网膜上的不同地方,亦即不同颜色不能聚焦到同一点上。这叫做色差。
最近在校正眼睛的单色像差方面已有了很多研究。已经揭示了当在人的视觉系统中校正了所有的单色像差时,就暴露了眼睛的色差。因此,为了优化眼睛的光学质量,必须将单色像差和色差结合进行校正。可以将衍射图形构造成能提供一种通过波前,上述波前具有与眼睛的色差符号相反的色差。因此,可以用一种衍射图形对从眼的各光学部分加到波前上的色差进行校正。色差的某种背景理论可以在,例如:由DavidA.Atchison和Geoyge Smith所著的“Optics of the Human Eyes”的第17章中找到。衍射图形的理论背景可以在Allen L.Cohen的“Practical design of a bifocalhologram contact lens or intraocular lens”,Applied Optics 31(19)(1992)中找到。从例如美国专利5,895,422,5,117,306和5,895,422中可知一些眼镜片,这些眼镜片在至少一个表面上包括一个用于校正色差的衍射图形。然而,这些镜片不能补偿由眼表面所提供的其它色差。在SE 0000614-4中,设计了一些非球面透镜来补偿球面像差。在某些应用中,这些透镜将使眼睛的色差增加。因此,需要一种用于校正折射误差,同时也可以校正单色差和色差的镜片。
发明概述
本发明的目的是改善患者的视觉质量。
本发明的另一个目的是提供一种眼镜片,它能校正色差和至少一种类型单色差。
本发明的另一个目的是提供一种眼镜片,它能校正色差和球面像差二者。
本发明还有另一个目的是校正如第11归一化的Zernike项所表示的球面像差。
本发明还有另一个目的是提供一种能校正球面像差的非球面透镜,上述非球面透镜具有一个衍射部分,所述衍射部分将折射率加到透镜上并对由眼的光学表面和由非球面透镜表面所引起的色差提供补偿。在本文中,术语非球面的将指旋转式对称,不对称和/或不规则的表面,亦即所有与球面不同的表面。
这些目的通过一种如开始在“技术领域”部分中所述的镜片达到,根据本发明,上述镜片还包括一个折射部分,该折射部分包括至少一个表面,该镜片被构造成对于至少一种类型的由眼的光学部分至少其中之一所引起的单色差,至少部分地补偿一个通过的波前。根据本发明,衍射部分能至少部分地补偿一个通过波前的由眼的光学部分至少其中之一所引起的色差。上述折射和衍射部分在一起提供所需的透镜光学本领。在本文中,“眼的光学部分”指对进入光的折射有贡献的眼睛的部分。眼的角膜及天然或植入的透镜都是眼的光学部分。而且一些不均匀性,比如在玻璃体中的不均匀性也认为是眼的光学部分。把衍射光学和折射光学结合起来的一种镜片叫做混合元件。单色像差可以是,例如:像散,慧形像差,球面像差,三叶形,四叶形或更高的像差项。
因而实现了一种眼镜片,它能补偿至少一种类型单色像差和补偿由眼的各光学部分对一种通过的波前所引起的色差。
优选的是,对于由透镜折射部分所引起的色差,衍射部分也能至少部分地补偿一种通过的波前。
在本发明的一个实施例中,所校正的单色像差是球面像差。
人们已经很充分地了解了眼的纵向色差并且业已证明对不同物体具有很类似的值(Thibos等,“The chromatic eye:a new reduced eye model ofocular chromatic aberration in humans”,Applied optic,31,3594-3600,(1992))。也已证明它随着年龄增长而稳定(Mordi等,“Influnce of ageon chromatic aberration of human eye”,Amer.J.Optom.Physiol.Opt.62,864-869(1985))。因而可以设计出一种校正眼的平均色差的眼镜片。
衍射表面可以用它们所为的相位函数表征。这种相位函数描述当一种射线通过衍射表面时加到所述射线上的附加相位。这种附加相位与射线撞击表面处透镜的半径有关。对于径向上对称的衍射表面来说,这种函数可以用方程式1描述。
φ ( r ) = 2 π λ ( DFO + DF 1 r + DF 2 r 2 + DF 3 r 3 + DF 4 r 4 + · · · ) - - - ( 1 )
式中r是径向坐标,λ是波长,及DFO,DF1等是多项式系数。
透镜的衍射部分也可以将某种球面像差引入到一个通过的波前上。优选的是,根据本发明,使衍射部分能补偿一个通过波前的由透镜衍射部分所引起的球面像差。因而,在波前通过眼的光学部分和上述透镜之后,球面像差可以减少到最小。
为了补偿球面像差,可以将一个具有方程2所描述的侧向高度的非球面加到透镜的衍射部分上。非球面可以构造成能抵消由眼的光学部分和透镜的衍射部分所引起的球面像差。眼的所有光学部分不一定都必需考虑。在一个实施例中,测量由眼角膜所引起的球面像差并且只补偿由角膜所提供的球面像差和任选地还补偿由透镜衍射部分所引起的球面像差就足够了。例如Zernike项可以用来描述眼的光学表面,并因此也可用来构造透镜的非球形表面,上述透镜的非球形表面适合于补偿球面像差。表1示出前15个归一化的Zernike项和各项所表示的像差。球面像差是第11归一化的Zernike项。适合于补偿如在Zernike项中所表示的像差的透镜的设计在瑞典专利申请SE0000614-4中更详细地进行了说明,此处作为参考。
z = ( 1 R ) * r 2 1 + 1 - ( 1 R ) 2 ( cc + 1 ) r 2 + AD r 4 + AE r 6 - - - ( 2 )
式中R是透镜的径向坐标,CC是锥形常数,AD和AE是多项式扩张系数。
表1
透镜的球面像差受透镜的形状因子影响。用一种平凸透镜可以使球面折射透镜的球面像差减至最小(Atchison D.A.,“Optical Design ofIntraocular lenses.I:On-axis Performance”,Optometry and VisionScience,66(8),492-506(1989))。在本发明中,球面像差的校正量取决于透镜的形状因子。它也可以用一种能校正球面像差及色差的衍射图形。这可以通过修改衍射轮廓相位函数较高阶做到(较低阶,或者关于r2的各项(方程1),描述透镜的近轴特性)。
非球形折射表面也可以校正另一些类型的单色像差。待校正的像差阶越高,表面的形状就变得越复杂。为了用一种非球形表面补偿一般的像差,侧向高度可以用方程式3描述,尽管也另可以用其它描述。
Z = Σ i = 1 n z i
Zi=(asi)xjyk
i=1/2[(j+k)2+j+3k]
式中asi是多项式的系数。
优选的是眼镜片与眼一起提供一种多色像质,上述镜片当表示成MTF(50)(在每毫米50周下的调制传递函数)时,至少比一种非球面透镜高约40%,该非球面透镜补偿与本发明透镜相同的球面像差而不补偿色差。高的多色像质值表明色差的量小,并且也表明单色像差的量小。
透镜可以校正如在一种模型眼中所定义的球面像差和色差。眼的球面像差可以在零和1.5屈光度之间移动,而色差通常高达2.5屈光度(David A.Atchison和George Smith所著“Optics of the Human Eye”)。
合适地,衍射部分是一种衍射表面轮廓。这种衍射表面轮廓由许多同心的环组成。各环之间的距离从透镜的中心向外逐渐减小。两个环之间的距离叫做环带。第一环带的宽度是一个限定所有其它环带的常数。有关更多的背景技术,参见本申请第一页所提到的Allen L.Cohen的文章。
在一个实施例中,轮廓高度等于一个设计波长。常常用550nm作为设计波长,因为这是视网膜灵敏度最大的波长。当轮廓高度等于一个设计波长时,透镜在其第一阶中将具最大效果。在另一个实施例中,轮廓高度等于两个设计波长,则透镜将在其第二级中具有最大效果。见上述由Allen L.Cohen所写的文章和美国专利5,895,422,5,117,306,5,895,422。轮廓高度可以是设计波长的任何整数倍。
在本发明的一个实施例中,透镜的前表面是一非球面,其上叠加一个衍射轮廓。在本发明的另一个实施例中,透镜的前表面是一非球面,而透镜的后表面是平的并具有一衍射轮廓。其它一些组合也是可能的。例如,可以在前表面和后表面二者上设置一种衍射轮廓。前表面和后表面二者也可以是非球面的。技术人员可以很容易识别可供选择的透镜构形,上述可供选择的透镜构形将适合于设计本发明减少色差和单色像差的透镜。
通过用如本文开始说明的方法也可以达到上述目的。该方法包括将透镜的一个折射部分和一个衍射部分这样组合,以便它们一起至少部分地补偿一个通过波前的由眼的光学部分至少其中之一所引起的至少一种类型的单色像差和色差,同时确定上述折射和衍射部分的尺寸,以提供具有所需光学能力的透镜。
在一个实施例中,方法还包括测量至少一种类型从眼的光学部分至少其中之一提供到波前上的单色像差,并将透镜的折射和衍射部分这样组合,以便它们至少部分地补偿测得的单色像差。在本发明的一个实施例中,测得的单色像差是球面像差。
整个眼的球面像差可以用一种波前传感器测量。如果只考虑角膜,则可以采用众所周知的地形测量法。这种地形测量法在例如“Corneal waveaberration from videokeratography:accuracy and limitations of theprocedure”,Antonio Guirao和Palbo Artal,J,Opt.Soc.Am.Opt.ImageSci.Vis.,Jun,17(6),955-965(2000)中公开了。美国专利5,777,719(Williams等)中作了介绍了一种波前传感器。
合适地,该方法还包括测量从眼的光学部分的至少其中之一提供到一个波前上的色差,并将透镜的折射和衍射部分这样组合,以便它们在一起至少部分地补偿测一个通过波前的由眼的各光学部分至少其中之一所引起的色差。眼的色差可以用各种游标法测量,例如与在Thibos等的“Theoryand measurement of ocular chromatic aberration”,Vision Rev.,30,33-49(1990)和Marcos等的Vision Research,39,4309-4323(1999)中所概述的方法类似的那些方法。一些可供选择的用于测量色差的方法在由DavidA.Atchison和George Smith所著的教科书“Optics of the Human Eye”,中作了介绍,上述教科书由Butterworth-Heinemann出版,ISBN0-7506-3775-7。
优选的是,该方法还包括测量眼的折射误差并这样给透镜的折射和衍射部分定尺寸,以便它们在一起至少部分地补偿眼的折射误差。
利用这种设计眼镜片的方法,则可以考虑并补偿眼的色差,球面像差和折射误差。将透镜设计成具有一个折射部分和一个衍射部分,并将它们组合在一起,以便它们一起补偿一个通过波前的由眼的各光学部分所引起的这些像差。
各种像差校正全都可以是全校正或部分校正。而且所有校正都可以基于眼的一个或多个部分的像差。校正也可以基于一定人群的平均值或是基于单个患者的测量值或是基于一个平均值和单个测量结果的组合。一定人群可以是特定年龄段的一群人或是,例如已有眼疾或做过角膜手术的一群人。对于色差,所有人的数值几乎相同,因此,可以取所有种类人的平均值并校正透镜中的这种色差。当然,可以这样校正球面像差,但在这种情况下,最好是选定一组人或甚至测量每个人的球面像差,因为球面像差与色差相比,不同眼之间有很大不同。
可以将眼镜片构造成一种有晶状体或人工晶状体的眼内透镜(IOL),一种护目镜或一种隐形眼镜。在下面所所述的例子中,透镜是人工晶状体IOLS。下述示例透镜中所用的材料是在美国专利5,444,106中所介绍的一种可折叠硅树脂高折射率材料。然而,其它材料也可以用于这些透镜。例如:PMMAC(聚甲基丙烯酸甲酯)和水凝胶都是合适的材料。示例透镜具有20D的光学能力。然而,透镜可以设计成具有任何合适的其它光学能力。另外负透镜也是可能的。
设计上述镜片的方法包括以下步骤:
i)选择一种眼模型,所述眼模型具有一预定光学能力和一个预定量的至少一种单色像差的折射非球面镜片;
ii)估计上述模型在不同波长下的光学能力,以便确定眼模型的色差;
iii)估计光学能力如何随波长而变的校正函数,以便是对上述眼模型色差是一种理想的补偿;
iv)求出一个光学能力如何随波长而变的线性函数,上述线性函数合适近似上述校正函数;
v)计算相应于该线性函数的衍射轮廓的临时环带宽度,并计算该衍射轮廓的衍射能力;
vi)将折射镜片的折射率减少对衍射轮廓计算得的衍射能力的量。
vii)估计步骤iii)的一个新校正函数,求出步骤iv)的一个新线性函数,并对应于该新线性函数的新衍射轮廓计算一个新的临时环带宽度;
viii)这样调节折射镜片的折射率,以便一种混合透镜的总光学能力等于预定的光学能力,上述混合透镜包括折射眼镜片和衍射轮廓二者,并适合于代替眼模型中的折射眼镜片;
ix)重复步骤vii)-viii),直至找到混合镜片折射和衍射部分合适组合时为止,该镜片的折射和衍射部分二者为眼模型提供预定的光学能力和色差的合适减少。
合适的是,作为最后一个步骤,该方法包括测量眼和上述方法的混合镜相结合的单色像差,并根据测量结果这样校正镜片的折射部分,以使单色像差对于眼和镜片的结合充分减少。
可以使用的眼模型的实例之一是Navarro眼模型,但其它模型也可以。眼模型也可以是单个患者的单只眼睛。
在一个实施例中,折射镜片中至少一种单色像差是球面像差。
根据本发明,可以有不同的透镜设计的可能性。一种可能性是为每个人设计每个透镜。这样,测量患者眼的色差,球面像差和折射误差,并根据上述方法,根据这些测量值设计透镜。另一种可能性是利用从选定种类的人所得到的平均值来设计适合于几乎所有属于这类人的镜片。这样,可以为这些人群内的患者设计具有不同光学能力但提供相同的球面像差和色差减少的透镜。人群可以是,例如不同年龄的人群,或是已患有特定眼疾的人群,或是已经进行过角膜手术的人群。此外,可以提供一套透镜,该套透镜对每种光学能力都具有一个色差平均值并具有一个不同球面像差值范围。由于在大多数的人眼中,色差都是大致相同,这可能是最好的。因而,有必要测量每只眼的折射误差和球面像差,然后从这套透镜中选定一个透镜,以便遵守这些测量结果。
下面的实例只是作为例子给出,并且不打算用任何方式来限制本发明。
附图说明
图1是用于一个眼模型和一衍射透镜的折射率和波长之间的关系;
图2示出了一种混合折射/衍射透镜和两种其它透镜的多色调制转移函数;
图3示出了具有两个设计波长的轮廓高度的衍射透镜的不同的衍射阶之间的光分布,还示出了眼的光谱灵敏度。
图4示出了用于图3透镜和两种其它非衍射透镜的包括第一和第三阶级的多色调制转移函数。
实施例的详细说明
下面说明一种眼内透镜(IOL)的两个例子,上述眼内透镜(IOL)对球面像差和人工晶状体眼的色差进行校正。上述两个例子采用一种非球面透镜表面来校正球面像差,用一种衍射表面轮廓来校正色差。非球面透镜表面校正眼表面的球面像差,以及由衍射透镜轮廓所诱生的球面像差。
例2具有一个延伸的衍射表面轮廓。这类透镜常常叫做超级环带衍射透镜,这类透镜在J.C.Marron等的“Higher-Order Kinoforms”,Computerand optically formed holographic optics,I.Cindrich等编辑,proc.SPIE1211,62-66(1990)之中作了介绍。
下面根据取自文献(Navarro等的“Accommodation dependent modelof the human eye with aspherics”JOSA A,2(8),1273-1281(1985))及硅树脂材料的数据,对该示例IOLs的构形进行充分说明。光学评价采用OSLO光学设计软件(Lambda Research Corporation,Littleton,MA,USA)通过射线跟踪进行。
例1
背景理论:
角膜和折射眼内透镜(IOL)二者都具有一个正色差,这意味着焦距随波长而增加。衍射轮廓具有一个负色差。轮廓由多个环(带)组成。对在第一衍射阶中工作的衍射透镜,透镜光学能力可以用下式定义:
P = 2 * λ w 2
式中P是透镜光学能力,λ是设计波长(m)和w是第一环带的半宽(半径)。
色差(CA)可以描述成:
CA = - ∂ P ∂ λ = - 2 W 2
衍射透镜光学能力与波长有线性关系。在折射系统中,折射透镜光学能力和波长之间的关系一般不是线性。这在图1中示出,图1中示出了对一种眼模型和一种衍射透镜,折射率和波长之间的关系。眼模型具有一非线性关系,衍射透镜具有一线性关系。还示出了一条代表理想校正的曲线。因此,用衍射透镜不能进行完善的校正。不过,若用线性校正,则光学性能可以大为改善。
当与一20屈光度的硅树脂折射眼内透镜一起而不是与天然透镜一起采用Navarro(1985)眼模型时,色差可以通过计算不同波长下眼模型的光学能力进行估计。结果得到与图1类似的曲线。为了确定衍射透镜必须如何作用,通过理想校正曲线进行线性拟合。结果是:
                       P=-1.68107*λ+69.6
                       P=光学能力[1/m]
                      λ=波长[m]
这给出了用于一色差校正透镜的反射和衍射的IOL光学能力之间的一个比值:
对具有折射IOL的眼模型:
A = - ∂ P ∂ λ = 1.68 · 10 7
因此:
(这里,λ是设计波长550nm)
Pd=IOL衍射光学能力
由于衍射IOL光学能力是9.24屈光度,所以折射IOL光学能力必须减少相同的量。减少折射IOL光学能力将也减少眼模型的色差。实际上,通过一种迭代设计法必须在折射和衍射IOL光学能力之间找到平衡,其中衍射IOL光学能力将在0和9.24屈光度之间的某处。
透镜说明
该示例透镜由硅树脂材料制造。它的形状是同等两面凸的。透镜的前表面包括一个非球面的折射透镜,其上叠加一个衍射轮廓。衍射轮廓控制透镜光学能力的41%(8.25D),而非球面折射透镜控制其余的59%(11.75D)。第一环带的宽度是0.365mm,并且需要有67个环充满6.0mmIOL镜片。在透镜的周边,各衍射环带彼此相距22微米。
将IOL对于Navarro(1985)眼模型进行优化。Navarro眼模型具有一非球面的角膜,并包括用于目眼介质的色散。眼模型和透镜的表面信息在表2中给出。所设计的透镜与所选定的眼模型有关。必须注意,能够用来自患者实际生理数据的其它眼模型设计透镜。
*透镜表面数据-具有一个IOL的Navarro1985
 表面  半径   厚度  孔径半径  玻璃  特殊表面
 物体  --   1.000e+20  1.000e+14  空气
 1  7.7200   0.5500  2.833(求解的)  角膜  非球面
 2  6.5000   3.050  2.778(求解的)  水溶液
 3(瞳孔)  --   --  2.500(求解的)  瞳孔
 4  --   0.900  2.500(求解的)  水溶液
 5  20.994   1.125  2.418(求解的)  硅树脂  非球面衍射
6 -20.994   18.157(求解得的) 2.2(求解的)  玻璃状体
 图像  --   --  1.674e-05(求解的)  --
锥形和多项式非球面数据
    表面   锥形常数   AD    AE
    1   -0.260000   --    --
    5   -2.000000   -0.000459    -4.1000e-07
*衍射表面数据(对称衍射表面)
表面 衍射阶 设计λ   基诺全息图构造级   基诺全息图环带深度 DFO DFI
  5   1   0.550μm   1   -- --    -0.004125
*波长
   ^编号    波长(μm)      加权
    1     0.5500     0.9950
    2     0.4500     0.0380
    3     0.6500     0.1070
    4     0.5100     0.5030
*折射率
表面 名称  折射率λ(1)  折射率λ(2)  折射率λ(3)  折射率λ(4) v
  物体     空气 1.000000  1.000000  1.000000  1.000000  --
  1     角膜 1.377400  1.383500  1.374200  1.379328  40.580645
  2     水溶液 1.338800  1.345100  1.335600  1.340767  35.663158
  3     瞳孔 1.338800  1.345100  1.335600  1.340767  35.663158
  4     水溶液 1.338800  1.345100  1.335600  1.340767  35.663158
  5     硅树脂 1.459620  1.484950  1.454470  1.465680  15.079396
  6     玻璃状体 1.337400  1.343400  1.334300  1.339286  37.076923
  图像     图像 --  --  --  --  --
表2
透镜的性能
利用四个不连续的波长来评价包括折射/衍射IOL的眼模型。焦点定义为多色MTF(调制传递函数)在50周/mm处具有最大值的那点。多色MTF由所用的四个波长处的四个MTF的加权平均值确定。波长加权用在适光条件下,眼的标准亮度进行,它代表视网膜对不同波长的相对灵敏度。
用于四个不同波长的实际后焦距(ABFL)表示在各焦点中存在色差,并通过定义表示纵向色差的量。计算是在5.0mm孔径下进行,以便使差别最大。从表3所示的这些数字,已经可以得出结论,球面像差实际上被消除了,这由接近衍射限定的性能表示。对于色差来说,IOL被优化了,但仍有一点遗留,如理论上已经预期的那样。
表3
折射/衍射IOL:
    λ     ABFL    MTF(50)    衍射限
    450     17.92     0.91     0.92
    510     18.17     0.90     0.90
    550     18.16     0.90     0.90
    650     17.90     0.88     0.88
    Poly     18.16     0.82     0.90
    [nm]     [mm]     [-]     [-]
对于一相应的非球面折射设计,在没有校正情况下,表4中的数字表明,在每个波长处,相对于球面折射IOL的MTF(50),球面像差实际上得到了充分校正,并且MTF达到衍射极限。不同波长的焦点在一起不能很好地工作,因此,多色MTF比对衍射/折射IOL求得的MTF低。
表4
非球面折射IOL:
    λ     ABFL    MTF(50)    衍射限
    450     17.26     0.92     0.92
    510     17.98     0.90     0.91
    550     18.22     0.90     0.90
    650     18.41     0.88     0.88
    Poly     18.22     0.56     0.90
    [nm]     [mm]     [-]     [-]
现在流行的球面透镜给出低得多的值。相应于这些透镜的数字在表5中示出
表5
球面折射IOL:
    λ     ABFL    MTF(50)    衍射限
    450     17.13     0.30     0.92
    510     17.84     0.30     0.91
    550     18.06     0.31     0.90
    650     18.15     0.32     0.88
    Poly     18.05     0.21     0.90
    [nm]     [mm]     [-]     [-]
这三种透镜的多色调制转移函数与衍射限一起在图2中示出。
例2
背景理论:
如果,例如由于制造的原因,而优选一种具有较少的环且各环之间具有较大的距离的透镜,则可以采用不同的梯级高度用于衍射轮廓。市场上可得到一种Pharmacia的衍射透镜CeeOnTM811E,该透镜具有一个4D衍射部分,环带宽度为0.5mm,有32个环。
通过使各环的梯级高度加倍,以来实现一种各环之间具有与现有的811E相同间距的8.25D衍射透镜。在梯级高度加倍的情况下,衍射透镜将具有一个2λ的相突变,并因此在其第二阶具有最大效率。对于一种8.25D透镜,环带宽度将是0.516mm,而对一个6mm的镜片将需要33个环。各环(周边)之间的最小距离是45微米。
示例透镜由硅树脂材料制造。它的形状是平凸的。透镜的前表面是非球面的。平的后表面具有一带有相突变为二的衍射轮廓。各不同衍射阶之间的光分布在图3中给出。从这个曲线图我们可以看出,只有阶1至3在可见光范围内有关。我们还可以看出,在475nm处有某种双焦点性能,但眼睛对这个波长处的光很不敏感(正如由眼睛的光谱灵敏度表示的,也在图3中示出)。
透镜说明
如在例1中那样,衍射轮廓控制透镜光学能力的41%(8.25D),而非球面透镜控制其余的59%(11.75D)。
对于Navarro(1985)眼模型,优化了IOL。Navarro眼模型具有一非球面角膜并包括镜片介质的色散。眼模型和透镜的表面信息在表6中给出。
表6
*透镜数据-具有-IOL的Navarro1985
   表面  半径   厚度   孔径半径   玻璃   特殊的表面
   物体  --   1.0000e+20   1.000e+14   空气
1 7.7200 0.5500   2.833(求解的) 角膜 非球面的
2 6.5000 3.050   2.778(求解的) 水溶液
3(瞳孔)  --   --   2.500(求解的) 瞳孔
4 -- 0.900   2.500(求解的) 水溶液 非球面的
5 10.521 1.125   2.418(求解的) 硅树脂 衍射的*2
6 -- --   2.302(求解的) 水溶液
7  -20.994 18.256   2.302(求解的)   玻璃状体
图像  --   --   0.001279(求解的)   --
*锥形和多项式非球面数据
    表面   锥形常数     AD     AE
    1   -0.260000     --     --
    5   -4.900000     --     --
*衍射表面数据
表面 衍射阶 设计λ 基诺全息图构造级 基诺全息图环带深度 DFO DF1
6 1  0.550μm 1 -- --    -0.002063
*波长
  ^编号    波长(μm)      加权
1 0.5500 0.9950
    2     0.4500     0.0380
    3     0.6500     0.1070
    4     0.5100     0.5030
*折射率
表面 名称 折射率λ(1)  折射率λ(2)  折射率λ(3)  折射率λ(4) v
  物体     空气 1.000000  1.000000  1.000000  1.000000  --
  1     角膜 1.377400  1.383500  1.374200  1.379328  40.580645
  2     水溶液 1.338800  1.345100  1.335600  1.340767  35.663158
  3     瞳孔 1.338800  1.345100  1.335600  1.340767  35.663158
  4     水溶液 1.338800  1.345100  1.335600  1.340767  35.663158
  5     硅树脂 1.459620  1.484950  1.454470  1.465680  15.079396
  6     水溶液 1.338800  1.345100  1.335600  1.340767  35.663158
  7     玻璃状体 1.337400  1.343400  1.334300  1.339286  37.076923
  图像     图像 --  --  --  --  --
透镜性能:
采用与例1相同的波长并忽略衍射透镜效率上的变化,则在50C/mm处的多色调制是0.81(极限=0.90),与例1中的透镜相同。如果在计算中也包括衍射透镜的第一和第三阶,同时参考它们相应的效率,则在50C/mm处的多色调制是0.79。
用于不同透镜的包括第一和第三阶的多色MTF在图4中示出。

Claims (42)

1.一种眼镜片包括一个衍射部分,其特征在于:它还包括一个折射部分,所述折射部分包括至少一个表面,上述镜片被构造成至少部分地补偿一个通过波前的至少一种类型的单色像差,所述单色像差由眼睛光学部分的至少其中之一引起,上述衍射部分能至少部分地补偿一个通过波前的由眼睛各光学部分的至少其中之一引起的色差,上述折射和衍射部分一起提供所需要的透镜光学能力。
2.根据权利要求1的镜片,其中所述衍射部分也能至少部分地补偿一个通过波前的由透镜折射部分所引起的色差。
3.根据权利要求1或2的镜片,其中所述衍射部分还能至少部分地补偿一个通过波前的至少一种类型由透镜衍射部分所引起的单色像差。
4.根据上述权利要求之一的镜片,其中上述镜片被设计成至少部分地补偿在单个患者眼中测得的单色像差和色差的值。
5.根据权利要求1-3之一的镜片,其中上述镜片被设计成至少部分地补偿通过测量一群人所确定的单色像差和/或色差的平均值。
6.根据上述权利要求之一的镜片,其中上述折射部分包括至少一个表面,上述镜片被加工成能至少部分地补偿一个通过波前的由眼睛各光学部分中至少一个及还任选地由镜片的衍射部分所引起的球面像差。
7.根据上述权利要求之一的镜片,其中所述折射部分包括一个非球面,上述镜片至少部分地补偿一个通过波前的由眼睛各部分中至少一个及还任选地由镜片的衍射部分所引起的球面像差。
8.根据权利要求7的镜片,其中上述非球面能至少部分地补偿如通过第11归一化的Zernike项所表示的球面像差。
9.根据上述权利要求之一的镜片,其中所述镜片与眼睛一起提供一种多色质,当表示成MTF(50)(在每毫米50周下的调制传递函数)时,上述镜片比一非球面透镜的性能高至少约40%,所述非球面透镜补偿与本发明透镜相同的球面像差但不补偿色差。
10.根据上述权利要求之一的镜片,其中所述衍射部分是一种衍射表面轮廓。
11.根据权利要求10的镜片,其中所述衍射表面轮廓由多个同心环组成。
12.根据要得要求11的镜片,其中所述衍射表面轮廓的轮廓高度等于设计波长的整数。
13.根据权利要求11的镜片,其中所述衍射表面轮廓的轮廓高度是一个设计波长。
14.根据上述权利要求之一的镜片,其中所述前表面是一非球面,其上叠加有上述衍射轮廓。
15.根据权利要求13和14的镜片,其中对一20D透镜来说,所述衍射轮廓第一环带的径向宽度是0.365mm。
16.根据权利要求11的镜片,其中所述衍射表面轮廓的轮廓高度是两个设计波长。
17.根据除权利要求14外的上述权利要求之一的镜片,其中所述镜片的前表面是一非球面,所述透镜的后表面是平的并具有一个衍射轮廓。
18.根据权利要求16和17的镜片,其中对一20D透镜来说,所述衍射轮廓第一环带的径向宽度是0.516mm。
19.根据除权利要求17之外的上述权利要求之一的镜片,其中所述镜片的形状是同等双凸形。
20.根据权利要求1-18之一的镜片,其中镜片形状是平凸形。
21.根据上述权利要求之一的镜片,其中镜片材料是硅。
22.根据上述权利要求之一的镜片,其中镜片材料是PMMA或一种水凝胶。
23.一种用于设计根据权利要求1-22之一的镜片的方法,包括:
将镜片的一个折射部分和一个衍射部分这样组合,以便它们在一起至少部分地补偿一个通过波前的至少一种类型单色像差和由眼睛光学部分至少其中之一所引起的色差,同时将上述折射和衍射部分定尺寸,以便提供具有所需光学能力的透镜。
24.根据权利要求23的方法,还包括以下步骤:
测量至少一种类型的单色像差,该单色像差是从眼睛的光学部分的至少其中之一提供到一个波前上的;及
将所述镜片的折射和衍射部分这样组合,以使它们至少部分地补偿测得的单色像差。
25.一种用于设计根据权利要求23或24所述的镜片的方法,还包括以下步骤:
测量从眼睛光学部分的其中之一提供到一个波前上的球面像差;
将镜片的折射部分和衍射部分这样组合,以便它们一起至少部分地补偿一个通过波前的测得的由眼睛光学部分至少其中之一所引起的球面像差。
26.根据权利要求23-25之一的方法,包括测量从眼睛光学部分至少其中之一提供到一个波前上的色差,并将镜片的折射和衍射部分这样组合,以便它们一起至少部分地补偿一个通过波前的测得的由眼睛各光学部分至少其中之一所引起的色差。
27.根据权利要求23-25之一的方法,包括将镜片的折射部分和衍射部分这样组合,以便它们一起至少部分地补偿一个通过波前的一般人眼或一特定人群中眼的平均色差。
28.根据权利要求23的方法,包括将镜片的折射和衍射部分这样组合,以便它们一起至少部分地补偿一个通过波前的一般人眼或特定人群中眼的平均单色像差。
29.根据权利要求23-28之一的方法,包括将镜片的折射和衍射部分这样组合,以便衍射部分至少部分地补偿一个通过波前的由透镜的折射部分所引起的色差。
30.根据权利要求23-29之一的方法,包括将镜片的折射部分和衍射部分这样组合,以便折射部分至少部分地补偿一个通过波前的由透镜的衍射部分所引起的单色像差。
31.根据权利要求23-30之一的方法,包括测量眼的折射误差及这样给透镜的折射和衍射部分定尺寸,以便它们一起至少部分地补偿眼的折射误差。
32.根据权利要求23-31之一的方法,包括为折射部分提供一非球面,上述折射部分至少部分地补偿一个通过波前的由眼的光学部分的至少其中之一及还任选地由镜片的衍射部分所引起的球面像差。
33.根据权利要求23-32之一的方法,包括为折射部分提供一非球面,上述折射部分至少部分地补偿如第11归一化的Zernike项所表示的球面像差。
34.根据权利要求23-33之一的方法,包括为镜片提供一衍射表面轮廓。
35.根据权利要求34的方法,包括为衍射表面轮廓提供多个同心环。
36.根据权利要求35的方法,包括为衍射表面轮廓提供一轮廓高度,上述轮廓高度等于设计波长的一个整数。
37.根据权利要求23-36之一的方法,包括为镜片的前表面提供一非球面折射透镜并将一个衍射轮廓叠加在其上。
38.一种设计根据权利要求1-22之一所述的镜片的方法,其特征在于以下步骤:
i)选择一种眼模型,所述眼模型具有折射非球面眼镜片,所述眼镜片具有一预定折射率和预定量的至少一种单色像差;
ii)估计上述模型在不同波长下的光学能力,以便确定眼模型的色差;
iii)估计光学能力如何随波长而变的校正函数,以便是对上述眼模型的色差的一种理想补偿;
iv)求出一个光学能力如何随波长而变的线性函数,上述线性函数合适近似上述校正函数;
v)计算相应于该线性函数的衍射轮廓的临时环带宽度,并且还计算这个衍射轮廓的衍射能力;
vi)将折射镜片的折射率减少对衍射轮廓计算得的光学能力量;
vii)估计步骤iii)的一个新校正函数,求出步骤iv)的一个新线性函数,并对相应于该新线性函数的新衍射轮廓计算一个新的临时环带宽度;
viii)这样调节折射镜片的折射率,以便一种混合镜片的总光学能力等于预定的光学能力,上述混合镜片包括折射镜片和衍射轮廓二者,并且适合于代替眼模型中的折射镜片;
ix)重复步骤vii)-viii),直至找到混合镜片折射和衍射部分的合适组合时为止,上述混合镜片的折射和衍射部分二者提供具有预定光学能力和具有适当减少的色差的眼模型。
39.根据权利要求38的方法,还包括作为最后步骤测量眼和权利要求38的混合眼镜片组合的单色像差,并根据测量结果这样校正镜片的折射部分,以便对于眼和镜片的组合,使单色像差充分减少。
40.根据权利要求38或39的方法,其中折射眼镜片的至少一个单色像差是球面像差。
41.根据权利要求38-40之一的方法,其中所用的眼模型是Navarro(1985)眼模型。
42.根据权利要求38-41之一的方法,其中所述衍射轮廓的轮廓高度等于设计波长的一个整数。
CNA2004101013522A 2001-04-11 2002-03-20 眼镜片 Pending CN1632623A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE01012939 2001-04-11
SE0101293A SE0101293D0 (sv) 2001-04-11 2001-04-11 Technical field of the invention

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNB028079396A Division CN100342266C (zh) 2001-04-11 2002-03-20 眼镜片

Publications (1)

Publication Number Publication Date
CN1632623A true CN1632623A (zh) 2005-06-29

Family

ID=20283758

Family Applications (2)

Application Number Title Priority Date Filing Date
CNA2004101013522A Pending CN1632623A (zh) 2001-04-11 2002-03-20 眼镜片
CNB028079396A Expired - Lifetime CN100342266C (zh) 2001-04-11 2002-03-20 眼镜片

Family Applications After (1)

Application Number Title Priority Date Filing Date
CNB028079396A Expired - Lifetime CN100342266C (zh) 2001-04-11 2002-03-20 眼镜片

Country Status (24)

Country Link
US (1) US6830332B2 (zh)
EP (2) EP1402308B1 (zh)
JP (2) JP4353700B2 (zh)
KR (1) KR100604505B1 (zh)
CN (2) CN1632623A (zh)
AT (1) ATE431573T1 (zh)
AU (1) AU2002312771B2 (zh)
CA (1) CA2441766C (zh)
CZ (1) CZ20032732A3 (zh)
DE (1) DE60232331D1 (zh)
EA (1) EA005124B1 (zh)
EE (1) EE200300496A (zh)
ES (1) ES2326262T3 (zh)
HU (1) HUP0303870A3 (zh)
IL (1) IL157774A0 (zh)
MX (1) MXPA03009309A (zh)
NO (1) NO20034506L (zh)
NZ (1) NZ528114A (zh)
PL (1) PL367027A1 (zh)
SE (1) SE0101293D0 (zh)
SK (1) SK11932003A3 (zh)
TW (1) TWI249048B (zh)
WO (1) WO2002084381A2 (zh)
ZA (1) ZA200306917B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101181171B (zh) * 2006-05-31 2011-04-06 爱尔康公司 具有增强的离轴视觉性能的眼内透镜
CN102662252A (zh) * 2012-06-01 2012-09-12 南开大学 矫正近视型老视眼的非球面眼镜镜片
CN113057763A (zh) * 2017-04-27 2021-07-02 爱尔康公司 具有色差校正作用的多焦点眼科透镜

Families Citing this family (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3860041B2 (ja) * 2002-01-23 2006-12-20 株式会社メニコン コンタクトレンズおよびコンタクトレンズの設計方法
US7896916B2 (en) * 2002-11-29 2011-03-01 Amo Groningen B.V. Multifocal ophthalmic lens
SE0203564D0 (sv) 2002-11-29 2002-11-29 Pharmacia Groningen Bv Multifocal opthalmic lens
WO2004090611A2 (en) * 2003-03-31 2004-10-21 Bausch & Lomb Incorporated Intraocular lens and method for reducing aberrations in an ocular system
US7905917B2 (en) * 2003-03-31 2011-03-15 Bausch & Lomb Incorporated Aspheric lenses and lens family
US20050027354A1 (en) * 2003-07-28 2005-02-03 Advanced Medical Optics, Inc. Primary and supplemental intraocular lens
US7101041B2 (en) 2004-04-01 2006-09-05 Novartis Ag Contact lenses for correcting severe spherical aberration
CA2562268C (en) * 2004-04-05 2014-12-02 Advanced Medical Optics, Inc. Ophthalmic lenses capable of reducing chromatic aberration
US7506983B2 (en) * 2004-09-30 2009-03-24 The Hong Kong Polytechnic University Method of optical treatment
CA2585250C (en) 2004-10-25 2014-12-16 Advanced Medical Optics, Inc. Ophthalmic lens with multiple phase plates
US7922326B2 (en) 2005-10-25 2011-04-12 Abbott Medical Optics Inc. Ophthalmic lens with multiple phase plates
SE0402769D0 (sv) * 2004-11-12 2004-11-12 Amo Groningen Bv Method of selecting intraocular lenses
ES2272143B1 (es) * 2004-12-22 2008-03-01 Instituto Oftalmologico De Alicante, S.L. Lente intraocular para acromatizar el ojo y reducir sus aberraciones.
DE102005023480B4 (de) * 2005-03-24 2009-02-26 *Acri.Tec AG Gesellschaft für ophthalmologische Produkte Intraokularlinse
US20060227286A1 (en) * 2005-04-05 2006-10-12 Xin Hong Optimal IOL shape factors for human eyes
US9636213B2 (en) 2005-09-30 2017-05-02 Abbott Medical Optics Inc. Deformable intraocular lenses and lens systems
CN1987528A (zh) * 2005-12-23 2007-06-27 鸿富锦精密工业(深圳)有限公司 一种光程差镜片及具有该种镜片的可变焦光学装置
US20080147185A1 (en) * 2006-05-31 2008-06-19 Xin Hong Correction of chromatic aberrations in intraocular lenses
AR062067A1 (es) 2006-07-17 2008-10-15 Novartis Ag Lentes de contacto toricas con perfil de potencia optica controlado
US20080269882A1 (en) * 2007-04-30 2008-10-30 Alcon Universal Ltd. Intraocular lens with asymmetric optics
US20080269890A1 (en) * 2007-04-30 2008-10-30 Alcon Universal Ltd. Intraocular lens with peripheral region designed to reduce negative dysphotopsia
US20080300679A1 (en) * 2007-06-01 2008-12-04 Altmann Griffith E Diffractive Intraocular Lens
US7632305B2 (en) * 2007-07-06 2009-12-15 Boston Scientific Scimed, Inc. Biodegradable connectors
US8974526B2 (en) 2007-08-27 2015-03-10 Amo Groningen B.V. Multizonal lens with extended depth of focus
US8740978B2 (en) * 2007-08-27 2014-06-03 Amo Regional Holdings Intraocular lens having extended depth of focus
US20090062911A1 (en) 2007-08-27 2009-03-05 Amo Groningen Bv Multizonal lens with extended depth of focus
US9216080B2 (en) 2007-08-27 2015-12-22 Amo Groningen B.V. Toric lens with decreased sensitivity to cylinder power and rotation and method of using the same
US8747466B2 (en) * 2007-08-27 2014-06-10 Amo Groningen, B.V. Intraocular lens having extended depth of focus
US20090059163A1 (en) * 2007-08-30 2009-03-05 Pinto Candido D Ophthalmic Lens Having Selected Spherochromatic Control and Methods
US7654672B2 (en) * 2007-10-31 2010-02-02 Abbott Medical Optics Inc. Systems and software for wavefront data processing, vision correction, and other applications
AU2009214036B2 (en) 2008-02-15 2014-04-17 Amo Regional Holdings System, ophthalmic lens, and method for extending depth of focus
US8439498B2 (en) 2008-02-21 2013-05-14 Abbott Medical Optics Inc. Toric intraocular lens with modified power characteristics
US7871162B2 (en) 2008-04-24 2011-01-18 Amo Groningen B.V. Diffractive multifocal lens having radially varying light distribution
US8231219B2 (en) 2008-04-24 2012-07-31 Amo Groningen B.V. Diffractive lens exhibiting enhanced optical performance
US8862447B2 (en) 2010-04-30 2014-10-14 Amo Groningen B.V. Apparatus, system and method for predictive modeling to design, evaluate and optimize ophthalmic lenses
US8444267B2 (en) 2009-12-18 2013-05-21 Amo Groningen B.V. Ophthalmic lens, systems and methods with angular varying phase delay
US8157568B2 (en) * 2008-05-22 2012-04-17 Tsutomu Hara Ophthalmologic model
EP2294474B1 (en) 2008-06-12 2019-09-04 Essilor International Method for calculating a customized progressive addition surface; method for manufacturing a progressive addition lens
US8292953B2 (en) 2008-10-20 2012-10-23 Amo Groningen B.V. Multifocal intraocular lens
US8734511B2 (en) * 2008-10-20 2014-05-27 Amo Groningen, B.V. Multifocal intraocular lens
US8771348B2 (en) * 2008-10-20 2014-07-08 Abbott Medical Optics Inc. Multifocal intraocular lens
DE102010051627A1 (de) 2010-11-17 2012-05-24 Rodenstock Gmbh Verfahren zur Optimierung eines Brillenglases mit einem diffraktiven Gitter
DE102010051637B4 (de) * 2010-11-17 2023-06-22 Rodenstock Gmbh Verfahren und Vorrichtung zum Herstellen einer Serie von Basisgläsern, Serien von Brillengläsern, Verfahren und Vorrichtung zum Herstellen eines Brillenglases, progressives Brillenglas und astigmatisches Brillenglas
DE102010051762B4 (de) 2010-11-17 2023-01-19 Rodenstock Gmbh Computerimplementiertes Verfahren und Vorrichtung zum Auswerten zumindest einer Abbildungseigenschaft eines optischen Elements, Computerprogrammerzeugnis, Speichermedium sowie Verfahren und Vorrichtung zum Herstellen eines optischen Elements
EP2646872A1 (en) 2010-12-01 2013-10-09 AMO Groningen B.V. A multifocal lens having an optical add power progression, and a system and method of providing same
US9931200B2 (en) 2010-12-17 2018-04-03 Amo Groningen B.V. Ophthalmic devices, systems, and methods for optimizing peripheral vision
US8894204B2 (en) 2010-12-17 2014-11-25 Abbott Medical Optics Inc. Ophthalmic lens, systems and methods having at least one rotationally asymmetric diffractive structure
SG10201602484XA (en) 2011-04-05 2016-05-30 Kowa Co Intraocular lens design method and intraocular lens
US10613347B2 (en) 2012-01-11 2020-04-07 Rodenstock Gmbh Population of an eye model for optimizing spectacle lenses with measurement data
DE102012000390A1 (de) * 2012-01-11 2013-07-11 Rodenstock Gmbh Brillenglasoptimierung mit individuellem Augenmodell
DE102017007974A1 (de) 2017-01-27 2018-08-02 Rodenstock Gmbh Belegung eines Augenmodells zur Optimierung von Brillengläsern mit Messdaten
TWI588560B (zh) 2012-04-05 2017-06-21 布萊恩荷登視覺協會 用於屈光不正之鏡片、裝置、方法及系統
EP2870503A1 (en) 2012-07-03 2015-05-13 Abbott Medical Optics Inc. High efficiency optic
BR112015004617A2 (pt) 2012-08-31 2017-07-04 Amo Groningen Bv sistemas e métodos para profundidade de foco estendida de lente de múltiplos áneis
US9201250B2 (en) 2012-10-17 2015-12-01 Brien Holden Vision Institute Lenses, devices, methods and systems for refractive error
EP2908773B1 (en) 2012-10-17 2024-01-03 Brien Holden Vision Institute Lenses, devices, methods and systems for refractive error
WO2014087249A2 (en) 2012-12-04 2014-06-12 Amo Groningen B.V. Lenses systems and methods for providing binocular customized treatments to correct presbyopia
AU2014228357B2 (en) 2013-03-11 2018-08-23 Johnson & Johnson Surgical Vision, Inc. Intraocular lens that matches an image surface to a retinal shape, and method of designing same
US9867693B2 (en) 2014-03-10 2018-01-16 Amo Groningen B.V. Intraocular lens that improves overall vision where there is a local loss of retinal function
CA2946356C (en) 2014-04-21 2022-09-20 Amo Groningen B.V. Ophthalmic devices, system and methods that improve peripheral vision
WO2016040331A1 (en) 2014-09-09 2016-03-17 Staar Surgical Company Ophthalmic implants with extended depth of field and enhanced distance visual acuity
AU2017218680B2 (en) * 2016-02-09 2021-09-23 Amo Groningen B.V. Progressive power intraocular lens, and methods of use and manufacture
US10675146B2 (en) 2016-02-24 2020-06-09 Alcon Inc. Multifocal lens having reduced visual disturbances
US9968440B2 (en) * 2016-02-29 2018-05-15 Novartis Ag Ophthalmic lens having an extended depth of focus
BR112018068184B1 (pt) 2016-03-09 2023-02-14 Staar Surgical Company Lente configurada para implantação em um olho de um ser humano
AU2017230971B2 (en) 2016-03-11 2021-11-11 Amo Groningen B.V. Intraocular lenses that improve peripheral vision
AU2017237090B2 (en) 2016-03-23 2021-10-21 Johnson & Johnson Surgical Vision, Inc. Ophthalmic apparatus with corrective meridians having extended tolerance band by modifying refractive powers in uniform meridian distribution
WO2017165623A1 (en) 2016-03-23 2017-09-28 Abbott Medical Optics Inc. Power calculator for an ophthalmic apparatus with corrective meridians having extended tolerance or operation band
EP3445288B1 (en) 2016-04-19 2020-11-04 AMO Groningen B.V. Ophthalmic devices, system and methods that improve peripheral vision
AU2017352030B2 (en) 2016-10-25 2023-03-23 Amo Groningen B.V. Realistic eye models to design and evaluate intraocular lenses for a large field of view
US10696778B1 (en) 2017-01-26 2020-06-30 Novol, Inc. Methods of making polymers using isosorbide
US11780950B1 (en) 2017-01-26 2023-10-10 Monica Bhatia Methods of making polymers using isosorbide
US10932901B2 (en) 2017-02-10 2021-03-02 University Of Rochester Vision correction with laser refractive index changes
US11497599B2 (en) 2017-03-17 2022-11-15 Amo Groningen B.V. Diffractive intraocular lenses for extended range of vision
US10739227B2 (en) 2017-03-23 2020-08-11 Johnson & Johnson Surgical Vision, Inc. Methods and systems for measuring image quality
US11523897B2 (en) 2017-06-23 2022-12-13 Amo Groningen B.V. Intraocular lenses for presbyopia treatment
WO2019002384A1 (en) 2017-06-28 2019-01-03 Amo Groningen B.V. DIFFRACTIVE LENSES AND INTRAOCULAR LENSES ASSOCIATED WITH THE TREATMENT OF PRESBYOPIA
CA3068351A1 (en) 2017-06-28 2019-01-03 Amo Groningen B.V. Extended range and related intraocular lenses for presbyopia treatment
US11327210B2 (en) 2017-06-30 2022-05-10 Amo Groningen B.V. Non-repeating echelettes and related intraocular lenses for presbyopia treatment
US11282605B2 (en) 2017-11-30 2022-03-22 Amo Groningen B.V. Intraocular lenses that improve post-surgical spectacle independent and methods of manufacturing thereof
EP3790507A4 (en) 2018-05-14 2022-06-01 University of Rochester VISION CORRECTION USING LASER INDUCED REFRACTIVE INDEX CHANGES
KR102560250B1 (ko) 2018-08-17 2023-07-27 스타 서지컬 컴퍼니 나노 구배의 굴절률을 나타내는 중합체 조성물
US11886046B2 (en) 2019-12-30 2024-01-30 Amo Groningen B.V. Multi-region refractive lenses for vision treatment
CN114902120A (zh) 2019-12-30 2022-08-12 阿莫格罗宁根私营有限公司 用于视力治疗的具有区域级混合的消色差镜片
AU2020416055A1 (en) 2019-12-30 2022-08-25 Amo Groningen B.V. Lenses having diffractive profiles with irregular width for vision treatment
AU2020418360A1 (en) 2019-12-30 2022-08-25 Amo Groningen B.V. Achromatic lenses for vision treatment
IT202000012721A1 (it) * 2020-05-28 2021-11-28 Sifi Spa Lente ad uso oftalmico
CN114779497A (zh) * 2022-05-09 2022-07-22 天津世纪康泰生物医学工程有限公司 一种基于相位调制技术的巩膜接触镜

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3265356D1 (en) 1981-04-29 1985-09-19 Pilkington Perkin Elmer Ltd Artificial eye lenses
US4504982A (en) * 1982-08-05 1985-03-19 Optical Radiation Corporation Aspheric intraocular lens
EP0109753B1 (en) * 1982-10-27 1988-07-27 Pilkington Plc Bifocal contact lens comprising a plurality of concentric zones
GB8404817D0 (en) * 1984-02-23 1984-03-28 Pilkington Perkin Elmer Ltd Ophthalmic lenses
GB8829819D0 (en) * 1988-12-21 1989-02-15 Freeman Michael H Lenses and mirrors
US4892543A (en) * 1989-02-02 1990-01-09 Turley Dana F Intraocular lens providing accomodation
FR2647227B1 (fr) * 1989-05-19 1991-08-23 Essilor Int Composant optique, tel qu'implant intra-oculaire ou lentille de contact, propre a la correction de la vision d'un individu
US5098444A (en) * 1990-03-16 1992-03-24 Feaster Fred T Epiphakic intraocular lens and process of implantation
GB9008577D0 (en) * 1990-04-17 1990-06-13 Pilkington Diffractive Lenses Rigid gas permeable lenses
US5117306A (en) 1990-07-17 1992-05-26 Cohen Allen L Diffraction bifocal with adjusted chromaticity
US5229797A (en) * 1990-08-08 1993-07-20 Minnesota Mining And Manufacturing Company Multifocal diffractive ophthalmic lenses
US5444106A (en) 1992-04-21 1995-08-22 Kabi Pharmacia Ophthalmics, Inc. High refractive index silicone compositions
US5384606A (en) * 1992-06-22 1995-01-24 Allergan, Inc. Diffractive/refractive spectacle and intraocular lens system for age-related macular degeneration
US5895422A (en) 1993-06-17 1999-04-20 Hauber; Frederick A. Mixed optics intraocular achromatic lens
US5838496A (en) * 1995-08-28 1998-11-17 Asahi Kogaku Kogyo Kabushiki Kaisha Diffractive multi-focal objective lens
JPH09179020A (ja) * 1995-08-28 1997-07-11 Asahi Optical Co Ltd 光情報記録再生装置用回折多焦点対物レンズ
US5968094A (en) * 1995-09-18 1999-10-19 Emmetropia, Inc. Compound intraocular lens
IT1282072B1 (it) * 1996-02-02 1998-03-09 Soleko S P A Lente intraoculare
FR2753985B1 (fr) * 1996-10-02 1999-06-04 Inst Francais Du Petrole Procede catalytique de conversion d'un residu petrolier impliquant une hydrodemetallisation en lit fixe de catalyseur
US5777719A (en) 1996-12-23 1998-07-07 University Of Rochester Method and apparatus for improving vision and the resolution of retinal images
US6070980A (en) * 1997-04-08 2000-06-06 Asahi Kogaku Kogyo Kabushiki Kaisha Spectacle lens
US6019472A (en) 1997-05-12 2000-02-01 Koester; Charles J. Contact lens element for examination or treatment of ocular tissues
JP3686253B2 (ja) * 1998-04-10 2005-08-24 オリンパス株式会社 回折光学素子を用いたズームレンズ
WO2000008516A1 (en) * 1998-08-06 2000-02-17 Lett John B W Multifocal aspheric lens
US6790232B1 (en) * 1999-04-30 2004-09-14 Advanced Medical Optics, Inc. Multifocal phakic intraocular lens
AU6858300A (en) * 1999-09-03 2001-04-10 John Trevor De Carle Bifocal lenses
US6086204A (en) * 1999-09-20 2000-07-11 Magnante; Peter C. Methods and devices to design and fabricate surfaces on contact lenses and on corneal tissue that correct the eye's optical aberrations
US6338559B1 (en) * 2000-04-28 2002-01-15 University Of Rochester Apparatus and method for improving vision and retinal imaging

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101181171B (zh) * 2006-05-31 2011-04-06 爱尔康公司 具有增强的离轴视觉性能的眼内透镜
CN102662252A (zh) * 2012-06-01 2012-09-12 南开大学 矫正近视型老视眼的非球面眼镜镜片
CN102662252B (zh) * 2012-06-01 2013-12-18 南开大学 矫正近视型老视眼的非球面眼镜镜片的确定方法
CN113057763A (zh) * 2017-04-27 2021-07-02 爱尔康公司 具有色差校正作用的多焦点眼科透镜

Also Published As

Publication number Publication date
DE60232331D1 (de) 2009-06-25
IL157774A0 (en) 2004-03-28
CZ20032732A3 (cs) 2004-03-17
ATE431573T1 (de) 2009-05-15
WO2002084381A2 (en) 2002-10-24
CA2441766C (en) 2007-11-06
NO20034506L (no) 2003-12-09
JP2008246225A (ja) 2008-10-16
CA2441766A1 (en) 2002-10-24
ES2326262T3 (es) 2009-10-06
KR100604505B1 (ko) 2006-07-25
MXPA03009309A (es) 2004-03-16
CN1502057A (zh) 2004-06-02
ZA200306917B (en) 2004-09-06
HUP0303870A2 (hu) 2004-03-01
KR20040043117A (ko) 2004-05-22
SK11932003A3 (sk) 2004-04-06
AU2002312771B2 (en) 2007-09-13
NO20034506D0 (no) 2003-10-08
SE0101293D0 (sv) 2001-04-11
US6830332B2 (en) 2004-12-14
JP2004528897A (ja) 2004-09-24
WO2002084381A3 (en) 2003-10-23
HUP0303870A3 (en) 2005-01-28
US20030063254A1 (en) 2003-04-03
EP2105783B1 (en) 2021-10-06
EP2105783A1 (en) 2009-09-30
TWI249048B (en) 2006-02-11
EE200300496A (et) 2003-12-15
EP1402308A2 (en) 2004-03-31
EP1402308B1 (en) 2009-05-13
JP4353700B2 (ja) 2009-10-28
PL367027A1 (en) 2005-02-07
EA200301112A1 (ru) 2004-02-26
NZ528114A (zh) 2005-10-28
CN100342266C (zh) 2007-10-10
EA005124B1 (ru) 2004-12-30

Similar Documents

Publication Publication Date Title
CN100342266C (zh) 眼镜片
CA2562268C (en) Ophthalmic lenses capable of reducing chromatic aberration
AU2002312771A1 (en) An ophthalmic lens
CN1976649A (zh) 眼内透镜
TWI426317B (zh) 利用瞳孔切趾法的多重焦點隱形眼鏡設計
US8521318B2 (en) Toric optic for ophthalmic use
RU2007124577A (ru) Аподизированные асферические дифракционные линзы
EP2290411B1 (en) Refractive-diffractive lens
KR20230042299A (ko) 다초점 렌즈
CN117859090A (zh) 用于视力范围的衍射镜片
Villegas-Ruiz et al. Image quality in pseudophakic eyes with two different types of intraocular lenses ranging in the degree of high myopia

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication