CN1768346A - 用于最小化成像系统中的光程差效应的系统和方法 - Google Patents

用于最小化成像系统中的光程差效应的系统和方法 Download PDF

Info

Publication number
CN1768346A
CN1768346A CNA2004800088708A CN200480008870A CN1768346A CN 1768346 A CN1768346 A CN 1768346A CN A2004800088708 A CNA2004800088708 A CN A2004800088708A CN 200480008870 A CN200480008870 A CN 200480008870A CN 1768346 A CN1768346 A CN 1768346A
Authority
CN
China
Prior art keywords
aberration
optical
wavefront
image
demoder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004800088708A
Other languages
English (en)
Other versions
CN1768346B (zh
Inventor
小爱德华·雷蒙德·道斯基
肯尼思·斯科特·库贝拉
艾伦·尤金·巴伦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omnivision Technologies Inc
Original Assignee
CDM Optics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CDM Optics Inc filed Critical CDM Optics Inc
Publication of CN1768346A publication Critical patent/CN1768346A/zh
Application granted granted Critical
Publication of CN1768346B publication Critical patent/CN1768346B/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0012Optical design, e.g. procedures, algorithms, optimisation routines
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/284Interference filters of etalon type comprising a resonant cavity other than a thin solid film, e.g. gas, air, solid plates
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/18Eye characteristics, e.g. of the iris

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Lenses (AREA)

Abstract

提供一种用于降低来自中间媒介(52’)的成像系统的像差以及相关使用方法。该系统可为光学或基于任务的光学成像系统,包括例如相位掩模的光学器件(102),用于将该系统的波前(55’)成像为中间图像,并将波前的相位改变,使得该系统的光学传递函数对于来自媒介的与聚焦有关的像差基本不会改变。检波器(106)检测进一步被解码器(108)处理的中间图像,去除来自光学器件的相位效应,并形成基本消除了像差的最终图像(110)。另外的系统可采用编码器,其将通过媒介传播的声波的波前编码,以使得该波前对于来自媒介的声学像差基本不会改变。对波前的成像和解码倒转了波前编码的效果,并且产生基本消除了像差的声音。

Description

用于最小化成像系统中的光程差效应的系统和方法
相关申请的交叉引用
本申请要求于2003年3月31日提交的第60/459,417号美国临时申请的优先权,其全部的内容并入本文作为参考。
背景技术
光学成像系统设计的一个目标在于捕获几乎无差错的图像。因此,这些光学设计设法逐一地校正公知的光学影响,例如包括通过其来捕获图像的媒介的像差效应(aberrating effect),以及成像系统内的有害反射(例如,散射)。
对媒介的光程差效应的补偿经常是必要的,这是因为媒介使光学波前(wavefront)产生难以接受地失真,从而使图像质量下降。地球大气压是一种能够产生上述质量下降的图像的媒介的例子。上述媒介的另一个例子是湍流水。唯一不会影响光学波前的媒介是零气压的真空,这是理想化的,在实践中不能实现。
在现有技术中,已设计出自适应光学器件来克服与由媒介产生的光学失真有关的某些问题。在典型的结合有光学器件的现有技术的系统中,首先获得关于媒介导致的像差的信息。在获得该信息后,该信息被用来修改或“适应”光学成像系统的光学器件以补偿像差。因此,自适应光学器件补偿像差的能力与获得关于媒介产生的像差的准确信息直接相关。
一种用于获得关于由媒介产生的像差的信息的现有技术需要在光学成像系统的孔径光阑(aperture stop)处直接测量通过媒介传播的光学波前的相位影响。通过使用(例如)干涉计从点源(point source)测量光学波前的相位,可通过改变或“适应”光学元件(例如,光学成像系统中的可变形的反射镜)对光学波前进行校正。经常用来描述自适应光学元件的另一个术语是“波前校正”,其意味者光学波前的相位误差在孔径光阑处被校正。由媒介导致的影响而产生的像差通常随时间变化。因此,随着媒介属性的变化,光学成像系统的点散布函数(“PSF”)或空间脉冲响应也在改变。因此,自适应光学器件也必须随时间而改变,并且光学波前的相位影响必须重新确定。这些需求要进行复杂的处理,并要求非常复杂的光学成像系统。
另一种现有的技术形成已知物体的图像来确定光学成像系统的PSF。典型地,这种已知物体是从光学成像系统角度看的点源,诸如导引星(例如,不会解体的星(non-resolvable star))或人造卫星。由于PSF受到媒介的像差以及对光学成像系统特定的像差的影响,所以PSF可在曝光时间过程当中被积分(integrate),以获得光学成像系统和媒介的脉冲响应。接着,PSF被用来对随后的各个图像进行卷积,以获得与在媒介没有产生像差的情况下而获得的图像基本等同的最终图像。然而,这种技术具有显著的缺点,这是因为其需要参考点,例如在所感兴趣的物体附近并不经常可以得到不会解体的星。另外一个例子是,如果使用人造卫星作为参考,则人造卫星的运动使得难以与原像同步。在地球上更实际情况中,例如用望远镜对基于地面的物体进行成像时,经常没有单独或适当的点参考物体。
另一种现有技术的方法是在像差媒介的属性随时间改变时,获取关于媒介中的像差信息,并且不使用不可分辨的点的图像,而是从一系列图像中提取与物体有关的信息。然而,这种方法产生高电平的噪声。另外,要去除上述连续图像中的所有随时间变化的部分以准确地对成像物体进行估计,对计算能力的需求是相当大的。此外,在媒介改变时会导致误差,并且不会受益于当前像差去除计算来获得图像。
在现有技术中,一种补偿光学成像系统内或来自光学成像系统的有害的反射的方法是在该系统内战略地使用棱镜。然而,将棱镜引入到汇聚光学波前的路径会产生其它的像差。此外,在该系统内使用棱镜仅部分地补偿有害的反射,并产生热量以及吞吐量问题。
发明内容
公开了用于减少光学成像系统中的像差影响的系统和方法。一方面,光学成像系统在成像时校正通过媒介某些像差。通过对成像到系统的检波器中的光学波前进行编码,以及对来自检波器的数据进行后处理,使所述系统基本上相对于波前通过其中的媒介产生的像差不变。所述波前可以例如是由所述光学成像系统成像的电磁辐射(例如,可视波、红外线、紫外线和无线波等)的共同(common)相前(phase-front)。所述波前还可以是声学成像系统中的声波的相前。所述像差例如是与聚焦有关的像差,如Petzval(场弯曲)、像散、系统和/或媒介的温度变化、媒介中的气压(波纹)变化、媒介的与气候相关的影响等。
在另一方面,所述光学成像系统包括对波前进行编码以校正像差的影响的光学器件。所述光学器件可包括修正所述系统的光学传递函数以计算(account for)媒介的某些像差效应(例如,由泽尔尼克多项式定义的像差)的掩模(例如,相位掩模)。对波前的编码还可通过非球面的光学元件(其形成所述光学器件的一个或多个表面)来实现。
一方面,所述媒介是空气,所述波前编码光学系统工作以减少空气中的折射率变化(例如,由温度和/或气压变化引起)的影响。这样的系统例如在平版印刷术(lithography)中是有用的。
另一方面,解码器执行后处理,以通过对来自检波器的数据去除掩模的影响而生成基本没有像差的最终图像。举例来说,所述解码器通过卷积去除了图像数据中由掩模导致的空间模糊,以生成最终图像。
另一方面,低反射率的光学成像系统形成有光学器件,所述光学器件在所述系统的孔径光阑处引入倾斜,以偏离反射波,从而使得所述波由所述系统的孔径阻塞(block)。由倾斜产生的像差可通过检测图像的波前编码和后处理来进一步校正,以消除所述像差。在孔径光阑处具有或不具有倾斜的波前编码结构还可以用来进一步减少不需要的反射,同时还可获得较大的景深、像差容差和/或抑制混淆。
另一方面,波前编码光学器件可在图像观测系统中使用,以减少某些光源(例如激光)的影响。在这一方面,所述波前编码光学器件(例如,相位掩模)在空间上漫射来自这些源的入射信号,从而对接收的检波器或人眼产生较少的损害,和/或使得来自这些源的反射远低于在没有波前编码光学器件时的反射。
将美国第5,748,371号专利引用在本说明书中。
附图说明
图1显示了现有技术的光学成像系统;
图2显示了具有波前编码光学器件的一个光学成像系统;
图3显示了不具有活塞误差的分节光学成像系统的光瞳图和相应的二维光学调制传递函数(MTF)、采样PSF和光学MTF;
图4显示了具有一个分节活塞误差的分节光学系统的光瞳图和相应的二维光学MTF、采样PSF和MTF曲线;
图5显示了具有两个分节活塞误差的分节光学系统的光瞳图和相应的二维光学MTF、采样PSF和光学MTF曲线;
图6显示了用于典型的现有光学成像系统、滤波之前的光学成像系统(使用波前编码)和滤波之后的光学成像系统(使用波前编码)的调制传递函数;
图7A显示了用于典型的传统光学成像系统的图像强度图;图7B显示了用于使用波前编码的光学成像系统的图像强度图;
图8显示了用于自适应光学元件的光瞳图和相关的MTF曲线,显示了绗缝(quilting)误差和传动机构附带(stuck actuator)误差的影响。
图9显示了合成的光瞳图和描述性的MTF曲线,其示出了受绗缝误差和传动机构附带误差影响的自适应光学器件中的波前编码和后处理的效果;
图10显示了覆盖有一个相位掩模的相位函数的自适应光学器件光瞳和相关的泽尔尼克多项式;
图11示出了由于球面像差引起的某些聚焦不准的效应;
图12示出了由于像散引起的某些聚焦不准的效应;
图13示出了由于Petzval弯曲引起的某些聚焦不准的效应;
图14示出了由于轴向色差引起的某些聚焦不准的效应;
图15示出了由于温度感应像差而引起的某些聚焦不准的效应;
图16示出了由于彗形像差引起的某些像差;
图17显示了传统成像系统和(使用波前编码的)成像系统之间关于彗形像差效应的、作为聚焦不准函数的PSF比较;
图17A示出了出射光瞳光学路径差异(OPD)和多项式表示;
图17B显示了用于衍射受限系统以及受三叶草或彗形像差影响的相同系统中的聚焦不准的波在空间频率上的MTF曲线比较;
图17C显示了用于经过修改的衍射受限系统、受三叶草或彗形像差影响的相同系统、以及线性滤波后的相同系统中的聚焦不准的波在空间频率上的MTF曲线比较;
图17D显示了用于经过修改和未经过修改的衍射受限系统(具有三叶草或彗形像差,并在滤波之后)的聚焦不准的几个波的PSF曲线比较;
图18显示了具有光学元件(使用波前编码)以漫射入射辐射和减少反射的热观测系统;
图19显示了用于与图18中的元件一起使用的两个相位形式;
图20A显示了现有技术的低反射光学成像系统;图20B显示了图20A中的光学成像系统的光线截取图;
图21A显示了具有倾斜元件的低反射光学成像系统;图21B显示了图21A中的光学成像系统的光线截取图;
图22显示了用于传统光学成像系统和使用波前编码的两个光学成像系统的反射光线能量的强度分布;
图22A显示了来自传统的衍射受限系统和使用波前编码的光学成像系统的合成反射功率曲线;
图22B显示了经过规格化空间频率上的利用滤波和没有利用滤波的MTF的曲线,其用于传统的衍射受限系统和(使用波前编码的)光学成像系统;
图22C示出了与图22A的光学成像系统有关的成像出射瞳;图22D示出了所采样的PSF的、由图22C的成像出射瞳形成的网孔视图(meshview)和图像视图;
图23显示了用于声波的具有波前编码的成像系统;
图24显示了具有自动软件聚焦的光学成像系统;
图25示出了用于图24的系统的某些软件处理步骤;
图26示出了用于图24的系统的某些其它软件处理步骤;
图27图示了用于某些示例性的情况的聚焦值;
图28A显示了一个基于任务的光学成像系统;
图28B显示了一个使用波前编码的基于任务的光学成像系统;
图28C显示了又一个使用波前编码的基于任务的光学成像系统;
图29显示了一个基于任务的、使用波前编码的虹膜识别光学成像系统。
本发明的详细描述
图1示意性地显示了现有技术的光学成像系统10,其通过媒介52将物体50成像到检波器58(例如,CCD阵列)。检波器58感应物体50辐射和/或从其反射的、由光学器件56(例如,一个或多个镜头)成像到检波器58的电磁辐射54。在检波器58处成像的电磁辐射54通常由光学波前(wavefront)55来特征化,表示辐射54的恒定相前。接着,图像处理60可处理来自检波器58的数据(例如)以进行边缘锐化、滤色器阵列插值和/或强反差图像(contrast image)调整。
光学成像系统100示意性地在图2中显示,以最小化由媒介52’引入的某些像差(例如,与误聚焦有关的像差)。通过光学器件102(例如,一个或多个光学透镜或反射镜)的操作,成像系统100通过媒介52’将物体50’成像到检波器106,检波器106将聚焦的电磁辐射54’转变为输出数据111。检波器106例如是CCD阵列、COM阵列、IR检波器(例如,测辐射热仪)等。
除了执行成像功能,光学器件102还用相位函数对来自物体50’的光学波前55’进行编码,这将在下面进行详细描述。解码器108处理来自检波器106的数据以生成最终图像110,最终图像110基本上等价于在没有媒介52’引入的像差情况下获得的图像。在一个实施方案中,解码器108倒转某些由光学器件102使用相位函数进行的波前55’的波前编码所引入的空间效应。作为描述,解码器108可使用卷积核对数据111进行卷积,该卷积核与表征光学器件102内的一个或多个球面的相位函数有关。解码器108还可从所检测到的图像中提取某些信息。这些信息例如可以是与成像光圈有关的编码、或与检测到的物体位置有关的编码。在这些实施例中,最终的图像110不必适于人来观看,而是可适于机器识别。
更具体地说,通过光学器件102的操作,成像到检波器106的电磁辐射54’(由物体辐射和/或反射)不会形成清晰的图像;相反,在成像系统100中,在检波器106处的被聚焦的电磁辐射54’在空间上变模糊(blur),如模糊指示104所示。检波器106感应到被聚焦的、在空间上模糊的电磁辐射54’。接着,解码器108用来例如通过卷积去除空间模糊效应,从而利用最初产生模糊的相位形式。通过改变波前55’的相前,光学器件102修改光学成像系统100的光学传递函数;该光学传递函数与用于检波器106处的最佳聚焦位置周围的聚焦位置范围的光学传递函数相同(最佳聚焦位置确定为,光学器件102似乎不对波前55’进行编码)。
在一个实施例中,媒介52’是地球大气。在另一实施例中,媒介52’是湍流水。媒介52’可以是除了理想的零气压真空外能够传输电磁辐射54’的任意媒介。
电磁辐射54’例如可以是可见光辐射、红外线辐射、紫外线辐射、无线电波或电磁光谱中的任意其它部分,或是它们的组合。电磁辐射54’还可以是声辐射。
为了对波前55’进行编码,光学器件102包括使用相位函数对波前55’的相位进行修改的相位掩模103。掩模103可以是单独的光学元件、或者可以与光学器件102的一个或多个光学元件成为一个整体;例如,掩模103还可以在上述光学元件的一个或多个表面中形成。作为描述,掩模103包括的相位函数族(各个相位函数等价于表面高度分布)可表示如下:
       可分离式(x,y)=∑αi[sign(x)|x|bi+sign(y)|y|bi]
                          其中,
                   |x|≤1,|y|≤1,以及
x大于等于0时,sign(x)=+1,否则sign(x)=-1。
另一个示例性的相位函数族可描述为:
不可分离式(r,theta)=∑αirbicos(witheta+phii)其中,求和重复下标i次。另一个相位函数族在第10/376,924号共有的未决美国申请中描述,其申请日为2003年2月27日,名称为“常数分布路径光学器件”,其内容作为参考并入本文。在实践中,不同的相位函数或不同的相位函数族可以组合形成修改相位函数的新的波前。
光学器件102可附加地包括一个或多个自适应光学器件105,以帮助校正由于媒介52’而在波前55’内产生的失真。在一个实施方案中,元件105和掩模103包括一个和相同的光学结构。
掩模103应用的相位函数所带来的一个有益效果是,它可以设计成很少吸收或几乎不吸收来自电磁辐射54’的能量,从而避免了需要增加曝光或照明,并且还保持最小化媒介52’的某些像差效应。在一个实施方案中,相位掩模103位于系统100内的下列位置处或附近:主平面、主平面的图像、孔径光阑、孔径光阑的图像、透镜或反射镜。
媒介52’产生的像差效应可模型化,以优化由系统100进行的图像处理,(例如)以使得系统100对于在像差的广谱上与聚焦有关的像差基本不变化。媒介52’产生的像差可包括例如色差、场弯曲、球面像差、像散以及经常与塑料或红外线(IR)光学器件相关的温度或压力有关的误聚焦。
为了将相位函数编码到波前55’上,相位掩码103可例如具有影响波前55’的相位的不透明性、厚度和/或折射率的变化。平面或立体全息照相器件或其它相位改变元件可用作掩模103。更具体地说,在波前55’中由媒介52’引入的误差或像差可通过下面的几何级数来表征:
             φ=a+bx+cx2+cx3+…其中,第一项表示恒定相移,第二项表示相位倾斜,第三项表示误聚焦,第四项表示立方误差。所有偶数项是与聚焦有关的误差。所有具有偶数指数的项是与聚焦有关的误差,例如色差、场弯曲、球面像差、像散以及与温度或压力有关的误聚焦。通过波前55’的编码,在光学成像系统100中由媒介52’引入的与聚焦有关的误差被减少或最小化。光学器件102还进一步包括校正元件以减少与聚焦无关的误差,即,在上述几何级数中的奇数指数项。上述误差包括相移和彗形误差。所有的误差或像差可由波前编码光学器件102和掩码103的组合来控制。
泽尔尼克多项式分析可用来表征由媒介52′在波前55’中引入的误差或像差。可使用Siedel像差来确定光学器件102(和掩模103)的敏感度以最小化上述像差。奇数和偶数的泽尔尼克多项式通过下面的关系式给出:
U n m o ( ρ , φ ) U n m e ( ρ , φ ) = R n m ( mφ ) cos sin - - - ( 1 )
其中,径向函数Rn m(ρ)对于整数n和m(n≥m≥0)定义为
Figure A20048000887000152
这里,φ是方位角,且0≤φ≤2π,ρ是径向距离,其值介于0和1之间(且包括0和1)。偶数多项式和奇数多项式有时也可表示为:
Z n - m ( ρ , φ ) = U n m o ( ρ , φ ) = R n m ( ρ ) sin ( mφ ) - - - ( 3 )
Z n m ( ρ , φ ) = U n m c ( ρ , φ ) = R n m ( ρ ) cos ( mφ ) - - - ( 4 )
表1显示了一些代表性的泽尔尼克像差的数学式以及使用光学器件102是否能够校正这些误差。
                                 表1
  #   数学式 像差   静态误差   动态误差
  0   1 活塞   可校正   可校正
  1   ρcosθ X倾斜   NA   NA
  2   ρsinθ Y倾斜   NA   NA
  3   2ρ2-1 聚焦   可校正   可校正
  4   ρ2cos2θ 像散   可校正   可校正
5 ρ2sin2θ 像散(45°) 可校正 可校正
  6   (3ρ2-2)ρcosθ 彗形像差   可校正   用固定的线性滤波不能完全校正
  7   (3ρ2-2)ρsinθ 彗形   可校正   用固定的线性滤波不能完全校正
  8   6ρ4-6ρ2+1 球面   可校正   可校正
  9   ρ3cos3θ 三叶草形   可校正   用固定的线性滤波不能完全校正
  10   ρ3sin3θ   三叶草形   可校正   用固定的线性滤波不能完全校正
  11   (4ρ2-3)ρ2cos2θ   球面和像散   可校正   可校正
  12   (4ρ2-3)ρ2sin2θ   球面和像散   可校正   可校正
  13   (4ρ4-12ρ2+3)ρcosθ   彗形   可校正   用固定的线性滤波不能完全校正
  14   (4ρ4-12ρ2+3)ρsinθ   彗形   可校正   用固定的线性滤波不能完全校正
  15   20ρ6-30ρ4+12ρ2-1   球面   可校正   可校正
表1显示了用于大量像差的、能够由光学器件102(包括掩模103)校正的静态误差和动态误差。在一个实施例中,由彗形像差产生的静态误差和动态误差可用光学器件102校正。在另一个实施例中,对于通常不知道的倾斜,不能够用光学器件102校正x倾斜和y倾斜像差,但是能够通过其它的方法来校正。彗形和三叶形像差是能够校正的球面像差,尽管需要专门的信号处理。
如果媒介52’例如是紊流媒质(例如地球大气),则仍然可使用自适应的光学器件105。然而,因为光学器件102(和掩码103)的缘故,由单独自适应光学器件(例如,自适应光学器件105)(如果使用的话)执行的像差校正量被减少。因此,光学成像系统100可设计为通过优化系统100和为系统100提供容错,来最小化系统的彗形和横向色差,以及彗形像差和横向色差增加的概率。更具体地说,通过光学器件102(具有掩模103),以及对系统100进行优化以最小化健壮的成像系统100(其最小化媒介52’产生的像差效应)的彗形像差和横向色差结果。
如将在下面将要进行详细描述的一样,本领域的技术人员应该认识到,自适应光学器件105可包括分节镜(segmented mirror),所述分节镜的每一部分是可移动的(或被致动的),以使波前适应期望的相位形式。本领域的技术人员还应该认识到,活塞误差是可由这些分节镜所引起。幸运的是,活塞误差是也可通过具有光学器件102的光学成像系统100来最小化的像差的一种形式。
图3示出了描述分节自适应光学器件的瞳孔函数105A。瞳孔函数105A在其中心部分具有模糊106A,并且在各节交叉处没有活塞误差。经过瞳孔函数105A的波前的光学调制传递函数(“光学MTF”,或“MTF”)示意性地在曲线图110A中显示。曲线图110A显示了用于瞳孔函数105A的二维(2D)MTF,并示出了受衍射限制的性能。曲线图112A具体地显示了2D MTF沿垂直(y)和水平(x)轴的轨迹,该轨迹具有平稳但随空间频率的增加而减小的调制。由检波器采样的样本点散布函数(“PSF”)在曲线图114A中显示。
图4示出了描述另一个分节自适应光学器件的瞳孔函数105B。瞳孔函数105B在其中心具有模糊106B,并具有一个具有pi/2相移活塞误差的节107B。曲线图110B描述性地显示了经过瞳孔函数105B的波前的MTF。曲线图110B显示了用于瞳孔函数105B的2D MTF,并示出了由于节107B的缘故而产生的较少的受衍射限制的性能。曲线图112B具体地显示出随空间频率的增加对比度降低(与曲线图112A相比)。在曲线图114B中显示了检波器采样的采样点扩展函数(“PSF”)。曲线图114B的采样PSF由于空间分辨率的降低而显著地加宽(与曲线图114A中的PSF相比)。
图5与图4相似,示出了相同的分节光学自适应光学器件,但是具有在瞳孔函数105C中显示的两个分节活塞误差。瞳孔函数105C具有两个节107C,其每一个具有pi/2相移活塞误差。瞳孔函数105C具有同上的中心模糊106C。曲线图110C示例性地显示经过瞳孔函数105C的波前MTF。曲线图110C显示了用于瞳孔函数105C的2D MTF,并示出了由于分节107C的相移引起的更大的对比度降低。在曲线图114C中显示了检波器采样的采样点扩展函数(“PSF”)。曲线图114C的采样PSF由于空间分辨率的进一步降低而显著地加宽(与曲线图114B中的PSF相比)。
MTF曲线在图6中绘出以进一步示出活塞误差是如何影响光学系统的。图6中的四组MTF曲线中的每一组被显示为具有和不具有活塞误差。在曲线图120中,显示了与传统光学成像系统(见图1)对应的一组MTF;光学器件56使用具有例如在图2-4中所示的瞳孔函数的自适应光学器件。如图所示,曲线图120中的MTF具有随着增加的空间频率和活塞误差而减小的MTF(这些MTF曲线与图3-5中的MTF曲线相同)。
在曲线图122中,显示了与图2中的成像系统100对应但在由解码器108处理之前的另一组MTF曲线。如图所示,曲线图122中的MTF通常显示了在大部分的空间频率上比曲线图120中的MTF小的对比度;然而,这些MTF还具有由于活塞误差而引起的空间频率范围上的较少变化。尤其要注意到,曲线图122的MTF基本恒定,而与活塞误差无关。还应该注意到,尽管活塞误差在曲线图120的MTF中产生零点(zero),但是在曲线图122的MTF中未产生零点。由于MTF表示图像信息,所以MTF中的零点等价于图像信息的丢失。因此,曲线图122中所示的光学成像系统去除了由MTF零点(如在曲线图120中所示)导致的信息丢失。
在曲线图124中,显示了表示由解码器108滤波后的MTF曲线的另一组MTF;这些MTF曲线近似显示了曲线图120中(在传统成像系统中)不具有活塞误差的受衍射限制的MTF的对比度。曲线图126更详细地示出了这一比较,显示出光学成像系统100在扩展的聚焦深度上提供高对比度,同时最小化活塞误差效应。解码器108进行的滤波假设了没有信息与特定的活塞误差相关。如果解码器108获得活塞误差的量、或可以估计活塞误差的量,则可以获得更好的结果。解码器108能够看作是形成的图像的信息解码器。解码器108能够使用的与图像信息有关的信息越多,那么解码处理会更好。
图10显示了用于图6和图7B中描述的光学系统的出射光瞳相位函数(等价于表面高度)和常规的系统参数。这个瞳孔函数具有非对称形式,并由所示的最开头的二十一阶泽尔尼克多项式中的第十八项数学表示。
图7A和7B显示了图1中的传统系统10和图2中的系统100(使用波前编码)的采样PSF,其中,系统10和系统100都受到具有图3-5中的瞳孔函数105的自适应光学器件产生的活塞误差影响。图7A和7B的采样PSF与图6中的MTF对应。特别地,传统的成像系统10产生如图7A所示的PSF(它们是在上面图3-5中显示的相同PSF),其显示了因为各个分节具有活塞误差而使得PSF加宽(空间分辨率降低)。作为比较,具有光学器件102(和掩模103)和解码器108的光学成像系统100产生图7B中所示的PSF。同样,解码器108不具有关于活塞误差量的信息。图7B中的PSF描述了分辨率作为被分节的活塞误差函数的微小改变。因此,应该认识到上面的描述提供了校正由不理想的自适应光学器件产生的某些像差的解决方案。光学器件102进行的波前编码有利于这种校正。
前一段中的内容还适用于其它类型的误差,包括与移动上述自适应光学器件的分节的机电或压力机械的传动机构(actuator)关联的问题。上述误差可在这里描述为“传动机构附带的(stuck actuator)”误差。某些其它误差描述为“绗缝误差(quilting errors)”,它们是由位于可变形反射镜后面的多个传动机构所产生。传动机构附带和绗缝误差能使系统MTF显著减少,从而获得劣质的最终图像。
绗缝误差在下面使用一组周期的高斯分布来模型化,每个高斯分布具有半个波的波前误差。传动机构附带误差还使用单个的具有五个波的波前误差峰值的高斯分布来模型化。利用这些模型,图8显示了光瞳图200和产生的MTF 202,并描述了具有和不具有传动机构附带和绗缝误差的对比度性能。光瞳图200A显示出无误差的光瞳;光瞳图200A相关的MTF具有最高的对比度。光瞳图200B与具有绗缝误差的光瞳对应,光瞳图200B相关的MTF是上述无差错MTF的降级。光瞳图200C与具有传动机构附带误差的光瞳对应,其相关的MTF进一步降级,如图所示。
图9示出了MTF如何通过波前编码来改进,例如通过图2中的系统100的处理。相位掩模103配置为具有适当的表面函数,以修改波前相位并产生瞳孔函数204A、204B:瞳孔函数204A尤其适于控制绗缝误差;瞳孔函数204B尤其适于控制传动机构附带误差。图9还在曲线图206A、206B中示出了相应的MTF:曲线图206A描述了具有绗缝误差的MTF;曲线图206B描述了具有传动机构附带误差的MTF。在曲线图206A中,如果图1中的系统10的光学器件56包括具有绗缝误差的自适应光学器件,则可产生MTF 208A。在曲线图206B中,如果图1中的系统10的光学器件56包括具有传动机构附带误差的自适应光学器件,则可产生MTF208B。
在光学器件102包括具有传动机构附带误差和绗缝误差的自适应光学器件105(分别具有出射光瞳204A和204B)时,曲线图206A、206B中的其它MTF由图2的系统100内的处理产生。在曲线图206A中,MTF210A表示在解码器108进行滤波之前的、具有和不具有绗缝误差的MTF。在曲线图206B中,MTF 210B表示在解码器108进行滤波之前的、具有和不具有传动机构附带误差的MTF。在曲线图206A中,MTF 212A表示在解码器108进行滤波之后的、具有和不具有绗缝误差的MTF。在曲线图206B中,MTF 212B表示在解码器108进行滤波之后的、具有和不具有传动机构附带误差的MTF。因此,MTF 212A、212B示出了系统100中所产生的MTF(在由掩模103进行波前编码,以及由解码器108进行后处理之后)大致与无误差的MTF 214(对应于图8中的光瞳200A)相同,这样,不管绗缝误差和传动机构附带误差而提供了接近理想的图像质量。注意到图8中的MTF 202(还在图9中显示为214、208A和208B)作为传动机构附带误差和绗缝误差的函数大范围地变化。在上述光瞳处的相位由相位掩模103改变后,系统100中的MTF中没有零点,MTF210A、210B基本恒定而与光瞳误差无关,显示了系统对于自适应光学器件误差是不变的。
图9中的出射光瞳204A和204B由恒定分布(constant profile)路径光学器件(该器件在共有的第10/376,924号美国专利申请中提出)得到。这些光学器件的特定路径是光轴(例如,图2中的轴109)周围的正方形的四条边。每个方形每一边即路径在该实施例中具有相同形式。对于出射光瞳204A和204B,路径的形式可由第二阶的多项式描述,每一路径都由常量来调制,所述常量对于每一个路径是不同的。“交叉路径”调制的函数式由第四阶多项式给出。出射光瞳中的路径数目巨大,基本构成了连续函数。对于出射光瞳204A,限定常数分布路径参数的参数是:沿路径的形式:C(x)=-5.7667+0.7540x2,|X|<1交叉路径的形式:
D(y)=0.0561×[-3.3278+35.1536y-34.3165y2-7.5774y3],0<y<1其中,各个路径的长度被认为是规格化的单元长度,从光学中心到表面边缘的距离被认为是规格化的单位距离。对于各个路径来说,距离光学中心的相同距离被类似于交叉路径的形式调制。对于出射光瞳204B的参数是:
沿路径的形式:C(x)=-1.7064+1.2227x2,|X|<1
交叉路径的形式:
D(y)=0.1990×[-6.4896+7.4874y+5.1382y2-4.9577y3],0<y<1
尽管没有显示,通过组合两个或更多的常数分布路径光学器件可以形成给瞳孔函数204A和204B相似或改进结果的瞳孔函数。
其它已知或未知的像差还可以由图2中的光学成像系统100来解决。例如,注意,“彗形像差”可具有“与聚焦有关”的组件和与聚焦无关的其它组件。下面的仿真显示出在使用不具有先验彗形像差知识的系统100时,彗形像差效应被减小。下面的描述应用了根据等于第五阶和最开头的十三阶泽尔尼克像差系数的光学像差的波前编码像差校正。系统100的波前编码还可以操作来校正和去除其它类似于误聚焦的像差,包括球面像差、像散、Petzval或场弯曲、轴向色差、与温度相关的误聚焦、和/或与生产和组装有关的误聚焦。不是类似于误聚焦的像差与彗形像差有关。下面的描述提供了对类似于误聚焦的像差和其它与聚焦无关的像差的解决方法。为此,描述第三和第五阶Seidel波前像差。最后,在理解第三和第五阶Seidel波前像差后,泽尔尼克波前像差的部分集合可以根据波前编码来理解。
类似于误聚焦的像差具有的特征是,像差子集可通过移动像平面来得到校正。如果所有的像差子集同时得到校正(就通过延伸聚焦深度的实施例而论),则可以基本消除像差效应。下面,我们具体地描述类似于误聚焦的球面像差、像散、Petzval弯曲、轴向色差和与温度相关的像差。
图11示出了由光学元件(在形式上为透镜)230产生的球面像差。该球面像差导致了不同的径向区域232(232A、232B)以在沿光轴234的范围236的不同位置处聚焦。区域232由于与该区域关联的误聚焦而沿范围236产生聚焦变化。球面像差是类似于误聚焦的像差,由于透镜230的各个区域232在理论上可以通过移动像平面231实现正确的聚焦。如果聚焦深度延伸覆盖区域236,则所有的区域232可以在同时实现正确的聚焦。
图12示出了由光学元件(在形式上为透镜)240产生的像散。像散使透镜240的正交轴沿光学轴244的不同位置242实现聚焦。这种像差同样是类似于误聚焦的像差,这是因为各个轴通过移动像平面(沿着范围246)在理论上能够产生适当的聚焦。如果聚焦深度大到覆盖了范围246,使得来自两个轴的光实现适当聚焦,那么像散效应就基本上去除了。
图13示出了来自光学元件(在形式上为透镜)250的Petzval弯曲。Petzval弯曲将平面物体成像为弯曲图像252。因此,位于距离光轴254不同径向距离位置处的物点基本上用不同的误聚焦值(即在范围256上)来成像。Petzval弯曲是类似于误聚焦的像差,这是因为平面物体的各个点通过在范围256上移动像平面能够在理论上实现正确的聚焦。如果聚焦深度大到覆盖区域256,则Petzval弯曲效应就可基本消除。
图14示出了来自光学元件(在形式上为透镜)260轴向色差。轴向色差使得最佳的聚焦位置262为波前或亮度颜色的函数;例如,262A是用于红光的最佳聚焦位置,而262B是用于蓝光的最佳聚焦位置。遍布在波前范围的聚焦导致了散焦范围264。轴向色差是类似于误聚焦的像差,这是因为移动像平面能够在理论上将以各种颜色形成的图像进行适当聚焦。如果聚焦深度延伸以使得所有颜色的图像在范围264上聚焦,则轴向色差效应能够基本消除。
图15示出了与光学元件(在形式上为透镜)270有关的温度相关像差。温度相关像差是由于在实际长度、距离和直径方面的改变,以及相关光学材料的折射率的改变而产生的。例如,上述改变可由于环境温度的变化而发生,环境温度的变换使透镜270和/或相关的光学机械结构膨胀或收缩。在一个实施例中,透镜270由于上述温度变化而膨胀或收缩,例如由轮廓272所示出的那样。在另一个实施例中,安装结构由于上述温度变化而膨胀或收缩,如膨胀线274所示。在另一个实施例中,透镜270的折射率可变化。某些光学成像系统因此可将热变化模型化为:最佳的聚焦位置作为温度的函数随温度变化,例如,在散焦范围276上(依赖于温度)。对于某些其它的光学系统,其它的像差(例如球面像差和像散)还通过温度的变化而引入。温度相关像差因此可以看作是类似于误聚焦的像差,这是由于像平面理论上的作为温度函数的移动可以减少温度变化的影响。如果聚焦深度大到能够覆盖范围276(并且,如果想要的话,其它像差,例如球面像差和像散),那么温度效应基本上可以消除。
图16示出了与光学元件(在形式上为透镜)280有关的彗形像差。彗形像差是偏离轴的像差,其中透镜的不同区域以不同的放大倍数进行成像。彗形像差效应随着物点与光轴的距离而线性地增加,产生了沿着像平面285的场轴(field axis)283的模糊282。
彗形像差是不同于误聚焦像差(例如场弯曲、色差)的特殊像差。如果解码器108仅使用线性滤波器,系统100的波前编码不会完全消除彗形像差效应;这样,通过增加波前编码不能改变彗形像差的一些特征的成像效应。图17提供了在成像系统10和成像系统100中由彗形像差产生的PSF的图示实施例,其每一个都为误聚焦的函数。具体地说,图17显示了用于系统10中的一个波的彗形像差和误聚焦(部分290A)和成像系统100的一个波的彗形像差和误聚焦(部分290B)的PSF比较;图17还显示了用于系统10中的两个波的彗形像差和误聚焦(部分290A)和成像系统100的两个波的彗形像差和误聚焦(部分290B)的PSF比较。图17中的误聚焦量从零到一个波长从左到右变化。波前编码光学器件(即,相位掩模103的相位形式)和解码器108中信号处理不会产生彗形像差量的先验知识。但是应该注意到,少量的彗形像差效应被降低但不会在部分290B、292B中消除,这表示对成像系统10进行了改进。
图17A描述了形成图17中的波前编码图像290B和292B(在解码108之后示出)的光学系统(掩模103)的出射光瞳处的相位函数。该相位形式表示在具有五个项的极坐标中。该相位形式是五个项与其相应的权的总和。该相位函数的波峰到波谷的相位偏移约为一个波长。
为了获得如在部分290B、292B中的成像,相位掩模103可例如在系统100的出射光瞳处使用不可分离的球面相位;解码器108的信号处理则对图像数据执行逆卷积(reverse convolution),以生成部分290B、292B的PSF。掩模103的不可分离的相位意味者解码器108使用不可分离的2D信号处理。为了对物体进行精密采样,假设光学分辨率与解码器106的分辨率是匹配的。应该注意,模糊的大小用系统10的部分290A、292A中的误聚焦着重指出(accentuate)。相反,光学成像系统100在零误聚焦处生成略微减少的模糊,并从而由于误聚焦(在部分290B、292B)的变化而很小(与光学成像系统10中的变化相比)。尽管彗形像差效应以波前编码得到降低,但是误聚焦效应的降低基本不会通过增加彗形像差而受到影响。
为了充分理解三叶草像差和彗形像差特殊性质,如在表1中所示,参照图17B中的曲线图。曲线图170A显示了从受衍射限制系统(其误聚焦从0、1/2到1个波变化)的误聚焦效应得到的MTF。MTF在上述范围急剧地变化,并甚至对于一个波的误聚焦具有MTF零点。曲线图170B显示了用于受衍射限制系统(其在与误聚焦相同的范围中附加地具有一个波长的三叶草像差)的MTF。上述三叶草像差的形式在表1中被列为#9。应该注意到,三叶草使得在所有误聚焦值处MTF下降,但是在这些误聚焦中的变化小于在曲线图170A中的变化。曲线图170C显示了用于附加地具有三个波长的彗形像差的受衍射限制系统的MTF。该彗形像差的形式在表1中被列为#6和#7,具有以相同比例增加的两种像差。应该注意到,彗形像差还导致了在所有误聚焦值处的MTF下降,但是误聚焦中的改变远小于在曲线图170A中显示的改变。还应该注意到,曲线图170B和170C中的MTF在所显示的MTF中不具有零点。在曲线图122(图6)中显示的MTF显示了MTF随着像差的相同改变。因此,增加三叶草和彗形像差,使整个系统对误聚焦的影响不敏感(至少对于上述像差的一些部分)。那么,将三叶草和彗形像差作为系统100中的掩模103的一部分来使用是可能的。
尽管三叶草和彗形像差能够单独用作系统100中的掩模103的相位函数,但是其它能够提高成像性能的组合也是可能的。考虑图17C中的MTF曲线图。曲线图171A显示了作为用于具有图17A的波前相位函数的系统100的误聚焦函数的MTF。较长较低的MTF表示线性滤波之前的MTF,仅描绘到空间频率值18的MTF是在线性滤波之后的MTF。171A的MTF对于所有的误聚焦值是较高的,但是显示了较小的由于误聚焦产生的变化(与图170A中的系统10相比)。曲线图171B显示了作为用于具有图17A中的相位函数加上图170B的三叶草像差的系统的误聚焦函数的MTF。曲线图171C显示了作为用于具有图17A中的相位函数加上图170C的彗形像差的系统的误聚焦函数的MTF。应该注意到,在图171B和171C中,将三叶草和彗形像差增加到图17A中的相位显示出对误聚焦的影响更加不敏感。还应该注意到,在仅使用图17A中的相位时,增加三叶草和彗形像差略微降低了曲线图171A的MTF。系统100的解码器108对于包括有图17C中的三个不同相位函数的三种版本的掩模103可以是不同的。这些MTF显示出三种版本的掩模103能够通过去除MTF零点来保持物体信息,但是用于三种版本的掩模103的MTF中的改变支配对解码器108的操作的改变。解码器108能够估计直接来自解码器106的图像的改变,或可以得知外部源的改变并相应改变。
如果系统100的光学器件102包含三叶草和彗形像差,则通过增加专门的像差通常能够提高系统性能。这由滤波后的PSF显示,这些PSF用于作为图17D中的误聚焦函数的多种PSF。误聚焦值是0、1/2和1个波长,如图17、17B和17C所示。图17D中的曲线图172A显示了以包括有曲线图171B的相位的掩模103进行线性滤波后的PSF。解码器108配置成执行线性滤波,通过线性滤波得到零误聚焦的优质PSF。该相同的滤波还应用到其它的误聚焦PSF。应该注意到,曲线图172A的PSF是简化的,并作为误聚焦函数具有很小变化。曲线图172B显示了在掩模103仅包含三叶草像差时从曲线图170B得到的PSF。再次选择解码器108以通过线性滤波产生优质的不具有误聚焦的PSF。应该注意到,与曲线图172B中的PSF相比,作为误聚焦函数的曲线图172A中的PSF是更简洁的。增加图17A的相位函数可以在三叶草像差出现在光学器件102中时,使得光学系统(未示出)的响应平滑。在彗形像差出现在系统102中时亦如此,如曲线图172C和172D所示。在光学器件102仅包含彗形像差(如曲线图170C中的彗形像差的数量和形式)时,滤波后的PSF不像光学器件102还包含图17A中的相位函数时的那样简洁。
因此,特殊的三叶草和彗形像差可以在系统100的光学器件102中单独使用,但是PSF和/或MTF常常可通过在光学器件102中增加其它像差而得到改进。
纵观类似于误聚焦的像差,可形成第三和第五阶Seidel波前像差之间的关系。Seidel像差允许将波前像差分解成对于主要光学误差具有物理意义的分量像差。虽然第三和第五阶Seidel像差不是正交的,但是它们对于许多类型的成像系统的确能够实现对波前像差的分析理解。下面,我们描述第三和第五阶Seidel像差,以及它们与类似于误聚焦的像差的关系。表2显示了第三阶Seidel像差。表3显示了第五阶Seidel像差。
                              表2
名称          像差系数  数学式            与类似于误聚焦的像差的
                                          关系
 活塞   W000   1   如果活塞像差在光瞳上是恒定的,则对图像没有影响
 散焦   W020   ρ2   原始的类似于误聚焦的像差
 倾斜   W111   Hρcos(θ)   如果倾斜在光瞳上是恒定的,则整个图像移位。对于图像或波前编码没有影响
 依赖于场的相位   W200   H2   对图像没有影响
 球面像差   W040   Hρ4   类似于误聚焦的像差
 彗形像差(第三阶)   W131   Hρ3cos(θ)   特殊像差
 像散   W222   H2ρ3cos(θ)2   类似于误聚焦的像差
 场弯曲   W220   H2ρ2   类似于误聚焦的像差
 失真   W331   H3ρcos(θ)   对波前编码没有影响
 依赖于场的   W400   H4   对图像没有影响
  相位
H表示像点的高度,(ρ,θ)表示光瞳的极坐标变量
                              表3
名称            像差系数  数学形式        与类似于误聚焦的像差的
                                          关系
  第五阶球面像差   W060   P6   类似于误聚焦的像差
  第五阶彗形像差   W151   Hρ5cos(θ)   特殊像差
  第五阶像散   W422   H4ρ2cos(θ)2   类似于误聚焦的像差
  第五阶场弯曲   W420   H4ρ2   类似于误聚焦的像差
  第五阶失真   W511   H5ρcos(θ)   对波前编码没有影响
  矢状倾斜的球面像差   W240   H2ρ4   类似于误聚焦的像差
  切线倾斜的球面像差   W242   H2ρ4cos(θ)2   类似于误聚焦的像差
  立方(椭圆)彗形像差   W331   H3ρ3cos(θ)   特殊像差
  线形(椭圆)彗形像差   W333   H3ρ3cos(θ)3   特殊像差
  依赖于场的相位   W600   H6   对图像没有影响
H表示像点的高度,(ρ,θ)表示光瞳的极坐标变量
在第三阶和五阶Seidel像差中存在四种类型的彗形像差,它们是用于在某种程度上减小对于误聚焦的敏感性的特殊像差,如上所示。线性相位像差,例如倾斜和失真不由波前编码直接校正;但是典型地,线性相位像差不会如其它像差那样对分辨率的降低产生作用。某些像差(例如,活塞和等相像差)在整个出射光瞳上恒定时对图像没有显著的影响。如果活塞和相位项在出射光瞳上改变,如在分节的自适应光学器件(如上所述)中发现的那样,则产生的波前像差可分解为分量像差并进行分析。根据Seidel像差,可以发现泽尔尼克像差多项式的项和与误聚焦的像差之间的关系。
泽尔尼克像差是圆形区域上的正交多项式的分解。它们的正交性质使得泽尔尼克成为许多种分析和优化的有用工具。表4显示了最开头的13个泽尔尼克多项式的项,并描述了它们和Seidel像差及类似于误聚焦的像差的关系。
                                  表4
项#       数学形式                和Seidel像差              的关系和类似于误聚焦的像
                                                            差的关系
  1   1   活塞   对图像没有影响
  2   ρcos(θ)   倾斜   倾斜没有影响波前编码
  3   ρsin(θ)   #2的旋转版本   倾斜没有影响波前编码
  4   2ρ2-1   误聚焦和活塞   类似于误聚焦的像差
  5   P2cos(2θ)   像散和误聚焦   类似于误聚焦的像差
  6   ρ2sin(2θ)   #5的旋转版本   类似于误聚焦的像差
  7   (3ρ2-2)cos(θ)   彗形和倾斜   特殊像差
  8   (3ρ2-2)sin(θ)   #7的旋转版本   特殊像差
  9   6ρ4-6ρ2+1   球面像差、误聚焦和活塞   类似于误聚焦的像差
  10   ρ3cos(3θ)   特殊像差
  11   ρ3sin(3θ)   特殊像差
  12   (4ρ2-3)ρ2cos(2θ)   切线倾斜的球面像差、像散和误聚焦   类似于误聚焦的像差
  13   (4ρ2-3)ρ2sin(2θ)   #12的旋转版本   类似于误聚焦的像差
(ρ,θ)表示光瞳极坐标变量
泽尔尼克项#7和#8与彗形像差有关,并因此是特殊的能够用来控制如上所述的误聚焦的效应的波前编码项。泽尔尼克项#10和#11也是相同形式的特殊项。一个特殊的波前编码表面在极坐标中表示为ρ2cos(3θ)。该项在直角坐标与数学式[X3+Y3-3(XY2+X2Y)]有关。三次方项[X3+Y3]能用来形成直角可分离的波前编码表面(在相位掩模103上)。较高阶的泽尔尼克项由第七阶以及较高阶的Seidel像差构成,未示出。
利用泽尔尼克波前分析,对波前误差的均方根(RMS)被计算为每个泽尔尼克多项式项的加权的RMS值。系统100的波前编码可允许对波前误差进行有效的RMS,其中在泽尔尼克展开式中的类似于误聚焦的像差的加权被认为是零,这是因为上述影响可以用波前编码来控制。在一个实施方案中,对波前误差的有效RMS可看作是对泽尔尼克多项式第4、5、6、9、12和13项的加权等于零。在解码器108可为动态的另一个配置中,泽尔尼克多项式第7、8、10和11项还可被看作是等于零。
在光学成像系统中,波前编码具有其它的有益效果。例如,当在温度观测(thermal sighting)系统中使用时,例如在侦察机中,将波前编码光学器件包含进来能够漫射或消除系统对不需要的辐射的响应,例如来自目标激光。通过实施例的方式,图18显示了一个温度观测系统300,其包括具有一个或多个光学器件304、光学器件306(例如,使用图2中的相位掩模103)的光学成像系统302,以及检波器308(检波器308可以是人眼或其它例如CCD的监测器或热检波器)。光学器件304和波前编码光学器件306在实践中不必为单独的物理器件。观测系统300通常在电磁光谱的任意频带上操作。光学成像系统302用于漫射入射辐射310,以降低对检波器308可能的负面影响。具体地说,虽然光学器件304可以使得辐射310在检波器308中聚焦,但是光学器件306在检波器308处分散辐射310。接着,解码器312(例如,图2中的解码器108)内进行的后处理用来以清晰的方式再现光学器件306的图像。如果检波器308是人眼的话,在解码器312中的后处理可以人的大脑来进行。
图19显示了一个示例性的光学成像系统302A,其包括光学器件304A和波前编码元件306A(在该实施例中,其为光学器件304A的表面)。系统302A的系统参数在表320中显示。同样显示的还有适于在形成波前编码元件306A中使用的两个示例性的相位形式:相位形式322是恒定的路径分布表面;相位形式324是奇异的(odd)非球面。被检波器308A反射的入射辐射310A被光学器件304A/306A分散,并从系统302A分散出来,如光线309所示。
通过传统的方式解决光学成像系统中的有害的反射的问题典型地将有害的像差引入到系统中。图20A显示了使用低反射率的光学成像系统350的现有途径。入射光波或光线通过光学器件354聚焦到系统350中的焦平面阵列检波器356。检波器356反向散射至少一部分光线352,例如,在检波器356具有Lambertian反射器的一些特征时。棱镜358可嵌入到系统350的检波器356附近处以将光线352弯曲,从而使得它们能够通过系统350反射,以使得反射的光线通过系统350的孔径光阑360截止(block)。
图20A的方法的不利之处是棱镜358在系统350中引入了像差。与系统350有关的光线截取(intercept)图在图20B中显示,并描述了通过设置棱镜358而引入到系统350中的图像像差。在没有棱镜358时,上述光线截断图将由比图20B中的点更紧凑的高度集中的点构成。虽然由棱镜358引入的像差可通过将棱镜设置成尽可能接近检波器356(即,在系统350的焦平面处)来减少,但是上述像差由于来自不同场点的光线352的空间变化或分离而不会完全得到校正。
图21A显示了在系统400的孔径光阑410处将倾斜面408引入到光学器件404或位于光学器件404的附近的其它光学器件(未示出)中的光学成像系统400。入射到光学器件404上的光波或光线402聚焦到系统400中的焦平面阵列检波器406。从检波器406反向散射的光线402的反射通过倾斜面408偏离,从而使得反射光线402基本被光学器件404周围的孔径(aperture)412阻塞,因此,这些反射传播到物体空间414。倾斜面408远离垂直于光线402的传播路径的平面倾斜。因此,光学成像系统400没有与具有棱镜358的系统350一样的缺点,这是因为由孔径光阑410处的倾斜面408引入的上述倾斜确保了在来自物体空间414中的不同位置的光线402的反射之间没有空间变化。由于所有的域看到倾斜面408的相同部分,所以由于倾斜产生的额外像差通过后处理器416(例如,图2中的解码器108)处理检波器406检测到的图像而得到校正。后处理416具有关于倾斜面408的倾斜程度的先验信息。图21B显示了系统400的光线402的截断图。应该注意到,光线402的能量在集中在轴线位置附近,这显示出光线期望的协同聚焦。在等价系统中,检波器406可以倾斜,以替代增加到面408的倾斜。
可通过以波前编码来配置光学器件404(例如,使用图2中的掩模103的光学成像系统,或图19中的波前编码元件306A)而能在光学成像系统400中进一步减少反射率。即便是增加倾斜面408,系统400也不会阻止所有 反射光线402通过光学器件404向后传播到物体空间414。光学器件404均匀地使光线402模糊,从而使得光线402进入系统400的能量在到达检波器406之前散开。因为光线的能量集中程度较低,所以检波器406的类似于Lambertian反射较少。可使用相位函数进一步选择波前编码光学器件404,从而使得到达光学器件404的少量光线402被模糊以减少反射。
图22显示了使用传统光学成像系统和图19中的系统302A进行波前编码而得到的远场(例如,500米)处的反射光线的典型的能量强度分布。曲线图410与相位形式322对应;曲线图412与相位形式324对应。波前编码光学器件306A在光学成像系统中使用时,与传统的光学成像系统(例如,图1中的系统10)相比,反射能量309的强度或辐射度在轴线位置非常低。即使是在偏离轴的位置处,反射能量309的辐射度也是较低的。
用波前编码进行的可能的抑制反射性能的其它实施例在图22A、22B、22C和22D中显示。图22A显示了来自实施例的光学成像系统(使用波前编码)和传统的受衍射限制的系统的集合起来的反射功率。该模拟的系统具有0.9的有效的F/#,10微米的照度(illumination),以及100%填充因数(fill factor)的25微米的方形像素(square pixel)。集合起来的反射功率描述为传感器远场处的角度的函数。纵座标以DB表示,并以10为底取对数并乘以10(反射能量)。集合区域为传统的或受衍射限制的系统的反射主瓣宽度的四分之一。在角度为零的位置,上述光学成像系统的反射功率比传统的系统少42dB,如图22A所示。
与产生图22A的曲线的成像系统300(来自图18)有关的调制传递函数在图22B中示出。波前编码相位函数减小MTF(同时大大降低反射的轴上能量)。在通过解码器312处理之后,MTF增加到系统指定的水平。对于这一特定的系统,检波器截止频率(在图22B上在归一化空间频率1.0处表示)处的MTF为0.4。注意,在图22B的滤波之前的波前编码MTF同样在图像检波器的通带内没有零点。
与图22A有关的成像出射光瞳(或者增加到受衍射限制系统的相位函数)在图22C中示出。这个出射光瞳具有大约一个波峰-波谷的相位偏移,并且被构建为两个常数分布路径相位函数的和。当这个出射光瞳为180度对称时,用于反射能量的等价出射光瞳是成像出射光瞳的两倍。两个常数分布路径出射光瞳的和的数学形式例如定义为:
沿着路径形式#1:C(x)=0.645-1.95x2+3.45x4-1.80x6,|x|<1
交叉路径形式#1:D(y)=1,0<y<1
沿着路径形式#2:C(x)=1,|x|<1
交叉路径形式#2:3.79+2.87x-6.29x3+2.80x4,D(y)=,0<y<1
与图22C的成像出射光瞳有关的采样PSF的网孔视图500和图像视图(image view)510在图22D中示出。采样PSF看上去在空间上是紧凑的。解码器312对图22D的采样PSF进行处理,以产生高质量的图像。解码器312可专用于产生图像。如果人们观察图像,解码器312可不起作用,因为人类大脑可用于消除空间效应。当来自图22B的成像MTF没有零点时,则所有物体信息包含在图22D的采样PSF中。如果目标检测系统观察图像,则解码器312可配置为产生最适合于特定的目标检测系统的类型的图像。一般来说,对产生的图像进行处理的目标检测系统(或者图像信息系统)可与解码器312一起被优化,以提高总体系统性能并降低总的成本。
图23示意地示出了用于对声波662进行成像的成像系统660。系统660具有编码器664,用于对从媒介666入射到其的声波662的波前进行编码。编码器664使得声波662的成像波前665相对于媒介666产生的声学像差基本上不变。听觉的声音成像器668检测经过编码的声波662,解码器670消除由编码器664在对声波662进行编码时产生的影响。这样,系统660产生听觉的声音671,其基本上等同于媒介666没有产生像差时所获得的声音。
这样,系统660类似于图2的成像系统100运行。与上述的对系统100的模型化类似,系统660也可被模型化,以使得通过媒介666的优化声学成像的性能更加精细。
下面描述适合于某些利用扩展深度的场和/或被动测距法(passiveranging)的光学成像系统(采用波前编码)的软件处理。这种处理例如在可获得超过最少数量的信号处理的许多应用中特别有用,例如小型照像机、显微术、生物成像以及机器视觉系统。在现有技术的一个示例中,自动化显微术的主要问题在于在获取图像和对图像存档之前最佳焦点(或者到目标的距离)的确定以及固定最佳焦点的动作。这个问题在现有技术中很复杂,因为在整个样本(即,被成像的目标)上的焦点位置可能发生明显变化,因此需要在每个图像获取位置进行重新调焦。更特殊地,在现有技术中,通过获得在不同的轴位置(z)上的一系列图像来估计最佳焦点。对每个图像确定聚焦得分,具有最高聚焦得分的图像表示最佳焦点位置(或距离),或者使用插值的聚焦得分。可重复这一过程用于不同的放大率(例如,对于粗放大物镜或精放大物镜)。
现在参照图24的光学成像系统700。系统700具有光学器件702和相关的波前编码元件704(其可与光学器件702结合)。光学器件702和波前编码元件704将波前708进行编码并聚焦到检波器710上;波前708是来自成像目标712的恒定的相前(constant phase front)。后处理714用来对来自于检波器710的数据进行后处理,以产生最终的焦点对准的图像716。
系统700例如可为自动的显微系统,用于滑动扫描和高处理能力的筛选(screening)。系统700也可以是用于进出控制的生物成像系统。系统700还可以是其中物体可“远”或“近”的小型照像机,其本质上作为没有移动部件的电子宏系统。系统700避免了现有技术的缺陷和重复过程。如下面更详细的描述,系统700可采用多种形式的软件处理,以产生高质量的图像。
更具体地说,系统700处理来自于物体712(或者,如果系统700是显微镜的话,例如“样本”)的数据,以自动地在单个获得图像上重新聚焦或者可能地排列(range)。这通过特征化光学系统700而实现,然后通过后处理714内的软件处理获得单个图像和最佳焦点。通常,物体的预期距离超过成像系统的景深。但是,因为波前编码元件704的光学器件702,使得MTF在宽的物体距离上没有零点。当MTF没有零点时,基本(underlying)目标信息由光学器件702保存。然后,后处理714以类似于解码器312或解码器108的方式从采样图像中解码出适当信息。这使得能够确定目标距离,并且能够进行最适合于特定目标位置的数字处理。更具体地说,例如可这样执行这些步骤:
(1)在聚焦位置的宽范围上获取PSF图像(或者其它系统图像的样本)(例如,对于20x/0.5物镜,获得距最佳焦点+/-20um的图像)。聚焦位置的范围超过该系统的景深,使得PSF能够略微改变聚焦位置的范围。
(2)步骤(1)的增量步骤可为线性的或非线性的,这基于PSF变化率。
(3)建立在后处理714中使用的“专用”数字滤波器用于每个聚焦位置或宽范围的物体位置;“专用”的意思是滤波器仅从一个PSF图像或者聚焦位置区域被优化。
图25表示步骤(1)。在图25中,示出了一系列在宽范围的聚焦位置上获得的PSF图像800。这一范围超过形成PSF的成像系统的景深;因此,PSF略微改变聚焦位置的上述范围。滤波器设计引擎(FDE)处理802根据特定的公式整理(formulate)相应的一组滤波器804(如图所示)以建立滤波器组806,一个滤波器对应于每个聚焦位置区域。步骤(1)的处理可发生在具有或不具有波前编码元件702的系统700中。
在步骤(3)中,可包括下列子步骤,例如图26所示:
(3.1)在一个焦点位置或目标距离处获取单个图像800A。该图像可从普通场景形成。
(3.2)利用滤波器组806对滤波器图像800A进行处理,以产生一组经过滤波的图像808。
(3.3)从一组经过滤波的图像808计算聚焦得分810。
(3.4)找到最佳聚焦得分812(或者为给定图像估计目标距离/最佳滤波器)。通常,来自滤波器组806的“最佳地”从采样图像800A消除了模糊的特殊滤波器还对误聚焦量或目标范围进行估计。
(3.5)使用最佳聚焦的图像(例如存档或分析)或者使用附加步骤3.6。
(3.6)设置聚焦位置(基于来自最佳聚焦得分812的特定量的聚焦位置的知识),并且在最佳聚焦位置重新获得图像。
相位掩模103可明确用于距离修正目的。这一距离修正可与使用低倍镜并利用粗聚焦函数实现。可使用较高放大率和数值孔径实现精聚焦成像,从而允许使用较不明显的相位掩模103(或者不使用相位掩模103)。因为许多光学系统具有不对称的散焦(即,理想的成像系统对于正和负的误聚焦的响应相同),排列(ranging)可在没有经过波前编码的采样图像上执行或者在对数的、旋转对称光瞳上执行。使用相位掩模103的一个有益效果(相对于没有相位掩模103)在于具有波前编码的PSF没有MTF零点,从而以小的误焦值捕获较好的信息。
图27表示通过使用不对称或对称的散焦相位掩模103的聚焦得分。具体地说,图27示出了三个曲线850A、850B和850C,分别表示用于对称散焦(850A)、非对称散焦(850B)和伪对称散焦(850C)的相对于z的假定聚焦得分。
关于图24-27所述的软件聚焦可提供一些有益效果。例如,系统700可为定焦小型照像机,其表现出自动聚焦和/或宏聚焦功能。在另一实施例中,系统700是具有定焦的蜂窝电话照相机,其能照出物体712(例如名片)的高质量影像和特写图像。另外,滤色器组806可在预期的物距范围上先验确定。在一个变种中,作为使用聚焦得分(score)的一种替换,手动调节也可用于确定最佳聚焦。一组滤波器(即,滤波器组806)不必为线性滤波器。它们可为作用于采样图像以产生适合于图像的使用者(人或机器)的高质量图像的数字处理操作的任意组合。
本领域技术人员很清楚,系统700可具有其它特征。例如,它可通过移动变焦镜头而在视觉上变焦为更大的聚焦范围和放大率,其中聚焦得分通过一系列在不同变焦位置设置的滤色器而确定,以选择最佳焦点。因此,使用者可以特定的变焦调节滤波器,以选择优选的或希望的物距。或者,聚焦得分可与滤色器矩阵一起首先被变焦、然后被物距使用(例如,行=变焦,列=物距)。
因此,系统700可另外应用于软件绝热光学成像系统(例如在望远镜和红外成像器内)。作为一种选择,它可在使用定焦镜头702的机器视觉系统内使用。它还可用作具有硬件变焦特征且具有软件优化滤波器选择的内窥镜。
在许多类型的图1的成像系统10中,图像处理60是特殊的、基于任务的图像处理。这种基于任务的处理常常用于确定图像信息。这些信息可包括例如物体的空间位置、线、边缘和/或点;具有或不具有条形和/或方形以及一般的基于图像的统计量,后面的两种类型分别对应于基于任务的图像系统,例如分别对应于条形码扫描器和生物识别系统。结构光成像系统是另一个用于确定图像信息的基于任务的成像系统,在该系统种,图像信息被编码到物体的空间位置(例如图像中的条形)。
如下面更详细的描述,一种基于任务的处理(采用波前编码)也可与图2的系统100一起出现,其在解码器108之后具有另外的图像处理60。这种系统(例如)用于在与图1的系统10相比而言较大的景深(或聚焦深度)上产生基于任务的图像信息,图1的系统10在相似的条件下,由于在较广的温度范围上不良地操作透镜等原因而产生异常图像。
因为特殊的光学成像系统被用于确定图像信息,并没有产生用于人观察的图像,所以在一个实施方案中,解码器108不包括在系统100内。更特殊地,解码器108可具有不产生或消除所需的图像信息的特征。解码器108将该图像信息代替地转换为更适合人观察的形式或者进行其它专门处理。解码器108还不会改变图像信息量或者图像“熵”。因为图像信息量可不被解码器108改变,所以在解码器108之后图像处理60基本上对解码器108的处理不敏感。换句话说,基于任务的波前编码光学和数字成像系统的某些性能方面与有无解码器108无关。在这种情况下,解码器108可从图2的系统100中去掉而不会产生不利的影响。也就是说,由某些基于任务的处理输出的图像的被存储的电子表示不包含波前编码的作用,否则,需要进行明确的处理来进行消除。
考虑例如图28A的基于任务的成像系统100A。系统100A除了由基于任务的图像处理60进行的专门的基于任务的处理之外,在功能上示例性地等同于图1的系统10。系统100A运行,以将物体50A成像到解码器158并精确估计物体50A的空间中心。也就是说,由系统100A存储的物体的电子表示是物体50A的空间中心。已知系统100A的坐标为(x,y),则物体50A的空间中心为(x0,y0)。基于任务的图像成像系统100A的输出163是对(x0,y0)的估计,并表示为(x0’,y0’)。实际形成以及由位于检波器158处的人看见的图像对于这一实施例来说并不重要。在这个系统以及其它系统中,只有空间位置(x0,y0)的估计是希望的。这些任务因此是形成图像以估计图像信息的基于任务的系统的实施例。
例如,如果物体50A和系统100A之间的距离是未知或变化的,也就是使得在检波器158中形成的图像不包含对于物体50A足够的精确性,并且估计(x0,y0)不容易由基于任务的图像处理160所实现,则系统100A内的波前编码是有用的。波前编码也可用于通过消除由于其中每一个都可影响(x0,y0)估计的精确性的光学、机械、对准、热变化和/或图形失真而产生的负面的像差效应,而降低成像光学器件156的复杂度和成本。
图28B的系统2000是图28的系统100A(采用波前编码)的一个变种。系统2000具有光学器件2002、解码器2004以及基于任务的图像处理2006。光学器件2002包括图像形成镜头2008和波前编码非球面光学器件2010。镜头2008和光学器件2010在解码器2012处产生物体1998的图像。镜头2008和光学器件2010可组合,使得光学元件的总的数目为一或更多。基于任务的图像处理2006可以(但不是必须)与图28A的处理160相同。
现在考虑由处理2006执行的一个基于任务的图像处理,以便产生物体1998的中心(x0,y0)的估计2016。关于目标中心的空间信息可在由物体1998的质心定出的空间域中描述。图像质心的计算可被用于估计(x0,y0)。关于物体中心的空间信息也可在检波器2012处由光学器件2002形成的图像的傅里叶变换的线性相位项来描述。如本领域技术人员所公知的一样,空间位置通过图像的复傅里叶变换的线性相位分量的斜率在频域中表示。频域中的线性相位分量的斜率的计算获得(x0,y0)的估计。因为这些频域计算的特性,(x0,y0)的估计可对于有无解码器2004不敏感。
例如,假设物体1998的空间居中位置在数学上以空间傅里叶变换O(u)表示为o(x)(为了清楚示例而以一维表示)。假设对于这一实施例,这个空间居中位置在O(u)中没有线性相位分量。还假设了波前编码光学器件2002的空间模糊函数以空间傅里叶变换H(u)表示为h(x)。还假设解码器2004产生作用,以通过与空间核f(x)(以空间傅里叶变换F(u)表示)的卷积而最小化空间模糊h(x)。然后,具有在检波器2012处测量的中心(x0,y0)的物体1998的图像可近似表示为:
             采样图像sampled_image=o(x-x0)*h(x)其中,“*”表示空间卷积。在空间频域中,这个采样图像可被表示为:
        采样图像’sampled_image’={O(u)exp(j u x0)}×H(u)其中u是空间频率变量,j是-1的平方根,“×”表示逐项乘积(point-by-point multiplication)。注意,空间位置x0现在是线性相位项(ux0)的一部分。如果H(u)=H(u)’exp(j u z0),则H(u)的任何线性相位项可被看作是已知空间偏移数量z0。在空间域中,解码器2004之后的采样图像可近似表示为:
             滤波后的采样图像=o(x-x0)*h(x)*f(x)具有了滤波(由解码器2004进行)之后的采样空间图像后,质心计算(在处理2006内)可用于估计空间中心x0,这是因为系统模糊h(x)的组合和滤波器f(x)被组合以基本产生(对于本实施例):h(x)*f(x)≈delta(x),其中如果x=0则delta(x)为1,否则为零。如果在应用滤波器f(x)之前(即,在被解码器2004滤波之前)执行质心计算,则由h(x)表示的空间模糊可产生空间中心x0的不精确估计。因为处理2006是质心计算,所以在没有解码器2004的情况下,处理2006不能单独地消除(元件2010的)波前编码效应。
解码器2004之后的等价的滤波图像可通过在频域中应用滤波器F(u)而近似表示。这一结果为:
滤波之后的采样图像’={O(u)exp(j u x0)}×H(u)×F(u)如果滤波器F(u)具有线性相位项,使得F(u)=F(u)’exp(j u z1),则该滤波器将另外已知的偏移量z1增加到滤波之后的采样图像的线性相位分量中。但是,因为F(u)的数量典型地大于零,因此应用滤波器F(u)对于频域中的线性相位量x0的计算没有帮助也没有损害。有或没有滤波器F(u),估计x0的过程是相同的:1)计算信号的空间傅里叶变换,2)分离复数相位和数量,3)计算线性相位分量,以及4)减去系统偏移。线性相位分量的计算可通过将相位调整为适合直线(对于一维图像)或平面(对于二维图像)而以最小二乘法来进行。如果|F(u)|>0,则滤波器F(u)通过增加已知空间位置偏移z1(其可在x0的估计的计算过程中被减去)而改变空间漂移的计算。因此,基于任务的处理2006在确定估计2016方面,对于有无解码器2004不敏感。与没有波前编码的系统100A相比,在系统2000中不需要解码器2004来获得波前编码的好处。更具体地说,处理2006内的频域处理输出物体1998的存储电子表示,其对于需要另外明确的处理以消除的波前编码的影响不敏感。图28C表示系统2000A,其具有基于任务的图像处理2006,但不具有图28B的解码器2004。光学器件2002A包含图像形成镜头2008A以及波前编码非球面光学器件2010A,其在检波器2012A处形成物体1998A的图像。系统2000A在功能上等同于系统2000(具有相同数字标号的组件提供相同的功能),只是缺少了解码器2004;由于提供类似的输出2016A的专用处理2006A而不具有解码器2004。
解码器2004在系统2000A中不是必需的原因在于基于任务的成像处理2006、2006A分别用于确定来自于在检波器2012、2012A处形成的图像的信息。这种信息(通常也被称为熵)是经常在通信系统中使用的数学术语,用以描述需要用来传输的比特量或者描述诸如语音信号、雷达信号、图像等的信号。在图像处理中,这种信息常常与图像的随机量或不可预期的方面相关。如果图像在观察前完全可知,则该图像携带很少的信息给观察者。如果图像在观察前不可知,则该图像可携带大量的信息给观察者,取决于所用的成像系统以及被成像的物体。通常,物体携带信息,而成像系统传输这一信息。因为成像系统不能很好地传输空间信息,所以包含在图像中的信息典型地比物体的信息要少。如果成像系统误聚焦,则该成像系统的MTF可具有零功率区,并且该系统可从物体传输很少的信息。在通过检波器采样之后,图像信息量可以利用数字处理(例如,被解码器2004和处理2006执行)而仅仅保持为恒定或销毁(减少)。数字处理不能产生先前在成像系统内丢失的信息;它仅用于改变图像信息的形式。这一概念被称为数据处理不等式(例如,参见信息论原理,Cover and Thomas,John Wiley&Sons,Inc,1991)。在一个实施例中,即使信息量可在技术上与未修改的图像相同,但人们很难观察和理解修改的图像,在修改的图像中,图像的每个空间频率成分已经确定性地修改为非零相位。与此相反,基于任务的系统的图像处理2006、2006A可被指定和使用,使得空间频率成分的确定性改变对于任务的性能几乎没有影响。
波前编码的基于任务的成像系统的另一个实施例是生物识别系统,或者更具体地,是图29的虹膜识别系统3000。具有基于任务的处理3600(专用于虹膜识别)的系统3000对眼睛的虹膜3001进行成像。除了基于任务的处理3600专用于虹膜识别之外,系统3000在功能上等同于图28C的系统2000A。光学器件3002包括图像形成光学器件3003和波前编码光学器件3004。光学器件3003和3004可被组合到相同的元件上,使得光学器件3002包含数量为一的最少的光学元件。检波器3006检测由光学器件3002成像的电磁辐射3005。基于任务的处理3600生成与虹膜3001的、与图像的经过复函数卷积的复相相关的比特序列(或者虹膜特征码3601)。在一个实施方案中,这个复函数是作为空间位置和比例(scale)的函数的2维Gabor带通函数。对人类直接有用的虹膜3001的图像不由基于任务的处理3600输出。虹膜特征码(即,虹膜特征码3601)具有许多形式,但是所有这些虹膜特征码都产生作用以排列虹膜中的特征,从而使得可确定每个人眼睛中的区别(即使是同一人的两个眼睛之间的区别)以及使得可识别特定的虹膜而拒绝其它的虹膜。基于任务的处理3600可因此产生作用以将虹膜图像的生物信息编码为用于识别任务的实际形式。参见下面文献:第5,291,560号美国专利(1994年3月);Biometric Personal Identification System Based on Iris Analysis(基于虹膜分析的生物个人识别系统)以及″Demodulation by Complex-ValuedWavelets for Stochastic Pattern Recognition″,by John Daugman,International Journal of Wavelets,Multiresolution and InformationProcessing,Vol.1,No.1,(2003)pg 1-17(John Daugman的“用于随机模式识别的复数小波的解调”,小波、多分辨率和信息处理国际期刊,2003年第1期第1卷第1-17页),为了获得与虹膜特征码和虹膜识别有关的更多信息,上述文献通过引用被并入本文。
用于产生虹膜特征码的基于任务的处理可在很大程度上与有无图28B的波前解码器2004无关。在一些情况下,没有解码器2004在虹膜识别中是优选的,因为解码器2004可能引入噪声放大效应。考虑一个虹膜的实施例,其可在空间域中描述为:
                      虹膜=I(x)其中,为了说明的方便而再次使用一维表示。扩展到二维表示对于信号处理领域的技术人员来说是显而易见的。将成像光学系统的空间模糊量作为函数h(x)。因而采样的虹膜图像可描述为:
                  虹膜图像=I(x)*h(x)+n(x)其中“*”仍然表示空间卷积。项n(x)是在所有实际成像系统中出现的噪声项。这个噪声可能由于检波器相加噪声、像素非线性和非均匀、图像抖动、虹膜移动等而产生。对于这种表示,为了说明的方便,相加和相乘噪声被表示为相加噪声。令可能为复数Gabor小波、复数Haar小波以及其它形式的复特征码形成函数表示为c(x)ik,其中,i和k是与特征码形成函数的具体参数有关的下标。特征码形成函数应用于虹膜图像,以产生虹膜特征码:
        虹膜特征码ik=Phase[c(x)ik·{I(x)*h(x)+n(x)}]其中,处理Phase[]计算由具体的虹膜特征码形成函数作用的虹膜图像的复相。符号“·”表示由具体的虹膜编码方案所执行的一般操作(generaloperation)。它可能是乘法、卷积(滤波)或者其它操作。这个复相常常量化为与单位圆的可能的四个象限有关的两比特序列。
对于给定的虹膜,虹膜特征码是具有确定均值、方差和概率密度的统计量。考虑特征码形成函数的输出与具有来自于焦点对准的受衍射限制成像系统h(x)dl的空间模糊函数以及来自良好设计的波前编码系统h(x)wfc的空间模糊函数的虹膜图像之间的区别。良好设计的波前编码系统在其MTF中在数字检波器的空间带通上的类似误聚焦的像差的广泛的范围上没有零点:
   c(x)ikο{I(x)*h(x)dl}vs.c(x)ikο{I(x)*h(x)wfc};如果我们假设算符“ο”表示逐项乘法,那么我们可以用矩阵符号记录:
                  C T ik  Hdl  I vs  C T ik  Hwfc  I其中, C ik 是表示特征码形成函数的向量, I是表示虹膜的向量,H是卷积矩阵。上标T表示转秩。形成的虹膜图像(Hdl  I)和(Hwfc  I)是来自同一虹膜的虹膜特征信息的不同形式。因为波前编码系统的MTF被设计为使得MTF没有零点,所以存在线性滤波器和卷积矩阵Hf,使得:
                    Hf Hwfc  I=Hdl  I其中,在没有噪声的情况下,具有采样的波前编码的虹膜图像的滤波器的卷积与来自受衍射限制(或者其它)虹膜图像的虹膜图像基本相同。波前编码的虹膜图像的知识对于形成已经由焦点对准的受衍射限制的图像形成的虹膜图像来说是足够的。因此,虹膜的特征可被认为由波前编码系统的确定性模糊函数重新格式化。虹膜的特征没有丢失,只是重新排列。如果使用解码器2004,则虹膜信息可被显式格式化为与由受衍射限制系统所期望的那样。
对在两个虹膜图像中不同的比特片断进行计算是测量虹膜特征码中的区别的通用方式。片断可从0(没有不同的比特)到1(所有比特都不同)变化。这种方式称为汉明距离。当虹膜图像都以焦点对准的受衍射限制系统形成时、当虹膜图像都从没有解码器2004的波前编码系统形成时、当虹膜图像都以使用了解码器2004的波前编码系统形成时、或者当一个图像以焦点对准的受衍射限制系统形成而另一个以具有解码器2004的波前编码系统形成时,相同的虹膜的两个没有噪声的虹膜特征码的期望的汉明距离可基本上相同。在后一种情况下,解码器2004产生作用,以形成由受衍射限制系统所测量的等价代码。在都以焦点对准的受衍射限制图像成像时的不同虹膜的两个虹膜特征码之间的期望的汉明距离可与在虹膜图像的集合以没有解码器2004的波前编码系统形成时或者虹膜图像的集合以具有编码器2004的波前编码系统形成时基本相同。相同或不同的虹膜在以两个不同的成像系统成像时其虹膜特征码之间的期望的汉明距离不具有这一理想的特征。当虹膜图像的集合以相同类型的成像系统形成时,这一理想特征才能出现。根据期望的汉明距离,没有噪声的虹膜特征码的性能在以受衍射限制系统或具有或不具有解码器2004的波前编码系统成像时可基本相同。也就是说,图像的存储的电子表示(虹膜特征码)不包含另外要求明确处理以消除(由于处理3600的专门处理)的波前编码的效应。
如果图28B的解码器2004在特征码形成函数之前使用,那么刚好在解码器之后的图像可表示为:
        {I(x)*h(x)wfc+n(x)}*f(x)=HfHwfc I+Hf n其中在这种情况下,解码器2004应用线性数字滤波器f(x)。注意,该解码器作用于包含虹膜的项和包含噪声的项。如上所述,解码器仅仅重排虹膜特征的形式,而目前在解码器2004之后的噪声项在空间上相关。在解码器2004之后,如果我们为了简便起见而假设该噪声是具有均值为零和方差为σ2的独立的高斯白噪声,那么该噪声以下面给出的关系在空间上相关:
              噪声相关=σ2HfHT f其中,“T”仍然表示转秩。解码器卷积矩阵grammian(Hf HT)目前形成噪声空间相关。在解码器之后的噪声不必是独立的和白噪声,但是因为解码器2004的作用而可空间相关。如果没有解码器2004,则虹膜特征码计算中的噪声对于每个空间位置和比例是不相关且独立的。如果具有解码器2004,则虹膜特征码计算中的噪声可变得关于空间位置和比例相关。这一噪声相关可消除估计虹膜特征码的功效,这导致了特征码中的信息损耗,并取决于具体的虹膜特征码。大体上,虹膜图像中的空间相关的噪声导致了噪声独立的统计特征的相加。这种噪声特征可使得相同虹膜的虹膜图像的虹膜特征码之间的期望汉明距离增加(看上去更不同)和减小(看上去更相似)不同虹膜的虹膜图像的虹膜特征码之间的期望汉明距离。然后,在一种情况下,解码器2004对没有噪声的虹膜特征码进行重新格式化,以使其与来自焦点对准的受衍射限制系统的类似,但是在具有噪声的情况下,同样使得虹膜识别和拒绝任务更加困难。对于这种类型的基于任务的处理,解码器2004可为专用的或可选的,一些系统优选地不包括解码器2004。
如果直接来自于检波器2012、2012A的噪声n(x)是空间相关的,那么处理q(x)和Hq式可以在特征码形成(可能在解码器2004中)之前使用,以消除噪声相关或对噪声进行白化,从而提高系统识别和拒绝的性能。在这种情况下,白化处理为:
               Hq=噪声相关矩阵(1/2)
另一种情况是在形成虹膜特征码之前对于解码器2004应用“仅相位(phase-only)”或全通滤波器。仅相位和全通滤波器具有单位幅频响应以及非零相位响应。这种类型的滤波器等同于对不同的空间频率分量在空间上移位不同的数量,但是使不同的空间频率分量的幅值未改变。在解码器2004中的这种类型的滤波的应用将不会改变相加噪声n(x)的功率谱,因此与相加噪声n(x)无关。
另一种情况是对于解码器2004应用全通滤波器以纠正信号的不同的空间频率分量的相位,同时还用乘法将空间频率分量的幅值修改为接近(包括小于)1。这将产生最小的噪声放大并可能降低噪声功率。改变空间频率分量的幅值将改变相加噪声的空间相关性;这种改变可等于在用于具体的虹膜特征码形成函数的相加噪声功率中减少。
波前编码的成像系统的光学器件可被选择和设计为最大化某些类型的图像信息传输以及提高成像的有益效果,例如较大的景深、对于光学和机械像差与混淆不敏感等。波前编码的图像的信息内容可被看作空间频率的函数。所有实际的图像都有噪声。这种噪声的作用是减少图像的信息内容。如果噪声在每个空间频率处具有基本相同的RMS功率量,那么噪声作为空间频率的函数平等地影响信息。成像系统的MTF作为空间频率函数变化。当信息与信噪比密切相关时,用高值MTF形成的图像的空间频率分量与用较低值的MFT形成的相比(假设具有相同的RMS噪声功率)具有较高的信息值。根据汉明距离,仅包含单个空间频率分量的相同的专用虹膜的两个虹膜特征码的汉明距离将随着在具体的空间频率处的MTF的减小而在统计上增加(变得较不相似)。对于两个不同的专用虹膜的汉明距离也将随着在具体空间频率处的MTF值的减小而在统计上减小(变得更相似)。
矩形可分的波前编码光学器件允许在x-y平面中的高度信息传递。如果信息传递应该在角度上更独立,如果(例如)在虹膜成像时其角定向没有完全受控,则应该使用不可分的光学器件。来自这些不可分的光学器件的MTF与可能具有矩形可分的光学器件相比应该在圆周上更对称。圆周上对称的波前编码光学器件也能在这种情况下被使用,即,光学形式由半径变量中的多项式的加权和组成。常数分布路径光学器件对于这些系统也是有用的,其为下面形式的余弦项的线性组合:
     P(r,theta)=∑ai ricos(wi theta+phii)
因为可对上述方法和系统进行改变而不背离其范围,所以应当注意到,在上述说明书中记载的或在附图中显示的内容是示例说明性而非限定性的。同样可以理解,后面的权利要求希望能够覆盖本发明记述的所有通用的与专用的特征。

Claims (34)

1.一种光学成像系统,用于降低由中间媒介引起的、与聚焦有关的像差,所述系统包括:
光学器件,包括波前编码掩模,用于将所述成像系统的波前成像为中间图像,并用于改变所述波前的相位,使得所述光学成像系统的光学传递函数相对于由所述中间媒介随时间变化引起的所述与聚焦有关的像差基本不会改变;
检波器,用于检测所述中间图像;以及
解码器,用于处理来自所述检波器的数据,以处理由所述光学器件引起的相位效应,从而形成基本上消除了所述与聚焦有关的像差的最终图像。
2.如权利要求1所述的系统,其中,所述像差包括误聚焦、球面像差、像散、场弯曲、色差、温度感应误聚焦像差、压力感应误聚焦像差、三叶草像差和彗形像差中的一个或多个。
3.如权利要求1所述的系统,所述波前编码掩模配置为对由泽尔尼克多项式定义的与聚焦有关的像差进行计算。
4.如权利要求1所述的系统,所述光学器件包括一个或多个光学元件。
5.如权利要求4所述的系统,所述波前编码掩模与所述光学元件结合。
6.如权利要求4所述的系统,所述波前编码掩模与所述光学元件的一个或多个表面结合。
7.如权利要求4所述的系统,所述光学元件包括自适应光学器件。
8.如权利要求7所述的系统,所述自适应光学器件包括所述波前编码掩模。
9.如权利要求8所述的系统,所述像差包括活塞误差、绗缝误差和传动机构附带误差中的一个或多个。
10.如权利要求1所述的系统,其中,所述波前编码结构置于所述成像系统的主平面、所述成像系统的主平面的图像、所述成像系统的孔径光阑以及所述孔径光阑的图像中的一个或多个处。
11.如权利要求1所述的系统,其中,所述中间图像限定了调制传递函数,所述调制传递函数对于所述检波器的检测空间频率没有零点。
12.如权利要求11所述的系统,所述解码器可操作,以在最终图像中恢复所述波前的每个检测频率。
13.如权利要求1所述的系统,所述解码器是空变的,以控制包括彗形像差的像差。
14.如权利要求1所述的系统,所述解码器是动态的,以在所述像差随时间变化时持续产生所述最终图像。
15.一种基于任务的光学成像系统,用于降低由中间媒介引起的、与聚焦有关的像差,所述系统包括:
光学器件,包括波前编码掩模,用于将所述成像系统的波前成像为中间图像,并用于改变所述波前的相位,以使得所述光学成像系统的光学传递函数相对于由所述中间媒介随时间变化引起的所述与聚焦有关的像差基本不会改变;以及
检波器,其用于检测所述中间图像。
16.一种用于降低由中间媒介引起的与聚焦有关的像差的方法,其中光学波前在由光学系统成像时通过所述中间媒介传播,所述方法包括以下步骤:
利用相位函数改变所述波前,以改变所述光学系统的光学传递函数,使得在中间图像处的所述光学传递函数相对于由所述媒介随时间变化引起的、与聚焦有关的像差基本不会改变;以及
对表示所述中间图像的数据进行解码,以消除由所述波前改变步骤所产生的影响,从而形成基本消除了所述与聚焦有关的像差的最终图像。
17.如权利要求16所述的方法,其中,所述改变步骤包括根据泽尔尼克多项式进行改变的步骤,所述泽尔尼克多项式表征所述与聚焦有关的像差。
18.如权利要求16所述的方法,所述媒介包括空气,所述方法在平版印刷术中被采用。
19.一种用于对经过媒介的声波进行成像的成像系统,所述系统包括:
编码器,用于对经过所述媒介传播的所述声波的波前进行编码,所述编码器被构建和设置成使所述波前相对于由所述媒介引起的声学像差基本不变;
成像器,用于对所述波前进行成像;以及
解码器,用于倒转所述编码器的效果,以产生基本上消除了所述像差的声音。
20.一种成像系统,用于降低由来自检波器的反射产生的图像失真,所述系统包括:
光学器件,其用于将电磁能成像到所述检波器;以及
倾斜光学器件,其具有从与所述成像的电磁能量正交的平面倾斜的斜面,用于将背散射辐射反射到所述成像系统的孔径光阑。
21.如权利要求20所述的系统,所述倾斜光学器件置于所述孔径光阑处。
22.如权利要求20所述的系统,所述光学器件包括波前编码掩模,用于改变成像到所述检波器的波前的相位,所述光学器件进一步包括后处理器,用于进一步降低由所述反射引起的失真效应。
23.如权利要求20所述的系统,其中,所述光学器件被构建和设置成用于对所述波前进行编码,以对所述成像系统的光学传递函数进行改变,使之相对于与聚焦有关的像差基本不变,所述后处理器配置成消除所述波前编码掩模在所述波前上引起的效应。
24.一种用于降低在采用自适应光学器件的光学系统内的光学失真的方法,所述方法包括以下步骤:
改变所述光学系统的波前的相位;以及
对所述光学系统的图像数据进行后处理,以消除由所述波前编码掩模所引起的相位效应,从而控制绗缝误差、传动机构附带误差和活塞误差中的一个或多个。
25.如权利要求24所述的方法,所述自适应光学器件包括多分节镜。
26.如权利要求24所述的方法,其中,所述改变步骤包括在所述图像数据中改变相位,从而使得在所述图像数据中被调制的传递函数中不存在零点。
27.一种抗反射的光学成像系统,所述系统包括:
光学检波器;以及
光学相位掩模,其用于降低入射到所述光学检波器的电磁辐射的反射功率。
28.如权利要求27所述的系统,所述相位掩模在所述系统中可操作,以产生调制传递函数,所述调制传递函数对于所述光学检波器的检测空间频率没有零点。
29.如权利要求27所述的系统,进一步包括解码器,用于对来自于所述检波器的数据进行后处理,以得到与由所述光学相位掩模产生的效果相反的效果,从而产生最终图像。
30.如权利要求27所述的系统,进一步包括棱镜,其位于所述系统内的孔径处,以进一步降低所述电磁辐射的反射功率。
31.一种生物光学识别系统,所述系统包括:
光学器件,其包括波前编码掩模,用于将要识别物体的波前成像为中间图像;以及
检波器,其用于检测所述中间图像,其中,由所述检波器检测的调制传递函数不包含零点,使得随后的基于任务的图像处理识别所述物体。
32.如权利要求31所述的系统,进一步包括解码器,其与所述检波器连接,用于执行所述基于任务的图像处理。
33.如权利要求32所述的系统,所述解码器在所述频域中可作为全通滤波器操作。
34.如权利要求32所述的系统,所述解码器在所述频域中对于一个或更少的幅值可作为衰减滤波器操作。
CN2004800088708A 2003-03-31 2004-03-31 用于最小化成像系统中的光程差效应的系统和方法 Expired - Lifetime CN1768346B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US45941703P 2003-03-31 2003-03-31
US60/459,417 2003-03-31
PCT/US2004/009743 WO2004090581A2 (en) 2003-03-31 2004-03-31 Systems and methods for minimizing aberrating effects in imaging systems

Publications (2)

Publication Number Publication Date
CN1768346A true CN1768346A (zh) 2006-05-03
CN1768346B CN1768346B (zh) 2010-11-17

Family

ID=33159650

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2004800088708A Expired - Lifetime CN1768346B (zh) 2003-03-31 2004-03-31 用于最小化成像系统中的光程差效应的系统和方法

Country Status (6)

Country Link
US (5) US7260251B2 (zh)
EP (1) EP1609112A4 (zh)
JP (2) JP4565192B2 (zh)
CN (1) CN1768346B (zh)
IL (2) IL170697A (zh)
WO (1) WO2004090581A2 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101790040A (zh) * 2010-03-05 2010-07-28 圆展科技股份有限公司 实物摄影机
CN102713507A (zh) * 2009-11-19 2012-10-03 佳能株式会社 用于测量被检面的形状的装置和用于计算被检面的形状的程序
CN102759769A (zh) * 2012-06-27 2012-10-31 中国科学院西安光学精密机械研究所 用于波前编码成像的相位板以及带宽可调波前编码系统
CN102770873A (zh) * 2010-01-22 2012-11-07 纽约市哥伦比亚大学理事会 用于使用光学扩散器记录图像的系统、方法和介质
CN104919274A (zh) * 2013-02-14 2015-09-16 奥林巴斯株式会社 摄像装置
CN105050475A (zh) * 2013-03-29 2015-11-11 索尼公司 激光扫描观察装置和激光扫描方法
CN108132530A (zh) * 2017-03-03 2018-06-08 中国北方车辆研究所 一种基于像差平衡和控制的大景深光学方法及其系统
CN108803015A (zh) * 2018-05-31 2018-11-13 中国科学院西安光学精密机械研究所 一种相位掩膜可调的动态波前编码成像系统
CN109426818A (zh) * 2017-09-01 2019-03-05 威斯康星校友研究基金会 用于识别视线外对象的装置
CN109612404A (zh) * 2012-11-14 2019-04-12 高通股份有限公司 结构光主动深度感测系统中对光源功率的动态调整
CN114460049A (zh) * 2021-12-14 2022-05-10 中国科学院深圳先进技术研究院 一种时分多脉冲间接像差测量方法

Families Citing this family (161)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7218448B1 (en) * 1997-03-17 2007-05-15 The Regents Of The University Of Colorado Extended depth of field optical systems
US20020195548A1 (en) * 2001-06-06 2002-12-26 Dowski Edward Raymond Wavefront coding interference contrast imaging systems
US6547139B1 (en) * 1998-07-10 2003-04-15 Welch Allyn Data Collection, Inc. Method and apparatus for extending operating range of bar code scanner
DE10234086B4 (de) * 2002-07-26 2004-08-26 Koenig & Bauer Ag Verfahren zur Signalauswertung eines elektronischen Bildsensors bei der Mustererkennung von Bildinhalten eines Prüfkörpers
US7486806B2 (en) * 2002-09-13 2009-02-03 Panasonic Corporation Iris encoding method, individual authentication method, iris code registration device, iris authentication device, and iris authentication program
US7180673B2 (en) * 2003-03-28 2007-02-20 Cdm Optics, Inc. Mechanically-adjustable optical phase filters for modifying depth of field, aberration-tolerance, anti-aliasing in optical systems
EP1609112A4 (en) * 2003-03-31 2010-03-24 Cdm Optics Inc SYSTEMS AND METHOD FOR MINIMIZING ABERRATION EFFECTS IN PICTURE SYSTEMS
WO2006001785A1 (en) 2003-05-30 2006-01-05 Cdm Optics, Inc. Lithographic systems and methods with extended depth of focus
US7478754B2 (en) * 2003-08-25 2009-01-20 Symbol Technologies, Inc. Axial chromatic aberration auto-focusing system and method
US8254714B2 (en) * 2003-09-16 2012-08-28 Wake Forest University Methods and systems for designing electromagnetic wave filters and electromagnetic wave filters designed using same
US7652685B2 (en) * 2004-09-13 2010-01-26 Omnivision Cdm Optics, Inc. Iris image capture devices and associated systems
US7469202B2 (en) 2003-12-01 2008-12-23 Omnivision Cdm Optics, Inc. System and method for optimizing optical and digital system designs
US7944467B2 (en) 2003-12-01 2011-05-17 Omnivision Technologies, Inc. Task-based imaging systems
US7216811B2 (en) * 2004-04-16 2007-05-15 Microscan Systems Incorporated Barcode scanner with linear automatic gain control (AGC), modulation transfer function detector, and selectable noise filter
WO2006030488A1 (ja) * 2004-09-14 2006-03-23 Fujitsu Limited 画像処理装置、画像処理方法及び画像処理プログラム
FR2881011B1 (fr) * 2005-01-19 2007-06-29 Dxo Labs Sa Procede de realisation d'un appareil de capture et/ou restitution d'images et appareil obtenu par ce procede
US7576791B2 (en) * 2005-04-20 2009-08-18 The United States Of America As Represented By The Secretary Of The Army Method and apparatus for signature reduction using wavefront coding
US7616841B2 (en) * 2005-06-17 2009-11-10 Ricoh Co., Ltd. End-to-end design of electro-optic imaging systems
JP4712631B2 (ja) * 2005-07-28 2011-06-29 京セラ株式会社 撮像装置
US8355211B2 (en) * 2005-08-11 2013-01-15 FM-Assets Pty Ltd Optical lens systems
US7635832B2 (en) * 2005-08-31 2009-12-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Hybrid diversity method utilizing adaptive diversity function for recovering unknown aberrations in an optical system
EP1927025A2 (en) * 2005-09-19 2008-06-04 CDM Optics, Inc. Task-based imaging systems
US20070081224A1 (en) * 2005-10-07 2007-04-12 Robinson M D Joint optics and image processing adjustment of electro-optic imaging systems
EP1933694B1 (en) * 2005-10-10 2020-07-22 Tobii AB Eye tracker having an extended span of operating distances
EP1954030B1 (en) * 2005-10-18 2012-11-28 Kyocera Corporation Image pickup apparatus and image processing method
WO2007067999A2 (en) * 2005-12-09 2007-06-14 Amnis Corporation Extended depth of field imaging for high speed object analysis
CN101449193B (zh) * 2006-03-06 2011-05-11 全视Cdm光学有限公司 具有波前编码的变焦透镜系统
WO2007134119A1 (en) * 2006-05-09 2007-11-22 Omnivision Cdm Optics, Inc. Aberration-tolerant far infrared imaging system
US7889264B2 (en) * 2006-05-12 2011-02-15 Ricoh Co., Ltd. End-to-end design of superresolution electro-optic imaging systems
US7692709B2 (en) * 2006-05-12 2010-04-06 Ricoh Co., Ltd. End-to-end design of electro-optic imaging systems with adjustable optical cutoff frequency
KR101305868B1 (ko) * 2006-05-23 2013-09-09 옴니비젼 씨디엠 옵틱스 인코퍼레이티드 포화 광학계
JP2007322560A (ja) * 2006-05-30 2007-12-13 Kyocera Corp 撮像装置、並びにその製造装置および製造方法
US7924341B2 (en) * 2006-06-05 2011-04-12 Ricoh Co., Ltd. Optical subsystem with descriptors of its image quality
FR2901898B1 (fr) * 2006-06-06 2008-10-17 Sagem Defense Securite Procede d'identification et dispositif d'acquisition pour la mise en oeuvre dudit procede
WO2007141788A2 (en) * 2006-06-06 2007-12-13 Xceed Imaging Ltd. Optical system and method for multi-range and dual-range imaging
JP4749959B2 (ja) * 2006-07-05 2011-08-17 京セラ株式会社 撮像装置、並びにその製造装置および製造方法
JP2008048293A (ja) * 2006-08-18 2008-02-28 Kyocera Corp 撮像装置、およびその製造方法
EP2069851A4 (en) * 2006-09-14 2010-02-24 Tessera Tech Hungary Kft IMAGING SYSTEM WITH ASSOUPLY ASSEMBLED TOLERANCES AND ASSOCIATED METHODS
WO2008087486A2 (en) * 2006-09-14 2008-07-24 Tessera Technologies Hungary Kft. Imaging system with improved image quality and associated methods
US20100158333A1 (en) * 2006-09-19 2010-06-24 The Hospital For Sick Children Resolution improvement in emission optical projection tomography
JP4749984B2 (ja) * 2006-09-25 2011-08-17 京セラ株式会社 撮像装置、並びにその製造装置および製造方法
JP4749985B2 (ja) * 2006-09-28 2011-08-17 京セラ株式会社 撮像装置、並びにその製造装置および製造方法
JP4588015B2 (ja) * 2006-12-25 2010-11-24 京セラ株式会社 生体認証装置
WO2008081903A1 (ja) * 2006-12-27 2008-07-10 Kyocera Corporation 撮像装置および情報コード読取装置
US20080159644A1 (en) * 2006-12-28 2008-07-03 Kelly Sean C Condition dependent sharpening in an imaging device
US8567678B2 (en) * 2007-01-30 2013-10-29 Kyocera Corporation Imaging device, method of production of imaging device, and information code-reading device
US7792423B2 (en) * 2007-02-06 2010-09-07 Mitsubishi Electric Research Laboratories, Inc. 4D light field cameras
GB2448132B (en) * 2007-03-30 2012-10-10 Light Blue Optics Ltd Optical Systems
JP2008268586A (ja) * 2007-04-20 2008-11-06 Ricoh Co Ltd 光走査装置及び画像形成装置
JP2009010730A (ja) * 2007-06-28 2009-01-15 Kyocera Corp 画像処理方法と該画像処理方法を用いた撮像装置
FR2919052B1 (fr) * 2007-07-19 2009-11-06 Onera (Off Nat Aerospatiale) Procede d'estimation d'au moins une deformation du front d'onde d'un systeme optique ou d'un objet observe par le systeme optique et dispositif associe
JP2009041968A (ja) 2007-08-07 2009-02-26 Fujinon Corp 復元処理を前提としたレンズの評価方法および装置、評価用補正光学系
JP4844979B2 (ja) * 2007-08-30 2011-12-28 京セラ株式会社 画像処理方法と該画像処理方法を用いた撮像装置
US8077401B2 (en) * 2007-10-03 2011-12-13 Ricoh Co., Ltd. Catadioptric imaging system
US7787112B2 (en) * 2007-10-22 2010-08-31 Visiongate, Inc. Depth of field extension for optical tomography
US20100295973A1 (en) * 2007-11-06 2010-11-25 Tessera North America, Inc. Determinate and indeterminate optical systems
WO2009069752A1 (ja) * 2007-11-29 2009-06-04 Kyocera Corporation 撮像装置および電子機器
US8098948B1 (en) * 2007-12-21 2012-01-17 Zoran Corporation Method, apparatus, and system for reducing blurring in an image
JP5157015B2 (ja) 2008-02-04 2013-03-06 富士フイルム株式会社 画像処理装置、画像処理方法、撮像装置、撮像方法、およびプログラム
EP2891918A1 (en) * 2008-02-29 2015-07-08 Global Bionic Optics Pty Ltd. Single-lens extended depth-of-field imaging systems
US9866826B2 (en) 2014-11-25 2018-01-09 Ricoh Company, Ltd. Content-adaptive multi-focal display
US9865043B2 (en) 2008-03-26 2018-01-09 Ricoh Company, Ltd. Adaptive image acquisition and display using multi-focal display
US8897595B2 (en) * 2008-03-26 2014-11-25 Ricoh Co., Ltd. Adaptive image acquisition for multiframe reconstruction
US8243353B1 (en) * 2008-04-07 2012-08-14 Applied Science Innovations, Inc. Holography-based device, system and method for coded aperture imaging
DE102008022493A1 (de) 2008-05-07 2009-11-12 Carl Zeiss Microlmaging Gmbh Vorrichtung und Verfahren zum evaneszenten Beleuchten einer Probe
JP4658162B2 (ja) * 2008-06-27 2011-03-23 京セラ株式会社 撮像装置および電子機器
US7948550B2 (en) * 2008-06-27 2011-05-24 Ricoh Co., Ltd. Electro-optic imaging system with aberrated triplet lens compensated by digital image processing
US8363129B2 (en) * 2008-06-27 2013-01-29 Kyocera Corporation Imaging device with aberration control and method therefor
US8248684B2 (en) * 2008-08-26 2012-08-21 Ricoh Co., Ltd. Control of adaptive optics based on post-processing metrics
US8502877B2 (en) * 2008-08-28 2013-08-06 Kyocera Corporation Image pickup apparatus electronic device and image aberration control method
JP4743553B2 (ja) * 2008-09-29 2011-08-10 京セラ株式会社 レンズユニット、撮像装置、および電子機器
JP4945806B2 (ja) * 2008-09-30 2012-06-06 富士フイルム株式会社 画像処理装置、画像処理方法、撮像装置、撮像方法、およびプログラム
GB0820273D0 (en) 2008-11-05 2008-12-10 Imp Innovations Ltd Improvements in relation to image processing
US8294807B2 (en) * 2009-01-23 2012-10-23 Ricoh Co., Ltd. Imaging system with variable opto-mechanical system, aberrated optics and compensating filter bank
US8873810B2 (en) * 2009-03-02 2014-10-28 Honeywell International Inc. Feature-based method and system for blur estimation in eye images
GB2468380B (en) * 2009-03-02 2011-05-04 Honeywell Int Inc A feature-based method and system for blur estimation in eye images
EP2228677A1 (en) * 2009-03-09 2010-09-15 Global Bionic Optics Pty Ltd. Extended depth-of-field surveillance imaging system
US8121439B2 (en) * 2009-05-22 2012-02-21 Ricoh Co., Ltd. End-to-end design of electro-optic imaging systems using the nonequidistant discrete Fourier transform
US9218648B2 (en) * 2009-10-27 2015-12-22 Honeywell International Inc. Fourier domain blur estimation method and system
US20110228070A1 (en) * 2009-11-07 2011-09-22 Courosh Mehanian System and Method for Determining Image Focus by Sampling the Image at Multiple Focal Planes Simultaneously
WO2011058236A1 (fr) * 2009-11-16 2011-05-19 Dxo Labs Systeme optique et procede de conception associe
JP5584489B2 (ja) * 2010-02-17 2014-09-03 キヤノン株式会社 質量顕微鏡像の画像処理方法、プログラム、装置
JP5477464B2 (ja) * 2010-04-21 2014-04-23 富士通株式会社 撮像装置
JP2011229625A (ja) * 2010-04-26 2011-11-17 Fujifilm Corp 内視鏡装置
JP2011229603A (ja) * 2010-04-26 2011-11-17 Fujifilm Corp 内視鏡装置
US8416334B2 (en) 2010-04-27 2013-04-09 Fm-Assets Pty Ltd. Thick single-lens extended depth-of-field imaging systems
US8457393B2 (en) 2010-07-14 2013-06-04 Omnivision Technologies, Inc. Cross-color image processing systems and methods for sharpness enhancement
US8416396B2 (en) 2010-07-18 2013-04-09 David H. Parker Methods and apparatus for optical amplitude modulated wavefront shaping
FR2964756B1 (fr) 2010-09-10 2013-03-22 Thales Sa Systeme de visualisation a filtre de correction
WO2012035552A2 (en) * 2010-09-14 2012-03-22 Nitin Jindal Generating a code system using haar wavelets
US9212899B2 (en) 2010-09-15 2015-12-15 Ascentia Imaging, Inc. Imaging, fabrication and measurement systems and methods
US10132925B2 (en) 2010-09-15 2018-11-20 Ascentia Imaging, Inc. Imaging, fabrication and measurement systems and methods
US8687040B2 (en) 2010-11-01 2014-04-01 Omnivision Technologies, Inc. Optical device with electrically variable extended depth of field
FR2967791B1 (fr) * 2010-11-22 2012-11-16 Ecole Polytech Procede et systeme de calibration d'un modulateur optique spatial dans un microscope optique
JP6134650B2 (ja) * 2011-01-28 2017-05-24 アイ アイオー, リミテッド・ライアビリティ・カンパニーEye Io, Llc シーンに基づく適用性のあるビットレート制御
CN103503454A (zh) 2011-01-28 2014-01-08 艾艾欧有限公司 场景形式的视频流编码
US8949078B2 (en) 2011-03-04 2015-02-03 Ricoh Co., Ltd. Filter modules for aperture-coded, multiplexed imaging systems
JP2014115303A (ja) * 2011-03-31 2014-06-26 Fujifilm Corp 焦点深度拡張光学系及び撮像システム
CN102735609A (zh) * 2011-03-31 2012-10-17 西门子公司 一种体液成像系统、方法及景深扩展成像装置
US8610813B2 (en) 2011-05-31 2013-12-17 Omnivision Technologies, Inc. System and method for extending depth of field in a lens system by use of color-dependent wavefront coding
FR2977962B1 (fr) 2011-07-13 2013-07-26 Thales Sa Systeme optique a codage de pupille asservi
TWI467226B (zh) 2011-11-15 2015-01-01 Ind Tech Res Inst 相位物體顯微系統
DE102011118697B4 (de) * 2011-11-16 2016-09-08 Carl Zeiss Optronics Gmbh Bilderfassungssystem
US9432642B2 (en) 2011-12-12 2016-08-30 Omnivision Technologies, Inc. Imaging system and method having extended depth of field
US9739864B2 (en) 2012-01-03 2017-08-22 Ascentia Imaging, Inc. Optical guidance systems and methods using mutually distinct signal-modifying
US9534884B2 (en) 2012-01-03 2017-01-03 Ascentia Imaging, Inc. Coded localization systems, methods and apparatus
US8773659B2 (en) * 2012-01-13 2014-07-08 Roper Scientific Inc. Anastigmatic imaging spectrograph
US9613285B2 (en) * 2012-03-22 2017-04-04 The Charles Stark Draper Laboratory, Inc. Compressive sensing with local geometric features
JP2013222066A (ja) * 2012-04-17 2013-10-28 Hitachi Ltd 位相フィルタおよびそれを用いた撮像カメラシステム
US9104027B2 (en) 2012-04-27 2015-08-11 Manufacturing Techniques, Inc. Optical instrument for the simulation of atmospheric turbulence
US8867831B2 (en) * 2012-05-09 2014-10-21 University Of Southern California Image enhancement using modulation strength map and modulation kernel
JP5564533B2 (ja) * 2012-06-04 2014-07-30 ライトロン株式会社 天体撮像装置、天体撮像方法およびプログラム
US9864184B2 (en) * 2012-10-30 2018-01-09 California Institute Of Technology Embedded pupil function recovery for fourier ptychographic imaging devices
US9497379B2 (en) 2013-08-22 2016-11-15 California Institute Of Technology Variable-illumination fourier ptychographic imaging devices, systems, and methods
WO2014070656A1 (en) 2012-10-30 2014-05-08 California Institute Of Technology Fourier ptychographic imaging systems, devices, and methods
US10652444B2 (en) 2012-10-30 2020-05-12 California Institute Of Technology Multiplexed Fourier ptychography imaging systems and methods
US9612656B2 (en) 2012-11-27 2017-04-04 Facebook, Inc. Systems and methods of eye tracking control on mobile device
FR2999300B1 (fr) 2012-12-07 2022-06-03 Thales Sa Systeme optique comportant un filtre optique a masque de phase et/ou d'amplitude a motif periodique
US9219866B2 (en) 2013-01-07 2015-12-22 Ricoh Co., Ltd. Dynamic adjustment of multimode lightfield imaging system using exposure condition and filter position
JP6017347B2 (ja) * 2013-02-27 2016-10-26 株式会社豊田中央研究所 コード読取り装置
CN103235411B (zh) * 2013-04-09 2015-12-02 中国科学院西安光学精密机械研究所 可拆分重组相位掩膜板及波前编码成像系统
ES2530900B1 (es) * 2013-05-11 2015-12-22 Universidade De Santiago De Compostela Procedimiento, sistema y producto de programa informático para obtener al menos una imagen de la retina de un ojo
JP2016534389A (ja) 2013-07-31 2016-11-04 カリフォルニア インスティチュート オブ テクノロジー 開口走査フーリエタイコグラフィ撮像
US9030580B2 (en) 2013-09-28 2015-05-12 Ricoh Company, Ltd. Color filter modules for plenoptic XYZ imaging systems
CN103760671B (zh) * 2014-01-17 2015-12-02 中国科学院西安光学精密机械研究所 基于滤波器稳定的波前编码最优相位掩膜板参数获取方法
EP3114509B1 (en) 2014-03-04 2021-04-28 Novadaq Technologies ULC Spatial and spectral filtering apertures and optical imaging systems including the same
KR101949571B1 (ko) * 2014-03-04 2019-02-18 노바다크 테크놀러지즈 유엘씨 광대역 이미징을 위한 릴레이 렌즈 시스템
US11468557B2 (en) 2014-03-13 2022-10-11 California Institute Of Technology Free orientation fourier camera
US10162161B2 (en) 2014-05-13 2018-12-25 California Institute Of Technology Ptychography imaging systems and methods with convex relaxation
US9355315B2 (en) * 2014-07-24 2016-05-31 Microsoft Technology Licensing, Llc Pupil detection
US9864205B2 (en) 2014-11-25 2018-01-09 Ricoh Company, Ltd. Multifocal display
EP3238135B1 (en) 2014-12-22 2020-02-05 California Institute Of Technology Epi-illumination fourier ptychographic imaging for thick samples
CN104680128B (zh) * 2014-12-31 2022-10-25 北京释码大华科技有限公司 一种基于四维分析的生物特征识别方法和系统
CN107209362B (zh) 2015-01-21 2020-11-06 加州理工学院 傅立叶重叠关联断层摄影
CN109507155B (zh) 2015-01-26 2021-08-24 加州理工学院 阵列级傅立叶重叠关联成像
JP2018509622A (ja) 2015-03-13 2018-04-05 カリフォルニア インスティチュート オブ テクノロジー フーリエタイコグラフィ手法を用いるインコヒーレント撮像システムにおける収差補正
US9993149B2 (en) 2015-03-25 2018-06-12 California Institute Of Technology Fourier ptychographic retinal imaging methods and systems
US9495590B1 (en) * 2015-04-23 2016-11-15 Global Bionic Optics, Ltd. Extended depth-of-field biometric system
US10126114B2 (en) 2015-05-21 2018-11-13 Ascentia Imaging, Inc. Angular localization system, associated repositionable mechanical structure, and associated method
WO2016187591A1 (en) 2015-05-21 2016-11-24 California Institute Of Technology Laser-based fourier ptychographic imaging systems and methods
CN108431649B (zh) 2015-08-31 2021-08-24 史赛克欧洲运营有限公司 偏振依赖滤波器、使用其的系统以及相关联的工具包和方法
CN105403508B (zh) * 2015-09-29 2019-05-07 南京理工大学 基于合成相位传递函数的非干涉相位成像方法
US10568507B2 (en) 2016-06-10 2020-02-25 California Institute Of Technology Pupil ptychography methods and systems
US11092795B2 (en) 2016-06-10 2021-08-17 California Institute Of Technology Systems and methods for coded-aperture-based correction of aberration obtained from Fourier ptychography
CN106199956B (zh) * 2016-09-06 2019-02-12 哈尔滨工业大学 一种基于波前编码的扩大红外光学系统视场的方法
FR3057686B1 (fr) 2016-10-13 2018-12-07 Thales Procede d'optimisation d'une architecture d'objectif infrarouge corrigee des derives thermiques et achromatisee et systeme de captation d'image associe
US10282822B2 (en) * 2016-12-01 2019-05-07 Almalence Inc. Digital correction of optical system aberrations
US11143806B1 (en) * 2017-03-03 2021-10-12 Apple Inc. Electronic devices having pixels with elevated fill factors
KR20200008630A (ko) 2017-05-24 2020-01-28 더 트러스티스 오브 콜롬비아 유니버시티 인 더 시티 오브 뉴욕 분산 설계된 유전성 메타표면에 의한 광대역 수색성의 평평한 광학 부품
EP3676973A4 (en) 2017-08-31 2021-05-05 Metalenz, Inc. INTEGRATION OF LENS WITH PERMEABLE METAL SURFACE
FR3071342B1 (fr) * 2017-09-21 2019-09-06 Safran Electronics & Defense Capteur d'image a matrice de bayer
US11933973B2 (en) 2017-10-03 2024-03-19 The Regents Of The University Of Colorado Methods and systems for imaging with aberration correction
US10754140B2 (en) 2017-11-03 2020-08-25 California Institute Of Technology Parallel imaging acquisition and restoration methods and systems
WO2019142313A1 (ja) * 2018-01-19 2019-07-25 三菱電機株式会社 波面計測装置および波面計測システム
CN108227187B (zh) * 2018-01-24 2020-10-27 深圳大学 一种扩展光学成像景深的方法及系统
US10679024B2 (en) * 2018-07-24 2020-06-09 Cognex Corporation System and method for auto-focusing a vision system camera on barcodes
FR3086488B1 (fr) * 2018-09-20 2020-09-18 Centre Nat Rech Scient Procede d'acquisition d'une image avec une optique adaptative
US11851217B1 (en) * 2019-01-23 2023-12-26 Ball Aerospace & Technologies Corp. Star tracker using vector-based deep learning for enhanced performance
US11828598B1 (en) 2019-08-28 2023-11-28 Ball Aerospace & Technologies Corp. Systems and methods for the efficient detection and tracking of objects from a moving platform
WO2022158957A1 (en) 2021-01-21 2022-07-28 Latvijas Universitates Cietvielu Fizikas Instituts Coded diffraction pattern wavefront sensing device and method
US11927769B2 (en) 2022-03-31 2024-03-12 Metalenz, Inc. Polarization sorting metasurface microlens array device

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US169944A (en) * 1875-11-16 Improvement in chair-seats
US51806A (en) * 1866-01-02 Improvement in well-boring machines
US4938596A (en) * 1989-01-05 1990-07-03 The University Of Rochester Phase conjugate, common path interferometer
US5002380A (en) * 1989-03-16 1991-03-26 Trw Inc. Phase corrector for large optical systems
US5113284A (en) * 1991-02-07 1992-05-12 Talandic Research Corporation Phased array optical telescope
US5128530A (en) * 1991-05-28 1992-07-07 Hughes Aircraft Company Piston error estimation method for segmented aperture optical systems while observing arbitrary unknown extended scenes
US5221834A (en) * 1991-06-28 1993-06-22 Eastman Kodak Company Method for providing feedback correction for an imaging device
US5291560A (en) 1991-07-15 1994-03-01 Iri Scan Incorporated Biometric personal identification system based on iris analysis
US5229889A (en) * 1991-12-10 1993-07-20 Hughes Aircraft Company Simple adaptive optical system
JPH06250108A (ja) * 1993-02-22 1994-09-09 Hitachi Ltd 補償光学装置とこれを用いた天体望遠鏡,光データリンク,レーザ加工機
JPH06310400A (ja) * 1993-04-12 1994-11-04 Svg Lithography Syst Inc 軸上マスクとウェーハ直線配列システム
US5555128A (en) * 1994-10-04 1996-09-10 The United States Of America As Represented By The Secretary Of The Air Force Phase coding technique for one-way image transmission through an aberrating medium
JP3275010B2 (ja) * 1995-02-03 2002-04-15 ザ・リジェンツ・オブ・ザ・ユニバーシティ・オブ・コロラド 拡大された被写界深度を有する光学システム
US20020118457A1 (en) * 2000-12-22 2002-08-29 Dowski Edward Raymond Wavefront coded imaging systems
US20020195548A1 (en) * 2001-06-06 2002-12-26 Dowski Edward Raymond Wavefront coding interference contrast imaging systems
US5610107A (en) * 1995-03-20 1997-03-11 Corning Incorporated Blue high silica glass
US5610707A (en) * 1995-07-07 1997-03-11 Lockheed Missiles & Space Co., Inc. Wavefront sensor for a staring imager
US5963532A (en) * 1998-01-21 1999-10-05 Terastor Corporation Polarization rotation and phase compensation in near-field electro-optical system
US6107617A (en) * 1998-06-05 2000-08-22 The United States Of America As Represented By The Secretary Of The Air Force Liquid crystal active optics correction for large space based optical systems
US6291560B1 (en) * 1999-03-01 2001-09-18 Alliedsignal Inc. Metal/ceramic composite molding material
FR2819101B1 (fr) 2000-12-28 2003-04-11 Atmel Grenoble Sa Capteur photosensible en technologie des circuits integres
JP3804916B2 (ja) 2001-02-09 2006-08-02 シャープ株式会社 撮像システムとその画像データ制御に用いられるプログラムおよびその撮像システムにおける撮像画像の歪み補正方法とその手順を記憶させた記憶媒体
US6525302B2 (en) * 2001-06-06 2003-02-25 The Regents Of The University Of Colorado Wavefront coding phase contrast imaging systems
US6842297B2 (en) * 2001-08-31 2005-01-11 Cdm Optics, Inc. Wavefront coding optics
US6674519B2 (en) * 2001-12-21 2004-01-06 Northrop Grumman Corporation Optical phase front measurement unit
JP2005519361A (ja) 2002-02-27 2005-06-30 シー・デイ・エム・オプテイクス・インコーポレイテツド 波面符号化イメージングシステムの最適化された画像処理
JP3951021B2 (ja) * 2003-03-28 2007-08-01 独立行政法人産業技術総合研究所 補償光学用参照点光源の作成法
EP1609112A4 (en) * 2003-03-31 2010-03-24 Cdm Optics Inc SYSTEMS AND METHOD FOR MINIMIZING ABERRATION EFFECTS IN PICTURE SYSTEMS
WO2005047951A1 (ja) 2003-11-13 2005-05-26 Konica Minolta Opto, Inc. 撮像レンズ及び撮像装置

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102713507A (zh) * 2009-11-19 2012-10-03 佳能株式会社 用于测量被检面的形状的装置和用于计算被检面的形状的程序
CN102713507B (zh) * 2009-11-19 2015-01-21 佳能株式会社 被检面的形状的测量装置、计算方法和设备及被检面加工方法
US9407833B2 (en) 2010-01-22 2016-08-02 The Trustees Of Columbia University In The City Of New York Systems, methods, and media for recording an image using an optical diffuser
CN102770873A (zh) * 2010-01-22 2012-11-07 纽约市哥伦比亚大学理事会 用于使用光学扩散器记录图像的系统、方法和介质
CN101790040A (zh) * 2010-03-05 2010-07-28 圆展科技股份有限公司 实物摄影机
CN102759769A (zh) * 2012-06-27 2012-10-31 中国科学院西安光学精密机械研究所 用于波前编码成像的相位板以及带宽可调波前编码系统
CN102759769B (zh) * 2012-06-27 2014-05-21 中国科学院西安光学精密机械研究所 用于波前编码成像的相位板以及带宽可调波前编码系统
CN109612404B (zh) * 2012-11-14 2021-02-26 高通股份有限公司 结构光主动深度感测系统中对光源功率的动态调整
CN109612404A (zh) * 2012-11-14 2019-04-12 高通股份有限公司 结构光主动深度感测系统中对光源功率的动态调整
US11509880B2 (en) 2012-11-14 2022-11-22 Qualcomm Incorporated Dynamic adjustment of light source power in structured light active depth sensing systems
CN104919274B (zh) * 2013-02-14 2017-05-31 奥林巴斯株式会社 摄像装置
CN104919274A (zh) * 2013-02-14 2015-09-16 奥林巴斯株式会社 摄像装置
CN105050475A (zh) * 2013-03-29 2015-11-11 索尼公司 激光扫描观察装置和激光扫描方法
CN105050475B (zh) * 2013-03-29 2017-10-13 索尼公司 激光扫描观察装置和激光扫描方法
CN108132530A (zh) * 2017-03-03 2018-06-08 中国北方车辆研究所 一种基于像差平衡和控制的大景深光学方法及其系统
CN108132530B (zh) * 2017-03-03 2022-01-25 中国北方车辆研究所 一种基于像差平衡和控制的大景深光学方法及其系统
CN109426818A (zh) * 2017-09-01 2019-03-05 威斯康星校友研究基金会 用于识别视线外对象的装置
CN108803015A (zh) * 2018-05-31 2018-11-13 中国科学院西安光学精密机械研究所 一种相位掩膜可调的动态波前编码成像系统
CN114460049A (zh) * 2021-12-14 2022-05-10 中国科学院深圳先进技术研究院 一种时分多脉冲间接像差测量方法
CN114460049B (zh) * 2021-12-14 2023-07-04 中国科学院深圳先进技术研究院 一种时分多脉冲间接像差测量方法

Also Published As

Publication number Publication date
US7450745B2 (en) 2008-11-11
US7319783B2 (en) 2008-01-15
EP1609112A4 (en) 2010-03-24
CN1768346B (zh) 2010-11-17
WO2004090581A2 (en) 2004-10-21
IL170697A0 (en) 2009-02-11
US7889903B2 (en) 2011-02-15
IL170697A (en) 2011-09-27
US8107705B2 (en) 2012-01-31
WO2004090581A3 (en) 2005-02-24
US20070091486A1 (en) 2007-04-26
US20090067680A1 (en) 2009-03-12
JP2006523330A (ja) 2006-10-12
JP4565192B2 (ja) 2010-10-20
IL208545A0 (en) 2010-12-30
IL208545A (en) 2013-12-31
US20070122049A1 (en) 2007-05-31
EP1609112A2 (en) 2005-12-28
JP2010191467A (ja) 2010-09-02
US20110142310A1 (en) 2011-06-16
US20040190762A1 (en) 2004-09-30
US7260251B2 (en) 2007-08-21

Similar Documents

Publication Publication Date Title
CN1768346A (zh) 用于最小化成像系统中的光程差效应的系统和方法
US8149319B2 (en) End-to-end design of electro-optic imaging systems for color-correlated objects
CA2716608C (en) Single-lens extended depth-of-field imaging systems
US10460167B2 (en) Extended depth-of-field biometric system
US8294764B2 (en) Extended depth-of-field surveillance imaging system
JP5866383B2 (ja) 画像における焦点誤差推定
CN1926417A (zh) 产生含有深度信息的图像的方法和设备
EP2096483A1 (en) Single-lens extended depth-of-field imaging systems
EP2564254A1 (en) Thick single-lens extended depth-of-field imaging systems
Zhou et al. Analysis of postreconstruction digital refocusing in Fourier ptychographic microscopy
Gao et al. Automated training data generation for microscopy focus classification
Mazzaferri et al. Edge detector tolerant to object defocusing
CN109414161A (zh) 扩展景深口内成像装置
Dallaire et al. Simplified projection technique to correct geometric and chromatic lens aberrations using plenoptic imaging
Kim et al. Quantifying Aberrations on Object Plane Using Zernike Polynomials
SE519942C2 (sv) Autofokusering, samt ett förfarande, arrangemang, digitalt minnesmedium och mikroskopsystem för detsamma

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: FULL VISION TECHNOLOGY CO., LTD.

Free format text: FORMER OWNER: OMNIVISION CDM OPTICS INC.

Effective date: 20120827

C41 Transfer of patent application or patent right or utility model
C56 Change in the name or address of the patentee

Owner name: OMNIVISION CDM OPTICS INC.

Free format text: FORMER NAME: CDM OPTICS INC.

CP01 Change in the name or title of a patent holder

Address after: American Colorado

Patentee after: OMNIVISION CDM OPTICS, Inc.

Address before: American Colorado

Patentee before: CDM OPTICS, Inc.

TR01 Transfer of patent right

Effective date of registration: 20120827

Address after: California, USA

Patentee after: Full Vision Technology Co.,Ltd.

Address before: American Colorado

Patentee before: OMNIVISION CDM OPTICS, Inc.

C56 Change in the name or address of the patentee
CP01 Change in the name or title of a patent holder

Address after: California, USA

Patentee after: OmniVision Technologies, Inc.

Address before: California, USA

Patentee before: Full Vision Technology Co.,Ltd.

CX01 Expiry of patent term

Granted publication date: 20101117