CN1640031B - 用于安全性和楼宇自动化系统的可靠、低功率自组织无线网络的协议 - Google Patents

用于安全性和楼宇自动化系统的可靠、低功率自组织无线网络的协议 Download PDF

Info

Publication number
CN1640031B
CN1640031B CN038057069A CN03805706A CN1640031B CN 1640031 B CN1640031 B CN 1640031B CN 038057069 A CN038057069 A CN 038057069A CN 03805706 A CN03805706 A CN 03805706A CN 1640031 B CN1640031 B CN 1640031B
Authority
CN
China
Prior art keywords
node
packet
network
sensor node
time slot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN038057069A
Other languages
English (en)
Other versions
CN1640031A (zh
Inventor
法尔克·赫尔曼
阿拉蒂·曼耶沙瓦尔
贾森·希尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of CN1640031A publication Critical patent/CN1640031A/zh
Application granted granted Critical
Publication of CN1640031B publication Critical patent/CN1640031B/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2803Home automation networks
    • H04L12/2823Reporting information sensed by appliance or service execution status of appliance services in a home automation network
    • H04L12/2827Reporting to a device within the home network; wherein the reception of the information reported automatically triggers the execution of a home appliance functionality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/12Arrangements for remote connection or disconnection of substations or of equipment thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2803Home automation networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0219Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave where the power saving management affects multiple terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/80Arrangements in the sub-station, i.e. sensing device
    • H04Q2209/88Providing power supply at the sub-station
    • H04Q2209/883Providing power supply at the sub-station where the sensing device enters an active or inactive mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0245Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal according to signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Abstract

本发明描述了一种传感器/致动器节点无线接入网络的方法。传感器/致动器节点安装在一个传感器/致动器节点网络和一个簇头网络中,该传感器/致动器节点网络具有多个节点等级,分级排列。将一个唯一节点标识符分配给该传感器节点,并初始化该传感器节点网络。唤醒该传感器节点以执行一任务,然后将其设置为激活低功率模式。

Description

用于安全性和楼宇自动化系统的可靠、低功率自组织无线网络的协议 
相关申请的交叉引用 
本申请要求享受2002年1月10日提交的优先权号为60/347569的临时申请的优先权。并且,本申请与2002年11月21日提交的题为“Self-Organizing Hierarchical Wireless Network for Surveillance andControl”的专利申请有关,后两者在此以插入的方式,加入该申请披露的内容。 
技术领域
本发明涉及一种协议,该协议将用于监控与控制的传感器与致动器无线接入网络。 
背景技术
网络可应用于监控与控制。但是,完成此种网络的大量成本可能包括,例如,网络规划、网络单元安装以及网络单元排列的配置/重配置。此外,此种网络可以包括电池驱动设备,该设备增加了对资源消耗和/或网络拓扑的约束。 
发明内容
本发明描述了一种将用于监控与控制的传感器与致动器无线接入网络的协议,例如包括烟雾检测器、移动检测器、温度传感器、门接触器、告警器或阀门致动器等。该协议基于一种分级式体系结构构建,该体系结构包括至少两种不同复杂度的节点类型,形成两个独立的网络(即所谓簇头网络和传感器/致动器节点网络),从而避免出现单点故障。在2002年11月21日提交的题为“Self-Organizing Hierarchical Wireless Network for Surveillance and Control”的美国专利申请中对整个系统进行了描述,该系统由少量骨干节点(所谓簇头)按照分布式进行控制,并且在每个簇头都可以访问有关整个网络的信息。对于规模较小的系统,可以使用单个骨干节点(即,单个簇头)。 
本发明还描述了一种形成、维护和使用传感器/致动器节点网络的协议。这些传感器/致动器节点相互之间以及与簇头之间可以构成ad-hoc多跳网络。由于大部分传感器/致动器节点都是电池驱动的,所以需要考虑能源效率。因此,应当将消息开销保持在所需的最低水平。基于此种考虑,该协议能在实现低功率的同时,维持可靠性和伸缩性并快速转发偶发紧急消息。该协议还可以允许网络不断地改善自身,并更新有关所有可用RF链路性能的信息,从而适应变化的传播状况和/或链路/节点故障。在安装完后,传感器/致动器节点网络根据有关链路性能和在簇头处共享并处理的连通性的全局信息实现自身配置。在安装过程中不需要用户干预或详细的规划。在出现链路或节点故障的情形下,协议允许自动重新配置,从而在系统工作期间确保大部分设备之间的连通性。 
附图简述 
图1A代表一种将传感器和/或致动器无线接入网络的典型协议方法的流程图; 
图1B示出了一种临时拓扑图建立阶段的典型消息交换图; 
图2示出了一种链路发现与评估阶段的典型消息交换图; 
图3示出了一种传感器节点注册阶段的典型消息交换图; 
图4A示出了一种用于分配建立的传感器节点网络拓扑图的典型消息交换图; 
图4B示出了一种监视RF信道的典型方法; 
图5示出了一种发送高优先级控制消息的典型消息交换图; 
图6示出了一种发送告警消息的典型消息交换图; 
图7示出了一种发送监控消息的典型消息交换图。 
发明详述 
在下文描述中,术语“传感器节点”可用于指代传感器节点和致动器节点的集合。同样,术语“传感器节点网络”可用于指代包括传感器和/或致动器网络的集合。传感器节点网络中的通信基于具有随机回退(back-off)的载波侦听多路存取(CSMA)机制。发送的数据包包括:由物理层定义的前导码、起始符号和控制字符、数据包类型、数据包长度、源和/或目的节点标识符和循环冗余校验码(CRC)。此外,还可以通过使用共享密钥交换来进行链路层加密,以确保通信的安全性,并使用消息认证码(MAC)来进行授权。 
图1A是描述一种将传感器和/或致动器无线接入网络的协议方法的流程图。在步骤101中,安装网络节点,收集节点的唯一标识符(ID),并且分配加密密钥。两个传感器节点之间或一个传感器节点及其最近的簇头之间的最远通信距离限制了传感器节点的物理布置。一旦布置完,就可以通过一个有线或无线接口和/或一个手工输入装置来激活节点,并/或记录其唯一节点标识符和其地理位置。例如,可以使用一个具有条形码扫描器的安装工具进行此种激活或记录。另外,也可以使用一个短的内部互联网ID来编程各个节点,该ID也可以作为用户设备物理位置的参考使用。例如,可以通过手工输入(如dip开关阵列),或将ID电存储到传感器节点中来实现。例如,平板PC可将传感器节点数据从安装工具发送给一个簇头。在激活之后,如下面详细描述的,节点处于“激活低功率模式”下。 
在步骤102中,初始化该簇头网络。在2002年11月21日提交的题为“Self-Organizing Hierarchical Wireless Network for Surveillanceand control”的美国专利申请中,对簇头网络的初始化和安装都做了详细的描述。另外,也可以用一个单基站代替一个簇头网络。但在本文中,术语“簇头网络”是单基站和簇头网络的统称。 
在步骤103中,通过建立临时拓扑图,同步节点,以及向合适的簇头注册各个节点,来实现传感器节点网络的初始化。在初始化之后,传感器节点就可以“休眠”,而进入激活低功率模式,以节约能源, 例如,节省电池能量。 
在步骤104中,例如,每秒1至4次“唤醒”传感器节点,以接收一个RF唤醒消息。根据输入传输信号或耗用时间,传感器节点可以执行一个或多个步骤。例如,如果一个数据包未处理或产生告警状态,在步骤105中执行包处理或告警消息程序,处理输入数据或产生的告警。如果已经超过监控期(如每小时一次),在步骤106中执行监控程序,例如,检查子节点和/或父节点的状态,以使在步骤107中执行重新配置/状态更新程序。此外,例如,如果超过了链路维护期(如每天一次),那么在步骤108中执行链路维护程序。在这些程序结束之后,传感器节点就会返回激活低功率模式,等待下一RF唤醒消息。下面将详细说明各个程序及网络单元之间的交互。 
传感器节点网络的初始化包括三个阶段,比如:临时拓扑图建立及同步阶段、链路发现及评估阶段、以及传感器节点注册阶段。在临时拓扑图建立及同步阶段,确定传感器节点网络的初始预工作拓扑图,并且同步传感器节点的时钟。在链路发现及评估阶段,检查并回查网络单元之间的连通性。在传感器节点注册阶段,网络单元将链路发现及评估阶段中收集的信息转发给簇头网络。 
图1B示出了一种临时拓扑图和建立阶段的典型消息交换图。图中表示时间的水平轴t被分成从1.1.1到1.n.3的若干时隙,图中表示网络单元等级的垂直轴被分成多级,底层是簇头,传感器节点以升序方式从第1级到第n级,直到顶层。时间轴t上方的每一条水平线都表示网络单元的一个特定实例,即:或者是簇头的特定实例,或者是第一级节点特定实例,或者是第二级节点特定实例,或者是第n级节点特定实例。更准确地说,线c-1、c-2直到c-m表示簇头的第一、第二和上限个体实例,线1-1、1-2和1-1表示第一级节点的第一、第二和上限个体实例,线2-1、2-2和2-k表示第二级节点的第一、第二和上限个体实例,以及线n-1、n-2和n-i表示最高级节点的第一、第二和上限个体实例。水平线周围的阴影表示相关网络单元的主要活动或模式,黑色阴影表示“发送/接收”模式,浅色阴影表示“激活低功率模式”,无色或透明阴影表示“只收”模式。 
箭头表示网络单元之间的RF消息传输。具体地,宽的透明箭头表示到达某一特定等级中的所有节点的广播消息,细实线表示只被发送到一个网络单元实例的一条单播消息。 
在时隙1.1.1中,簇头同时广播一个“RF唤醒信号”。在广播发送范围内的接收节点(即“第一级节点”)从激活低功率模式变为只收模式。接着,在时隙1.1.2中,簇头c-1至c-m分别广播预定数量的“初始数据包”。例如,一个初始数据包可以包括一个发送簇头的标识符、一个计数器和一个时间戳。在时隙1.1.3中,第一级接收节点同步其时钟,并向具有最佳链路质量的簇头发送一个“临时注册数据包”,其中,根据数据包成功率和/或最强射频功率等级来确定最佳链路质量;然后,等待应答包(ACK)。一旦应答,第一级节点可以保持在只收模式中,或返回到激活低功率模式,直到时隙1.2.1。 
如果没有收到应答包,第一级节点还会尝试将临时注册数据包重发一次或多次。如果重发尝试次数超过预定值仍未收到应答包,第一级节点就会联系确定具有下一最优链路质量的簇头。如果在向预定最多数量的连续簇头进行多次重发之后仍然导致接收应答包失败,第一级节点就返回到激活低功率模式。 
在时隙1.2.1中,从广播簇头接收应答包的第一级节点1-1和1-2广播“RF唤醒信号”。于是,在广播发送范围内的接收节点(即“第二级节点”)从激活低功率模式变为只收模式。在时隙1.2.2中,第一级节点1-1和1-2各自广播预定数量的“初始数据包”。该初始数据包包括一个发送节点的标识符、一个计数器和一个时戳。在时隙1.2.3中,第二级接收节点同步其时钟,并向具有最佳链路质量的第一级节点发送一个“临时注册数据包”。其中,根据数据包成功率或最强射频功率等级来确定最佳链路质量;然后,等待应答包。一旦应答,第二级节点可以处于只收模式,或返回到激活低功率模式,直到时隙1.2.1。 
如果没有收到应答包,第二级节点还会尝试将临时注册数据包重发一次或多次。如果尝试重发次数超过预定值仍未收到应答包,第二级节点可以联系确定具有下一最佳链路质量的第一级节点。如果向预 定最多数量的连续第一级节点进行重发之后仍然导致接收应答包失败,第二级节点就返回到激活低功率模式。 
在时隙1.n.1中,较低级节点唤醒较高级节点的过程,允许它们之间同步,然后与较低级节点一起临时注册。重复执行该过程,直到所有节点都被激活或预定上限等级的节点已经激活。例如,用户可以定义上限等级。 
图2示出了链路发现与评估阶段的典型消息交换图。如图1B所示相同,水平轴t表示时间,而垂直轴表示网络单元等级。同样,时间轴t上方的水平线表示一个网络单元的特定实例,水平线周围的阴影表示主要活动或模式,箭头表示RF消息传输。不同于图1B,图2中的时间轴t表示整个时隙2,包括完全随机的初始时间段,其后紧随一个时隙随机或确定的时间段,用于表示链路发现与评估的两种不同方法。 
为了发现链路并对其进行评估,节点和/或簇头将“链路评估数据包”广播到发送范围内的所有节点,使得这些接收节点可以根据功率等级和/或可达网络单元的数据包成功率,构建链路统计表。例如,链路评估数据包包括一个发送节点标识符和一个计数器。 
广播的链路评估数据包的数量应该大到足以构建(收集和建立)合适的链路统计表。可以使用至少两种方法,如完全随机方法和时隙随机或确定方法来处理大量生成数据包的数据包调度。在完全随机方法中,节点在特定时间段t内随机地广播预定数量的链路评估数据包,并在非发送状态时接收尽可能多的数据包。而在时隙随机或时隙确定方法中,将特定时间段分为时隙2.1到2.x,在每个时隙中都发送一系列链路评估数据包。在时隙随机或时隙确定方法中,各个节点只在可用时隙的一个小段(例如,小于10%)内发送,从而使得发送概率小于接收概率。可以通过三种途径来实现是否在一个特定时隙内进行发送的判决。在第一种途径中,在每个时隙的开始做出随机判决。在第二种途径中,使用伪随机算法来确定发送发生的时隙和接收发生的时隙。对于各个节点而言,该算法的“种子”或基是唯一的。例如,唯一的节点标识符或唯一的节点标识符的一部分。如果簇头已经知道 了种子和算法,就可以重新计算每个节点的发送时隙。因此,簇头可以确定其中相邻节点间可能发生干扰的时隙,从而在链路评估时避免出现干扰,由此提高网络链路评估的可靠性。在第三种途径中,基于一个代码,比如光正交码(OOC)来判断是否在一个特定的时隙内发送,该代码能够确保任意两个节点最多只在一个时隙内发生干扰。 
图3示出了一种传感器节点注册阶段的典型消息交换图。如前图相同的是,水平轴t表示时间,垂直轴表示网络单元等级。同样,时间轴t上方的水平线表示一个网络单元的特定实例,水平线周围的阴影表示主要活动或模式,箭头表示RF消息发送。但是,与前图不同的是,图3中时间轴t表示一个整个时隙3,该时隙包括一个随机节点注册段3.0,其后紧跟逐层时隙化的节点注册段3.1至3.3,用于表示传感器节点注册的两种不同方法。 
在传感器节点注册时,可以使用“注册数据包”,通过中间节点将链路质量统计表从一个传感器节点转发到一个簇头。该“注册数据包”例如可以包括链路质量数据,以及各个链路的其他相关数据。其中链路质量数据来自所有相邻节点或被视为具有最佳链路的选定数量的节点。可以在簇头,通过将来自每个节点对(两个节点)的单向链路质量信息结合起来,从而获得双向链路质量信息。可以使用至少两种方法进行注册,如随机单节点注册方法以及逐级时隙化节点注册方法。在随机单节点方法中,可以使用前面讨论过的临时拓扑图建立法来处理包路由,簇头和传感器节点之间可使用可选的端到端应答包。而在逐层时隙化方法中,可以使用特定时隙在各级注册节点,例如从最高级节点开始。然后,将来自较高级节点的注册数据附加(即“捎带”)到较低级发送的注册数据包中。需要时,较低级节点可以再次发送注册数据包。为了确保正常的注册消息交换,传感器节点注册可以使用主动或被动的应答包。在确认成功交换之后,该注册节点“休眠”,而进入激活功率模式下。 
基于在传感器节点注册期间接收的链路质量统计表,簇头可以根据节点执行的特定功能,计算该传感器网络的一个或多个拓扑图。例如,为执行监控功能的节点而计算“监控树”拓扑图,为执行告警/ 控制消息处理功能的节点计算“告警树”拓扑图。后面还会更加完全地说明这些具体拓扑图。 
通常可以在一个多树结构中组织传感器节点,簇头位于树的各个根部。为了确保得到最佳拓扑图,需要考虑一个或多个因素。例如,希望使用“好”链路(如不会发生过多数据包重传的链路),来最小化消息延时,降低功率消耗,避免冲突,限制等级的最大数量,以及平衡网络上的负载,从而使得所有节点的预期电池寿命都能基本相等。 
图4A示出了一种将已建立的传感器网络拓扑图进行分配的典型消息交换图。与前图相同的是,水平轴t表示时间,垂直轴表示网络单元的等级。同样,时间轴t上方的水平线表示一个网络单元的具体实例,水平线周围的阴影表示主要活动或模式,箭头表示RF消息发送。但是,与前图不同的是,图4A中的时间轴t表示整个时隙4,包括逐级时隙化的分配时间段,其后是随机分配时间段,表示将已建立的传感器节点网络拓扑图进行分配的两种不同方法。 
为了分配已建立的传感器网络拓扑图,簇头首先向各个节点发送“拓扑图建立数据包”。该拓扑图建立数据包包括:该节点的子节点的定义、当前分配的父节点(在两个不同的网络拓扑图中,可以选择分配节点)、潜在的父节点、节点等级、逐对加密的密钥、频道、监控时序信息和时戳。新网络拓扑图中的一个节点的等级可能不同于它在临时拓扑图中对应的等级。具体而言,例如,由于有利于获得总体最佳拓扑图,物理上位于一个簇头接收范围内的节点还可以被分配到第二级节点。在逐级时隙化分配方法中,可以在某一级为该级预留的时隙内将拓扑图建立数据包一起发送到相同等级的节点。例如,在图4A中,可以在时隙4.1中向第一级的所有节点发送拓扑图建立数据包,在时隙4.2中向第二级的所有节点发送拓扑图建立数据包,以及在时隙4.3中向第三级的所有节点发送拓扑图建立数据包。而在随机分配方法中,可以在整个时隙4中向任意等级的节点发送拓扑图建立数据包。 
为了确保正确建立拓扑图,可以使用主动或被动链路等级应答 包。此外,也支持从节点到簇头的端到端应答包,该应答包可选。 
一旦在网络中建立起网络拓扑图,节点就“休眠”而进入激活低功率模式,并等待通过RF唤醒信号来激活。在已建立的网络的整个生命期内,除了那些被认为特别关键的部件(如电池驱动的节点的实时时钟),节点的其他部件大部分时间都处于低功率/睡眠模式,从而增加电池的工作时间(例如,平均耗尽电流在uA范围内)。可以周期性地和/或在预定的时间内,激活这些部件(即,从低功率/睡眠模式中“唤醒”),使其执行任务,如执行自检或监视RF信道。具体地,可以唤醒一个微控制器,执行自检程序(如检查电池状态)或从相关传感器进行读取。此外,也可在固定间隔内监视RF信道,如,每隔100至1000毫秒,从而确保消息处理的低延时。如果发现不规则,检测节点就发出一条告警消息。 
图4B示出了一种监视RF信道的方法的示意图。在步骤401中,传感器节点被置于激活低功率模式。在步骤402到404中,传感器节点的微控制器唤醒并激活一个接收机部件,该部件在预留的“RF唤醒信道”中测量接收信号强度指示(RSSI)。如果RSSI的测量值大于预定门限值,根据步骤405,在前导码中搜索特征RF唤醒序列(例如逻辑状态的交替序列,1-0-1-0-1...)。否则,根据步骤406,节点返回到激活低功率模式。如果检测到特征RF唤醒序列,根据步骤407,通过扫描一个或多个信道,执行有效起始序列的搜索。可以根据执行功能/任务的类型,在多个RF信道中分别发送特征RF唤醒序列,而执行功能/任务的类型也会被分配相应的优先权。从而可以根据各自所需的最大延时,在不同的频率监视特定功能/任务。因此,可以根据预定优先权,通过扫描,搜索有效搜索序列。例如,先扫描告警消息专用信道,然后扫描控制消息专用信道,再扫描监视消息专用信道。 
如果在一个预定超时期内没有发现有效起始序列,节点返回激活低功率模式。反之,如果发现了有效起始序列,那么根据步骤408,读取数据包包头,以确定其预期接收者。如果数据包要发送到另一节点或数据包无效,则丢弃该数据包,节点返回到激活低功率模式下。反之,如果数据包要发送到该节点,根据步骤409,接收该数据包, 并执行相应任务。 
为了确保网络中消息处理的正确控制,可以根据一个或多个优先级分类(如高优先级消息和低优先级消息),来区分消息。高优先级消息用于从簇头向传感器节点发送需要立即考虑和/或反应的命令,例如,节点的安装/卸除和对节点固件重新编程。为了发送高优先级消息,可以按照单播方式向一个节点或以多播方式向一组节点发送专用的“高优先级控制包”。以单播方式发送时,高优先级控制包包括一个时戳、一个从簇头到目标节点的专用路径以及一个由目标节点执行的命令。以多播方式发送时,高优先级控制包包括一个时戳、一个目标节点列表或目标组标识符、一个转发节点列表以及一个由目标节点执行的命令。在高优先级数据包之前为RF唤醒序列。此外,还可以使用链路级和/或端到端的应答包。 
图5示出了发送高优先级控制信息的一种典型消息交换图。与前图相同的是,水平轴t表示时间,垂直轴表示网络单元的等级。同样,时间轴t上方的水平线表示一个网络单元的特定实例,水平线周围的阴影表示主要活动或模式,箭头表示RF消息发送。但是,与前图不同的是,图5中的时间轴t表示整个时隙5,包括一个多播传输时间段,其后是一个单播传输时间段,用于表示发送高优先级控制消息的两种不同方法。 
相比高优先级消息,低优先级消息用于从簇头向传感器节点发布不需要立即关注或反应的命令,如,切换链路的命令或更新校准因子的命令。与高优先级消息不同的是,低优先级消息不需要专用包格式。在监控周期内,该消息数据被附加(即“捎带”)到一个或多个“监控应答包”中,该应答包从一个节点分配到另一节点。捎带了低优先级消息数据的监控应答包包括:一个目标节点或目标组标识符、一个转发节点列表、一个由目标节点执行的命令。 
为了确保从传感器节点到簇头的信息传输具有低延时,可以使用定向洪泛法(directed flooding method)或单播法处理告警消息。根据常用定向洪泛法,产生告警的节点在RF信道上广播一个唤醒序列,以唤醒其广播接收范围内的节点。广播应该足够长,使得所有节点都 有足够的时间来接收和处理唤醒序列。最低持续时间取决于RF信道监视的预定周期以及节点进行同步的精确度。一旦广播了唤醒序列,还需发布一系列“告警数据包”,包括源节点的标识符、等级、告警码以及作为可选项的时戳。等级低于源节点的节点将告警数据包转发给其他等级更低的节点,在其前有一个RF唤醒序列。如果需要,可以使用间接链路级应答包来截短该广播包。 
作为定向洪泛法的替代方法,也可以根据单独定义的“告警拓扑图”或单独定义的“监控拓扑图”,以单播方式处理告警消息。根据常用单播方法,与前面的定向洪泛法相同,产生告警的节点在RF信道上广播一个唤醒序列,以唤醒其广播接收范围内的节点。与定向洪泛法中相同,唤醒序列广播应该足够长,使得所有节点都有足够的时间来接收和处理该唤醒序列,最低持续时间取决于RF信道监视的预定周期以及节点同步的精确度。但是,与定向洪泛法不同的是,然后将一个“告警数据包”单播给预期目标节点的父节点。父节点在该消息前加上唤醒序列,将其转发给预期目标节点。可以多次重发告警数据包,直到从父节点接收到一个应答包(主动的或被动的)。如果告警数据包传输在预定超时时间内被视为不成功,使用定向洪泛法重新发送告警消息。 
图6是发送警报消息的消息交换图。与前图相同的是,水平轴t表示时间,垂直轴表示网络单元的等级。同样,时间轴t上方的水平线表示一个网络单元的特定实例,水平线周围的阴影表示主要活动或模式,箭头表示RF消息发送。但是,与前图不同的是,图6中的时间轴t表示整个时隙6,包括一个多播传输时间段,后面接着一个单播传输时间段,用于表示发送告警消息的两种不同方法。 
为了确保传感器节点的正常功能,并在传感器节点和簇头之间维持一条通信路径,可以通过交换“监控数据包”进行监控,该监控数据包包括状态信息、附加(捎带)的低优先级消息以及可选时戳。节点并不直接转发肯定结果,而只是定期向簇头报告不正确或潜在危险的情形,周期由监控间隔τs确定。在这些间隔期间,可以使用父子关系,使得每个父节点检查自己的子节点,反之亦然。可以主动应答 监控数据包,该监控数据包包括用于更新在每个节点中维持的实时时钟的时戳,以及可选的低优先级控制信息。如前所述,监控时,可以使用一个或多个信道,与用于发送告警或控制信息的信道分开。 
可以根据一种或多种方法来进行监视。例如,使用基于等级的时隙方法、基于一父多子等级的时隙方法,或基于一父一子等级的时隙方法来进行监控。 
根据基于等级的时隙方法,监控间隔τs被分为nL个相等的时隙,各个时隙由属于某特定等级的节点所共用。对于一个特定时隙,属于一个较高级的所有节点向其父节点单播一个监控数据包,并等待应答包。如果没有收到应答包,就重发该监控数据包。如果重发超过一定次数仍未收到应答包,则进行本地重新配置,通过连接“潜在的”父节点,恢复该特定节点的连通性。可选地,也可以在进行本地重新配置之前,在下一个监控周期中发送监控数据包。 
另外,根据典型基于一父多子等级的时隙方法,监控间隔τs被分为nL个相等的时隙,各个时隙进一步被分为用于一个特定父节点及其所有子节点的时隙。在一个特定隙中,各个相关子节点向父节点单播一个监控数据包,并等待应答。如果没有收到应答,重新发送该监控数据包。如果重发超过预定次数仍未收到应答包,进行本地重新配置,通过连接“潜在的”父节点,恢复该特定节点的连通性。可选地,也可以在进行本地重新配置之前,在下一个监控周期中发送监控数据包。 
另外,根据典型的基于一父一子等级的时隙方法,监控间隔τs 被分为nL个相等的时隙,各个时隙进一步被分为用于特定父子对的时隙。在一个特定隙中,子节点可以向父节点单播一个监控数据包,并等待应答。另外,子节点也可被父节点查询,然后响应一个应答包。如果没有收到应答包,重发该监控数据包,如果重发次数达到预定次数仍未收到应答包,执行本地重新配置,以恢复与未应答的父节点的连通性。当然,也可以在进行本地重新配置之前,在下一个监控周期中发送监控数据包。 
如同在各种监控方法中,只有该特定时隙涉及的节点是激活的, 其他不涉及的节点仍处于激活低功率模式。 
图7是发送监控消息的典型消息交换图。与前图相同的是,水平轴t表示时间,垂直轴表示网络单元的等级。同样,时间轴t上方的水平线表示一个网络单元的特定实例,水平线周围的阴影表示主要活动或模式,箭头表示RF消息发送。但是,与前图不同的是,图7中的时间轴t表示整个时隙7,包括分段时隙,只表示用于发送监视消息的基于一父一子等级的方法。 
为了在不利于RF和/或变化的环境下保持正常功能,需要监控网络可用链路的质量(如,包括当前尚未分配的链路),从而检测缓慢变化和中间变化,并考虑重新配置/修改。可以定期进行此种链路质量监控,但其频率远远低于监控的频率(例如,每天一次)。类似于前面描述的链路发现与评估阶段,各个节点广播预定数量的“链路评估数据包”,包头为射频唤醒序列。然后,发送范围之内的节点接收这些数据包,例如,定义这些节点位于检测数据包超过预定传输质量门限的范围内。 
链路评估数据包可用于连续更新所有可用链路的统计。如果某特定链路质量超过预定门限值,节点就将与变化的链路状态相关的信息作为监控数据包的附加(捎带)数据,转发给簇头,此外,还可以附加与节能相关的信息。当然,也可以将变化链路的状态信息作为告警数据包进行广播。 
链路评估数据包可以在一个信道中发送,该信道与发送告警或控制数据包的信道分离,该分离信道可被监控共享。 
也可对链路质量监控进行调度,使得每个节点分配到特定数量的时隙,其中包括为监控预留的时隙。在为链路质量监控分配预留时隙时,应确保“侦听”范围内的节点相互之间不发生冲突。可以在簇头进行链路质量监控调度,从而在网络拓扑图建立期间向节点分配与时隙预留相关的信息。 
如果一个传感器节点出现复位(如“监测者超时”复位或“熄灭”复位),传感器网络就进行重新配置,恢复那些存储在挥发性存储器中、但却在复位过程中丢失的信息。这些相关信息包括:系统时间、 复位节点的父节点、子节点,以及分配的监控和/或链路质量监视时隙。 
根据典型重新配置方法,传感器节点向复位节点的邻居发送“SOS数据包”,包头为RF唤醒序列。SOS数据包包括节点标识符和数据包类型。为了响应SOS数据包,与复位节点(即父节点和/或子节点)相关的接收节点响应的数据包包括各自的节点标识符、时戳以及用于监控和链路质量监视的时隙。可以一直重发SOS数据包,直到接收到相关信息,或者如果达到超时,包头可以是数个RF唤醒序列。如果在预定超时的时期内没有收到来自父节点的响应,SOS消息会作为告警数据包重新广播,使得从簇头接收相关配置信息。但是,如果在预定超时的时期内没有收到来自一个或多个子节点的响应,SOS消息不会被重新广播。而是被假定为,未响应的子节点将在下一个监控周期内通过复位节点(即父节点)进行重新配置。如果子节点在下一个监控周期内没有重新配置复位节点,可以执行第二种典型重新配置方法,以响应未成功的监控。 
根据第二种典型重新配置方法,子节点试图恢复与监控期间没有响应的父节点的连通性。为了区别节点故障和链路故障,簇头可以使用来自传感器节点有关未成功监控周期的信息。如果监控使用的是基于等级的时隙方法或基于一父多子等级的时隙方法,“迷失的”节点将在分配的监控时隙内联系分配的父节点或“潜在的”父节点。可以在多个监控周期内重复执行该过程。在联系成功之后,潜在的父节点将其“临时”子节点的有关信息作为监控数据包的附加(即捎带)数据发送给簇头。如果经过预定数量的监控周期,到达了潜在父节点,簇头为“迷失的”节点确定一个新父节点(不一定是到达的潜在父节点中的一个),从而维持一个最佳网络拓扑图。然后,簇头向“迷失的”节点和新父节点发送新父节点的相关信息。如果经过预定数量的监控周期,既没有到达潜在父节点,也没有到达原始分配的父节点,“迷失的”节点将SOS消息作为告警数据包进行广播,以使从簇头接收重新配置的数据。 
根据第三种典型重新配置方法,一个或多个节点在预定的共同时 间执行重新配置,从而不间断地保持网络的正常功能。具体是,簇头可以根据一个或多个传感器节点的变化链路质量和/或能量储备变化的有关信息,不断地重新计算最佳网络拓扑图。如果与当前网络状况相比,获得了一定改进,如,传感器节点负载降低达到了预定的门限值或多个可靠链路的利用率得到了预定的提高量,可以将配置变化的相关信息作为低优先级控制消息,发送到受影响的节点,以使其采用新的网络拓扑图。 
根据第四种重新配置方法,可以在现有网络中扩展引入新节点,其被需求来提高网络的连通性或添加新功能(例如传感器或致动器)或减少网络特定区域的负载。为了实现扩展的重新配置,需要记录和安装新节点的唯一节点标识符和地理位置,以及在合适的情况下,交换网络加密密钥。为了确定现有网络拓扑图中新节点的合适位置,可以使用一种或多种方法。具体使用哪种方法,取决于新节点是否只是用于增加系统功能(例如,新安装的门中的新门接触器),或新节点是否需要立即提高网络的连通性。 
对于那些只是用于增加功能的新节点,在确定其位置的第一种方法中,一旦安装后,新节点广播RF唤醒序列,然后发送预定数量的“新节点数据包”。这些新节点数据包包括:新节点的标识符、节点类型、将数据包标识为新节点数据包的数据包类型。作为响应,所有接收节点根据接收到的新节点数据包,构建新节点链路质量统计,然后,在预定时间段之后,发送响应数据包。这些响应数据包包括响应节点的节点标识符、等级、时戳以及相关的链路质量数据。 
一旦接收到响应数据包,新节点可以选择响应节点中的一个,作为临时父节点。该选择基于接收的链路质量数据,该链路质量数据包括临时链路质量统计如单向链路质量、响应节点的节点等级和接收信号强度。一旦选择了一个临时父节点,新节点就经由该节点将“注册数据包”转发到簇头。作为响应,簇头通过发送“拓扑图建立数据包”来响应新节点,该“拓扑图建立数据包”包括用于监控和链路质量监视的分配时隙。在一个或多个链路质量监视周期之后,可以获得新节点及其邻居之间所有链路的更永久性的链路质量。然后将更新的链路 质量数据发送到一个特定簇头,该簇头计算更永久性的拓扑图,然后分配给涉及的特定节点。 
在需要确定要求来立即改善网络连通性的新节点的合适位置的第二种方法中,一旦安装,新节点就广播RF唤醒序列,然后发送预定数量的“新节点数据包”。该“新节点数据包”包括:新节点的节点标识符、节点类型、以及将数据包标识为新节点数据包的数据包类型。因此,所有接收节点基于接收的新节点数据包,为新节点构建链路质量统计数据,然后,经过预定的一段时间,发送响应数据包,这些响应数据包包括:响应节点的节点标识符、等级、时戳以及相关的链路质量数据。接收之后,新节点向每个相邻响应节点发送数据包,指明确定何时开始发送一系列数据包的序列号。作为响应,相邻节点根据分配的序列号,发送一系列“链路评估数据包”。由此,新节点就可以立即获取双向链路质量统计。因此,新节点选择一个响应节点作为其临时父节点,然后,经由选定的临时父节点,将一个“注册数据包”(包括获得的所有相邻节点的双向数据)发送给簇头。作为响应,簇头向新节点发送一个“拓扑图建立数据包”,包括:新节点新分配的永久性父节点的节点标识符、分配的子节点、用于监督和链路质量监视的时隙。由此,新分配的父节点就可以从转发数据包中推导出其作为父节点的新角色。然后,新节点通知其子节点,将新节点的父节点变化作为它们的新父节点,以及子节点的新监控时隙。在下一个监控周期内,子节点将关系变化通知“旧”父节点,然后只以新父节点开始监控。 
如果某个簇头发生故障,传感器网络进行重新配置,形成一个没有故障簇头的新拓扑图。根据第五种重新配置方法,可以为受到故障簇头影响的节点重新计算新的拓扑图和新的时隙。但是,由于簇头网络有自己独立的监控和重新配置机制,所以传感器节点网络在为受影响的节点重新计算新拓扑数据和时隙之前,需要一直等到簇头网络本身正确完成重新配置。因此,当簇头网络为剩余簇头重新计算新的拓扑图时,需要为受影响的传感器节点重新计算新的拓扑图和新的时隙,并通过高优先级控制消息与之通信。 

Claims (48)

1.一种将一个传感器节点无线接入网络的方法,包括:
将该传感器节点安装到一个传感器节点网络和一个簇头网络中,
该传感器节点网络具有多个节点等级,分级排列;
为该传感器节点分配一个唯一标识符;
初始化该传感器节点网络;
唤醒该传感器节点,以执行一个任务;和
如果该任务完成,将该传感器节点设为一个激活低功率模式。
2.如权利要求1所述的方法,还包括:
将一个加密密钥分配给所述传感器节点。
3.如权利要求1所述的方法,其中初始化所述传感器节点网络包括:
建立一个临时拓扑图,并同步所述传感器节点网络;
发现和评估所述传感器节点网络的至少一个链路;和
向所述簇头网络的一个簇头注册所述传感器节点网络中的一个传感器节点。
4.如权利要求3所述的方法,其中,所述建立所述拓扑图和同步的步骤还包括:
从一个较低级节点向一个较高级节点广播一个唤醒信号;
从该较低级节点向该较高级节点发送一个初始数据包;
同步该较高级节点;
从该较高级节点向该较低级节点发送一个临时注册数据包;和
重复广播该唤醒信号,发送该初始数据包,同步,以及发送该临时注册数据包的步骤,直至到达所有节点或者到达预定等级的所有节点。
5.如权利要求3所述的方法,其中,所述发现和评估的步骤还包括:广播多个链路评估数据包。
6.如权利要求5所述的方法,其中,以完全随机方式广播所述链路评估数据包。
7.如权利要求5所述的方法,其中,以时隙随机/确定方式广播所述链路评估数据包。
8.如权利要求7所述的方法,其中,广播周期被分为所述传感器节点网络的每级一个时隙。
9.如权利要求8所述的方法,其中,所述广播只在所述时隙的一小段中发生。
10.如权利要求8所述的方法,其中,所述广播在所述时隙中随机发生。
11.如权利要求8所述的方法,其中,所述广播的发生基于一个码,以确保两个节点最多只在一个时隙中发生干扰。
12.如权利要求3所述的方法,其中,所述注册步骤还包括:转发多个注册数据包。
13.如权利要求12所述的方法,其中,以随机单节点方法转发所述注册数据包。
14.如权利要求12所述的方法,其中,以逐级时隙方法转发所述注册数据包。
15.如权利要求14所述的方法,其中,广播周期被分为所述传感器节点网络的每级一个时隙。
16.如权利要求12所述的方法,其中,来自较高级节点的注册数据被捎带到由较低级节点发送的注册数据包中。
17.如权利要求3所述的方法,还包括:
计算所述传感器节点网络的网络拓扑图。
18.如权利要求17所述的方法,其中,计算所述网络拓扑图,以减少功率消耗。
19.如权利要求17所述的方法,其中,计算所述网络拓扑图,使得所有节点的预期电池寿命基本相等。
20.如权利要求17所述的方法,还包括:
分配所述网络拓扑图。
21.如权利要求20所述的方法,其中,所述分配网络拓扑图步骤还包括:
发送多个拓扑图建立数据包。
22.如权利要求21所述的方法,其中,所述拓扑图建立数据包以随机方式发送。
23.如权利要求21所述的方法,其中,所述拓扑图建立数据包以逐级时隙方式发送。
24.如权利要求1所述的方法,还包括:
使用应答监控数据包来监控所述传感器节点网络,以更新所述传感器节点的时钟。
25.如权利要求1所述的方法,其中,针对节点等级,来同步所述传感器节点时钟。
26.如权利要求3所述的方法,其中,基于功率级和可达网络元素的数据包成功率中至少一个,来评估所述传感器节点网络的至少一个链路。
27.如权利要求3所述的方法,其中,评估所述传感器节点网络的至少一个链路,以更新至少一个链路的至少一项统计。
28.一种用于监视传感器节点网络中传感器节点的传输链路的RF信道的方法,包括:
执行接收信号强度指示RSSI读取;
从一个前导码中搜索一个特征射频RF唤醒序列;
搜索一个有效起始序列;
读取输入数据包的包头;
根据输入数据包的内容,执行一个任务;和
将该传感器节点设为激活低功率模式;
其中,根据该传感器节点欲执行的任务,将该特征射频RF唤醒序列分离在多个射频RF信道中,该任务被分配相应优先级,从而,可以根据各自所需延时,在不同的频率监视该任务。
29.如权利要求28所述的方法,其中,搜索一个有效起始序列的步骤还包括:
根据所述分配的相应优先级,扫描所述有效起始序列。
30.一种用于操作一个具有多个节点等级且分级排列的传感器节点网络和一个簇头网络的方法,包括:
唤醒一个传感器节点,以执行一个任务;
发送一条消息;和
如果任务完成,将该传感器节点设为激活低功率模式。
31.如权利要求30所述的方法,其中,所述传感器节点每秒被唤醒一至四次。
32.如权利要求30所述的方法,其中,所述发送所述消息步骤还包括:
发送多个高优先级的控制数据包。
33.如权利要求32所述的方法,其中,所述高优先级控制数据包以多播方式发送到几个节点等级中的节点。
34.如权利要求32所述的方法,其中,所述高优先级控制数据包以单播方式发送到一个单节点。
35.如权利要求32所述的方法,还包括:
只将一个低优先级消息捎带到一个监控应答数据包中。
36.如权利要求30所述的方法,其中,所述发送所述消息步骤还包括:
发送多个告警数据包。
37.如权利要求36所述的方法,其中,使用一个定向洪泛法发送所述告警数据包。
38.如权利要求37所述的方法,还包括:
在发送所述告警数据包之前广播一个唤醒序列;和
经由中间传感器节点将该唤醒序列和告警数据包转发到簇头网络。
39.如权利要求30所述的方法,其中,所述发送所述消息步骤还包括:
经由单独定义的拓扑图,以单播方式发送一个告警数据包。
40.如权利要求30所述的方法,其中,发送所述消息步骤还包括:
使用基于等级的时隙方法、基于一父多子等级的时隙方法和基于一父一子等级的时隙方法中一种,来发送多个监控数据包。
41.如权利要求40所述的方法,其中,所述监控数据包每小时发送一次。
42.如权利要求30所述的方法,其中,所述发送所述消息步骤还包括:
发送多个链路评估数据包。
43.如权利要求42所述的方法,其中,所述链路评估数据包在与告警数据包和控制数据包至少之一分离的RF信道中发送。
44.如权利要求42所述的方法,其中,所述链路评估数据包每天发送一次。
45.如权利要求30所述的方法,其中,所述发送所述消息步骤还包括:
发送一个SOS数据包,以响应一次复位。
46.如权利要求30所述的方法,其中,所述发送所述消息步骤还包括:
发送一个新节点数据包。
47.如权利要求30所述的方法,其中,所述发送所述消息步骤还包括:
发送一个注册数据包。
48.如权利要求40所述的方法,其中,以周期方式发送所述监控数据包。
CN038057069A 2002-01-10 2003-01-10 用于安全性和楼宇自动化系统的可靠、低功率自组织无线网络的协议 Expired - Lifetime CN1640031B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US34756902P 2002-01-10 2002-01-10
US60/347,569 2002-01-10
US10/301,478 US7483403B2 (en) 2002-01-10 2002-11-21 Protocol for reliable, self-organizing, low-power wireless network for security and building automation systems
US10/301,478 2002-11-21
PCT/US2003/000791 WO2003061176A2 (en) 2002-01-10 2003-01-10 Protocol for reliable, self-organizing, low-power wireless network for security and building automation system

Publications (2)

Publication Number Publication Date
CN1640031A CN1640031A (zh) 2005-07-13
CN1640031B true CN1640031B (zh) 2011-01-19

Family

ID=26972397

Family Applications (1)

Application Number Title Priority Date Filing Date
CN038057069A Expired - Lifetime CN1640031B (zh) 2002-01-10 2003-01-10 用于安全性和楼宇自动化系统的可靠、低功率自组织无线网络的协议

Country Status (6)

Country Link
US (2) US7483403B2 (zh)
EP (1) EP1472810A4 (zh)
JP (1) JP4230918B2 (zh)
CN (1) CN1640031B (zh)
AU (1) AU2003214823A1 (zh)
WO (1) WO2003061176A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106793148A (zh) * 2015-11-20 2017-05-31 中兴通讯股份有限公司 随机接入的方法及装置

Families Citing this family (134)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6222525B1 (en) 1992-03-05 2001-04-24 Brad A. Armstrong Image controllers with sheet connected sensors
US8674932B2 (en) 1996-07-05 2014-03-18 Anascape, Ltd. Image controller
US7616961B2 (en) * 2002-04-29 2009-11-10 Harris Corporation Allocating channels in a mobile ad hoc network
US20070077926A1 (en) * 2005-09-30 2007-04-05 Arati Manjeshwar Method and system to reconfigure a network to improve network lifetime using most reliable communication links
US7366113B1 (en) * 2002-12-27 2008-04-29 At & T Corp. Adaptive topology discovery in communication networks
JP4103611B2 (ja) * 2003-02-03 2008-06-18 ソニー株式会社 無線アドホック通信システム、端末、その端末における認証方法、暗号化方法及び端末管理方法並びにそれらの方法を端末に実行させるためのプログラム
US7356561B2 (en) * 2003-05-01 2008-04-08 Lucent Technologies Inc. Adaptive sleeping and awakening protocol for an energy-efficient adhoc network
CA2735833A1 (en) 2003-12-08 2005-06-23 Research In Motion Limited Methods and apparatus for providing a tolerable delay for slotted messages in wireless communication networks
EP2337407A3 (en) * 2003-12-08 2012-04-25 Research In Motion Limited Methods and apparatus for terminating use of quick paging channel based on high capacity power source usage
KR100644799B1 (ko) 2004-03-15 2006-11-13 전자부품연구원 센서 네트워크에서의 저전력 센서 모듈을 위한 운영 시스템 및 방법
US20050216227A1 (en) * 2004-03-23 2005-09-29 Jogesh Warrior Method of operating sensor net and sensor apparatus
KR100744079B1 (ko) * 2004-04-28 2007-08-01 삼성전자주식회사 무선망의 예약 슬롯에서 상태 결정 방법
US8027327B2 (en) 2004-06-25 2011-09-27 Alcatel Lucent Distributed scheduling in wireless networks with service differentiation
US7860495B2 (en) * 2004-08-09 2010-12-28 Siemens Industry Inc. Wireless building control architecture
DE102004039675B4 (de) * 2004-08-16 2006-11-23 Siemens Ag Verfahren zur Inbetriebsetzung von funkbasierten Gefahrenmeldesystemen
US7676195B2 (en) * 2004-09-10 2010-03-09 Nivis, Llc System and method for communicating messages in a mesh network
US7505734B2 (en) * 2004-09-10 2009-03-17 Nivis, Llc System and method for communicating broadcast messages in a mesh network
US7606210B2 (en) * 2004-09-10 2009-10-20 Nivis, Llc System and method for message consolidation in a mesh network
US7554941B2 (en) * 2004-09-10 2009-06-30 Nivis, Llc System and method for a wireless mesh network
US7496059B2 (en) * 2004-12-09 2009-02-24 Itt Manufacturing Enterprises, Inc. Energy-efficient medium access control protocol and system for sensor networks
CN100461731C (zh) * 2004-12-10 2009-02-11 三星电子株式会社 通知业务接收可用性以及确定活动或非活动状态的方法
WO2006069067A2 (en) * 2004-12-20 2006-06-29 Sensicast Systems Method for reporting and accumulating data in a wireless communication network
FI118291B (fi) 2004-12-22 2007-09-14 Timo D Haemaelaeinen Energiatehokas langaton anturiverkko, solmulaitteita sitä varten sekä menetelmä tietoliikenteen järjestämiseksi langattomassa anturiverkossa
US7826376B1 (en) * 2005-01-25 2010-11-02 Symantec Operating Corporation Detection of network problems in a computing system
US7683761B2 (en) 2005-01-26 2010-03-23 Battelle Memorial Institute Method for autonomous establishment and utilization of an active-RF tag network
US7760109B2 (en) * 2005-03-30 2010-07-20 Memsic, Inc. Interactive surveillance network and method
US7894372B2 (en) * 2005-05-31 2011-02-22 Iac Search & Media, Inc. Topology-centric resource management for large scale service clusters
US7495553B2 (en) 2005-07-05 2009-02-24 Robert Bosch Gmbh Method of installing a wireless security system
FR2889385B1 (fr) * 2005-07-28 2008-09-26 Sercel Sa Reseau d'acquisition de donnees sans fils
US8819092B2 (en) 2005-08-16 2014-08-26 Rateze Remote Mgmt. L.L.C. Disaggregated resources and access methods
US8041772B2 (en) * 2005-09-07 2011-10-18 International Business Machines Corporation Autonomic sensor network ecosystem
US7576646B2 (en) * 2005-09-20 2009-08-18 Robert Bosch Gmbh Method and apparatus for adding wireless devices to a security system
US9131371B2 (en) * 2005-09-30 2015-09-08 Alcatel Lucent Method and apparatus for managing a random access communication system
US20070076740A1 (en) * 2005-09-30 2007-04-05 Arati Manjeshwar Method and system to reduce delay and/or energy consumption in a multi-hop wireless system
US9270532B2 (en) 2005-10-06 2016-02-23 Rateze Remote Mgmt. L.L.C. Resource command messages and methods
US7978666B2 (en) * 2005-10-31 2011-07-12 Robert Bosch Gmbh Node control in wireless sensor networks
US20070101403A1 (en) * 2005-11-03 2007-05-03 Intermec Ip Corp. Provisioning a wireless link for a wireless scanner
US20080267181A1 (en) * 2005-11-08 2008-10-30 Nortel Networks Limited Selective Multicasting of Sensor Data for Reliable Delivery
KR20130036332A (ko) * 2005-11-17 2013-04-11 실버 스프링 네트웍스, 인코포레이티드 유틸리티 서비스에 네트워크 프로토콜을 제공하는 방법 및 시스템
CN100438474C (zh) * 2006-01-06 2008-11-26 中国人民解放军理工大学 分簇结构无线传感器网络数据链路层的自适应休眠方法
US8219705B2 (en) * 2006-01-31 2012-07-10 Sigma Designs, Inc. Silent acknowledgement of routing in a mesh network
US10326537B2 (en) 2006-01-31 2019-06-18 Silicon Laboratories Inc. Environmental change condition detection through antenna-based sensing of environmental change
US20150187209A1 (en) 2006-01-31 2015-07-02 Sigma Designs, Inc. Method and system for synchronization and remote control of controlling units
US10277519B2 (en) 2006-01-31 2019-04-30 Silicon Laboratories Inc. Response time for a gateway connecting a lower bandwidth network with a higher speed network
JP2007228430A (ja) * 2006-02-24 2007-09-06 Tops Systems:Kk 暗号化無線セキュリティーシステム
WO2007104008A2 (en) * 2006-03-09 2007-09-13 Spinwave Systems, Inc. Reducing interference in a hierarchical wireless sensor network
JP4887844B2 (ja) * 2006-03-13 2012-02-29 オムロン株式会社 監視システム、その端末装置、主制御装置、端末装置の登録方法およびプログラム
ATE480964T1 (de) * 2006-05-05 2010-09-15 Nxp Bv Authentifikation von einrichtungen in einem drahtlosen netz
US8787840B2 (en) * 2006-05-10 2014-07-22 Robert Bosch Gmbh Method and system employing wideband signals for RF wakeup
CN100373886C (zh) * 2006-05-18 2008-03-05 上海交通大学 基于自适应退避策略的无线传感器网络分布式分簇方法
DE102006024336A1 (de) * 2006-05-24 2007-12-06 Ista Shared Services Gmbh Verfahren zur Installation eines hierarchischen Netzwerkes
US8131838B2 (en) 2006-05-31 2012-03-06 Sap Ag Modular monitor service for smart item monitoring
US8065411B2 (en) * 2006-05-31 2011-11-22 Sap Ag System monitor for networks of nodes
WO2008004099A2 (en) * 2006-06-30 2008-01-10 Nokia Corporation Sleep mode for a wireless relay in ieee 802.16 networks ( ieee project 802.16j)
CN101512935B (zh) * 2006-07-27 2013-10-30 艾利森电话股份有限公司 通过多个发射机进行分层广播发射
CN100452742C (zh) * 2006-07-28 2009-01-14 西安电子科技大学 运动目标探测无线传感器网络多址接入方法
US7889710B2 (en) * 2006-09-29 2011-02-15 Rosemount Inc. Wireless mesh network with locally activated fast active scheduling of wireless messages
FI119712B (fi) 2006-11-07 2009-02-13 Timo D Haemaelaeinen Energiatehokas naapureiden havaitseminen liikkuvissa langattomissa sensoriverkoissa
WO2008069445A1 (en) * 2006-12-08 2008-06-12 Electronics And Telecommunications Research Institute Remote control method of sensor node for low-power and sensor network therefor
EP1956455B1 (de) 2007-02-09 2011-04-06 Siemens Aktiengesellschaft Verfahren zum Einbinden von Netzwerkknoten
TWI450528B (zh) 2007-04-24 2014-08-21 Koninkl Philips Electronics Nv 雙信標無線網路間同步的方法與系統
US7920512B2 (en) * 2007-08-30 2011-04-05 Intermec Ip Corp. Systems, methods, and devices that dynamically establish a sensor network
US7978639B2 (en) * 2007-08-30 2011-07-12 Intermec Ip Corp. Systems, methods and devices for collecting data from wireless sensor nodes
US8527622B2 (en) * 2007-10-12 2013-09-03 Sap Ag Fault tolerance framework for networks of nodes
US8005108B1 (en) * 2007-10-31 2011-08-23 Memsic Transducer Systems Co., Ltd. Fast deployment of modules in adaptive network
US8818397B2 (en) * 2007-11-01 2014-08-26 On Track Technologies Incorporated Intelligent heterogeneous, mobile, Ad-Hoc communication network
US8208391B2 (en) * 2007-11-30 2012-06-26 Motorola Solutions, Inc. Method and apparatus for operating a node within a mobile ad hoc cognitive radio network
KR100932926B1 (ko) * 2007-12-18 2009-12-21 한국전자통신연구원 다중채널 액세스를 제어하는 장치 및 방법
DE102008003573A1 (de) * 2008-01-09 2009-07-16 Endress + Hauser Process Solutions Ag Verfahren zur Integration eines Teilnehmers in ein drahtloses Kommunikations-Netzwerk der Prozessautomatisierung
CN101237471B (zh) * 2008-03-05 2012-07-04 中国科学院嘉兴无线传感网工程中心 传感器网络节点id在系统更新方法
EP2316238A1 (en) * 2008-05-23 2011-05-04 Nokia Siemens Networks OY Re-activation of a base station in standby mode
US10128893B2 (en) 2008-07-09 2018-11-13 Secureall Corporation Method and system for planar, multi-function, multi-power sourced, long battery life radio communication appliance
US10447334B2 (en) 2008-07-09 2019-10-15 Secureall Corporation Methods and systems for comprehensive security-lockdown
US11469789B2 (en) 2008-07-09 2022-10-11 Secureall Corporation Methods and systems for comprehensive security-lockdown
US9414300B2 (en) 2011-11-30 2016-08-09 Secureall Corporation Establishment of wireless communications
WO2010014872A1 (en) * 2008-08-01 2010-02-04 Nivis, Llc Systems and methods for determining link quality
US8026822B2 (en) 2008-09-09 2011-09-27 Dow Agrosciences Llc Networked pest control system
US8457106B2 (en) * 2008-09-30 2013-06-04 Electronics And Telecommunications Research Institute Method for wireless communication in wireless sensor network environment
US9325573B2 (en) * 2008-12-09 2016-04-26 Schneider Electric Buildings Ab Building control system
FR2942670B1 (fr) 2009-02-27 2016-01-08 Somfy Sas Recepteur bi-protocole pour emetteur a energie reduite
TWI469590B (zh) * 2009-04-28 2015-01-11 Fci Inc 副載波不需重排序的ofdm接收器及ofdm信號處理方法
CN101896009B (zh) * 2009-05-18 2013-03-27 中兴通讯股份有限公司 远端射频单元自发现及拓扑结构自建立系统及方法
US8416774B2 (en) * 2009-06-12 2013-04-09 Broadcom Corporation Method and system for energy-efficiency-based packet classification
EP2446671B1 (en) 2009-06-26 2013-12-25 Nokia Solutions and Networks Oy Wake up procedure for a base station in a communications network
GB2466540B (en) * 2009-09-24 2010-11-17 Nokia Corp Multicast service
NL2003736C2 (en) * 2009-10-30 2011-05-03 Ambient Systems B V Communication method for high density wireless networks, terminal, cluster master device, central node, and system therefor.
KR101227001B1 (ko) 2009-12-18 2013-01-28 한국전자통신연구원 노드 식별자 관리 방법 및 시스템
WO2011092612A1 (en) * 2010-01-29 2011-08-04 Koninklijke Philips Electronics N.V. A method for operating a radio node in a sensor network
KR101179126B1 (ko) * 2010-03-31 2012-09-07 전자부품연구원 자기장 통신 방법 및 이에 의해 동작하는 노드
US8396007B2 (en) * 2010-04-16 2013-03-12 Honeywell International Inc. Wireless device deployment with reliable links
WO2011137426A2 (en) * 2010-04-30 2011-11-03 Cornell University Methods and apparatus for event detection, propagation and localization using uwb impulse radios
CN101877827B (zh) * 2010-05-18 2012-12-12 浙江工业大学 面向楼宇监测的无线传感器网络数据收集方法
US9294297B2 (en) 2010-06-24 2016-03-22 Entropic Communications, LLC. Node-based quality-of-service management
JP5438614B2 (ja) * 2010-07-15 2014-03-12 大阪瓦斯株式会社 ネットワークの再構築方法及びネットワークシステム
KR101698354B1 (ko) * 2010-07-16 2017-01-23 삼성전자주식회사 홈 네트워크에서 멀티캐스트 메시지를 이용하여 복수 개의 원격 사용자 인터페이스 서버들을 제어하기 위한 장치 및 방법
DE102010047099A1 (de) * 2010-10-01 2012-04-05 Matthias Dietsch Rauchmelder-Alarmsystem und Verfahren zum Betreiben eines Rauchmelder-Alarmsystems
JP5647938B2 (ja) * 2011-04-20 2015-01-07 パナソニック株式会社 送信端末、受信端末、およびid発番装置
JP5807199B2 (ja) 2011-06-22 2015-11-10 パナソニックIpマネジメント株式会社 通信システム、無線機器、及び、無線機器のプログラム
FR2977419B1 (fr) * 2011-06-28 2013-08-09 Univ Paris Sud 11 Procede pour l'extinction de routeurs dans un reseau de communications et routeur mettant en oeuvre ce procede
US9154312B2 (en) * 2011-07-20 2015-10-06 Qualcomm Incorporated Power save proxy in communication networks
US20130039230A1 (en) * 2011-08-09 2013-02-14 Jaesik Lee Method and Device for Wireless Broadcast Power-up Sequence in Wireless Sensor Network
US10044482B2 (en) 2011-10-31 2018-08-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for transmitting a message to multiple receivers
US9166908B2 (en) * 2011-12-20 2015-10-20 Cisco Technology, Inc. Assisted intelligent routing for minimalistic connected object networks
US20130197955A1 (en) * 2012-01-31 2013-08-01 Fisher-Rosemount Systems, Inc. Apparatus and method for establishing maintenance routes within a process control system
US9036489B2 (en) * 2012-06-22 2015-05-19 Honey International Inc. Access point synchronization in Wi-Fi fire detection systems
US9325792B2 (en) * 2012-11-07 2016-04-26 Microsoft Technology Licensing, Llc Aggregation framework using low-power alert sensor
US9172517B2 (en) * 2013-06-04 2015-10-27 Texas Instruments Incorporated Network power optimization via white lists
TWI543552B (zh) 2013-09-13 2016-07-21 Radiant Opto Electronics Corp Adaptive control method and system
CN103458486B (zh) * 2013-09-13 2016-04-20 清华大学 高能设备辅助节能的无线传感器节点行为调整方法
US9100317B1 (en) * 2013-11-26 2015-08-04 The United States Of America As Represented By The Secretary Of The Navy Self surveying portable sensor nodes
US10637681B2 (en) 2014-03-13 2020-04-28 Silicon Laboratories Inc. Method and system for synchronization and remote control of controlling units
WO2015183677A1 (en) 2014-05-30 2015-12-03 Sikorsky Aircraft Corporation Group scheduled sensor data acquisition in a wireless sensor system
CN105281885B (zh) * 2014-07-25 2021-04-16 中兴通讯股份有限公司 用于网络设备的时间同步方法、装置及时间同步服务器
FR3024783B1 (fr) * 2014-08-11 2017-07-21 Somfy Sas Configuration securisee d'une installation domotique
CN104159164B (zh) * 2014-08-27 2017-06-27 华中师范大学 一种用于降低多视点视频流同步时延的无线协作方法
DE102014014306A1 (de) * 2014-09-25 2016-03-31 Johannes Bleuel Netzknoten, Kommunikationsnetz und Verfahren zum Betreiben eines Netzknotens sowie eines Kommunikationsnetzes
US9619125B2 (en) * 2014-11-24 2017-04-11 Siemens Industry, Inc. Systems and methods for addressably programming a notification safety device
US9443405B2 (en) * 2014-12-29 2016-09-13 Honeywell International Inc. Wireless voice alarm and public announcement system
KR101580816B1 (ko) * 2015-04-22 2016-01-11 국방과학연구소 센서 노드 탐지 시스템, 그것의 센서 노드 탐지 방법
EP3098793A1 (en) * 2015-05-26 2016-11-30 Life Safety Distribution AG Method for configuring a wireless fire detection system
CN105634690A (zh) * 2015-06-24 2016-06-01 东莞市芯谷电子科技有限公司 一种用于增强花样机串口通讯可靠性的方法
US9652963B2 (en) * 2015-07-29 2017-05-16 Dell Products, Lp Provisioning and managing autonomous sensors
US9998994B2 (en) 2015-09-14 2018-06-12 Squadle, Inc. Low power redundant transmission network
WO2017199972A1 (ja) * 2016-05-18 2017-11-23 学校法人 関西大学 位置推定装置
CN107801233B (zh) * 2016-09-01 2020-11-10 珠海市魅族科技有限公司 无线局域网的通信方法、通信装置、接入点和站点
US11067710B2 (en) * 2016-10-31 2021-07-20 Atomic Energy Of Canada Limited / Energie Atomique Du Canada Limitee System and method for indirectly monitoring one or more environmental conditions
US10637673B2 (en) 2016-12-12 2020-04-28 Silicon Laboratories Inc. Energy harvesting nodes in a mesh network
JP6620084B2 (ja) * 2016-12-27 2019-12-11 株式会社日立製作所 自動点検システムおよび自動点検方法
US10271282B2 (en) 2017-04-21 2019-04-23 Telefonaktiebolaget Lm Ericsson (Publ) Detection and operation of wake-up receivers with limited range
US11564386B2 (en) 2017-08-22 2023-01-31 Vm Products, Inc. Methods and systems of pest management
US10841158B1 (en) * 2017-10-31 2020-11-17 Synapse Wireless, Inc. Systems and methods for node maintenance in a network
CN112567883A (zh) 2018-08-24 2021-03-26 昕诺飞控股有限公司 用于应用数据交换的方法和节点设备
CN114207682B (zh) * 2019-07-15 2024-03-19 索尤若驱动有限及两合公司 用于运行作为无线网络中的用户的移动系统和报警网关的方法
US11575751B2 (en) * 2020-12-14 2023-02-07 International Business Machines Corporation Dynamic creation of sensor area networks based on geofenced IoT devices

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5673031A (en) * 1988-08-04 1997-09-30 Norand Corporation Redundant radio frequency network having a roaming terminal communication protocol
US5940771A (en) * 1991-05-13 1999-08-17 Norand Corporation Network supporting roaming, sleeping terminals
US5974236A (en) * 1992-03-25 1999-10-26 Aes Corporation Dynamically reconfigurable communications network and method

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4584643A (en) * 1983-08-31 1986-04-22 International Business Machines Corporation Decentralized synchronization of clocks
US5036518A (en) * 1988-11-02 1991-07-30 Tseung Lawrence C N Guaranteed reliable broadcast network
US5973613A (en) * 1990-06-15 1999-10-26 Raytheon Company Personal messaging system and method
US6374311B1 (en) 1991-10-01 2002-04-16 Intermec Ip Corp. Communication network having a plurality of bridging nodes which transmit a beacon to terminal nodes in power saving state that it has messages awaiting delivery
GB9304638D0 (en) * 1993-03-06 1993-04-21 Ncr Int Inc Wireless data communication system having power saving function
US5553076A (en) 1994-05-02 1996-09-03 Tcsi Corporation Method and apparatus for a wireless local area network
US5790952A (en) 1995-12-04 1998-08-04 Bell Atlantic Network Services, Inc. Beacon system using cellular digital packet data (CDPD) communication for roaming cellular stations
US5952421A (en) 1995-12-27 1999-09-14 Exxon Research And Engineering Co. Synthesis of preceramic polymer-stabilized metal colloids and their conversion to microporous ceramics
US5854994A (en) 1996-08-23 1998-12-29 Csi Technology, Inc. Vibration monitor and transmission system
ES2205106T3 (es) 1996-09-30 2004-05-01 Siemens Aktiengesellschaft Procedimiento para la transmision por radio de datos de medicion de sensores de alarma e instalacion de alarma de peligro por radio.
DE69817435T2 (de) 1997-04-21 2004-03-11 Honeywell International Inc. Installierung und Überwachung von drahtlosen Sicherheitseinrichtungen mit reduzierter Energie
GB9721008D0 (en) * 1997-10-03 1997-12-03 Hewlett Packard Co Power management method foruse in a wireless local area network (LAN)
US6078269A (en) 1997-11-10 2000-06-20 Safenight Technology Inc. Battery-powered, RF-interconnected detector sensor system
US6255942B1 (en) 1998-03-19 2001-07-03 At&T Corp. Wireless communications platform
US6580715B1 (en) * 1998-05-04 2003-06-17 Hewlett-Packard Development Company, L.P. Load balancing switch protocols
US6208247B1 (en) 1998-08-18 2001-03-27 Rockwell Science Center, Llc Wireless integrated sensor network using multiple relayed communications
US6304556B1 (en) * 1998-08-24 2001-10-16 Cornell Research Foundation, Inc. Routing and mobility management protocols for ad-hoc networks
US6292098B1 (en) * 1998-08-31 2001-09-18 Hitachi, Ltd. Surveillance system and network system
DE69914784T2 (de) * 1998-10-06 2004-09-23 General Electric Company Drahtloses hausfeuer - und sicherheitswarnungssystem
GB9827182D0 (en) * 1998-12-10 1999-02-03 Philips Electronics Nv Radio communication system
US6414955B1 (en) * 1999-03-23 2002-07-02 Innovative Technology Licensing, Llc Distributed topology learning method and apparatus for wireless networks
US6459376B2 (en) * 1999-07-29 2002-10-01 Micron Technology, Inc. Radio frequency identification devices, remote communication devices, wireless communication systems, and methods of indicating operation
US6980537B1 (en) * 1999-11-12 2005-12-27 Itt Manufacturing Enterprises, Inc. Method and apparatus for communication network cluster formation and transmission of node link status messages with reduced protocol overhead traffic
US6418526B1 (en) * 1999-11-15 2002-07-09 Ncr Corporation Method and apparatus for synchronizing nodes in massively parallel systems
US6255800B1 (en) 2000-01-03 2001-07-03 Texas Instruments Incorporated Bluetooth enabled mobile device charging cradle and system
US7492248B1 (en) * 2000-01-14 2009-02-17 Symbol Technologies, Inc. Multi-tier wireless communications architecture, applications and methods
US7403980B2 (en) * 2000-11-08 2008-07-22 Sri International Methods and apparatus for scalable, distributed management of virtual private networks
US7035240B1 (en) * 2000-12-27 2006-04-25 Massachusetts Institute Of Technology Method for low-energy adaptive clustering hierarchy
DE10114313C2 (de) 2001-03-23 2003-12-04 Siemens Gebaeudesicherheit Gmb Verfahren zur Funkübertragung in einem Gefahrenmeldesystem
WO2002087172A1 (en) * 2001-04-20 2002-10-31 Motorola, Inc. Protocol and structure for self-organizing network
US7161926B2 (en) * 2001-07-03 2007-01-09 Sensoria Corporation Low-latency multi-hop ad hoc wireless network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5673031A (en) * 1988-08-04 1997-09-30 Norand Corporation Redundant radio frequency network having a roaming terminal communication protocol
US5940771A (en) * 1991-05-13 1999-08-17 Norand Corporation Network supporting roaming, sleeping terminals
US5974236A (en) * 1992-03-25 1999-10-26 Aes Corporation Dynamically reconfigurable communications network and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106793148A (zh) * 2015-11-20 2017-05-31 中兴通讯股份有限公司 随机接入的方法及装置

Also Published As

Publication number Publication date
US20090103456A1 (en) 2009-04-23
WO2003061176A3 (en) 2004-03-25
JP2005515696A (ja) 2005-05-26
US7483403B2 (en) 2009-01-27
EP1472810A4 (en) 2009-11-25
WO2003061176A2 (en) 2003-07-24
AU2003214823A8 (en) 2003-07-30
US20030152041A1 (en) 2003-08-14
JP4230918B2 (ja) 2009-02-25
AU2003214823A1 (en) 2003-07-30
CN1640031A (zh) 2005-07-13
US8194571B2 (en) 2012-06-05
EP1472810A2 (en) 2004-11-03

Similar Documents

Publication Publication Date Title
CN1640031B (zh) 用于安全性和楼宇自动化系统的可靠、低功率自组织无线网络的协议
US8767705B2 (en) Method for synchronization and data transmission in a multi-hop network
JP4230917B2 (ja) 管理及び制御のための階層型無線自己組織ネットワーク
EP1770923B1 (en) Method for initializing a wireless network
Carle et al. Energy-efficient area monitoring for sensor networks
CN101803309B (zh) 在公共事业智能网格网络中进行路由的方法和系统
CN103415018B (zh) 一种无线传感器网络通信资源分配方法
US20060217062A1 (en) Decentralized channel selection in a self-organizing adhoc network
KR20180068848A (ko) 광역 에너지 하비스팅 센서 네트워크 배치를 위한 멀티-홉 네트워킹 프로토콜
Zhang et al. Enabling computational intelligence for green Internet of Things: Data-driven adaptation in LPWA networking
CN102665171A (zh) 基于大规模wsn突发事件监测的路由控制方法
CN102740395A (zh) 一种面向移动传感器网络的自组织路由方法
Wang et al. UAV-assisted cluster head election for a UAV-based wireless sensor network
KR20110056006A (ko) 센서 네트워크 및 이를 위한 클러스터링 방법
Semprebom et al. Skip game: an autonomic approach for QoS and energy management in IEEE 802.15. 4 WSN
Pantziou et al. Mobile sinks for information retrieval from cluster-based WSN islands
Sitanayah Planning the deployment of fault-tolerant wireless sensor networks
Mdemaya et al. A2CDC: Area Coverage, Connectivity and Data Collection in wireless sensor networks
CN113596949B (zh) 一种基于多事件触发下多源路径干扰优化的路由方法
KR20130044044A (ko) 선박 센서네트워크에서 고장 감지를 지원하는 클러스터 기반 라우팅 방법
Katsuma et al. A Decentralized Method for Maximizing k-coverage Lifetime in WSNs
Sangeetha et al. Energy efficient data gathering via mobile element using adaptive clustering
Majham et al. GS-MAC: A Scalable and Energy Efficient MAC Protocol for Greenhouse Monitoring and Control using Wireless Sensor Networks
Mortada Multi-hop routing for cognitive radio sensor network
Lee et al. Secure and Efficient Cluster Head Election in a UAV-Aided Wireless Sensor Network

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20110119