CN1708927A - 用于ofdm通信系统的信道估计 - Google Patents

用于ofdm通信系统的信道估计 Download PDF

Info

Publication number
CN1708927A
CN1708927A CNA2003801023689A CN200380102368A CN1708927A CN 1708927 A CN1708927 A CN 1708927A CN A2003801023689 A CNA2003801023689 A CN A2003801023689A CN 200380102368 A CN200380102368 A CN 200380102368A CN 1708927 A CN1708927 A CN 1708927A
Authority
CN
China
Prior art keywords
subband
group
frequency response
terminal
estimated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2003801023689A
Other languages
English (en)
Other versions
CN1708927B (zh
Inventor
兰加纳坦·克里希南
塔梅尔·卡多斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of CN1708927A publication Critical patent/CN1708927A/zh
Application granted granted Critical
Publication of CN1708927B publication Critical patent/CN1708927B/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • H04L25/023Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0212Channel estimation of impulse response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/022Channel estimation of frequency response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity

Abstract

用于对OFDM系统中的无线信道频率响应进行估计的技术。在一种方法中,第一子带组的无线信道频率响应的初始估计是基于经由所述第一组中的子带接收的导频信号传输而得到的。然后,基于该初始频率响应估计,得到无线信道冲激响应估计。接着,基于该冲激响应估计,得到第二子带组的无线信道频率响应的增强估计。第一和第二组中每一个组可以包括所有可用子带或仅仅这些可用子带的一个子集。可以使用子带复用,使多个终端在它们的关联子带组上同时进行导频信号传输。

Description

用于OFDM通信系统的信道估计
相关申请
本申请涉及2002年10月29日提交的、题目为“Channel EstimationFor OFDM Communication Systems”的美国临时专利申请60/422362和2002年10月29日提交的、题目为“Uplink Pilot And SignalingTransmission In Wireless Communication Systems”的美国临时专利申请60/422368,这两篇专利申请全文并入此处,以作为参考。
发明领域
本发明一般涉及数据通信,尤其涉及对诸如正交频分复用(OFDM)系统这样的、具有多个子带的通信系统中的无线信道响应进行估计的技术。
背景技术
无线通信系统广泛用于提供各种类型的通信,如语音、分组数据等。这些系统是能够通过共享可用系统资源而支持与多个用户通信的多址系统。这些多址系统的例子包括:码分多址(CDMA)系统、时分多址(TDMA)系统和正交频分多址(OFDMA)系统。
OFDM将整个系统带宽有效地分为多(N)个正交子带。这些子带也被称为音(tones)、频率段(frequency bins)以及频率子信道。通过OFDM,每个子带与相应的子载波关联,可以在该子载波上调制数据。因此,每个子带可以被视作可以用于传输数据的独立传输信道。
在无线通信系统中,来自发射机的RF调制信号经由多个传播路径到达接收机。对于OFDM系统,由于不同的衰减和多径效应,这N个子带会经历不同的有效信道,并因此与不同的复信道增益相关联。
为了在可用子带上有效地传输数据,通常需要对发射机和接收机之间的无线信道的响应进行准确的估计。通常通过从发射机发送导频信号和在接收机测量该导频信号来进行信道估计。由于导频信号是由接收机先验得知的符号构成的,所以,可以将信道响应估计为收到的导频符号与用于导频信号传输的每个子带的传输的导频符号的比。
导频信号传输表示OFDM系统中的开销。因此,我们希望将导频信号传输尽可能地最小化。然而,由于无线信道中的噪声和其他人为影响,为了使接收机对信道响应获得相当准确的估计,需要发送足够量的导频信号。此外,由于衰减和多径组成的改变,导致信道随时间而变化,所以,需要重复发射导频信号。因此,OFDM系统的信道估计通常消耗系统资源的很大部分。
在无线通信系统的下行链路中,多个终端可以使用从一个接入点(或一个基站)发射的单个导频信号,以估计从该接入点到各终端的不同下行链路信道的响应。然而,在上行链路中,每个终端需要分别发送一个导频信号传输,以使该接入点估计从该终端到该接入点的上行链路信道。因此,由于上行链路导频信号传输,致使导频信号传输造成的开销激增。
因此,在本领域中,需要对OFDM系统中、尤其是上行链路中的信道响应进行更有效估计的技术。
发明内容
这里提供的技术用于对具有多个子带的通信系统(例如,OFDM系统)中的无线信道频率响应进行估计。应该理解的是,无线信道的冲激响应可以用L个抽头(tap)进行特征化,其中L通常远小于OFDM系统中的总子带数N。因为信道冲激响应只需L个抽头,所以无线信道频率响应位于L(而非N)维子空间中,且可以根据最少L个适当选择的子带(而非所有N个子带)的信道增益来进行充分特征化。此外,即使当多于L个信道增益可用时,上述特性也可用于通过抑制该子空间之外的噪声分量来获得对无线信道频率响应的增强估计,后面将对此进行描述。
在一个实施例中,提供了一种用于对(如,OFDM系统中)无线信道频率响应进行估计的方法。根据该方法,根据经由第一组中的子带接收的导频信号传输,获得对于第一子带组的无线信道频率响应的初始估计。该第一组可以包括可用于数据传输的所有子带或仅仅其一个子集。然后,根据初始频率响应估计和第一组中的子带的第一离散傅立叶变换(DFT)矩阵,获得该无线信道的冲激响应估计。获得的冲激响应估计可以是如下所述的最小平方(1east square)估计。然后,根据该冲激响应估计和第二组中的子带的第二DFT矩阵,获得无线信道频率响应的增强估计。如果该第一组不包括所有可用子带,则第二组包括可用子带的所有或一个子集并且至少包括一个不包括在所述第一组中的其他子带。
本发明的各个方面和实施例将在下面做进一步的详细描述。
附图说明
通过下面结合附图的详细描述,本发明的特征、本质和优点将变得更加显而易见,在所有附图中,相同的标号表示相似或相应的功能和特征,其中:
图1示出了OFDM子带结构;
图2A示出了无线信道频率响应和冲激响应之间的关系;
图2B示出了用于OFDM系统中的总共N个子带的DFT矩阵;
图3A示出了用于OFDM系统中的M个可用子带和总共N个子带的DFT矩阵之间的关系;
图3B示出了根据从M个可用子带上的导频信号传输获得的冲激响应估计得到增强的频率响应估计的推导过程;
图4A示出了所分配的S个子带和总共N个子带的DFT矩阵之间的关系;
图4B示出了根据从所分配的S个子带上的导频信号传输获得的冲激响应估计得到增强的频率响应估计的推导过程;
图5示出了支持子带复用的OFDM子带结构;
图6示出了对无线信道频率响应进行估计的过程;以及
图7示出了接入点和终端的框图。
发明详述
这里描述的信道估计技术可用于任何具有多个子带的通信系统。为清楚起见,针对OFDM系统来描述这些技术。
图1示出了可用于OFDM系统的子带结构100。OFDM系统的整个系统带宽为W MHz,使用OFDM将该带宽分成N个正交子带,每个子带的带宽为W/N MHz。在一个典型的OFDM系统中,总共N个子带中只有M个用于数据传输,其中M<N。这M个可用子带也被称为数据子带。剩余的N-M个子带不用于数据传输,且被用作保护子带(guard subband),以使OFDM系统满足频谱屏蔽(spectralmask)要求。所述M个可用子带包括子带F到F+M-1。
对于OFDM,首先,将每个子带上待传输的数据使用选择用于该子带的特定调制方法进行调制(即符号映射)。对N-M个不用的子带中的每一个子带,将信号值设为0。对于每个符号周期,采用快速傅立叶反变换(IFFT)将这N个符号(即M个调制符号和N-M个0)变换到时域,以获得包括N个时域采样的“变换后”符号。每个变换后符号的持续时间(duration)与每个子带的带宽成倒数关系。例如,如果系统带宽为W=20MHz且N=256,那么每个子带的带宽为78.125KHz(或W/N MHz),每个变换后符号的持续时间为12.8μs(或N/Wμs)。
OFDM可以提供某些优点,如抑止频率选择性衰落的能力,其特征在于整个系统带宽的不同频率上有不同的信道增益。众所周知,频率选择性衰落伴随有符号间干扰(ISI),在ISI现象中,接收信号中每个符号会使该接收信号中的后续符号失真。ISI失真影响正确检测接收符号的能力,所以导致性能降低。通过将变换后的每个符号的一部分进行重复(或向其附加一个循环前缀)以形成一个相应OFDM符号然后将其发送,可以用OFDM方便地抑止频率选择性衰落。
每个OFDM符号的循环前缀的长度(即重复量)取决于系统的延迟扩展(delay spread)。给定发射机的延迟扩展是由该发射机发射的信号在接收机上的最早到达信号时刻和最晚到达信号时刻的差值。该系统的延迟扩展是系统的所有终端预期最坏情况下的延迟扩展。为了有效地抑止ISI,循环前缀应长于系统的延迟扩展。
每个变换后符号的持续时间为N个采样周期,其中每个采样周期的持续时间为(1/W)μs。循环前缀可被定义为包括Cp个采样,其中,Cp是根据该系统的延迟扩展选择的合适整数。具体地讲,Cp被选择为大于或等于用于无线信道的冲激响应的抽头数(L)(即Cp≥L)。在这种情况下,每个OFDM符号将包括N+Cp个采样,且每个符号周期将持续N+Cp个采样周期。
OFDM系统的N个子带会经历不同的信道状况(即由于衰落和多径造成的不同影响),并且与不同的复信道增益相关联。为了在接收机上正确地处理(即解码和解调)数据,通常需要对信道响应进行准确的估计。
OFDM系统中的无线信道可以用时域信道冲激响应 h或相应的频域信道频率响应 H进行特征化。信道频率响应 H是信道冲激响应h的离散傅立叶变换(DFT),其关系可用矩阵形式表示如下:
HWh                         公式(1)
其中, h是OFDM系统中的发射机和接收机之间的无线信道的冲激响应的(N×1)维矢量;
H是该无线信道频率响应的(N×1)维矢量;以及
W是用于对矢量 h执行DFT以获得矢量 H的(N×N)维矩阵。
定义矩阵 W,使第(n,m)项wn,m被表示为
w n , m = 1 N e - j 2 π ( n - 1 ) ( m - 1 ) N , n∈{1...N}且m∈{1...N}             公式(2)
对于信道冲激响应的每个抽头,矢量 h包括一个非0项。因此,如果所述信道冲激响应包括L个抽头,其中L<N,那么,矢量 h最前面的L项将是L个非0值,且(N-L)个后续项为0。然而,即使这L个非0值是在矢量 h的N个项中任意选择的,这里描述的技术同样适用,尽管这种情况在实际系统中不会出现。
图2A以图表的形式示出了信道频率响应 H和信道冲激响应 h之间的关系。矢量 h包括从发射机到接收机的无线信道的冲激响应的N个时域值。可以将矢量 h预乘以DFT矩阵 W,从将该矢量 h变换到频域。矢量 H包括N个子带的复信道增益的N个频域值。
图2B以图表的形式示出了矩阵 W,该矩阵 W是由公式(2)中定义的元素组成的(N×N)维矩阵。
这里提供的技术用于获得对OFDM系统中无线信道频率响应的增强估计。应该理解的是,无线信道的冲激响应的特征在于L个抽头,其中,L通常远小于系统中的总子带数(即L<N)。也就是说,如果通过发射机将脉冲施加到无线信道,那么,L个时域采样(采样速率为W)就足以体现基于该脉冲激励的无线信道的响应。信道冲激响应的抽头的数目L取决于系统的延迟扩展,较长的延迟扩展对应于较大的值L。
由于信道冲激响应只需要L个抽头,所以,信道频率响应 H位于L(而非N)维子空间中。更具体地讲,基于最少L个合适选择的子带(而非所有N个子带)的信道增益就可以对无线信道的频率响应进行完全体现。即使可用信道增益多于L个,通过抑制该子空间之外的噪声分量,就可以获得无线信道频率响应的增强估计,后面将对此进行描述。
OFDM系统的模型可以表示为:
rHo x+ n                      公式(3)
其中, r是具有N个项的“接收”矢量,用于表示在N个子带上接收的符号;
x是具有N个项的“发射”矢量,用于表示在N个子带上发射的符号(未用子带的项为0);
n是在N个子带上接收的加性高斯白噪声(AWGN)项的矢量;以及
“o”表示Hadmard乘积(即点乘,其中, r的第i个元素是 xH的第i个元素的乘积)。
假设噪声 n的均值为0,方差为σ2
这里描述的信道估计技术可以与各种导频信号传输方案结合使用。为了清楚起见,针对两种具体的导频信号传输方案描述这些技术。
在第一种导频信号传输方案中,在M个数据子带的每一个子带上传输导频符号。所传输的导频信号可以用(M×1)维矢量 x d表示,该矢量包括用于M个数据子带中每一个子带的具体导频符号。每个数据子带的导频符号的发射功率可表示为Pk=xk 2,其中,xk是在第k个子带上传输的导频符号。
接收矢量 r d可用于表示所接收的导频信号,这与公式(1)中所示类似。更具体地讲, r dH do x d+ n d,其中, r dH dx dn d都是(M×1)维矢量,这四个(M×1)维矢量分别只包括(N×1)维矢量 rHxn中的M项。这M项对应于所述M个数据子带。
无线信道频率响应的初始估计 可以表示为:
Figure A20038010236800151
公式(4)
其中, 是初始信道频率响应估计的(M×1)维矢量,并且a d/ b d=[a1/b1 a2/b2...aM/bM]T,其包括这M个数据子带的M个比值。
如公式(4)所示,接收机可以根据这M个数据子带中每一个子带所接收和所发射的导频符号来确定初始估计 初始估计
Figure A20038010236800154
表示这M个数据子带的无线信道频率响应。
从公式(4)可以看出,噪声分量 n d/ x d造成初始估计 的失真。通过观察到信道频率响应 H d是信道冲激响应 h d的离散傅立叶变换以及 h d具有L个抽头,其中L通常小于M(即L<M),则可以获得增强的估计。
可以根据下述优化,得到无线信道冲激响应的最小平方估计
Figure A20038010236800157
公式(5)
其中, h j是(L×1)维矢量,表示假定的信道冲激响应,
Figure A20038010236800158
是(N×N)维矩阵 W的(M×L)维子矩阵,以及
Figure A20038010236800159
是(L×1)维矢量,表示最小平方信道冲激响应估计。
图3A以图表的形式示出了矩阵
Figure A200380102368001510
W的关系。矩阵 的M行是矩阵 W的M行,对应于M个数据子带。矩阵 的L列是矩阵 W最前面的L列。
公式(5)中的最佳化针对所有可能的信道冲激响应 h j。最小平方冲激响应估计 等于假定的冲激响应 h j,其导致初始频率响应估计 和与 h j对应的频率响应之间的最小误差,该最小误差表示为
Figure A200380102368001515
公式(5)的结果可表示为:
Figure A200380102368001516
公式(6)
如公式(6)所示,可以基于初始频率响应估计 得到最小平方冲激响应估计 其中初始频率响应估计
Figure A200380102368001519
是基于在M个数据子带上接收的导频信号获得的。具体地讲,可以通过对初始估计 执行“最小平方操作”(即,预乘以 来获得估计
Figure A20038010236800163
矢量 包括L项,表示信道冲激响应的L个抽头,其中L<M。
然后,可以根据最小平方信道冲激响应估计 得到无线信道频率响应的增强估计
Figure A20038010236800166
如下所示:
Figure A20038010236800167
公式(7)
其中,
Figure A20038010236800168
是增强的信道频率响应估计的(M×1)维矢量。公式(7)表示,可以根据最小平方信道冲激响应估计 对所有M个子带得到增强的信道频率响应估计
Figure A200380102368001610
该最小平方信道冲激响应估计
Figure A200380102368001611
只包括L项,其中L<M。
图3B以图表的形式示出了增强信道频率响应估计 与最小平方信道冲激响应估计 之间的关系。矢量 包括最小平方信道冲激响应估计的L个时域值。通过将矢量 预先乘以矩阵
Figure A200380102368001616
可以将该矢量 变换到频域。所得的矢量 包括M个数据子带的复增益的M个频域值。
为清楚起见,使用三个步骤描述上述信道估计技术:
1、获得初始信道频率响应估计
Figure A200380102368001619
2、基于初始信道频率响应估计
Figure A200380102368001620
得到最小平方信道冲激响应估计 以及
3、基于信道冲激响应估计 得到增强信道频率响应估计
Figure A200380102368001623
也可以这样执行信道估计:隐式(而非显式)执行一个步骤。具体地讲,可以直接从初始信道频率响应估计 得到增强信道频率响应估计
Figure A200380102368001625
如下所示:
Figure A200380102368001626
公式(8)
在公式(8)中,隐式执行第二步骤,使得增强信道频率响应估计
Figure A200380102368001627
基于信道冲激响应估计
Figure A200380102368001628
而得到,信道冲激响应估计
Figure A200380102368001629
基于初始信道频率响应估计 而隐式得到。
增强信道频率响应估计 中的均方误差(MSE)可以表示为:
Figure A20038010236800173
= σ 2 P d trace [ W ‾ ~ ( W ‾ ~ H W ‾ ~ ) - 1 W ‾ ~ H ]
= σ 2 L P d 公式(9)
其中Pd是用于M个数据子带的每一个子带中的导频符号的发射功率。
可以看出,公式(9)中的MSE是在最小平方操作后的噪声协方差矩阵(即
Figure A20038010236800176
的协方差矩阵)的迹。
在第二种导频信号传输方案中,在S个指定子带的每一个子带上传输导频符号,其中S<N且S≥L。典型情况下,指定子带的数目小于数据子带的数目(即S<M)。在这种情况中,其他的(M-S)个数据子带可用于其他传输。例如,在下行链路中,其他的(M-S)个数据子带可用于传输业务数据和/或开销数据。在上行链路中,M个数据子带可以被分为具有S个子带的不相交组,并且每个组随后可以被分配给不同的终端用于导频信号传输。这种子带复用可用于提高系统效率,其中,多个终端在不相交子带组上同时发射信号。为清楚起见,下面针对子带复用描述信道估计,其中,每个指定的终端只在分配给它的S个子带上发送导频信号。
每个终端发送的导频信号可以用(S×1)维矢量 x i表示,其包括用于分配给该终端的S个子带中每一个子带的一个具体导频符号。所分配的每一个子带的导频符号的发射功率可以表示为 P i , k = x i , k 2 , 其中xi,k是终端i在第k个子带上发射的导频符号。
对于终端i,无线信道频率响应的初始估计 可以表示为:
Figure A20038010236800179
公式(10)
其中 r iH ix in i分别是只包括(N×1)维矢量 rHxn的S项的(S×1)维矢量,这S项对应于分配给终端i的S个子带;以及
Figure A20038010236800181
是终端i的初始信道频率响应估计的(S×1)维矢量。
终端i的接入点可以根据分配给该终端的S个子带的每一个子带上接收和发射的导频符号,确定初始估计 初始估计
Figure A20038010236800183
表示分配给终端i的S个子带的无线信道频率响应。噪声分量 n i/ x i对初始估计也产生失真。对于终端i可以如下方式来获得增强信道估计。
对于终端i,可以根据下述最优化获得无线信道冲激响应的最小平方估计
Figure A20038010236800185
公式(11)
其中 h j是假定信道冲激响应的(L×1)维矢量;
Figure A20038010236800187
是(N×N)维DFT  W的(S×L)维子矩阵;以及是终端i的最小平方信道冲激响应估计的(L×1)维矢量。
图4A以图表的形式示出了矩阵 W之间的关系。矩阵 的S行是与分配给终端i的S个子带相对应的矩阵 W的S行(以非阴影行示出)。矩阵 的L列是矩阵 W的最前面的L列。由于为每个终端分配了不同的子带组用于上行链路导频信号传输,所以,对于不同的终端,矩阵
Figure A200380102368001812
也不同。
公式(11)中的最优化也是针对所有可能的信道冲激响应 h j。终端i的最小平方信道冲激响应估计
Figure A200380102368001813
等于假定的冲激响应 h j,其导致初始频率响应估计
Figure A200380102368001814
和与 h j对应的频率响应之间的最小误差,该最小误差用 表示。
公式(11)的结果可表示为:
Figure A200380102368001816
公式(12)
如公式(12)所示,可以根据初始信道频率响应估计 得到终端i的最小平方信道冲激响应估计
Figure A200380102368001818
初始信道频率响应估计是根据在分配给终端i的仅S个子带上接收的上行链路导频信号而得到的。具体地讲,可以通过对初始估计 执行“最小平方操作”(即,预乘以
Figure A20038010236800191
来获得估计
Figure A20038010236800192
矢量 包括信道冲激响应的L个抽头的L项,其中L≤S。
然后,可以根据最小平方信道冲激响应估计 得到终端i的无线信道频率响应的增强估计
Figure A20038010236800195
如下所示:
公式(13)
其中,
Figure A20038010236800197
是终端i的增强信道频率响应估计的(M×1)维矢量。
公式(13)表示,可以基于最小平方信道冲激响应估计
Figure A20038010236800198
得到终端i所有M个数据子带的增强信道频率响应估计 该最小平方信道冲激响应估计 只包括L项,其中,通常L≤S<M<N。通过上述计算,可以有效地插入未分配给终端i的(M-S)个子带的频率响立。
图4B以图表的形式示出了增强信道频率响应估计
Figure A200380102368001911
与终端i的最小平方信道冲激响应估计 之间的关系。矢量 包括终端i的最小平方信道冲激响应估计的L个时域值。通过将矢量 与DFT矩阵
Figure A200380102368001915
预乘,可以将矢量
Figure A200380102368001916
变换到频域,矢量 包括用于终端i的M个数据子带的复增益的M个频域值。
增强信道频率响应估计 可以直接根据初始信道频率响应估计
Figure A200380102368001919
得到,如下所示:
公式(14)
公式(14)组合了公式(12)和(13),并且可以隐式执行最小平方信道冲激响应估计 的推导。
增强估计
Figure A200380102368001922
的质量取决于各种因素,其中之一是所有N个子带的全部还是只有其一个子集用于数据传输。下面将分别分析这两种情况中的每一种情况。
如果所有N个子带都用于数据传输(即,M=N),那么,终端i的增强信道频率响应估计
Figure A200380102368001923
的均方误差(MSE)可以表示为:
MSE = σ 2 P i trace [ W ‾ ( W ‾ ‾ i H W ‾ ‾ i ) - 1 W ‾ H ]
= σ 2 P i Σ q = 1 L 1 λ q 公式(15)
其中,Pi是在分配给终端i的S个子带中每一个子带的导频符号使用的发射功率,并且,
对于q={1...L},λq的特征值。
可以看出,公式(15)中的MSE是在最小平方操作后的噪声协方差矩阵(即
Figure A20038010236800203
协方差矩阵)的迹。也可以看出,当λq对于q={1...L}都相等时,公式(15)中的MSE最小。如果最小平方操作没有歪曲噪声矢量 n i,则会出现这种情况。
达到增强估计
Figure A20038010236800204
的最小均方误差(MMSE)的充分条件是使 W ‾ ‾ i H W ‾ ‾ i = I ‾ , 其中I是单位矩阵。如果(1)每个组中的子带数目是S=2r≥L,其中r是整数,使得S是2的幂,以及(2)每个组中的S个子带是均匀(即相等)间距,那么,就满足该条件。对于这样的子带分组和间距, 是基数N/S的DFT矩阵,并且因此 W ‾ ‾ i H W ‾ ‾ i = I ‾ . 对于这样的子带分组和间距,可以从公式(15)中得到终端i的增强信道频率响应估计 的MMSE,其表示为:
MMSE = σ 2 P i ( NL S ) 公式(16)
可以看出,如果使用相同的总功率量用于导频信号发射,则增强估计 的MSE与信道估计 的MSE相同,其中,
Figure A200380102368002012
是基于在仅S个所分配子带上传输的导频信号而获得的, 是基于在所有N个子带上传输的导频信号而获得的。这可以通过增加分配给终端i的S个子带的每一个子带的发射功率来实现,如下所示:
P i = ( N S ) P n 公式(17)
其中Pn是这N个子带的“平均”发射功率。
OFDM系统可以工作于每MHz的功率约束为P dBm/MHz的频带中。在这种情况中,每个终端的总发射功率Ptotal被限制为P·W dBm(即,存在总功率约束Ptotal≤P·W dBm)。如果S个子带中的连续子带之间的间距小于1MHz,那么平均发射功率可以用Pn=Ptotal/N给出,发射功率/子带为Pi=Ptotal/S。如果S个子带中连续子带之间的间距大于1MHz,那么,平均功率约束将总发射功率Ptotal限制为小于P·W dBm,即Ptotal<P·W,从而导致信道估计的质量降低(即,信道估计中的MSE升高)。
根据上述分析,如果满足下述条件,那么,根据仅S个子带上传输的导频信号而获得的信道估计
Figure A20038010236800211
的MSE与根据所有N个子带上传输的导频信号而获得的信道估计的MSE是相同的:
1、选择S≥Cp且S≥W;
2、每个组中的S个子带均匀分布于总共N个子带中;以及
3、对任何给定组中S个子带中每一个子带,将发射功率设置高出N/S倍。
如上所述,Cp表示附加到每个变换后符号以形成相应OFDM符号的循环前缀的长度,选择Cp使得Cp≥L。
当满足上述条件时,只要S≥Cp,就可以得到增强估计
Figure A20038010236800212
的MMSE。为了容纳最大数目的终端,可以定义这些组,使得在每组只包括L个子带,从而可以形成最大数目的组。
如果总共N个子带中的只有一个子集用于数据传输(即M<N),在这种情况下,一些子带被用作保护子带,那么,只有在S=M时,才能得到MMSE。如果S<M,那么,最小平方操作后的噪声协方差矩阵被歪曲,不能得到增强估计
Figure A20038010236800213
的MMSE。被歪曲的噪声变量矩阵导致 的特征值不相等,所以,特征值扩展 χ = λ q , max λ q , min 大于1。当S=Cp时,该扩展χ最大(且因此MSE大),如果S≈1.1Cp,则χ接近于1,这使得MSE接近于公式(16)中的MMSE。因此,对于M<N的情形,如果满足以下条件,那么,增强估计
Figure A20038010236800216
的MSE被最小化。
1、选择S≈1.1Cp且S>W;
2、将每个组中的S个子带均匀分布于这M个数据子带中;以及
3、对任何给定组中的S个子带中每一个子带,将发射功率设置为高出N/S倍。
图5示出了支持子带复用的OFDM子带结构500的一个实施例。在本实施例中,M个可用子带初始时被分为S个不相交的集合,每个集合包括Q个连续子带,其中Q·S≤M。每个集合中的Q个子带被分配给Q个组,使得每个集合中的第i个子带被分配给第i个组。于是,每个组中的S个子带均匀地分布于这M个可用子带,使得该组中的连续子带被Q个子带分开。也可用其他方式,将这M个可用子带分配给这Q个组,这同样落入本发明的保护范围。
可以将这Q个子带组分配给最多Q个终端用于上行链路导频信号传输。然后,每个终端只在分配给它的S个子带上发射导频信号。利用子带复用,最多Q个终端可以同时在最多M个可用子带上通过上行链路发射导频信号,这可以大大减少上行链路导频信号传输所需的开销量。
为了使接入点获得高质量的信道估计,每个终端将发射功率/子带提高Q倍,这样,用于在所分配的S个子带上发射导频信号的总能量与M个数据子带全部用于导频信号发射的总能量相同。相同的导频信号总能量使接入点可以根据这M个子带的一个子集上传输的导频信号,估计所有M个可用子带的信道响应,而质量损耗却很小或没有,前面已经对此做了描述。
如果多个终端使用子带复用同时进行导频信号发射,那么,在所有终端都以全功率发射信号的情况下,则附近终端发出的信号可能对远处终端发出的信号产生很大的干扰。具体地讲,可以看出,终端之间的频率偏移会产生子带间干扰。这种干扰可能引起从上行链路导频信号得到的信道估计的降级和/或增加上行链路数据传输的误码率。为了降低子带间干扰的影响,可以对终端进行功率控制,从而使附近终端不会对远处终端产生过大的干扰。
通过研究来自附近终端的干扰的影响,已经发现,应用功率控制可以粗略地降低子带间干扰。具体地讲,已经发现,对于一个20MHz信道中总共有256个子带且Q=12的示例性系统的情况,如果终端之间的最大频率偏移是300Hz或更小,那么,通过将附近终端的接收信噪比(SNR)限制在40dB或更小,其他终端的SNR的损失为1dB或更小。如果终端之间的频率偏移是1000Hz或更小,那么,附近终端的信躁比(SNR)应该被限制在27dB,以保证其他终端的SNR的损失为1dB或更小。如果用于实现OFDM系统支持的最高速率所需的SNR小于27dB(40dB),那么,将每个终端的SNR限制在27dB或更小(或40dB或更小),不会对附近终端的最大支持速率产生任何影响。
可以利用慢功率控制环路(slow power control loop)实现如上所述的粗功率控制(coarse power control)要求。例如,当需要调节附近终端的上行链路功率时(如,当功率电平由于这些终端的移动而变化时),可以发送控制消息。当访问该系统时,作为呼叫建立过程的一部分,每个终端获知用于上行链路的初始发射功率电平。
也可以将这些子带组以减小子带间干扰影响的方式分配给终端。具体地讲,为具有高接收SNR的终端分配彼此靠近的子带。为具有低SNR的终端分配同样彼此靠近的子带,但这些子带却远离那些被分配给具有高接收SNR的终端的子带。
从上述的子带分组和子带间距均匀化可以获得某些益处。但是,也可以使用其他的信道分组和间距方案,并且这落入本发明的保护范围内。通常情况下,这些组包括的子带数目可以相同或不同,并且每个组中的子带可以均匀或不均匀地分布在这M个可用子带上。
图6是用于估计无线信道频率响应的过程600的一个实施例的流程图。过程600根据在所分配的S个子带上接收的导频信号传输,为所有M个数据子带提供增强信道频率响应估计,其中S≤M。多个终端中每个终端的接入点可以基于上行链路导频信号传输,执行该过程,其中S通常小于M(即S<M)。该过程也可以由一个终端基于下行链路导频信号传输而执行,其中S可以小于或等于M(即S≤M)。
首先,基于在S个子带上接收的导频信号,获得这S个子带的无线信道频率响应的初始估计 如公式(10)所示(步骤612)。然后,形成DFT矩阵 该矩阵 包括矩阵 W的最前面的L列和与用于导频信号传输的S个子带相对应的矩阵 W的S行(步骤614)。
然后,基于初始信道频率响应估计
Figure A20038010236800244
和矩阵 得到无线信道冲激响应的最小平方估计
Figure A20038010236800246
如公式(12)所示(步骤616)。接着,形成DFT矩阵 该矩阵
Figure A20038010236800248
包括矩阵 W的最前面的L列和与M个数据子带相对应的矩阵 W的M行(步骤618)。通常,矩阵 可以包括期望该频率响应的任何一个子带组的行的任意组合。
基于最小平方信道冲激响应估计
Figure A200380102368002410
和矩阵 得到无线信道频率响应的增强估计
Figure A200380102368002412
如公式(13)所示(步骤620)。矢量 包括矩阵
Figure A200380102368002414
所覆盖的所有子带的复增益。可以将步骤616和620的推导结合起来,如上所述且如公式(14)所示。
图7是能够执行这里描述的信道估计的接入点700和终端750的
实施例的框图。
在下行链路中,在接入点700,将业务数据提供给TX数据处理器710,数据处理器710对该业务数据进行格式化、编码以及交织,从而提供编码数据。然后,OFDM调制器720接收并处理该编码数据和导频符号,以提供OFDM符号流。OFDM调制器720执行的处理包括:(1)对编码数据进行符号映射以形成调制符号;(2)将导频符号和调制符号进行复用;(3)对调制符号和导频符号进行变换,以得到变换后的符号;以及(4)将循环前缀附加到每个变换后的符号中,以形成相应的OFDM符号。对于下行链路,例如可以利用时分复用(TDM),用导频符号复用调制符号。对于TDM,导频和调制符号是在不同的时隙上被发射的。可以在所有M个可用子带或这些子带的一个子集上发射所述导频符号。
然后,发射机单元(TMTR)722接收OFDM符号流并将其转换为一个或多个模拟信号,并且对该模拟信号做进一步的修整(例如,放大、滤波和上变频),以产生一个适于在无线信道上传输的下行调制信号。然后,经由天线724将该调制信号发送到终端。
在终端750,通过天线752接收该下行链路调制信号,并将其提供给接收机单元(RCVR)754。接收机单元754修整(例如,滤波、放大和下变频)所接收的信号,并将修整的信号进行数字化,以提供采样。然后,OFDM解调器756去除附加在每个OFDM符号中的循环前缀,使用FFT对每个恢复的变换符号进行变换,且对恢复的调制符号进行解调,以提供解调数据。然后,RX数据处理器758对该解调数据进行解码,以恢复出所发送的业务数据。OFDM解调器756和RX数据处理器758执行的处理分别与OFDM调制器720和TX数据处理器710在接入点700执行的处理相反。
OFDM解调器756还可以确定初始信道频率响应估计 或提供可用于获得
Figure A20038010236800252
的接收导频符号。控制器770接收 (或等效信息),基于 确定最小平方信道冲激响应估计
Figure A20038010236800255
并且还基于
Figure A20038010236800256
获得增强信道频率响应估计
Figure A20038010236800257
此后,增强估计 可用于上行链路数据传输。
在上行链路中,TX数据处理器782处理业务数据,并将其提供给OFDM调制器784,该调制器784也接收导频符号。然后,该OFDM调制器784对编码数据和导频符号进行处理,这与对OFDM调制器720的描述是类似的。对于上行链路,可以利用TDM将调制符号与导频符号进行复用。此外,在指定用于导频信号传输的时隙内,在分配给终端750的仅S个子带上发送导频符号。
然后,发射机单元786接收并处理OFDM符号流,以产生适于在无线信道上传输的上行链路调制信号。然后,经由天线752,将该调制信号发送到接入点。
在接入点700,接收机单元742对该上行链路调制信号进行处理,以提供采样。然后,OFDM解调器744对这些采样进行处理,以提供解调数据,该解调数据进一步被RX数据处理器746处理,以恢复出所发送的业务数据。OFDM解调器744还可以确定每个指定终端的初始信道频率响应估计
Figure A20038010236800261
或提供用于获得
Figure A20038010236800262
的接收导频符号。控制器730接收 (或等效信息),基于
Figure A20038010236800264
确定指定的活动终端的最小平方信道冲激响应 并且进一步基于
Figure A20038010236800266
获得增强信道频率响应估计 此后,增强估计 可用于向终端的下行链路数据传输。
控制器730和770分别指引接入点和终端处的操作。存储器单元732和772分别存储控制器730和770使用的程序编码和数据。
这里描述的信道估计技术可以利用各种装置来实现。例如,这些技术可以以硬件、软件或其组合的方式来实现。对于硬件实现的情况,用于实现这些技术中任意之一或组合的元件可以实现于一个或多个专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理器件(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、处理器、控制器、微控制器、微处理器、用于执行上述功能的其他电子单元或其组合。
对于软件实现的情况,这些信道估计技术可以实现为执行上述功能的模块(如过程、函数等)。所述软件代码可以存储在存储器单元(如图7的存储器单元732或772)中,并由处理器(如控制器730或770)执行。存储器单元可实现在处理器中,也可实现在处理器之外,这种情况下,它可以经由本领域公知的各种方式耦接到该处理器。
前面对公开的实施例进行了描述,以使本领域技术人员能够制造或使用本发明。本领域技术人员应当明白,在不脱离本发明的精神或保护范围的前提下,对这些实施例的各种修改都是显而易见的,这里描述的原理同样适用于其他实施例。因此,本发明不限于这里给出的实施例,而是与这里披露的原理和特征的最宽保护范围相一致。

Claims (27)

1、一种用于估计无线信道频率响应的方法,包括:
获得第一子带组的无线信道频率响应的初始估计;以及
基于该初始频率响应估计,得到第二子带组的无线信道频率响应的增强估计,其中,该增强频率响应估计是基于该无线信道冲激响应估计而得到的,该无线信道冲激响应估计是基于该初始频率响应估计而隐式或显式得到的。
2、如权利要求1所述的方法,其中,所述第二组包括所述第一组中的子带。
3、如权利要求2所述的方法,其中,所述第二组还包括至少一个不在所述第一组中的其他子带。
4、如权利要求1所述的方法,其中,所述初始信道频率响应估计是基于经由所述第一组中的子带接收的导频信号传输而得到的。
5、如权利要求4所述的方法,其中,所述初始频率响应估计是基于所接收的导频符号与所发射的导频符号的比值而得到的。
6、如权利要求1所述的方法,其中,所述冲激响应估计是基于最小平方估计而得到的。
7、如权利要求1所述的方法,还包括:
为所述第一组中的子带形成第一离散傅立叶变换(DFT)矩阵,并且,其中所述冲激响应估计也是基于该第一DFT矩阵而隐式或显式得到的。
8、如权利要求7所述的方法,还包括:
为所述第二组中的子带形成第二DFT矩阵,并且,其中所述增强频率响应估计也是基于该第二DFT矩阵而得到的。
9、如权利要求1所述的方法,其中,所述第一子带组是可用于数据传输的所有子带的一个子集。
10、如权利要求9所述的方法,其中,所述第一组中的子带均匀地分布于所述可用子带中。
11、如权利要求1所述的方法,其中,调节所述第一组中的子带的发射功率,以使总发射功率维持在最大可允许发射功率电平。
12、如权利要求11所述的方法,其中,将所述第一组中每个子带的发射功率相对于通过将所述最大允许发射功率均匀地分配给所有M个子带而获得的平均功率电平,以比率M/S增加,其中M是可用于数据传输的子带的数目,S是所述第一组中的子带的数目。
13、如权利要求1所述的方法,其中,所述第一组包括可用于数据传输的所有子带。
14、如权利要求1所述的方法,其中,所述第二组包括可用于数据传输的所有子带。
15、如权利要求1所述的方法,其中,所述第一组包括S个子带,并且,所述无线信道冲激响应估计包括L个抽头,其中S大于或等于L。
16、如权利要求15所述的方法,其中,S约等于1.1*L。
17、如权利要求1所述的方法,其中,所述第一和第二组中的子带是通过正交频分复用(OFDM)提供的正交子带。
18、一种用于对正交频分复用(OFDM)通信系统中的无线信道频率响应进行估计的方法,包括:
基于经由第一组中的子带接收的导频信号传输,获得第一子带组的无线信道频率响应初始估计,其中,所述第一子带组是可用于数据传输的所有子带的一个子集;以及
基于该初始频率响应估计,得到所述可用子带的无线信道频率响应的增强估计,其中,该增强频率响应估计是基于所述无线信道的冲激响应估计而得到的,该冲激响应估计是基于该初始频率响应估计而隐式或显式得到的,并且,该增强频率响应估计进一步是基于所述第一组中的子带的第一离散傅立叶变换(DFT)矩阵和所述可用子带的第二DFT矩阵而得到的。
19、一种用于对无线通信系统中的多个终端中每个终端的无线信道频率响应进行估计的方法,包括:
获得所述多个终端中每个终端的无线信道频率响应的初始估计,其中,所述多个终端中每个终端各自与多个不相交子带组中的一个相应组相关联,并且,基于经由在该关联组中的子带接收的导频信号传输,为该关联子带组获得每个终端的初始频率响应估计;以及
基于所述终端的初始频率响应估计,为所述多个终端中的每个终端获得无线信道频率响应的增强估计,其中,每个终端的所述增强频率响应估计覆盖一个特定的子带集合并且是基于该终端的所述无线信道冲激响应估计而得到的,该无线信道冲激响应估计是基于所述终端的初始频率响应估计而隐式或显式得到的。
20、如权利要求19所述的方法,其中,从多个可用子带形成所述多个不相交子带组,并且,所述多个不相交组中每个组中的子带均匀分布于所述多个可用子带中。
21、一种用于对无线信道频率响应进行估计的装置,包括:
用于获得第一子带组的无线信道频率响应的初始估计的装置;以及
用于基于所述冲激响应估计得到第二子带组的无线信道频率响应的增强估计的装置,其中,所述增强频率响应估计是基于所述无线信道冲激响应估计而得到的,所述无线信道冲激响应估计是基于所述初始频率响应估计而隐式或显式得到的。
22、如权利要求21所述的装置,其中,所述第二组包括所述第一组中的子带和至少一个不在所述第一组中的其他子带。
23、如权利要求21所述的装置,其中,所述冲激响应估计也是基于所述第一组中子带的第一离散傅立叶变换(DFT)矩阵而得到的,并且,所述增强频率响应估计也是基于所述第二组中的子带的第二DFT矩阵而得到的。
24、一种无线通信系统中的接入点,包括:
解调器,用于接收从一个或多个终端发射的导频信号,其中,从多个可用子带形成多个不相交子带组,并且,所述一个或多个终端中的每一个终端在一个特定子带组上发射导频信号,该特定子带组选自所述多个不相交子带组且被分配给该终端;以及
控制器,用于为所述一个或多个终端中的每一个终端获得上行链路信道频率响应的初始估计,其中,每个终端的初始频率响应估计覆盖分配给该终端的所述子带组,并且,该初始频率响应估计是基于从该终端接收的导频信号传输而得到的,以及
基于所述终端的初始频率响应估计,得到所述一个或多个终端中每一个终端的上行链路信道频率响应的增强估计,其中,每个终端的增强频率响应估计是基于该终端的无线信道冲激响应估计而得到的,该无线信道冲激响应估计是基于该终端的初始频率响应估计而隐式或显式得到的。
25、如权利要求24所述的接入点,其中,所述多个不相交组中每一个组中的子带均匀分布于所述多个可用子带中。
26、一种无线通信系统中的终端,包括:
解调器,用于接收第一子带组上传输的导频信号;以及控制器,用于:
基于经由该第一组中的子带接收的导频信号传输,获得该第一子带组的下行链路信道频率响应的初始估计,以及
基于所述初始频率响应估计,得到第二子带组的下行链路信道频率响应的增强估计,其中,所述增强频率响应估计是基于该无线信道冲激响应估计而得到的,该无线信道冲激响应估计是基于该初始频率响应估计而隐式或显式得到的。
27、如权利要求26所述的终端,其中,所述第二组包括所述第一组中的子带和至少一个不在所述第一组中的其他子带。
CN2003801023689A 2002-10-29 2003-10-29 用于ofdm通信系统的信道估计的方法和装置 Expired - Lifetime CN1708927B (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US42236202P 2002-10-29 2002-10-29
US42236802P 2002-10-29 2002-10-29
US60/422,362 2002-10-29
US60/422,368 2002-10-29
US10/340,130 2003-01-10
US10/340,130 US7039001B2 (en) 2002-10-29 2003-01-10 Channel estimation for OFDM communication systems
PCT/US2003/034506 WO2004040813A1 (en) 2002-10-29 2003-10-29 Channel estimation for ofdm communication systems

Publications (2)

Publication Number Publication Date
CN1708927A true CN1708927A (zh) 2005-12-14
CN1708927B CN1708927B (zh) 2013-07-10

Family

ID=32234144

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2003801023689A Expired - Lifetime CN1708927B (zh) 2002-10-29 2003-10-29 用于ofdm通信系统的信道估计的方法和装置

Country Status (11)

Country Link
US (2) US7039001B2 (zh)
EP (1) EP1563622A4 (zh)
JP (2) JP2006505229A (zh)
KR (1) KR100982148B1 (zh)
CN (1) CN1708927B (zh)
BR (1) BR0315773A (zh)
CA (1) CA2501465A1 (zh)
IL (1) IL167571A0 (zh)
MX (1) MXPA05004520A (zh)
TW (1) TW200417166A (zh)
WO (1) WO2004040813A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2443009A (en) * 2006-10-17 2008-04-23 Siconnect Ltd Optimising data communications in a power line communiation system
CN103716262A (zh) * 2012-10-09 2014-04-09 王晓安 基于时域参数提取的信道估计方法
CN106797288A (zh) * 2014-04-01 2017-05-31 高通股份有限公司 用于毫米波无线通信的将ofdm和基于循环前缀的单载波合并的混合波形设计

Families Citing this family (115)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003332943A (ja) * 2002-05-10 2003-11-21 Ntt Docomo Inc チャネル推定を行う無線通信局および無線通信方法
US6873606B2 (en) * 2002-10-16 2005-03-29 Qualcomm, Incorporated Rate adaptive transmission scheme for MIMO systems
US7042857B2 (en) 2002-10-29 2006-05-09 Qualcom, Incorporated Uplink pilot and signaling transmission in wireless communication systems
US7039001B2 (en) * 2002-10-29 2006-05-02 Qualcomm, Incorporated Channel estimation for OFDM communication systems
US6928062B2 (en) * 2002-10-29 2005-08-09 Qualcomm, Incorporated Uplink pilot and signaling transmission in wireless communication systems
JP4197482B2 (ja) * 2002-11-13 2008-12-17 パナソニック株式会社 基地局の送信方法、基地局の送信装置及び通信端末
US7236535B2 (en) * 2002-11-19 2007-06-26 Qualcomm Incorporated Reduced complexity channel estimation for wireless communication systems
US7280625B2 (en) * 2002-12-11 2007-10-09 Qualcomm Incorporated Derivation of eigenvectors for spatial processing in MIMO communication systems
US7738437B2 (en) * 2003-01-21 2010-06-15 Nortel Networks Limited Physical layer structures and initial access schemes in an unsynchronized communication network
US7095790B2 (en) * 2003-02-25 2006-08-22 Qualcomm, Incorporated Transmission schemes for multi-antenna communication systems utilizing multi-carrier modulation
US7486735B2 (en) * 2003-02-28 2009-02-03 Nortel Networks Limited Sub-carrier allocation for OFDM
US7400573B2 (en) * 2003-04-29 2008-07-15 Intel Corporation Dynamic allocation of cyclic extension in orthogonal frequency division multiplexing systems
US7177297B2 (en) 2003-05-12 2007-02-13 Qualcomm Incorporated Fast frequency hopping with a code division multiplexed pilot in an OFDMA system
US7623596B2 (en) * 2003-06-27 2009-11-24 Ericsson, Inc. Methods and systems for estimating a channel response by applying bias to an initial channel estimate
KR100640461B1 (ko) * 2003-07-30 2006-10-30 삼성전자주식회사 직교 주파수 분할 다중 접속 방식을 사용하는 이동 통신시스템에서 서브 채널 할당 장치 및 방법
US7388847B2 (en) * 2003-08-18 2008-06-17 Nortel Networks Limited Channel quality indicator for OFDM
US7668201B2 (en) * 2003-08-28 2010-02-23 Symbol Technologies, Inc. Bandwidth management in wireless networks
US20050059366A1 (en) * 2003-09-16 2005-03-17 Atheros Communications, Inc. Spur mitigation techniques
EP1531590A1 (en) * 2003-11-11 2005-05-18 STMicroelectronics Belgium N.V. Method and apparatus for channel equalisation with estimation of the channel impulse response length
KR101015736B1 (ko) * 2003-11-19 2011-02-22 삼성전자주식회사 직교 주파수 분할 다중 방식의 이동통신 시스템에서선택적 전력 제어 장치 및 방법
US20050135321A1 (en) * 2003-12-17 2005-06-23 Jacob Sharony Spatial wireless local area network
SE0303607D0 (sv) 2003-12-30 2003-12-30 Ericsson Telefon Ab L M Brandwidth signalling
US7339999B2 (en) 2004-01-21 2008-03-04 Qualcomm Incorporated Pilot transmission and channel estimation for an OFDM system with excess delay spread
US8553822B2 (en) 2004-01-28 2013-10-08 Qualcomm Incorporated Time filtering for excess delay mitigation in OFDM systems
US8611283B2 (en) * 2004-01-28 2013-12-17 Qualcomm Incorporated Method and apparatus of using a single channel to provide acknowledgement and assignment messages
WO2005081439A1 (en) 2004-02-13 2005-09-01 Neocific, Inc. Methods and apparatus for multi-carrier communication systems with adaptive transmission and feedback
EP1712089B1 (en) * 2004-01-29 2014-11-19 Neocific, Inc. Methods and apparatus for multi-carrier, multi-cell wireless communication networks
KR100818774B1 (ko) 2004-01-29 2008-04-03 포스데이타 주식회사 광대역 무선 통신 시스템에서 다중-반송파 및 직접 시퀀스확산 스펙트럼 신호를 중첩시키는 방법 및 장치
US7551545B2 (en) * 2004-02-09 2009-06-23 Qualcomm Incorporated Subband-based demodulation for an OFDM-based communication system
KR100594084B1 (ko) * 2004-04-30 2006-06-30 삼성전자주식회사 직교 주파수 분할 다중 수신기의 채널 추정 방법 및 채널추정기
CN1965513B (zh) 2004-05-01 2014-11-26 桥扬科技有限公司 用于以时分双工进行通信的方法和装置
US7457231B2 (en) * 2004-05-04 2008-11-25 Qualcomm Incorporated Staggered pilot transmission for channel estimation and time tracking
US7296045B2 (en) * 2004-06-10 2007-11-13 Hasan Sehitoglu Matrix-valued methods and apparatus for signal processing
CN100359960C (zh) * 2004-06-11 2008-01-02 华为技术有限公司 一种在正交多路频分复用系统中实现信道估计的方法
US7466768B2 (en) * 2004-06-14 2008-12-16 Via Technologies, Inc. IQ imbalance compensation
KR100635534B1 (ko) * 2004-06-28 2006-10-17 전자부품연구원 고속 이동 환경을 위한 하이브리드 채널 추정 방법 및시스템
US8891349B2 (en) 2004-07-23 2014-11-18 Qualcomm Incorporated Method of optimizing portions of a frame
US20060025079A1 (en) * 2004-08-02 2006-02-02 Ilan Sutskover Channel estimation for a wireless communication system
US7826343B2 (en) * 2004-09-07 2010-11-02 Qualcomm Incorporated Position location signaling method apparatus and system utilizing orthogonal frequency division multiplexing
US8144572B2 (en) * 2004-09-14 2012-03-27 Qualcomm Incorporated Detection and mitigation of interference and jammers in an OFDM system
US7393181B2 (en) 2004-09-17 2008-07-01 The Penn State Research Foundation Expandable impeller pump
DE202005022046U1 (de) 2004-10-29 2012-08-24 Sharp Kabushiki Kaisha Funksender und Funkempfänger
CN1780278A (zh) * 2004-11-19 2006-05-31 松下电器产业株式会社 子载波通信系统中自适应调制与编码方法和设备
US8571132B2 (en) * 2004-12-22 2013-10-29 Qualcomm Incorporated Constrained hopping in wireless communication systems
US8238923B2 (en) * 2004-12-22 2012-08-07 Qualcomm Incorporated Method of using shared resources in a communication system
US8831115B2 (en) 2004-12-22 2014-09-09 Qualcomm Incorporated MC-CDMA multiplexing in an orthogonal uplink
US7453849B2 (en) * 2004-12-22 2008-11-18 Qualcomm Incorporated Method of implicit deassignment of resources
EP2555464B1 (en) 2005-01-18 2019-03-06 Sharp Kabushiki Kaisha Wireless communication apparatus and wireless communication method
EP1699197A1 (en) * 2005-01-27 2006-09-06 Alcatel Method for sending channel quality information in a multi-carrier radio communication system, corresponding mobile terminal and base station
CA2599739A1 (en) * 2005-03-01 2006-09-08 Qualcomm Incorporated Channel estimate optimization for multiple transmit modes
US20060221928A1 (en) * 2005-03-31 2006-10-05 Jacob Sharony Wireless device and method for wireless multiple access
US20060221873A1 (en) * 2005-03-31 2006-10-05 Jacob Sharony System and method for wireless multiple access
US20060221904A1 (en) * 2005-03-31 2006-10-05 Jacob Sharony Access point and method for wireless multiple access
KR100647079B1 (ko) 2005-06-08 2006-11-23 한국정보통신대학교 산학협력단 주파수 다중 분할 방식 무선 모뎀의 이산 푸리에 변환 기반채널 추정 방법
US8331216B2 (en) 2005-08-09 2012-12-11 Qualcomm Incorporated Channel and interference estimation in single-carrier and multi-carrier frequency division multiple access systems
CN1921463B (zh) * 2005-08-23 2010-05-05 中兴通讯股份有限公司 正交频分复用移动通信系统的信道估计方法和实现装置
KR100973726B1 (ko) * 2005-09-22 2010-08-04 캔트릴 텔레콤 코. 엘엘씨 이동 무선 시스템에서 최적화된 수의 가입자 선택 방법
US8760994B2 (en) 2005-10-28 2014-06-24 Qualcomm Incorporated Unitary precoding based on randomized FFT matrices
US20070160016A1 (en) * 2006-01-09 2007-07-12 Amit Jain System and method for clustering wireless devices in a wireless network
WO2007081145A1 (en) * 2006-01-09 2007-07-19 Samsung Electronics Co., Ltd. Method and apparatus for time multiplexing uplink data and uplink signaling information in an sc-fdma system
KR100922936B1 (ko) * 2006-02-07 2009-10-22 삼성전자주식회사 통신 시스템에서 데이터 송수신 방법 및 시스템
KR100943615B1 (ko) * 2006-02-16 2010-02-24 삼성전자주식회사 무선 통신 시스템에서 서브 채널 할당 장치 및 방법
KR100708018B1 (ko) * 2006-02-21 2007-04-16 포스데이타 주식회사 Ofdm/ofdma 방식을 지원하는 디코딩 장치 및디코딩 방법
WO2007103183A2 (en) * 2006-03-01 2007-09-13 Interdigital Technology Corporation Method and apparatus for channel estimation in an orthogonal frequency division multiplexing system
EP1835680A1 (en) * 2006-03-16 2007-09-19 Alcatel Lucent OFDM transmission with low latency through use of a pilot symbol at the end of the transmit subframe
FI20065220A0 (fi) * 2006-04-04 2006-04-04 Nokia Corp Vastaanotin ja vastaanottomenetelmä
JP4736934B2 (ja) 2006-04-28 2011-07-27 日本電気株式会社 無線通信システム、パイロット系列割り当て装置及びそれらに用いるパイロット系列割り当て方法
US7903749B2 (en) * 2006-08-16 2011-03-08 Harris Corporation System and method for applying frequency domain spreading to multi-carrier communications signals
US7751488B2 (en) * 2006-08-16 2010-07-06 Harris Corporation System and method for communicating data using symbol-based randomized orthogonal frequency division multiplexing (OFDM)
US7860147B2 (en) * 2006-08-16 2010-12-28 Harris Corporation Method of communicating and associated transmitter using coded orthogonal frequency division multiplexing (COFDM)
US7813433B2 (en) * 2006-08-16 2010-10-12 Harris Corporation System and method for communicating data using symbol-based randomized orthogonal frequency division multiplexing (OFDM) with selected subcarriers turned on or off
US7649951B2 (en) * 2006-08-16 2010-01-19 Harris Corporation System and method for communicating data using symbol-based randomized orthogonal frequency division multiplexing (OFDM) with applied frequency domain spreading
JP4940867B2 (ja) * 2006-09-29 2012-05-30 日本電気株式会社 移動通信システムにおける制御信号およびリファレンス信号の多重方法、リソース割当方法および基地局
US20080118009A1 (en) * 2006-11-20 2008-05-22 Yu-Min Chuang Pseudo-random number demodulation circuit of receiving device of wireless communication system
US9167504B2 (en) * 2006-12-04 2015-10-20 Qualcomm Incorporated Inter-technology handoff
KR100764012B1 (ko) * 2006-12-08 2007-10-08 한국전자통신연구원 이동통신 시스템에서 채널의 지연확산에 따른 채널 추정장치 및 그 방법
WO2008107972A1 (ja) * 2007-03-06 2008-09-12 Mitsubishi Electric Corporation 通信装置および通信システム
RU2463746C2 (ru) * 2007-04-30 2012-10-10 Телефонактиеболагет Лм Эрикссон (Пабл) Измерения разности времени синхронизации в системах ofdm
EP2151107B1 (en) * 2007-05-09 2018-03-21 Telefonaktiebolaget LM Ericsson (publ) Receiver for a radio network and an method for determining a channel estimate for a radio channel
US8099132B2 (en) * 2007-08-15 2012-01-17 Qualcomm Incorporated Antenna switching and uplink sounding channel measurement
US8238454B2 (en) * 2008-04-01 2012-08-07 Harris Corporation System and method for communicating data using efficient fast fourier transform (FFT) for orthogonal frequency division multiplexing (OFDM) demodulation
US8229009B2 (en) 2008-04-01 2012-07-24 Harris Corporation System and method for communicating data using efficient fast fourier transform (FFT) for orthogonal frequency division multiplexing (OFDM) modulation
US8274921B2 (en) * 2008-04-01 2012-09-25 Harris Corporation System and method for communicating data using efficient fast fourier transform (FFT) for orthogonal frequency division multiplexing (OFDM)
US8031670B2 (en) * 2008-11-13 2011-10-04 Telefonaktiebolaget L M Ericsson (Publ) Systems and methods for selecting the size of a control region of a downlink subframe
US9401784B2 (en) 2009-10-21 2016-07-26 Qualcomm Incorporated Time and frequency acquisition and tracking for OFDMA wireless systems
US10111111B2 (en) 2009-11-19 2018-10-23 Qualcomm Incorporated Per-cell timing and/or frequency acquisition and their use on channel estimation in wireless networks
CN102111205B (zh) * 2009-12-28 2014-07-09 世意法(北京)半导体研发有限责任公司 具有多个发射天线的通信系统的信道估计
US8515440B2 (en) 2010-02-19 2013-08-20 Qualcomm Incorporated Computation of channel state feedback in systems using common reference signal interference cancelation
JP5579551B2 (ja) * 2010-09-10 2014-08-27 シャープ株式会社 受信装置、受信方法及びプログラム
CN102480441B (zh) * 2010-11-30 2014-07-09 澜起科技(上海)有限公司 信道估计方法及系统
EP2712136B1 (en) * 2012-09-20 2015-02-25 Nxp B.V. Channel frequency response estimation and tracking for time- and frequency varying communication channels
WO2014172553A1 (en) 2013-04-17 2014-10-23 Andrew Llc Extracting sub-bands from signals in a frequency domain
CN106034349B (zh) * 2015-03-12 2020-11-20 株式会社Ntt都科摩 传输功率控制方法及装置
EP3316534A1 (en) * 2016-10-27 2018-05-02 Fraunhofer Gesellschaft zur Förderung der Angewand Channel estimation of frequency sub bands
KR101974355B1 (ko) * 2016-11-25 2019-08-23 서울대학교 산학협력단 빔포밍을 이용한 채널 희소화 장치 및 방법
US10812216B2 (en) 2018-11-05 2020-10-20 XCOM Labs, Inc. Cooperative multiple-input multiple-output downlink scheduling
US10756860B2 (en) 2018-11-05 2020-08-25 XCOM Labs, Inc. Distributed multiple-input multiple-output downlink configuration
US10659112B1 (en) 2018-11-05 2020-05-19 XCOM Labs, Inc. User equipment assisted multiple-input multiple-output downlink configuration
US10432272B1 (en) 2018-11-05 2019-10-01 XCOM Labs, Inc. Variable multiple-input multiple-output downlink user equipment
WO2020112840A1 (en) 2018-11-27 2020-06-04 XCOM Labs, Inc. Non-coherent cooperative multiple-input multiple-output communications
US11063645B2 (en) 2018-12-18 2021-07-13 XCOM Labs, Inc. Methods of wirelessly communicating with a group of devices
US10756795B2 (en) 2018-12-18 2020-08-25 XCOM Labs, Inc. User equipment with cellular link and peer-to-peer link
US11330649B2 (en) 2019-01-25 2022-05-10 XCOM Labs, Inc. Methods and systems of multi-link peer-to-peer communications
US10756767B1 (en) 2019-02-05 2020-08-25 XCOM Labs, Inc. User equipment for wirelessly communicating cellular signal with another user equipment
US11032841B2 (en) 2019-04-26 2021-06-08 XCOM Labs, Inc. Downlink active set management for multiple-input multiple-output communications
US10756782B1 (en) 2019-04-26 2020-08-25 XCOM Labs, Inc. Uplink active set management for multiple-input multiple-output communications
US10686502B1 (en) 2019-04-29 2020-06-16 XCOM Labs, Inc. Downlink user equipment selection
US10735057B1 (en) 2019-04-29 2020-08-04 XCOM Labs, Inc. Uplink user equipment selection
US11411778B2 (en) 2019-07-12 2022-08-09 XCOM Labs, Inc. Time-division duplex multiple input multiple output calibration
US11411779B2 (en) 2020-03-31 2022-08-09 XCOM Labs, Inc. Reference signal channel estimation
CN115699605A (zh) 2020-05-26 2023-02-03 艾斯康实验室公司 干扰感知波束成形
KR102182390B1 (ko) * 2020-07-03 2020-11-24 (주)아이스톰 다중 경로 페이딩 환경에 적합한 sc-fde 웨이브폼이 적용된 vdes 장치
WO2022087569A1 (en) 2020-10-19 2022-04-28 XCOM Labs, Inc. Reference signal for wireless communication systems
WO2022093988A1 (en) 2020-10-30 2022-05-05 XCOM Labs, Inc. Clustering and/or rate selection in multiple-input multiple-output communication systems
US20230147344A1 (en) * 2021-11-09 2023-05-11 Panasonic Avionics Corporation Transmission power control for electronic devices in commercial passenger vehicles

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5995539A (en) * 1993-03-17 1999-11-30 Miller; William J. Method and apparatus for signal transmission and reception
US5511233A (en) * 1994-04-05 1996-04-23 Celsat America, Inc. System and method for mobile communications in coexistence with established communications systems
US6334219B1 (en) * 1994-09-26 2001-12-25 Adc Telecommunications Inc. Channel selection for a hybrid fiber coax network
US5592548A (en) 1995-05-31 1997-01-07 Qualcomm Incorporated System and method for avoiding false convergence in the presence of tones in a time-domain echo cancellation process
US6104926A (en) * 1995-07-31 2000-08-15 Gte Airfone, Incorporated Call handoff
US6222828B1 (en) * 1996-10-30 2001-04-24 Trw, Inc. Orthogonal code division multiple access waveform format for use in satellite based cellular telecommunications
DE19701011C1 (de) 1997-01-14 1998-06-10 Siemens Ag Verfahren und Anordnung zur Kanalschätzung von Mobilfunkkanälen
DE19747369A1 (de) 1997-10-27 1999-05-06 Siemens Ag Übertragungskanalschätzung in Telekommunikationssystemen mit drahtloser Telekommunikation
US6603801B1 (en) * 1998-01-16 2003-08-05 Intersil Americas Inc. Spread spectrum transceiver for use in wireless local area network and having multipath mitigation
US6678310B1 (en) * 1998-01-16 2004-01-13 Intersil Americas Inc Wireless local area network spread spectrum transceiver with multipath mitigation
US6618454B1 (en) * 1998-02-06 2003-09-09 At&T Corp. Diversity coded OFDM for high data-rate communication
DE69838807T2 (de) * 1998-02-18 2008-10-30 Sony Deutschland Gmbh Abbildung von Mehrträgersignalen in GSM-Zeitschlitzen
JP3981898B2 (ja) * 1998-02-20 2007-09-26 ソニー株式会社 信号受信装置および方法、並びに記録媒体
EP0938208A1 (en) * 1998-02-22 1999-08-25 Sony International (Europe) GmbH Multicarrier transmission, compatible with the existing GSM system
US6643281B1 (en) * 1998-03-05 2003-11-04 At&T Wireless Services, Inc. Synchronization preamble method for OFDM waveforms in a communications system
US6487235B2 (en) * 1998-08-24 2002-11-26 At&T Wireless Services, Inc. Delay compensation
US6473393B1 (en) * 1998-12-18 2002-10-29 At&T Corp. Channel estimation for OFDM systems with transmitter diversity
US6654429B1 (en) * 1998-12-31 2003-11-25 At&T Corp. Pilot-aided channel estimation for OFDM in wireless systems
JP3667549B2 (ja) * 1999-03-29 2005-07-06 日本電気株式会社 ダイバーシティ受信装置
US6597745B1 (en) * 1999-04-06 2003-07-22 Eric M. Dowling Reduced complexity multicarrier precoder
US6661832B1 (en) * 1999-05-11 2003-12-09 Qualcomm Incorporated System and method for providing an accurate estimation of received signal interference for use in wireless communications systems
US6515997B1 (en) * 1999-05-17 2003-02-04 Ericsson Inc. Method and system for automatic configuration of a gateway translation function
US6430724B1 (en) * 1999-05-28 2002-08-06 Agere Systems Guardian Corp. Soft selection combining based on successive erasures of frequency band components in a communication system
GB2350753B (en) 1999-06-04 2003-12-10 Fujitsu Ltd Measuring channel characteristics in mobile communications networks
US6594320B1 (en) * 1999-08-25 2003-07-15 Lucent Technologies, Inc. Orthogonal Frequency Division Multiplexed (OFDM) carrier acquisition method
JP3317286B2 (ja) * 1999-09-21 2002-08-26 日本電気株式会社 復調方法及び復調回路
US6996195B2 (en) * 1999-12-22 2006-02-07 Nokia Mobile Phones Ltd. Channel estimation in a communication system
MXPA02006668A (es) * 2000-01-07 2002-09-30 Interdigital Tech Corp Determinacion de canal para sistemas de comunicacion duplex con division de tiempo.
US6477210B2 (en) * 2000-02-07 2002-11-05 At&T Corp. System for near optimal joint channel estimation and data detection for COFDM systems
US6473467B1 (en) * 2000-03-22 2002-10-29 Qualcomm Incorporated Method and apparatus for measuring reporting channel state information in a high efficiency, high performance communications system
US20020154705A1 (en) * 2000-03-22 2002-10-24 Walton Jay R. High efficiency high performance communications system employing multi-carrier modulation
EP1168739B1 (fr) * 2000-06-23 2005-10-19 STMicroelectronics N.V. Procédé et dispositif d'estimation de la réponse impulsionelle d'un canal de transmission d'informations, en particulier pour un téléphone mobile cellulaire
FR2814012B1 (fr) * 2000-09-14 2002-10-31 Mitsubishi Electric Inf Tech PROCEDE D'ATTRIBUTION D'UN NIVEAU DE PUISSANCE D'EMISSION A DES SYMBOLES PILOTES UTILISES POUR l'ESTIMATION DU CANAL D'UN SYSTEME DE TRANSMISSION
US6977974B1 (en) * 2000-11-20 2005-12-20 At&T Corp. De-modulation of MOK(M-ary orthogonal modulation)
CN100456758C (zh) * 2000-12-15 2009-01-28 昂达博思公司 具有基于组的副载波分配的多载波通信方法
US6947748B2 (en) * 2000-12-15 2005-09-20 Adaptix, Inc. OFDMA with adaptive subcarrier-cluster configuration and selective loading
AU2002232589A1 (en) * 2000-12-15 2002-06-24 Broadstorm Telecommunications, Inc. Multi-carrier communications with group-based subcarrier allocation
US6633616B2 (en) * 2001-02-21 2003-10-14 Magis Networks, Inc. OFDM pilot tone tracking for wireless LAN
US6549561B2 (en) * 2001-02-21 2003-04-15 Magis Networks, Inc. OFDM pilot tone tracking for wireless LAN
US6447210B1 (en) * 2001-02-26 2002-09-10 Oldenburg Cannon, Inc. Resin nozzle positioner
US6625203B2 (en) * 2001-04-30 2003-09-23 Interdigital Technology Corporation Fast joint detection
US6751187B2 (en) * 2001-05-17 2004-06-15 Qualcomm Incorporated Method and apparatus for processing data for transmission in a multi-channel communication system using selective channel transmission
US7072413B2 (en) * 2001-05-17 2006-07-04 Qualcomm, Incorporated Method and apparatus for processing data for transmission in a multi-channel communication system using selective channel inversion
US7027429B2 (en) * 2001-06-19 2006-04-11 Flarion Technologies, Inc. Method and apparatus for time and frequency synchronization of OFDM communication systems
US7027523B2 (en) * 2001-06-22 2006-04-11 Qualcomm Incorporated Method and apparatus for transmitting data in a time division duplexed (TDD) communication system
US7139320B1 (en) * 2001-10-11 2006-11-21 Texas Instruments Incorporated Method and apparatus for multicarrier channel estimation and synchronization using pilot sequences
US7092459B2 (en) * 2001-11-08 2006-08-15 Qualcomm, Incorporated Frequency tracking using pilot and non-pilot symbols
US7236548B2 (en) * 2001-12-13 2007-06-26 Koninklijke Philips Electronics N.V. Bit level diversity combining for COFDM system
US7058134B2 (en) * 2001-12-17 2006-06-06 Intel Corporation System and method for multiple signal carrier time domain channel estimation
US7020110B2 (en) * 2002-01-08 2006-03-28 Qualcomm Incorporated Resource allocation for MIMO-OFDM communication systems
JP2003218826A (ja) * 2002-01-23 2003-07-31 Rikogaku Shinkokai 直交周波数分割多重信号の受信方式及び受信機
US6636568B2 (en) * 2002-03-01 2003-10-21 Qualcomm Data transmission with non-uniform distribution of data rates for a multiple-input multiple-output (MIMO) system
JP4198428B2 (ja) * 2002-04-05 2008-12-17 三菱電機株式会社 無線伝送装置
US7352730B2 (en) * 2002-08-13 2008-04-01 Koninklijke Philips Electronics N.V. Joint channel and noise variance estimation in a wideband OFDM system
US7039004B2 (en) * 2002-10-01 2006-05-02 Atheros Communications, Inc. Decision feedback channel estimation and pilot tracking for OFDM systems
US6928062B2 (en) * 2002-10-29 2005-08-09 Qualcomm, Incorporated Uplink pilot and signaling transmission in wireless communication systems
US7039001B2 (en) * 2002-10-29 2006-05-02 Qualcomm, Incorporated Channel estimation for OFDM communication systems

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2443009A (en) * 2006-10-17 2008-04-23 Siconnect Ltd Optimising data communications in a power line communiation system
CN103716262A (zh) * 2012-10-09 2014-04-09 王晓安 基于时域参数提取的信道估计方法
CN103716262B (zh) * 2012-10-09 2017-04-12 王晓安 基于时域参数提取的信道估计方法
CN106797288A (zh) * 2014-04-01 2017-05-31 高通股份有限公司 用于毫米波无线通信的将ofdm和基于循环前缀的单载波合并的混合波形设计

Also Published As

Publication number Publication date
KR100982148B1 (ko) 2010-09-14
KR20050070070A (ko) 2005-07-05
US7463576B2 (en) 2008-12-09
JP2010213321A (ja) 2010-09-24
CA2501465A1 (en) 2004-05-13
CN1708927B (zh) 2013-07-10
US20050170783A1 (en) 2005-08-04
BR0315773A (pt) 2005-09-13
MXPA05004520A (es) 2005-07-26
TW200417166A (en) 2004-09-01
EP1563622A4 (en) 2011-08-17
US20040203442A1 (en) 2004-10-14
WO2004040813A1 (en) 2004-05-13
IL167571A0 (en) 2009-02-11
EP1563622A1 (en) 2005-08-17
US7039001B2 (en) 2006-05-02
AU2003287285A1 (en) 2004-05-25
JP2006505229A (ja) 2006-02-09

Similar Documents

Publication Publication Date Title
CN1708927A (zh) 用于ofdm通信系统的信道估计
CN100338896C (zh) 具有多个发射天线的ofdm发射机及其方法
RU2374775C2 (ru) Ограниченное переключение каналов в беспроводных системах связи
CN101765197B (zh) 无线通信系统中用于多载波调制的峰均功率比管理
CN1674572A (zh) 正交频分多路复用通信系统中的副载波分配的设备和方法
CN1714552A (zh) 复杂度减小的无线通信系统的信道估计
CN1918869A (zh) 对具有未激活子带的ofdm通信系统的信道估计
CN1489852A (zh) 在正交调制系统中用于减小错误的方法和设备
US20090274226A1 (en) Sounding channel based feedback in a wireless communication system
CN1757213A (zh) 使用多种码元长度的多载波传输
CN1653721A (zh) 多个传输模式的多输入、多输出(mimo)系统
CN1665228A (zh) 根据频率再用率自适应分配子信道的装置和方法
CN1625164A (zh) 正交频分复用系统中收发副载波信道质量的设备和方法
CN1543103A (zh) 多个天线的正交频分复用系统中的信道估计的装置和方法
CN1833388A (zh) 无线通信装置以及副载波分配方法
CN101563853A (zh) 用于无线通信系统的捕获导频
CN1842068A (zh) 发送方法、接收方法、发送装置、接收装置
CN1918874A (zh) 带有时域扰频的ofdm收发器结构
CN101064927A (zh) 无线通信系统中指示信道资源分配的设备和方法
CN1961513A (zh) 多载波通信环境中语音业务的自适应调度
CN1658528A (zh) 一种mimo—ofdm系统的自适应信道估计方法
CN1829131A (zh) 正交频分复用无线多媒体系统中的资源分配方法
CN1722719A (zh) 一种用于ofdm系统自适应调制的比特和功率分配算法
CN1717884A (zh) 多载波发送装置、多载波接收装置及多载波无线电通信方法
CN101064955A (zh) 指配信道资源的设备和方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1084254

Country of ref document: HK

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1084254

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20130710