CN1715753A - 利用部分气化的煤以除去汞的方法和设备 - Google Patents

利用部分气化的煤以除去汞的方法和设备 Download PDF

Info

Publication number
CN1715753A
CN1715753A CNA2005100781134A CN200510078113A CN1715753A CN 1715753 A CN1715753 A CN 1715753A CN A2005100781134 A CNA2005100781134 A CN A2005100781134A CN 200510078113 A CN200510078113 A CN 200510078113A CN 1715753 A CN1715753 A CN 1715753A
Authority
CN
China
Prior art keywords
adsorbent
coal
mercury
gasifier
flue gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2005100781134A
Other languages
English (en)
Inventor
V·V·利斯安斯基
P·M·马利
W·R·塞克
L·霍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN1715753A publication Critical patent/CN1715753A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/336Preparation characterised by gaseous activating agents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D1/00Burners for combustion of pulverulent fuel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/06Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/64Heavy metals or compounds thereof, e.g. mercury
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/003Arrangements of devices for treating smoke or fumes for supplying chemicals to fumes, e.g. using injection devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • F23J15/022Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material for removing solid particulate material from the gasflow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/60Heavy metals; Compounds thereof

Abstract

一种用于俘获由固体燃料燃烧形成的烟道气中的汞的方法,包括:燃烧煤(12),其中燃烧过程中释放的汞被夹带在由燃烧产生的烟道气中;通过在燃烧固体燃料的同时,在气化器(42)中就地使固体燃料部分地气化,产生热活化的含碳吸附剂;将气化的气体产物注入(46)煤的燃烧中;将热活化的吸附剂注入(26)烟道气中,以及在废物处理系统(28,34)中收集注射的吸附剂。

Description

利用部分气化的煤以除去汞的方法和设备
技术领域
本发明涉及煤的燃烧,并且特别是涉及吸附剂的产生以俘获在煤燃烧过程中产生的烟道气中的汞(Hg)。
背景技术
煤燃烧产生的排放物可包含挥发性金属例如汞(Hg)。长期以来意识到需要减少来自燃煤加热炉和其它工业煤燃烧系统的气体排放物中的汞。当汞在煤燃烧过程中挥发时,其进入由燃烧产生的烟道气中。一些已挥发的汞可被已注射的吸附剂俘获并通过微粒收集系统被除去。如果未被俘获,汞可与来自盘管式锅炉的烟囱废气一起进入大气。汞是一种污染物。因此,所希望的是在烟囱排放前,大量俘获烟道气中的汞。
注射作为俘获烟道气中的汞的吸附剂的活性碳是一种已公知的汞控制技术。参见例如Pavish等,“用于燃煤动力设备的汞控制选择的状况评述(Status review of mercury control options for coal-firedpower plants)”,燃料处理技术(Fuel Processing Technology)82,89-165页(2003)。根据煤的类型和排放物控制系统的具体构造,例如在微粒收集器或紧凑型袋式集尘室之前进行注射,所述微粒收集器或紧凑型袋式集尘室被加在现有静电微粒控制装置ESP后面,和煤的类型,通过活性碳注射得到的汞的去除效率在60%到90%的范围内。
在燃煤动力设备中利用活性碳控制汞的成本倾向于较为昂贵。参见例如布朗(Brown)等,“对来自燃煤动力设备的汞排放物的控制:初步成本评估和用于准确评估控制成本的后续步骤”,燃料处理技术(Fuel Processing Technology)65-66,311-341页(2000)。利用活性碳注射除去汞的典型成本通常在$ 20,000/磅除去的汞到$70,000/磅汞的范围内。该成本受到吸附剂成本的支配。因此,长期以来意识到需要以经济方式生产活性碳吸附剂。通过降低吸附剂的成本,从烟道气中除去汞的成本可被大大降低。
发明内容
本发明可被实施作为一种用于俘获由固体燃料燃烧形成的烟道气中的汞的方法,包括:燃烧煤,其中燃烧过程中释放的汞被夹带在由燃烧产生的烟道气中;通过在燃烧固体燃料的同时,在气化器中就地使固体燃料部分地气化,产生热活化的含碳吸附剂;将气化的固体燃料注入煤的燃烧中;将热活化的吸附剂注入烟道气中,以及在废物处理系统中收集注射的吸附剂。
此外,本发明的另一个实施例是一种用于俘获由固体燃料燃烧形成的烟道气中的汞的方法,包括:在加热炉或锅炉中燃烧固体燃料,其中燃烧过程中释放的汞被夹带在燃烧产生的烟道气中并流至废物处理系统;通过在加热炉或锅炉加热时,在气化器中就地使碳固体燃料部分地气化,产生热活化的含碳吸附剂;将来自气化器的气化器燃料注入加热炉或锅炉内;将热活化的吸附剂注入废物处理系统的烟道气管道中;利用注射的吸附剂俘获至少一些被夹带的汞;在废物处理系统中收集带有汞的注射吸附剂。
本发明还可被实施作为一种用于从烟道气中俘获汞的系统,包括:被布置以接收煤和空气的加热炉或锅炉且还包括煤和空气注射系统,和用于燃烧煤和空气的燃烧区域;被连接以接收在加热炉或锅炉的燃烧中产生的烟道气的废物处理系统,其中所述废物处理系统包括吸附剂注射器和吸附剂收集装置;吸附剂发生器,所述吸附剂发生器还包括具有固体碳燃料的入口的气化器,气化室,在所述气化室内固体碳燃料被至少部分地燃烧以产生吸附剂和气化的燃料;在气化器和吸附剂注射器之间的用以将吸附剂输送至注射器的管道,和在气化器与煤和空气注射系统之间的用以将气化的燃料输送至注射系统的管道。
附图说明
图1是具有用于产生吸附剂的气化器,以及微粒和吸附剂控制装置的燃煤加热炉的示意图;
图2是典型的固体燃料气化器的侧视截面图;
图3是示出了关于气化器滞留时间对吸附剂中的碳含量的影响的试验数据的曲线图;和
图4是示出了关于与气化区域中的化学计量相关的吸附剂中的碳含量的试验数据的曲线图。
具体实施方式
碳基吸附剂对于从烟道气中除去汞是有效的。已经开发出一种用以通过在气化器中使煤或其它含碳燃料部分气化而产生热活化的汞吸附剂的系统和方法。所述热活化的吸附剂可在现有微粒控制装置(PCD)上游,或如果存在专用于吸附剂的下游微粒控制系统,则在微粒控制装置的下游,被注入到含汞烟道气中。热活化的吸附剂由与设备燃烧的煤相同的煤或由其它含碳固体燃料产生。
当前系统和方法通过将局部产生的热活化的碳基吸附剂注入烟道气中并将烟道气中的汞吸收到吸附剂上而减少了来自燃煤锅炉的烟囱的汞排放物。与传统的活性碳注射相比,这种方法的优点包括(不限于):产生热活化的吸附剂所需的设备的低资本成本;减少了用以储存活性碳的料仓的需要,和吸附剂生产的相对较低的成本。
图1示出了包括煤源12、锅炉14和燃烧废物处理系统16的燃煤动力设备10。所述锅炉包括固体燃料注射系统18和空气注射器20。煤和空气的混合物在锅炉内的燃烧区域22中进行燃烧。燃烧区域中产生的烟道气可包括在燃烧过程中从煤中释放的汞。
烟道气流动通过锅炉并流入废物处理系统的管道24,烟道气在此冷却。废物处理系统16包括吸附剂注射系统26、具有排灰装置30的微粒控制装置(PCD)28和用于烟道气排放的烟囱32。吸附剂注射系统可将吸附剂注入微粒控制装置上游的管道24中。此外或另一种可选实施方式是,如果专用吸附剂微粒收集装置34被包括在废物处理系统16中,吸附剂可被注入微粒控制装置的下游。
吸附剂从吸附剂发生器38的吸附剂排出槽36流出。在发生器中,煤或其它含碳固体燃料40在产生热活化的碳吸附剂的气化器42中被部分气化。气化器可使吸附剂与气体一起通过槽36排入管道24内。另一种可选实施方式是,在气化器中产生的热活化的固体吸附剂在旋风分离器44中从其它气化产物中分离出来。吸附剂和气体燃料产物的混合物进入旋风分离器44的入口。吸附剂的固体颗粒从旋风分离器中被排入吸附剂槽36内。气化器和旋风分离器可与废物处理系统16就地在一起。来自气化器的气体产物流动通过管道46并流至煤注射器18,并流入锅炉中的燃烧区域22中。
图2示意性地示出了固体燃料气化器42的截面,所述固体燃料气化器可以是一种常规装置。该气化器包括垂直气化室50,固体燃料颗粒40和热量被注入到所述气化室中。燃料颗粒在气化室50中的燃烧产生吸附剂和气化燃料。用于吸附剂燃烧的固体燃料可以是煤、生物燃料、污水污泥、废产物或其它含碳固体燃料。在气化室50中布置阻气门52以调节燃料在室内的滞留时间。在气化器室中0.5至10秒的滞留时间通常优选用于产生吸附剂。热电偶56被布置在气化室50和加热室41中以监控这些室中的温度。
在一个实例中,气化器42可由不锈钢形成且其内壁带有耐火材料衬里。固体燃料气化所需的热量由天然气和空气的燃烧提供。水平排列的加热室41可具有8英寸(in.)的内径。煤40被注入到气化室50内,所述气化室可具有12英寸(in.)的内径。氮气或空气可被用作固体燃料的输运介质。
固体燃料40通过带有水套的注射器58被注射到气化室50的上端处。输运气体51通过燃料注射器53被注射以将固体燃料颗粒输送进入气化室50。加到气化室上的热量使固体燃料颗粒部分气化,例如通过部分燃烧,并产生活性吸附剂颗粒。气化室50和辅助加热室41的壁部带有耐火材料衬里62以适应加热室内的热量。
固体燃料,例如碳,的部分气化所需的热量由热源60和/或通过在气化室中部分燃烧固体燃料提供。例如,天然气和空气60在加热室41中进行混合以产生提供给气化室50的热量。加热室中的冷却孔64允许水66冷却加热室和固体燃料注射器58的壁部。加热室41的冷却允许温度受到控制且避免了固体燃料在气化室50中的过度燃烧。气化室中的温度优选在1000至2000华氏度范围内。
最优化气化室50中的条件以增强具有相对较高活性的热活化的吸附剂的产生。例如,吸附剂可被产生具有相对较大的表面积和较高的含碳量。气化器中的工艺参数包括气化室50中的燃料滞留时间、含碳材料与空气的化学计量比(SR)和室50中的温度。通过控制这些工艺参数,活性吸附剂的产生可得到增强。气化器中的最优工艺条件还受到含碳燃料40的类型及其活性的影响。
进行试验以确定气化器参数对热活化的含碳吸附剂的活性的影响,吸附剂活性可被看作吸附剂中的含碳量。
气化室50中的温度曲线通过利用多个沿室壁和在加热室41中设置的热电偶56进行测量。位于附近的气化室中的孔68允许气体和固体样品被采集和分析。对固体样品进行分析以确定烧失量(LOI),所述烧失量提供了对存在的碳的量度。
图3和图4为试验数据曲线图,图中示出了气化室50中的滞留时间和化学计量比(SR)对吸附剂中的含碳量的影响。通过改变煤40的量和通过使气体载体从空气改变为氮气,改变气化器化学计量比。移动煤注射器51的顶部70使其更深入气化区域改变了滞留时间。图3和图4显示当滞留时间和化学计量比增加时,气化程度增加。为了最优化吸附剂的产生,滞留时间和化学计量比不应该过度。
所希望的是具有包含更高含碳量的热活化的吸附剂。因此,较短的滞留时间和较低的化学计量比有利于吸附剂中的高含碳量。另一方面,非常短的滞留时间下的煤的气化程度致使产生了相对较小的吸附剂表面积。具有大表面积的吸附剂颗粒在俘获汞方面是有效的。因此,气化器中的条件必须被最优化以实现吸附剂的高活性。
如图3所示,当气化室50内的滞留时间增加时,吸附剂的活性(LOI)略有下降。例如,1.4至10秒的滞留时间确保烧失量保持相对较高。LOI提供了对气化室中形成的碳吸附剂的量的表示。1.4至10秒的滞留时间已被发现增强了吸附剂的产生。图4所示的数据表明固体燃料与可得到的空气的相对较高的化学计量比(SR)增加了烧失量并因此增加了吸附剂的量。保持化学计量比在0.1至1.0的范围内已被发现产生了良好的活性吸附剂。
尽管已经结合目前被认为最实用和优选的实施例对本发明进行了描述,但是应该理解,本发明并不限于所披露的实施例,而是相反地,本发明旨在覆盖被包括在所附技术方案的精神和范围内的各种变型和等效布置。
  参考编号   名称
  10   动力设备
  12b   煤
  14   锅炉
  16   废物处理系统
  18   燃料注射
  20   空气注射
  22   燃烧区域
  24   管道
  26   吸附剂注射
  28   微粒控制装置
  30   排灰装置
  32   烟囱
  34   吸附剂收集和控制装置
  36   吸附剂槽
  38   吸附剂发生器
  40   固体燃料
  41   热量
  42   气化器
  44   旋风分离器
  46   气体燃料管道
  48   输运气体
  50   气化室
  51   输运气体
  52   阻气门
  53   燃料注射器
  54   底部排放
  56   热电偶
  58   带有水套的注射器
  60   加热器
  62   耐火材料衬里
  64   冷却孔
  66   水
  68   孔
  70   煤注射器的顶部

Claims (10)

1、一种用于俘获由固体燃料燃烧形成的烟道气中的汞的方法,包括:
a.在燃烧系统(14)中燃烧燃料(12),其中燃烧过程中释放的汞被夹带在由燃烧产生的烟道气中;
b.通过在燃烧固体燃料的同时,在气化器(42)中就地使碳固体燃料部分地气化,产生热活化的含碳吸附剂;
c.将热活化的吸附剂注入(26)烟道气中;以及
d.将至少一些汞吸收在热活化的吸附剂上。
2、根据权利要求1所述的方法,其中所述热活化的吸附剂从煤、生物燃料、污水污泥、和含碳废产物中的至少一种(40)中产生。
3、根据权利要求1所述的方法,其中所述热活化的吸附剂在进行注射之前从气体气化产物中分离(44)出来。
4、根据权利要求3所述的方法,其中所述气体气化产物(46)被注入(18)煤的燃烧区域中。
5、根据权利要求1所述的方法,其中所述吸附剂在被连接至燃烧系统的废物处理系统(28、34)中就地产生。
6、根据权利要求1所述的方法,其中所述吸附剂在微粒控制装置(28)的上游被注入到烟道气中,且所述方法还包括在微粒控制装置(28)中收集具有俘获的汞的吸附剂。
7、根据权利要求1所述的方法,其中所述吸附剂在微粒控制装置(28)的下游被注入到烟道气中,且所述方法还包括在吸附剂收集装置(34)中收集具有俘获的汞的吸附剂。
8、根据权利要求1所述的方法,进一步包括在废物处理系统中收集注射的吸附剂。
9、一种用于从烟道气中俘获汞的系统,包括:
被布置以接收煤和空气的加热炉或锅炉且还包括煤和空气注射系统,和用于燃烧煤和空气的燃烧区域;
被连接以接收在燃烧区域中产生的烟道气的废物处理系统,其中所述废物处理系统还包括吸附剂注射器和吸附剂收集装置;
吸附剂发生器,所述吸附剂发生器还包括具有固体碳燃料入口的气化器,气化室,在所述气化室内固体碳燃料被至少部分地燃烧以产生吸附剂和气化的气体产物;
在气化器和吸附剂注射器之间的用以将吸附剂输送至注射器的管道;和
在气化器与煤和空气注射系统之间的用以将气化的气体产物输送至注射系统的管道。
10、根据权利要求9所述的系统,进一步包括被连接至气化器的排放孔的旋风分离器,和具有被连接至气化器和吸附剂注射器之间的管道的吸附剂排放装置以及被连接至气化器与煤和空气注射系统之间的管道的气体排放装置。
CNA2005100781134A 2004-06-14 2005-06-14 利用部分气化的煤以除去汞的方法和设备 Pending CN1715753A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/866,239 US7249564B2 (en) 2004-06-14 2004-06-14 Method and apparatus for utilization of partially gasified coal for mercury removal
US10/866239 2004-06-14

Publications (1)

Publication Number Publication Date
CN1715753A true CN1715753A (zh) 2006-01-04

Family

ID=34862180

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2005100781134A Pending CN1715753A (zh) 2004-06-14 2005-06-14 利用部分气化的煤以除去汞的方法和设备

Country Status (6)

Country Link
US (1) US7249564B2 (zh)
JP (1) JP2006000847A (zh)
CN (1) CN1715753A (zh)
CA (1) CA2509029A1 (zh)
DE (1) DE102005026746A1 (zh)
GB (1) GB2415188B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101707883B (zh) * 2007-04-20 2012-07-18 Abb技术有限公司 降低来自燃煤锅炉中的汞
CN105381680A (zh) * 2014-08-28 2016-03-09 阿尔斯通技术有限公司 使用干吸附剂喷射的酸性气体去除
CN105983297A (zh) * 2015-02-09 2016-10-05 华北电力大学 一种燃煤电站飞灰吸附剂一体化改性及喷射脱汞系统
CN111408350A (zh) * 2020-05-14 2020-07-14 沈阳鑫迪环境技术有限公司 一种利用废轮胎裂解渣制备吸汞炭材料的方法

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11179673B2 (en) 2003-04-23 2021-11-23 Midwwest Energy Emission Corp. Sorbents for the oxidation and removal of mercury
US7435286B2 (en) 2004-08-30 2008-10-14 Energy & Environmental Research Center Foundation Sorbents for the oxidation and removal of mercury
US10828596B2 (en) 2003-04-23 2020-11-10 Midwest Energy Emissions Corp. Promoted ammonium salt-protected activated carbon sorbent particles for removal of mercury from gas streams
US8156876B2 (en) * 2005-06-23 2012-04-17 Georgia Tech Research Corporation Systems and methods for integrated plasma processing of waste
US8071500B1 (en) * 2005-07-14 2011-12-06 The United States Of America As Represented By The United States Department Of Energy Thief carbon catalyst for oxidation of mercury in effluent stream
US20070163476A1 (en) * 2006-01-18 2007-07-19 Comrie Douglas C Apparatus for delivery of sorbent to a furnace during combustion
US7476372B2 (en) * 2006-06-28 2009-01-13 Holloman Corporation Flue gas scrubbing process utilizing biosolids
US7713503B2 (en) * 2006-09-12 2010-05-11 General Electric Company Sorbents and sorbent composition for mercury removal
US7504081B2 (en) * 2007-03-27 2009-03-17 General Electric Company Methods and apparatus to facilitate reducing mercury emissions
US7544339B2 (en) * 2007-03-27 2009-06-09 General Electric Company Method and apparatus for removing mercury from combustion exhaust gas
US7531153B2 (en) * 2007-03-27 2009-05-12 General Electric Company Methods and apparatus for removing mercury from combustion flue gas
US7981835B2 (en) * 2007-05-17 2011-07-19 Energy & Environmental Research Center Foundation System and method for coproduction of activated carbon and steam/electricity
US9074152B2 (en) * 2007-09-12 2015-07-07 General Electric Company Plasma-assisted waste gasification system
US7507287B1 (en) 2007-11-09 2009-03-24 United States Gypsum Company Activated carbon as mercury release control agent in gypsum calcination
US7833315B2 (en) * 2008-02-26 2010-11-16 General Electric Company Method and system for reducing mercury emissions in flue gas
US7837962B2 (en) * 2008-03-24 2010-11-23 General Electric Company Method and apparatus for removing mercury and particulates from combustion exhaust gas
CA2658469C (en) 2008-10-03 2012-08-14 Rajender P. Gupta Bromination process
US9416328B2 (en) 2010-01-06 2016-08-16 General Electric Company System and method for treatment of fine particulates separated from syngas produced by gasifier
US9555368B2 (en) 2010-03-11 2017-01-31 Ramsay Chang Chemically-enhanced sorbent activation process and method of using same
US8999278B2 (en) * 2010-03-11 2015-04-07 The Board Of Trustees Of The University Of Illinois Method and apparatus for on-site production of lime and sorbents for use in removal of gaseous pollutants
US8411275B1 (en) * 2012-04-10 2013-04-02 U.S. Department Of Energy Nanocomposite thin films for high temperature optical gas sensing of hydrogen
US8638440B1 (en) * 2012-06-27 2014-01-28 U.S. Department Of Energy Plasmonic transparent conducting metal oxide nanoparticles and films for optical sensing applications
WO2014036253A2 (en) 2012-08-30 2014-03-06 Chevron U.S.A. Inc. Process, method, and system for removing heavy metals from fluids
SG10201603906VA (en) 2012-09-07 2016-07-28 Chevron Usa Inc Process, Method, And System For Removing Heavy Metals From Fluids
US8741657B1 (en) * 2013-02-25 2014-06-03 U.S. Department Of Energy Nanocomposite thin films for optical gas sensing
EP2964376A2 (en) 2013-03-06 2016-01-13 Energy & Environmental Research Center Foundation Activated carbon sorbent including nitrogen and methods of using the same

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE396772B (sv) * 1975-09-16 1977-10-03 Boliden Ab Forfarande for extraktion och utvinning av kvicksilver ur gaser
NL7710632A (nl) * 1977-09-29 1979-04-02 Akzo Nv Werkwijze voor de verwijdering van kwik uit kwikdamp bevattende gassen.
DE3018319A1 (de) * 1979-05-18 1980-11-27 Niro Atomizer As Verfahren zur entfernung von quecksilber aus abgasen
US4843102A (en) * 1984-10-19 1989-06-27 Phillips Petroleum Company Removal of mercury from gases
US4602573A (en) * 1985-02-22 1986-07-29 Combustion Engineering, Inc. Integrated process for gasifying and combusting a carbonaceous fuel
DE3732867A1 (de) * 1987-09-25 1989-04-06 Michel Kim Herwig Verfahren und vorrichtung zum erzeugen von generatorgas und aktivierter kohle aus festen brennstoffen
US4814152A (en) * 1987-10-13 1989-03-21 Mobil Oil Corporation Process for removing mercury vapor and chemisorbent composition therefor
US5141724A (en) * 1991-10-07 1992-08-25 Mobil Oil Corporation Mercury removal from gaseous hydrocarbons
US5413477A (en) * 1992-10-16 1995-05-09 Gas Research Institute Staged air, low NOX burner with internal recuperative flue gas recirculation
CA2114331C (en) * 1993-06-10 2000-03-28 Bernard J. Lerner Removal of mercury and cadmium and their compounds from incinerator flue gases
US5409522A (en) * 1994-04-20 1995-04-25 Ada Technologies, Inc. Mercury removal apparatus and method
US5507238A (en) * 1994-09-23 1996-04-16 Knowles; Bruce M. Reduction of air toxics in coal combustion gas system and method
US5572938A (en) * 1995-02-13 1996-11-12 Praxair Technology, Inc. Oxygen lancing for production of cement clinker
US6558454B1 (en) * 1997-08-19 2003-05-06 Electric Power Research Institute, Inc. Method for removal of vapor phase contaminants from a gas stream by in-situ activation of carbon-based sorbents
WO1999008777A1 (en) * 1997-08-19 1999-02-25 Electric Power Research Institute, Inc. Apparatus and method for removal of vapor phase contaminants from a gas stream by in-situ activation of carbon-based sorbents
JPH11182835A (ja) * 1997-12-25 1999-07-06 Hitachi Zosen Corp ガス化焼却設備における排ガス処理方法および装置
US6439138B1 (en) * 1998-05-29 2002-08-27 Hamon Research-Cottrell, Inc. Char for contaminant removal in resource recovery unit
US6027551A (en) * 1998-10-07 2000-02-22 Board Of Control For Michigan Technological University Control of mercury emissions using unburned carbon from combustion by-products
US6372187B1 (en) * 1998-12-07 2002-04-16 Mcdermott Technology, Inc. Alkaline sorbent injection for mercury control
US7037474B2 (en) * 1999-03-31 2006-05-02 The Babcock & Wilcox Company Use of sulfide-containing liquors for removing mercury from flue gases
US6398848B1 (en) * 1999-04-26 2002-06-04 American Electric Power Service Method of separating a low density fly ash fraction from an overall group of fly ash
US6206685B1 (en) * 1999-08-31 2001-03-27 Ge Energy And Environmental Research Corporation Method for reducing NOx in combustion flue gas using metal-containing additives
US6264905B1 (en) * 1999-10-12 2001-07-24 Hera, Llc Method and apparatus for reducing “ammonia slip” in SCR and/or SNCR NOX removal applications
DE60101222T2 (de) * 2000-05-08 2004-08-26 Norit Nederland B.V. Verfahren zur reinigung von abgasen
US6280695B1 (en) * 2000-07-10 2001-08-28 Ge Energy & Environmental Research Corp. Method of reducing NOx in a combustion flue gas
EP1348011B1 (en) * 2000-12-04 2010-03-17 Emery Energy Company L.L.C. Multi-faceted gasifier and related methods
US6699029B2 (en) * 2001-01-11 2004-03-02 Praxair Technology, Inc. Oxygen enhanced switching to combustion of lower rank fuels
US6702569B2 (en) * 2001-01-11 2004-03-09 Praxair Technology, Inc. Enhancing SNCR-aided combustion with oxygen addition
US6699030B2 (en) * 2001-01-11 2004-03-02 Praxair Technology, Inc. Combustion in a multiburner furnace with selective flow of oxygen
US6699031B2 (en) * 2001-01-11 2004-03-02 Praxair Technology, Inc. NOx reduction in combustion with concentrated coal streams and oxygen injection
US20020127505A1 (en) * 2001-01-11 2002-09-12 Hisashi Kobayashi Oxygen enhanced low nox combustion
CA2381610C (en) * 2001-04-16 2010-07-06 Electric Power Research Institute, Inc. Method and apparatus for removing vapor phase contaminants from a flue gas stream
US6719828B1 (en) * 2001-04-30 2004-04-13 John S. Lovell High capacity regenerable sorbent for removal of mercury from flue gas
US6604474B2 (en) * 2001-05-11 2003-08-12 General Electric Company Minimization of NOx emissions and carbon loss in solid fuel combustion
US6911058B2 (en) * 2001-07-09 2005-06-28 Calderon Syngas Company Method for producing clean energy from coal
US6663690B2 (en) * 2001-09-24 2003-12-16 Johns Hopkins University Removal of elemental mercury by photoionization
US7081434B2 (en) * 2001-11-27 2006-07-25 Sinha Rabindra K Chemical formulations for the removal of mercury and other pollutants present in fluid streams
US7226570B2 (en) * 2001-12-06 2007-06-05 Electric Power Research Institute Fly ash conditioning systems
US6694900B2 (en) * 2001-12-14 2004-02-24 General Electric Company Integration of direct combustion with gasification for reduction of NOx emissions
US6521021B1 (en) * 2002-01-09 2003-02-18 The United States Of America As Represented By The United States Department Of Energy Thief process for the removal of mercury from flue gas
US6726888B2 (en) * 2002-01-25 2004-04-27 General Electric Company Method to decrease emissions of nitrogen oxide and mercury
US6790420B2 (en) * 2002-02-07 2004-09-14 Breen Energy Solutions, Llc Control of mercury and other elemental metal emissions from combustion devices by oxidation
US6960329B2 (en) * 2002-03-12 2005-11-01 Foster Wheeler Energy Corporation Method and apparatus for removing mercury species from hot flue gas
US20040011057A1 (en) * 2002-07-16 2004-01-22 Siemens Westinghouse Power Corporation Ultra-low emission power plant
US6848374B2 (en) * 2003-06-03 2005-02-01 Alstom Technology Ltd Control of mercury emissions from solid fuel combustion

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101707883B (zh) * 2007-04-20 2012-07-18 Abb技术有限公司 降低来自燃煤锅炉中的汞
CN105381680A (zh) * 2014-08-28 2016-03-09 阿尔斯通技术有限公司 使用干吸附剂喷射的酸性气体去除
CN105381680B (zh) * 2014-08-28 2020-01-17 通用电器技术有限公司 使用干吸附剂喷射的酸性气体去除
CN105983297A (zh) * 2015-02-09 2016-10-05 华北电力大学 一种燃煤电站飞灰吸附剂一体化改性及喷射脱汞系统
CN105983297B (zh) * 2015-02-09 2019-06-18 华北电力大学 一种燃煤电站飞灰吸附剂一体化改性及喷射脱汞系统
CN111408350A (zh) * 2020-05-14 2020-07-14 沈阳鑫迪环境技术有限公司 一种利用废轮胎裂解渣制备吸汞炭材料的方法

Also Published As

Publication number Publication date
CA2509029A1 (en) 2005-12-14
DE102005026746A1 (de) 2005-12-29
JP2006000847A (ja) 2006-01-05
GB2415188B (en) 2009-09-02
GB2415188A (en) 2005-12-21
GB0511869D0 (en) 2005-07-20
US20050274307A1 (en) 2005-12-15
US7249564B2 (en) 2007-07-31

Similar Documents

Publication Publication Date Title
CN1715753A (zh) 利用部分气化的煤以除去汞的方法和设备
CN101398168B (zh) 用于运行弹性燃料炉以减少污染物排放的方法和设备
US7600479B2 (en) Mercury reduction system and method in combustion flue gas using staging
US6863005B2 (en) Process to reduce mercury emission
US7544339B2 (en) Method and apparatus for removing mercury from combustion exhaust gas
US5937772A (en) Reburn process
US7833315B2 (en) Method and system for reducing mercury emissions in flue gas
US8945423B2 (en) Reduced fossil fuel in an oxidizer downstream of a biomass furnace
US5165902A (en) Method and apparatus for reducing nitrogen dioxide emissions in a dry sodium scrubbing process using humidification
AU2008200553A1 (en) Methods and apparatus to facilitate reducing mercury emissions
Qiu et al. Industrial test on coal re-burning at a 600 MW utility boiler and NO x reduction
CA2910289C (en) Reduced fossil fuel in an oxidizer downstream of a biomass furnace
Dallons et al. A study of factors influencing NO/sub x/emissions from spreader-stoker wood-residue fired boilers
Suksankraisorn et al. Co-combustion of lignite and municipal solid waste in a fluidized bed: influence of air staging
Luan et al. Burnout air in the reburning process
Sbirna et al. STUDY OF SO2 EMISSIONS RESULTED FROM COMBUSTION OF JIU VALLEY COAL
Wang et al. Experimental Study for NOx Reduction Using Four Chinese Pulverized Coals
Moilanen 04 BY-PRODUCTS RELATED TO FUELS

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20060104