CN1783338B - 同步存储器件、操作其的方法和包括其的存储器系统 - Google Patents

同步存储器件、操作其的方法和包括其的存储器系统 Download PDF

Info

Publication number
CN1783338B
CN1783338B CN2005100874016A CN200510087401A CN1783338B CN 1783338 B CN1783338 B CN 1783338B CN 2005100874016 A CN2005100874016 A CN 2005100874016A CN 200510087401 A CN200510087401 A CN 200510087401A CN 1783338 B CN1783338 B CN 1783338B
Authority
CN
China
Prior art keywords
refresh
self
bank
address
cell array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2005100874016A
Other languages
English (en)
Other versions
CN1783338A (zh
Inventor
朴泽善
李润相
李祯培
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of CN1783338A publication Critical patent/CN1783338A/zh
Application granted granted Critical
Publication of CN1783338B publication Critical patent/CN1783338B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/406Management or control of the refreshing or charge-regeneration cycles
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/406Management or control of the refreshing or charge-regeneration cycles
    • G11C11/40611External triggering or timing of internal or partially internal refresh operations, e.g. auto-refresh or CAS-before-RAS triggered refresh
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/406Management or control of the refreshing or charge-regeneration cycles
    • G11C11/40615Internal triggering or timing of refresh, e.g. hidden refresh, self refresh, pseudo-SRAMs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/406Management or control of the refreshing or charge-regeneration cycles
    • G11C11/40618Refresh operations over multiple banks or interleaving
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/408Address circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2211/00Indexing scheme relating to digital stores characterized by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C2211/401Indexing scheme relating to cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C2211/406Refreshing of dynamic cells
    • G11C2211/4067Refresh in standby or low power modes

Abstract

本发明公开了与多存储体同步动态存取存储器(SDRAM)电路、模块和存储系统一起使用的方法和装置。在所描述的一个实施例中,SDRAM电路接收用于自动刷新操作的存储体地址,并对指定的存储体和对当前刷新行执行自动刷新操作。该存储器件允许在对所有存储体和当前刷新行完成自动刷新操作之前进入自刷新模式。该存储器件在对新行执行自刷新操作之前完成对当前刷新行的刷新操作。还描述了其它实施例。

Description

同步存储器件、操作其的方法和包括其的存储器系统
相关申请 
本申请要求在2004年7月21日提交的韩国专利申请2004-56967的优先权,其公开的内容在此被引入作为参考。 
技术领域
本发明涉及动态随机存取存储器(DRAM)半导体器件和系统,更具体地说涉及在进行逐存储体自动刷新(per-bank auto-refresh)操作的器件中用于转换到自刷新模式的方法和装置。 
背景技术
DRAM器件是公知的,常用于需要读/写数字存储器的数字系统中。DRAM器件被如此命名是因为在每个存储单元中的数据须通过周期性地读取数据来刷新,否则存储的数据就会损坏。现代同步DRAM器件(SDRAM)典型地采用“自动刷新”模式,在每次由外部存储器控制器启动自动刷新操作时刷新DRAM存储单元阵列的一行。内部刷新行计数器增量经过连续自动刷新操作的行,并在到达底部后返回到阵列的顶部。因此DRAM存储器控制器在其向DRAM器件发出自动刷新命令时具有一定的灵活性,只要在为阵列规定的保持数据稳定的最大时间内刷新所有的行就行。 
很多SDRAM包含多个存储体,高序行地址位和确定哪个存储体应接收该操作的操作一起被提供给SDRAM。有些这样的器件允许用自动刷新命令提供存储体地址,然后可以在未被选择的存储体中执行数据存取操作的同时,在由涉及当前刷新行的存储体地址规定的存储体中执行自动刷新操作。这里将这样的器件称为逐存储体刷新(PBR)SDRAM器件。在本申请发明人提交的相关待审申请、美国专利申请号为US 11/105169中公开了新颖的PBRSDRAM体系结构和操作方法,该公开在此作为参考一并引入。 
许多SDRAM器件还结合了“自刷新”模式。在自刷新模式中,SDRAM 器件通常进入低功率状态,在该状态期间器件不响应总线命令直至被唤醒。在自刷新模式下,期望SDRAM器件基于内部时序执行其自身的刷新操作,以充分保持存储在存储器件中的数据。 
发明内容
现在已认识到至少有一些PBR SDRAM器件可以从自刷新模式获益,该自刷新模式结合了用于在自动刷新周期的任何时刻无论对于当前刷新行是否已刷新所有存储体都转换到自刷新模式的逻辑。可能的获益包括减少了对存储器控制器的特定于器件的需求,增加了存储器件的灵活性,以及允许更小的转换到自刷新模式的临界时序。 
在本发明的一个方面,公开了一种运行多存储体存储器件的方法,该方法包括接收外部刷新存储体地址,并对对应于该外部刷新存储体地址的存储单元阵列存储体的当前行执行自动刷新操作。该器件通过进入自刷新模式来响应功率下降命令。在将当前行更新为首次在自刷新模式中的新行之前,该器件完成对所有存储单元阵列存储体中当前行的自动刷新操作(必要的话),例如,通过对尚未对当前行执行刷新操作的存储体中的当前行进行刷新,或通过对当前行刷新所有的存储体,尽管这些存储体中的一个或多个已在进入自刷新模式前被自动刷新过。提供了若干用于完成对当前行的刷新操作的实施例。 
在本发明另一方面,公开了一种同步存储器件。该存储器件包括多个n个可独立寻址的存储单元阵列存储体;刷新地址产生器,用于对所有存储单元阵列存储体规定当前刷新行;以及存储体地址电路,用于接收外部提供的用于刷新操作的存储体地址,并对对应于该存储体地址的存储单元阵列存储体应用刷新操作。刷新存储体地址计数器,用于当已对该多个存储单元阵列存储体中每一个的当前刷新行都进行了刷新操作时,通知刷新地址产生器产生新的刷新行。自刷新电路,用于在自刷新模式下对存储单元阵列存储体应用刷新操作,该自刷新电路包括用于在进入自刷新模式时以及在将当前刷新行更新为新行之前完成对所有存储单元阵列存储体中的当前刷新行的刷新操作的电路。该自刷新电路可以根据若干更具体的实施例来工作,这将在以下详细描述。 
其它方面包括对所公开的存储器件有用的存储器控制器,存储模块,以及存储系统。 
附图说明
图1A和1B分别示出根据第一实施例的同步动态随机存取存储器(SDRAM)器件的译码的自动刷新和外部自动刷新信号版本的方框图; 
图2示出例如在图1A和1B所示的SDRAM器件中有用的计数控制信号产生器; 
图3示出用于图1A和1B所示的SDRAM器件的从自动刷新转换到自刷新的时序图; 
图4示出用于图1A和1B所示的SDRAM器件的另一种自刷新时钟产生器的方框图; 
图5示出用于图1A和1B所示的SDRAM器件的从自动刷新转换到自刷新的另一种时序图; 
图6A和6B分别示出根据第二实施例的同步动态随机存取存储器(SDRAM)器件的译码的自动刷新和外部自动刷新信号版本的方框图; 
图7示出例如在图6A和6B所示的SDRAM器件中有用的设置电路; 
图8示出用于图6A和6B所示的SDRAM器件的从自动刷新转换到自刷新的时序图。 
图9A和9B分别示出根据第三实施例的同步动态随机存取存储器(SDRAM)器件的译码的自动刷新和外部自动刷新信号版本的方框图; 
图10示出图9A和9B所示的SDRAM器件的从自动刷新转换到自刷新的时序图; 
图11示出例如在图9A/9B的电路中有用的计数控制信号产生器和设置电路的另一种设置,用于根据第三实施例的转换形成同步动态随机存取存储器(SDRAM)器件; 
图12示出采用图11的计数控制信号产生器和设置电路为SDRAM器件给出从自动刷新转换到自刷新的时序图; 
图13A和13B分别示出根据第四实施例的同步动态随机存取存储器(SDRAM)器件的译码的自动刷新和外部自动刷新信号版本的方框图; 
图14示出图13A和13B所示的SDRAM器件的从自动刷新转换到自刷新的时序图; 
图15示出图13A和13B所示的SDRAM器件的从自动刷新转换到自刷新的另一种时序图; 
图16示出根据采用译码的自动刷新命令的实施例的存储系统; 
图17示出根据采用译码的自动刷新命令和包含多个存储器件的存储模块的实施例的存储系统; 
图18示出根据采用外部自动刷新信号的实施例的存储系统;以及 
图19示出根据采用外部自动刷新信号和存储模块的实施例的存储系统。 
具体实施方式
图1A以方框图的形式示出SDRAM器件100。存储单元阵列10包括多个存储单元阵列存储体10-1至10-n,其中,n可以是任何大于1的数,典型地为2的幂。每个存储体包括多个存储单元MC,每个存储单元连接到多个位线BL之一和多个字线WL之一的唯一组合,如在现有技术中所公知的。 
行地址译码器电路12基于所提供的行地址radda为各存储器操作选择主字线之一。每个主字线通过控制电路(未示出)耦合到多个字线(WL)。行地址译码器电路12包括多个行地址译码器12-1至12-n,每个分别激活存储单元阵列存储体10-1至10-n中一个的字线。多个存储体选择信号ba1至ban确定哪个行地址译码器响应行地址radda。 
列地址译码器电路14基于列地址cadd选择在存储器读/写操作期间将被读/写的位线。列地址译码器电路14包括多个列地址译码器14-1至14-n,每个分别读取存储单元阵列存储体10-1至10-n中一个的位线。 
刷新地址产生器28在应产生新的刷新行地址时接收计数信号cnt。刷新地址产生器28向选择器30提供当前刷新行地址RADD。 
地址锁存器32接收多个外部地址信号ADD和多个外部存储体地址信号BA。自动刷新命令信号AREF、激活(ACT)信号、写(WR)信号以及读(RD)信号决定如何解释ADD和BA。在激活命令期间,ADD信号被锁存并被作为行地址radd提供给选择器30,BA信号被锁存并作为存储体地址iba1提供给第一开关34。在读或写命令期间,ADD信号(可能还有BA信号)被锁存并作为列地址cadd提供给列地址译码器电路14。在自动刷新命令期间,存储体地址信号BA被锁存并作为存储体地址iba1提供给第一开关34。 
命令译码器20接收外部命令信号COM并产生各种控制信号,包括ACT、WR,和RD、AREF,和PD(功率下降信号)。当自动刷新命令和功率下降命令被一起接收时,命令译码器20向自刷新控制信号产生器22声明PD。 
在器件进入自刷新模式时,自刷新控制信号产生器22发出自刷新控制信号SREF。即当功率下降信号PD被激活时,器件进入自刷新模式。SREF被提供给若干个块,包括第一开关34、时钟产生器24、选择器30,以及第二开关40。 
当器件处于自刷新模式且SREF被启动时,时钟产生器24产生刷新时钟信号SCLK。SCLK触发存储体地址产生器26以在每个SCLK周期产生自刷新存储体地址iba2,例如以顺序寻址每个存储体10-1至10-n的预定重复顺序。 
第一开关34接收iba1和iba2,以及自刷新控制信号SREF。当SREF未声明时,iba1作为存储体地址iba通过第一开关34。当SREF被声明时,iba2作为存储体地址iba通过第一开关34。 
存储体地址译码器36对存储体地址iba译码以从ba1-ban的组中产生适当的存储体选择信号。 
选择器30确定当前刷新地址RADD或地址锁存器输出地址radd是否被作为行地址radda传递到行地址译码器电路12。自动刷新命令信号AREF和自刷新控制信号SREF作为选择信号被提供给选择器30,当AREF或SREF被声明时,RADD被选择为地址radda输入行地址译码器12,否则将选择radd。 
第二开关40根据自动刷新命令信号AREF或自刷新控制信号SREF分别使存储体选择信号ba1-ban作为缓存的存储体选择信号bba1-bban通过。当AREF或SREF被声明时,第二开关40将每个存储体选择信号复制到其对应的缓存存储体选择信号线上。 
计数控制信号产生器38接收缓存的存储体选择信号bba1-bban。当为当前行声明了每个缓存的存储体选择信号线之后,计数控制信号产生器38向刷新地址产生器28声明计数信号cnt,通知刷新地址产生器28将当前刷新行更新为新行。如在该实施例的一种可选设置中将描述的,计数信号cnt还可被提供给时钟产生器24。 
当写信号WR被激活时,数据输入缓存器16从外部数据总线接收数据信号DIN,并将数据信号din提供给存储阵列10。当读信号RD被激活时,数据输出缓存器18从存储阵列10接收数据信号dout,并将数据信号DOUT提供给外部数据总线。 
图1B中示出了另一种设置SDRAM器件100’。SDRAM器件100’类似于SDRAM器件100,除了以专用的外部刷新信号EREF代替译码的命令AREF来 确定何时执行自动刷新操作。以下的附图中将进一步说明SDRAM器件100和100’的操作,假设AREF和EREF的特性相似。 
图2示出计数控制信号产生器38的实施例。计数控制信号产生器38包括锁存电路LA1至LAn,其中每个分别接收对应的缓存存储体地址信号bba1-bban,每个为n个输入端的NOR门NOR1提供一个输入。NOR门NOR1提供产生器输出信号cnt,该信号也被作为复位信号反馈回各锁存电路。 
每个锁存电路包括两个n通道MOSFET晶体管N1和N2,以及由两个相互间输入与输出连接的反向器I1和I2构成的锁存器L。当缓存的存储体地址被声明时,晶体管N1作用为绝缘晶体管将锁存器L连接到缓存的存储体地址信号。当缓存的存储体地址被声明时,锁存器L被强置于锁存器电路输出为低的状态。一旦所有缓存的存储体地址信号都被声明了,所有到NOR1的输入均为低,而NOR1则声明cnt。 
在每个锁存器电路中,晶体管N2以一种下拉配置连接到锁存器L的输入,cnt被作为选通信号提供给N2。由此,当cnt被声明时,其迫使锁存器L处于锁存器电路输出为高的状态,复位计数控制信号产生器38并取消声明cnt。 
图3示出具有图2所示计数控制信号产生器的SDRAM器件100和100’的操作的时序图,假设一个四存储体存储阵列的存储体地址为00、01、10和11。在时间周期T1,存储器件处于常规模式,并响应自动刷新命令和启动模式命令(未示出)。刷新地址产生器产生具有值0...0111的当前刷新行地址RADD。在T1期间发出第一自动刷新命令,其具有等于00的存储体地址BA,该提供的存储体地址BA由地址锁存器32作为内部存储体地址iba1锁存。由于SREF为低,iba1被传递到存储体地址译码器36,其将值00译码并声明存储体地址选择信号ba1。AREF声明激活了第二开关40,使计数控制信号产生器38锁存bba1。AREF声明还使选择器30将当前刷新行地址0...0111传递到行地址译码器12。结果是,存储体10-1中的行0...0111被刷新。 
也在T1期间发出第二自动刷新命令,其具有等于01的存储体地址BA。通过类似的响应,计数控制信号产生器38锁存bba2,存储体10-2中的行0...0111被刷新。 
在第三次声明AREF时,发出功率下降命令,使得PD的值变化到逻辑高的状态。自刷新控制信号产生器22识别到器件正处于低功率状态,向时钟产生器24声明自刷新控制信号SREF。时间周期T1由此结束,而存储器件处于自 刷新模式的时间周期T2开始。请注意在进入自刷新模式时,四个存储体中只有两个(存储体10-1和10-2)的当前刷新行被刷新。 
时钟产生器24通过产生至存储体地址产生器26的第一SCLK脉冲来响应SREF声明。存储体地址产生器产生具有值00的第一内部存储体地址iba2。由于SREF为高,iba2被传送到存储体地址译码器36,其将值00译码并声明存储体地址选择信号ba1。SREF声明激活第二开关40,使得计数控制信号产生器3 8试图再次锁存bba1(由于bba1已被锁存,因此不起作用)。SREF声明还引起选择器30将当前刷新行地址0...0111传递给行地址译码器12。结果,存储体10-1中的行0...0111被再次刷新,这次是在自刷新模式下。 
也是在T2期间,第二SCLK声明使得存储体地址产生器前进到存储体地址01。通过相似的响应,计数控制信号产生器38现在试图再次锁存bba2,而存储体10-2中的行0...0111被再次刷新。 
第三SCLK声明使得存储体地址产生器26前进到存储体地址10。通过相似的响应,计数控制信号产生器38现在锁存bba3,而存储体10-3中的行0...0111被最终刷新。 
第四SCLK声明使得存储体地址产生器26前进到存储体地址11。通过相似的响应,计数控制信号产生器38现在锁存bba4,而存储体10-4中的行0...0111被最终刷新。 
请注意在四次SCLK声明之后当前刷新行0...0111最终在所有存储体中被刷新,并且计数控制信号产生器38中的所有四个锁存电路锁存了其各自的存储体地址选择信号。这使得计数控制信号产生器38声明cnt,复位其自身,并使刷新地址产生器28前进到下一个刷新行地址RADD(具有值0...1000)。新的时间周期T3开始了,其间在自刷新模式下刷新所有存储体中的新行地址。 
优选地,在上述例子中,无论自动刷新操作在功率下降命令时(以及独立于在对当前行的自动刷新操作中寻址存储体的顺序)停止在当前行的什么位置,都保证对所有存储体进行适当的刷新操作。 
在时间上,最坏情况出现在对当前行的刷新剩下一个存储体时接收到功率下降命令的时候。根据存储器控制器所遵循的时序,可以使剩余的存储体接近于其保持时间的结尾。图4和5示出了涉及该时序情景的对第一实施例的置换。 
图4示出另一种自刷新时钟产生器24’,其包括自动刷新时钟基准50、自刷新时钟基准52、NOR门NOR2,以及反向器I3。时钟基准50和52接收自刷 新控制信号SREF和计数信号cnt。自动刷新时钟基准50在声明SREF时被启动,并随后在第一次声明cnt时被禁止。当其被启动时,自动刷新时钟基准50产生时钟信号aclk。自刷新时钟基准52被禁止直至SREF和cnt第一次被一起声明,并然后被启动直至SREF被取消声明。自刷新时钟基准52在启动时产生时钟信号sclk。 
NOR门NOR2接收aclk和sclk,并向反向器I3提供输出。反向器I3的输出是自刷新时钟信号SCLK。因此,在操作中,在aclk或sclk上的正时钟脉冲将产生SCLK上的正时钟脉冲。 
图5以另一种自刷新时钟产生器24’示出图1A/1B实施例时序图的例子。图5与图3直到T1结束时声明功率下降信号(PD)都是相同的。在该时刻,自动刷新时钟基准50被启动,并产生四个连续的时钟脉冲、启动四个自刷新操作。该四个自刷新操作从当前行地址0...0111开始顺序地寻址四个存储体,该当前行地址0...0111是在要进入自刷新操作之前、在时间周期T1中用于自动刷新操作的当前行地址。在四个存储体都被刷新之后,计数控制信号产生器38产生计数信号cnt至刷新地址产生器28和自刷新时钟产生器24。响应于该cnt脉冲,自动刷新时钟基准50被禁止,并且自刷新时钟基准52被启动。然后自刷新时钟基准52在时间周期T3中及以后启动自刷新时钟周期。 
由自刷新时钟产生器24’增加的灵活性在于,对行0...0111的刷新操作可以相对快地完成,并且然后“常规”自刷新操作在下一个刷新行以标准刷新速率开始。比较图3和图5,第一四个自刷新周期以速率t1完成,然后随后的自刷新周期以较慢的速率t2出现。 
图6A和6B分别以框图的形式示出根据第二实施例的SDRAM器件200和200’。在很多方面,SDRAM器件200和200’与SDRAM器件100和100’相似。SDRAM器件200和200’与SDRAM器件100和100’相同的方面将不再叙述。 
在图6A和6B中未包含若干图1A中的组件:存储体地址产生器26和第一开关34。因此,内部存储体地址iba1是至存储体地址译码器36的唯一输入。 
代之以存储体地址产生器,图6A包括由自刷新时钟信号SCLK驱动的设置电路60。设置电路60具有一连接到每个存储体选择信号ba1至ban的输出。当发出SCLK脉冲时,设置电路60声明每个存储体选择信号,由此使得一次对所有存储体的当前刷新行进行更新。 
开关40将所有存储体选择信号传递到计数控制信号产生器38,使得在每个自刷新周期声明cnt。 
图7示出设置电路60的一种可能配置,其包括延迟装置DLC、NOR门NOR3、以及n个p通道晶体管P1-Pn。在NOR3的一个输入端和延迟装置DLC的输入端接收SCLK。延迟装置DLC的输出、即SCLK的延迟版本被提供给NOR3的另一个输入。延迟装置DLC的延迟时间被设计为小于SCLK的正脉冲时间。这使得正SCLK脉冲在原始脉冲仍处于活跃状态时出现在DLC的输出端。结果是在NOR3输出的节点b上出现扩展的负脉冲。 
节点b连接到每个p通道晶体管P1-Pn的栅极。每个p通道晶体管耦合在正电源电压和对应的一个存储体选择信号线ba1-ban之间。因此,当NOR3驱动节点b为低时,每个p通道晶体管被激活,将各存储体选择信号线连接到正电源电压。 
图8举例示出SDRAM器件200和200’的时序图。与前述时序例子相似,在发出功率下降(PD)命令时,在行地址为0...0111的行上对存储体10-1和10-2完成了自动刷新操作。当自刷新控制信号产生器22激活SREF时,时钟产生器24产生脉冲SCLK。设置电路60通过同时声明存储体选择信号ba1、ba2、ba3、ba4来进行响应。这使得所有四个存储体10-1、10-2、10-3、10-4同时针对在自动刷新操作时选择的行地址0...0111被刷新。开关40将所有四个存储体选择信号作为缓存的存储体选择信号bba1-bba4传送到计数控制信号产生器38。计数控制信号产生器38在cnt产生正脉冲、复位其自身,并使刷新地址产生器28前进到具有值0...1000的新行地址RADD。每个自刷新周期T2’、T3’、T4’等都一次刷新所有四个存储体,其中,T2’针对在进入自刷新模式时正在被自动刷新的行同时刷新所有存储体。 
图9A和9B分别示出对译码的刷新命令SDRAM 300和外部刷新信号SDRAM 300’的第三实施例。以图9A为例,图1A中的SDRAM由类似于图7的设置电路60的设置电路60’增强。采用了图4所示的自刷新时钟产生器24’,时钟信号aclk和sclk作为输出。时钟信号aclk提供给设置电路60’,时钟信号sclk提供给存储体地址产生器26。 
图10示出SDRAM器件300和300’操作的时序图。与前述例子相似,在发出功率下降命令时,在行地址为0...0111的行上对存储体10-1和10-2完成了自动刷新操作。当自刷新控制信号产生器22激活SREF时,时钟产生器24’ 产生aclk上的正脉冲。与图8相似,该正脉冲使得设置电路60’声明所有存储体选择信号。这使得所有四个存储体10-1、10-2、10-3、10-4在时间周期T2’期间同时针对行地址0...0111被刷新。开关40将所有四个存储体选择信号作为缓存的存储体选择信号bba1-bba4传送到计数控制信号产生器38。计数控制信号产生器38为计数信号cnt产生正脉冲、复位其自身,并使刷新地址产生器28在时间周期T3期间前进到具有值0...1000的新行地址RADD。 
cnt上的正脉冲还使得时钟产生器24’禁止aclk的产生而开始sclk的产生。在随后的四个sclk脉冲中,存储体地址产生器26逐步通过全部存储体地址00、01、10、11,使得存储体地址译码器36顺序地声明存储体选择信号ba1、ba2、ba3、ba4。由此在时间周期T3的四个sclk脉冲期间,针对待刷新的值为0...0111的行地址RADD顺序地刷新四个存储体10-1、10-2、10-3、10-4。计数控制信号产生器38寄存每个被刷新的存储体,并在时间周期T3结束时声明cnt以使行地址进位,并为下一个新刷新行开始存储体地址产生器周期。 
图11示出对图9A和9B的设置电路和计数控制信号产生器的置换。计数控制信号产生器38”类似于图2中的计数控制信号产生器38。锁存器LA1-LAn的被标以S1-Sn的输出被路由到NOR1,也被路由到设置电路60”。 
电路60”接收分别驱动n个NAND门NA-1至NA-n的一个输入的信号sclk。NAND门NA-1至NA-n的其它输入分别由计数控制信号产生器38”的信号S1至Sn驱动。NAND门NA-1至NA-n的输出分别驱动p通道晶体管P1-Pn的门。与图7相似,p通道晶体管P1-Pn连接到存储体选择信号线ba1至ban。 
图1 2示出在采用计数控制信号产生器38”和设置电路60”时SDRAM器件300和300’操作的时序图。当发出功率下降命令时,由于时间周期T1期间的两个在先自动刷新操作命令被导向存储体地址00和01而置位锁存器LA1和LA2(具有低输出)。锁存器L3(未示出)和L4(如图11中的Ln)未被置位并因此而具有高输出。结果,当声明aclk时,NA-3(未示出)和NA-4(如图11中的NA-n)被驱动为低,激活晶体管P3(未示出)和P4(如图11中的Pn)。由此,如图12所示,发出存储体选择信号脉冲ba3和ba4,在时间周期T2’期间对存储器存储体10-3和10-4、而不是对存储器存储体10-1和10-2执行刷新操作。由此完成了对RADD0...0111的刷新操作,引起计数控制信号产生器38”声明cnt。如前所述,声明cnt将操作转换到用于常规自刷新操作的存储体地址产生器。 
图13A和13B分别示出了针对译码的刷新命令SDRAM 400和外部刷新信号SDRAM 400’的第四实施例。SDRAM 400和SDRAM 100的主要不同之处例如在于第一开关34’和时钟产生器24”的操作。这些差别将借助图14的时序图给以最好的解释。 
与先前的时序图类似,在此示出当对存储体地址00和01以及当前刷新行已发出自动刷新操作时发出功率下降命令的例子。但与图3不同,由自刷新控制信号产生器进行的SREF声明不引起第一开关34’选择内部存储体地址iba2,而是第一开关34’继续从地址锁存器32选择内部存储体地址iba1。此外,时钟产生器24”在自刷新模式开始时不开始发出SCLK脉冲。 
在图13A/13B的实施例中,尽管进入了自刷新模式也期望存储器控制器对当前行完成刷新操作。SDRAM器件400在自刷新模式开始在时间周期T22期间继续响应AREF命令。由此存储器控制器在自刷新模式下发出新的自动刷新命令时为当前行提供剩余的存储体地址10和11,使得存储体10-3和10-4针对具有值0...0111的行地址RADD被刷新。 
在时间周期T22的结尾,计数控制信号产生器38检测到所有存储体都已针对当前刷新行被寻址,并发出计数信号脉冲cnt。该计数信号cnt通过刷新地址产生器28增加刷新地址RADD,激活(与SREF组合)时钟产生器24”,并将第一开关34’从选择内部存储体地址iba1转换到(与SREF组合)选择内部存储体地址iba2。这种转换引起存储器件进入常规自刷新模式。 
图15示出另一种SDRAM器件400和400’的合法时序图。该时序图表明存储器控制器不必跟踪在进入自刷新模式时尚未针对当前行进行刷新的存储器存储体的数目或标识,而是存储器控制器在进入自刷新模式后对每个存储体发出一个自动刷新命令。如果在该周期结束前由于所有存储体均已针对当前行进行了刷新而使当前行进位,则任何剩余的自动刷新周期均被忽略。 
在前述实施例中描述的存储器件意在与存储器控制器一起用于存储系统中。存储器控制器可以集成在处理器中,或可以是在存储器和处理器之间接口的分立的集成电路。在图16-19中示出了若干代表性的存储系统。 
图16示出存储系统500,其包括存储器控制器600和存储器件100。存储器控制器600如图所示通过总线向存储器件100提供命令COM、存储体地址BA、和行/列地址ADD。对于写命令,存储器控制器600通过数据总线向存储器件100提供写数据Din。对于读命令,存储器控制器600通过数据总线从存 储器件100接收读数据Dout。当器件处于常规模式时,存储器控制器向存储器件100提供逐存储体刷新(PBR)自动刷新命令。然而,如上所述,控制器600还被允许在不考虑PBR周期的状态的情况下将存储器件100置于功率下降状态。当然,存储器件100也可以替换成如上所述的存储器件200、300。存储器件100还可以由存储器件400来代替,由控制器600在进入功率下降状态后提供对当前刷新行完成PBR周期所需的另外的自动刷新命令。 
尽管在图16中示出的是单存储器件,但在很多存储系统组合了一个或多个存储器模块。图17示出存储系统550,其采用控制器600和组合多个与存储器件100类型相同的存储器件100-1至100-n的存储模块100-m(或例如如上所述的200、300、或400)。功能与图16中的相似,其中,缓存器和/或模块100-m上的追踪(未示出)将COM、BA、ADD信号分布到各存储器件100-1至100-n。 
图16和17示出采用译码的自动刷新命令的存储系统。图18和19示出采用外部自动刷新信号EREF的类似存储系统500’和550’,该外部自动刷新信号EREF由存储器控制器600’提供用以启动自动刷新操作。存储系统500’和550’采用上述存储器件、例如存储器件100’、200’、300’、和400’的外部自动刷新版本。 
本领域的技术人员将能认识到,还可有许多其它的器件配置置换,并且还有许多其它设计参数未被讨论。例如,所描述的实施例的各种特性可与其它置换中的其它实施例相组合。所描述的和附图中所示的具体电路仅为举例,在大多数情况下,其它电路也可实行相同或相似的功能。这样的细小修改和实现细节包含在本发明的实施例中,并落入本发明的保护范围。 
以上实施例仅为示例。尽管在某些地方描述涉及“一个”、“另一个”或“一些”实施例,并不意味着每个这样的引用是针对相同的实施例或特征仅适用于单个实施例。 

Claims (42)

1.一种用于运行同步存储器件的方法,该存储器件具有多个存储单元阵列存储体,该方法包括:
接收外部刷新存储体地址;
对对应于该外部刷新存储体地址的存储单元阵列存储体的当前行执行自动刷新操作;
通过进入自刷新模式来响应功率下降命令;以及
在将当前行更新为自刷新模式中的首个新行之前,对所有存储单元阵列存储体完成针对当前行的自动刷新操作。
2.根据权利要求1所述的方法,其中,对所有存储单元阵列存储体完成针对当前行的自动刷新操作包括顺序地通过所有存储单元阵列存储体以及在每个存储体中对当前行执行刷新操作。
3.根据权利要求2所述的方法,还包括,在将当前行更新为自刷新模式中的首个新行之前顺序通过所有存储单元阵列存储体时,以比在将当前行更新为自刷新模式中的首个新行之后所使用的刷新速率更快的速率来定时刷新操作。
4.根据权利要求1所述的方法,其中,对所有存储单元阵列存储体完成针对当前行的自动刷新操作包括对所有存储单元阵列存储体中的当前行同时执行自刷新操作。
5.根据权利要求4所述的方法,还包括在将当前行更新为自刷新模式中的首个新行之后,针对每个随后的行对所有存储单元阵列存储体中的该新的当前行同时执行自刷新操作。
6.根据权利要求5所述的方法,其中,所述同时执行自刷新操作包括在每个自刷新操作期间为每个存储体启动一个存储体地址信号。
7.根据权利要求4所述的方法,其中,所述同时执行自刷新操作包括在每个自刷新操作期间为每个存储体启动一个存储体地址信号。
8.根据权利要求4所述的方法,还包括在将当前行更新为自刷新模式中的首个新行之后,针对每个随后的行对所述存储单元阵列存储体顺序地执行自刷新操作。
9.根据权利要求1所述的方法,其中,所述对当前行和所有存储单元阵列存储体完成自动刷新操作包括:
在进入自刷新模式后,在不离开自刷新模式的情况下接收另外的外部刷新存储体地址,直至对每个存储单元阵列存储体中的当前行都执行了刷新操作为止;以及
在将当前行更新为自刷新模式中的首个新行之后执行自刷新操作。
10.根据权利要求9所述的方法,其中,所述进入自刷新模式后接收的另外的外部刷新存储体地址的数目等于存储单元阵列存储体的数目。
11.根据权利要求9所述的方法,其中,所述进入自刷新模式后接收的另外的外部刷新存储体地址的数目等于尚未对当前行执行刷新操作的存储单元阵列存储体的数目。
12.根据权利要求1所述的方法,其中,所述在将当前行更新为自刷新模式中的首个新行之前对当前行和所有存储单元阵列存储体完成自动刷新操作包括:
启动对所有尚未对当前行执行刷新操作的存储单元阵列存储体中的当前行的同时刷新操作。
13.一种用于运行同步存储器件的方法,该存储器件具有多个存储单元阵列存储体,该方法包括:
接收外部刷新存储体地址;
对对应于该外部刷新存储体地址的存储单元阵列存储体的当前行执行自动刷新操作;
通过进入自刷新模式来响应功率下降命令;
在自刷新模式中,顺序地通过所有存储单元阵列存储体并对每个存储体中的当前行执行刷新操作;以及
然后将当前行更新为自刷新模式中的首个新行。
14.一种用于运行同步存储器件的方法,该存储器件具有多个存储单元阵列存储体,该方法包括:
接收外部刷新存储体地址;
对对应于该外部刷新存储体地址的存储单元阵列存储体的当前行执行自动刷新操作;
通过进入自刷新模式来响应功率下降命令;
在自刷新模式中,启动对所有存储单元阵列存储体中的当前行的同时刷新操作;以及
然后将当前行更新为自刷新模式中的首个新行。
15.一种用于运行同步存储器件的方法,该存储器件具有多个存储单元阵列存储体,该方法包括:
接收外部刷新存储体地址;
对对应于该外部刷新存储体地址的存储单元阵列存储体的当前行执行自动刷新操作;
通过进入自刷新模式来响应功率下降命令;
在自刷新模式中,启动对所有存储单元阵列存储体中的当前行的同时刷新操作;
然后将当前行更新为自刷新模式中的首个新行;以及
针对每个随后的行对存储单元阵列存储体顺序地执行自刷新操作。
16.一种用于运行同步存储器件的方法,该存储器件具有多个存储单元阵列存储体,该方法包括:
接收外部刷新存储体地址;
对对应于该外部刷新存储体地址的存储单元阵列存储体的当前行执行自动刷新操作;
通过进入自刷新模式来响应功率下降命令;
在自刷新模式中,在不离开自刷新模式的情况下接收另外的外部刷新存储体地址,直至对每个存储单元阵列存储体中的当前行都执行了刷新操作为止;
然后将当前行更新为自刷新模式中的首个新行;以及
在将当前行更新为新行后执行自刷新操作。
17.一种用于运行同步存储器件的方法,该存储器件具有多个存储单元阵列存储体,该方法包括:
接收外部刷新存储体地址;
对对应于该外部刷新存储体地址的存储单元阵列存储体的当前行执行自动刷新操作;
通过进入自刷新模式来响应功率下降命令;
在自刷新模式中,同时启动对所有尚未对当前行执行刷新操作的存储单元阵列存储体中的当前行的刷新操作;
然后将当前行更新为自刷新模式中的首个新行;以及
在将该当前行更新为新行后执行自刷新操作。
18.一种用于运行同步存储器件的方法,该存储器件具有多个存储单元阵列存储体,该方法包括:
接收外部刷新存储体地址;
对对应于该外部刷新存储体地址的存储单元阵列存储体的当前行执行自动刷新操作;
通过进入自刷新模式来响应功率下降命令;
在自刷新模式中,在不离开自刷新模式的情况下接收另外的外部刷新请求,并执行对应的自动刷新操作直至对每个存储单元阵列存储体中的当前行都执行了刷新操作为止;
然后将当前行更新为自刷新模式中的首个新行;以及
在将当前行更新为新行后执行自刷新操作。
19.一种用于运行存储器控制器的方法,该方法包括:
以寻址所有n个存储体、然后再次寻址所有n个存储体的序列向具有n个存储单元阵列存储体的存储单元发出自动刷新存储体地址,从而使得该存储单元能够在刷新存储体之一中的另一行之前根据该自动刷新存储体地址序列顺序地刷新所有n个存储体中的当前行,其中n是任何大于1的数;
向该存储单元发出功率下降命令;以及
在不唤醒该存储单元的情况下,向该存储单元发出另外的自动刷新存储体地址,以允许该存储单元在开始自刷新操作之前完成对当前行的刷新操作。
20.根据权利要求19所述的方法,其中,所述功率下降命令之后发出的另外的自动刷新存储体地址的数目等于n。
21.根据权利要求19所述的方法,其中,所述功率下降命令之后发出的另外的自动刷新存储体地址的数目等于尚未对当前行执行刷新操作的存储单元阵列存储体的数目。
22.一种存储系统,包括:
至少一个存储单元,其具有n个存储体以及存储体可寻址的自动刷新操作,该存储单元包括自动刷新电路,该自动刷新电路将自动刷新操作针对每个被寻址的存储体中的刷新行,直至n个存储体中的每一个都在至少一个自动刷新操作中被寻址,该存储单元具有用于在将当前行更新为自刷新模式中的首个新行之前对所有存储单元阵列存储体完成针对当前行的自动刷新操作的电路,其中n是任何大于1的数;以及
控制器,用于声明激活命令并向该存储单元提供外部刷新存储体地址信号,该控制器具有常规自动刷新模式,该模式提供在对一个刷新行的n个连续的自动刷新操作中的全部n个存储体地址信号,并提供在对下一个刷新行的随后n个连续的自动刷新操作中的全部n个存储体地址信号,其中,该控制器可以在未完成对当前刷新行的n个连续自动刷新操作的情况下通知该存储单元进入自刷新模式。
23.根据权利要求22所述的存储系统,还包括连接在所述存储单元和所述控制器之间的外部刷新信号线,用于允许该控制器启动对该存储单元的自动刷新操作。
24.根据权利要求23所述的存储系统,其中,所述存储单元在进入自刷新模式后响应在所述外部刷新信号线上的自动刷新操作信号,直至在对刷新行的至少一个自动刷新操作中寻址每一个存储体。
25.根据权利要求22所述的存储系统,还包括连接在所述存储单元和控制器之间的命令信号线,所述控制器通过在该命令信号线上放置适当的信号来要求该存储单元执行激活命令、自动刷新命令,以及自刷新命令。
26.一种同步存储器件,包括:
n个可独立寻址的存储单元阵列存储体,其中n是任何大于1的数;
刷新地址产生器,用于对所有存储单元阵列存储体指定当前刷新行;
存储体地址电路,用于接收外部提供的用于刷新操作的存储体地址,并对对应于该存储体地址的存储单元阵列存储体应用刷新操作;
刷新存储体地址计数器,用于当已针对该n个存储单元阵列存储体的每一个中的当前刷新行都进行了刷新操作时,通知刷新地址产生器产生新的刷新行;以及
自刷新电路,用于在自刷新模式下对存储单元阵列存储体应用刷新操作,该自刷新电路包括用于在进入自刷新模式时以及在将当前刷新行更新为新行之前完成对所有存储单元阵列存储体中的当前刷新行的刷新操作的电路。
27.根据权利要求26所述的存储器件,其中,所述自刷新电路包括:
存储体地址产生器,用于在自刷新模式下产生自刷新存储体地址;以及
第一开关,用于为刷新操作选择外部提供的存储体地址或自刷新存储体地址。
28.根据权利要求27所述的存储器件,其中,所述第一开关在自刷新模式下选择自刷新存储体地址。
29.根据权利要求28所述的存储器件,其中,所述存储体地址产生器在进入自刷新模式时和在更新当前刷新行之前为每个存储单元阵列存储体顺序地产生自刷新存储体地址。
30.根据权利要求28所述的存储器件,其中,所述存储体地址产生器在进入自刷新模式时和在更新当前刷新行之前,为在针对当前行的刷新操作中尚未被寻址的每个存储单元阵列存储体顺序地产生自刷新存储体地址。
31.根据权利要求28所述的存储器件,还包括设置电路,用于在进入自刷新模式时为第一刷新操作选择所有存储单元阵列存储体。
32.根据权利要求28所述的存储器件,还包括设置电路,用于在进入自刷新模式时为第一刷新操作选择所有在针对当前行的刷新操作中尚未被寻址的存储单元阵列存储体。
33.根据权利要求27所述的存储器件,其中,所述第一开关在所述当前刷新行于自刷新模式下被更新为新行时选择所述自刷新存储体地址。
34.根据权利要求33所述的存储器件,其中,在所述第一开关于自刷新模式下选择自刷新存储体地址之前,该存储器件继续接收外部提供的用于刷新操作的存储体地址。
35.根据权利要求34所述的存储器件,其中,该存储器件继续接收外部提供的用于刷新操作的存储体地址,直至所有在进入自刷新模式之前针对当前行的刷新操作中尚未被寻址的存储单元阵列存储体都在刷新操作中被寻址了为止。
36.根据权利要求34所述的存储器件,其中,该存储器件在进入自刷新模式后接收n个外部提供的用于刷新操作的存储体地址。
37.根据权利要求33所述的存储器件,其中,所述第一开关响应于所述刷新存储体地址计数器的输出而运行。
38.根据权利要求27所述的存储器件,其中,自刷新电路还包括自刷新时钟产生器,用于为自刷新模式下的刷新操作提供刷新时钟信号,该自刷新时钟产生器以第一速率提供刷新时钟信号,直至对所有存储单元存储体都完成了针对当前刷新行的刷新操作为止,以及在当前刷新行被更新为新行时以第二速率提供刷新时钟信号。
39.根据权利要求38所述的存储器件,其中,所述自刷新时钟产生器包括一个自动刷新时钟产生器,其在进入自刷新模式时被启动并在当前刷新行被更新为新行时被禁止,以及一个自刷新时钟产生器,其在该自动刷新时钟产生器被禁止时就在自刷新模式下启动,该自动刷新时钟产生器具有第一速率的输出时钟信号,而该自刷新时钟产生器具有第二速率的输出时钟信号,该自刷新时钟产生器具有将该自动刷新时钟产生器的输出时钟信号和该自刷新时钟产生器的输出时钟信号进行或运算的输出级。
40.根据权利要求26所述的存储器件,其中,所述自刷新电路包括设置电路,用于在进入自刷新模式后为刷新操作选择所有存储单元阵列存储体。
41.根据权利要求40所述的存储器件,其中,所述设置电路包括一用于延迟自刷新时钟的延迟电路,一用于接收该自刷新时钟和延迟的自刷新时钟的NOR门,以及一驱动电路,用于响应该NOR门的输出为所有存储单元阵列存储体驱动存储体地址线。
42.根据权利要求26所述的存储器件,其中,所述自刷新电路包括设置电路,用于在进入自刷新模式时为第一刷新操作选择所有在针对当前行的刷新操作中尚未被寻址的存储单元阵列存储体。
CN2005100874016A 2004-07-21 2005-07-21 同步存储器件、操作其的方法和包括其的存储器系统 Active CN1783338B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20040056967 2004-07-21
KR56967/04 2004-07-21
US11/169,241 2005-06-27
US11/169,241 US7164615B2 (en) 2004-07-21 2005-06-27 Semiconductor memory device performing auto refresh in the self refresh mode

Publications (2)

Publication Number Publication Date
CN1783338A CN1783338A (zh) 2006-06-07
CN1783338B true CN1783338B (zh) 2012-03-21

Family

ID=36773366

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2005100874016A Active CN1783338B (zh) 2004-07-21 2005-07-21 同步存储器件、操作其的方法和包括其的存储器系统

Country Status (4)

Country Link
US (1) US7164615B2 (zh)
KR (1) KR100615608B1 (zh)
CN (1) CN1783338B (zh)
IT (1) ITMI20051406A1 (zh)

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7010642B2 (en) * 2000-01-05 2006-03-07 Rambus Inc. System featuring a controller device and a memory module that includes an integrated circuit buffer device and a plurality of integrated circuit memory devices
KR100543914B1 (ko) * 2003-04-30 2006-01-23 주식회사 하이닉스반도체 리프레쉬 동작시 피크 전류를 줄일 수 있는 반도체 메모리장치
KR100653688B1 (ko) * 2004-04-29 2006-12-04 삼성전자주식회사 반도체 메모리 장치 및 이 장치의 리프레쉬 방법, 및 이장치를 위한 메모리 시스템
US8112655B2 (en) * 2005-04-21 2012-02-07 Violin Memory, Inc. Mesosynchronous data bus apparatus and method of data transmission
US9384818B2 (en) 2005-04-21 2016-07-05 Violin Memory Memory power management
US9582449B2 (en) 2005-04-21 2017-02-28 Violin Memory, Inc. Interconnection system
KR101331569B1 (ko) * 2005-04-21 2013-11-21 바이올린 메모리 인코포레이티드 상호접속 시스템
US7158434B2 (en) * 2005-04-29 2007-01-02 Infineon Technologies, Ag Self-refresh circuit with optimized power consumption
US7444577B2 (en) * 2005-08-04 2008-10-28 Rambus Inc. Memory device testing to support address-differentiated refresh rates
US7734866B2 (en) * 2005-08-04 2010-06-08 Rambus Inc. Memory with address-differentiated refresh rate to accommodate low-retention storage rows
US7565479B2 (en) * 2005-08-04 2009-07-21 Rambus Inc. Memory with refresh cycle donation to accommodate low-retention-storage rows
US7310018B2 (en) * 2005-08-23 2007-12-18 Micron Technology, Inc. Method and apparatus providing input buffer design using common-mode feedback
US7425847B2 (en) * 2006-02-03 2008-09-16 Micron Technology, Inc. Input buffer with optimal biasing and method thereof
JP4967452B2 (ja) * 2006-05-18 2012-07-04 富士通セミコンダクター株式会社 半導体メモリ
CN100530070C (zh) * 2006-11-24 2009-08-19 骆建军 基于flash的硬盘
JP4470185B2 (ja) * 2006-11-28 2010-06-02 エルピーダメモリ株式会社 半導体記憶装置
TWI376603B (en) * 2007-09-21 2012-11-11 Phison Electronics Corp Solid state disk storage system with a parallel accessing architecture and a solid state disk controller
US7936639B2 (en) * 2007-09-27 2011-05-03 Micron Technology, Inc. System and method for processing signals in high speed DRAM
CN101425330B (zh) * 2007-10-31 2010-12-08 中国科学院空间科学与应用研究中心 一种同步动态存储器的刷新控制模块
US9465756B2 (en) * 2009-12-23 2016-10-11 Violin Memory Inc. Configurable interconnection system
KR20110093086A (ko) * 2010-02-11 2011-08-18 삼성전자주식회사 셀프 리프레쉬 동작 모드에서 내부 고 전원전압을 사용하는 반도체 메모리 장치 및 그에 따른 고 전원전압 인가방법
KR101053541B1 (ko) 2010-03-30 2011-08-03 주식회사 하이닉스반도체 반도체 메모리 장치
US8787443B2 (en) * 2010-10-05 2014-07-22 Microsoft Corporation Content adaptive deblocking during video encoding and decoding
JP2013030247A (ja) * 2011-07-28 2013-02-07 Elpida Memory Inc 情報処理システム
KR101897050B1 (ko) * 2012-05-04 2018-09-12 에스케이하이닉스 주식회사 반도체 장치
KR20130129786A (ko) * 2012-05-21 2013-11-29 에스케이하이닉스 주식회사 리프래쉬 방법과 이를 이용한 반도체 메모리 장치
KR101974108B1 (ko) * 2012-07-30 2019-08-23 삼성전자주식회사 리프레쉬 어드레스 생성기, 이를 포함하는 휘발성 메모리 장치 및 휘발성 메모리 장치의 리프레쉬 방법
KR20140104181A (ko) * 2013-02-20 2014-08-28 에스케이하이닉스 주식회사 반도체 메모리 시스템
KR20150098372A (ko) * 2014-02-20 2015-08-28 에스케이하이닉스 주식회사 반도체 메모리 장치를 포함하는 메모리 시스템 및 그의 리프레쉬 동작 방법
KR102205695B1 (ko) * 2014-09-05 2021-01-21 에스케이하이닉스 주식회사 리프레쉬 제어 회로 및 이를 이용한 반도체 장치
KR20160045461A (ko) * 2014-10-17 2016-04-27 에스케이하이닉스 주식회사 반도체 장치 및 그의 구동방법
KR102282971B1 (ko) * 2014-12-05 2021-07-29 삼성전자주식회사 반도체 메모리 장치, 및 상기 반도체 메모리 장치를 포함하는 메모리 시스템
KR20170045795A (ko) * 2015-10-20 2017-04-28 삼성전자주식회사 메모리 장치 및 이를 포함하는 메모리 시스템
KR20180047778A (ko) * 2016-11-01 2018-05-10 삼성전자주식회사 단계별 저전력 상태들을 갖는 메모리 장치
KR20180077973A (ko) * 2016-12-29 2018-07-09 삼성전자주식회사 리프레쉬 동작을 제어하는 메모리 장치
US10490251B2 (en) 2017-01-30 2019-11-26 Micron Technology, Inc. Apparatuses and methods for distributing row hammer refresh events across a memory device
US10672449B2 (en) * 2017-10-20 2020-06-02 Micron Technology, Inc. Apparatus and methods for refreshing memory
US10170174B1 (en) * 2017-10-27 2019-01-01 Micron Technology, Inc. Apparatus and methods for refreshing memory
US10141041B1 (en) * 2017-11-01 2018-11-27 Micron Technology, Inc. Systems and methods for maintaining refresh operations of memory banks using a shared
US10262719B1 (en) * 2017-12-22 2019-04-16 Nanya Technology Corporation DRAM and refresh method thereof
CN112106138B (zh) 2018-05-24 2024-02-27 美光科技公司 用于行锤击刷新采样的纯时间自适应采样的设备和方法
US10573370B2 (en) 2018-07-02 2020-02-25 Micron Technology, Inc. Apparatus and methods for triggering row hammer address sampling
US10685696B2 (en) 2018-10-31 2020-06-16 Micron Technology, Inc. Apparatuses and methods for access based refresh timing
WO2020117686A1 (en) 2018-12-03 2020-06-11 Micron Technology, Inc. Semiconductor device performing row hammer refresh operation
US11037616B2 (en) * 2018-12-14 2021-06-15 Micron Technology, Inc. Apparatuses and methods for refresh operations in semiconductor memories
CN111354393B (zh) 2018-12-21 2023-10-20 美光科技公司 用于目标刷新操作的时序交错的设备和方法
US11615831B2 (en) * 2019-02-26 2023-03-28 Micron Technology, Inc. Apparatuses and methods for memory mat refresh sequencing
US11227649B2 (en) 2019-04-04 2022-01-18 Micron Technology, Inc. Apparatuses and methods for staggered timing of targeted refresh operations
US11069393B2 (en) 2019-06-04 2021-07-20 Micron Technology, Inc. Apparatuses and methods for controlling steal rates
US10978132B2 (en) 2019-06-05 2021-04-13 Micron Technology, Inc. Apparatuses and methods for staggered timing of skipped refresh operations
US11302374B2 (en) 2019-08-23 2022-04-12 Micron Technology, Inc. Apparatuses and methods for dynamic refresh allocation
US11302377B2 (en) 2019-10-16 2022-04-12 Micron Technology, Inc. Apparatuses and methods for dynamic targeted refresh steals
US11309010B2 (en) 2020-08-14 2022-04-19 Micron Technology, Inc. Apparatuses, systems, and methods for memory directed access pause
US11348631B2 (en) 2020-08-19 2022-05-31 Micron Technology, Inc. Apparatuses, systems, and methods for identifying victim rows in a memory device which cannot be simultaneously refreshed
US11380382B2 (en) 2020-08-19 2022-07-05 Micron Technology, Inc. Refresh logic circuit layout having aggressor detector circuit sampling circuit and row hammer refresh control circuit
US11557331B2 (en) 2020-09-23 2023-01-17 Micron Technology, Inc. Apparatuses and methods for controlling refresh operations
US11222686B1 (en) 2020-11-12 2022-01-11 Micron Technology, Inc. Apparatuses and methods for controlling refresh timing
US11264079B1 (en) 2020-12-18 2022-03-01 Micron Technology, Inc. Apparatuses and methods for row hammer based cache lockdown
US20230162780A1 (en) * 2021-11-22 2023-05-25 Nvidia Corporation Mitigating duty cycle distortion degradation due to device aging on high-bandwidth memory interface

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001035152A (ja) * 1999-07-22 2001-02-09 Hitachi Ltd 半導体記憶装置
US6363024B1 (en) * 1999-11-18 2002-03-26 Infineon Technologies Ag Method for carrying out auto refresh sequences on a DRAM

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5627791A (en) * 1996-02-16 1997-05-06 Micron Technology, Inc. Multiple bank memory with auto refresh to specified bank
US6392948B1 (en) * 1996-08-29 2002-05-21 Micron Technology, Inc. Semiconductor device with self refresh test mode
US5870347A (en) * 1997-03-11 1999-02-09 Micron Technology, Inc. Multi-bank memory input/output line selection
US6178130B1 (en) * 1997-10-10 2001-01-23 Rambus Inc. Apparatus and method for refreshing subsets of memory devices in a memory system
KR100518508B1 (ko) * 1997-10-30 2005-11-29 삼성전자주식회사 반도체메모리장치
JPH11312386A (ja) * 1998-03-30 1999-11-09 Siemens Ag Dramチップ
US6859407B1 (en) * 2004-01-14 2005-02-22 Infineon Technologies Ag Memory with auto refresh to designated banks

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001035152A (ja) * 1999-07-22 2001-02-09 Hitachi Ltd 半導体記憶装置
US6363024B1 (en) * 1999-11-18 2002-03-26 Infineon Technologies Ag Method for carrying out auto refresh sequences on a DRAM

Also Published As

Publication number Publication date
CN1783338A (zh) 2006-06-07
US20060018174A1 (en) 2006-01-26
US7164615B2 (en) 2007-01-16
KR100615608B1 (ko) 2006-08-25
ITMI20051406A1 (it) 2006-01-22
KR20060049862A (ko) 2006-05-19

Similar Documents

Publication Publication Date Title
CN1783338B (zh) 同步存储器件、操作其的方法和包括其的存储器系统
US11315619B2 (en) Apparatuses and methods for distributing row hammer refresh events across a memory device
US11615831B2 (en) Apparatuses and methods for memory mat refresh sequencing
US7551502B2 (en) Semiconductor device
US7692993B2 (en) Semiconductor memory device
KR100618070B1 (ko) 리프레시를 자동으로 행하는 동적 메모리 회로
CN1316381C (zh) 自更新装置及方法
US7630268B2 (en) Dynamic semiconductor memory reducing the frequency of occurrence of refresh command request and refresh control method thereof
EP1223583B1 (en) High-speed cycle clock-synchronous memory device
US5999472A (en) Multi-bank synchronous semiconductor memory device with easy control
CN1977340B (zh) 为易失性存储器中的引导式库刷新提供无缝自刷新的方法和系统
CN111354393A (zh) 用于目标刷新操作的时序交错的设备和方法
CN102655022A (zh) 半导体存储器件的刷新控制电路和方法
US5463577A (en) Semiconductor memory
CN102543158A (zh) 为易失性存储器提供独立的库刷新的方法和系统
JP4077295B2 (ja) 同期型半導体記憶装置及びその動作方法
TWI239531B (en) Ripple refresh circuit and method for sequentially refreshing a semiconductor memory system
CN1877739A (zh) 具有较低初始延时的随机存取存储器
US11915737B2 (en) Apparatus with refresh management mechanism
JP2002184182A (ja) 半導体メモリおよびその制御方法
KR20120081352A (ko) 리프레시 제어 회로, 이를 이용한 메모리 장치 및 그 리프레시 제어 방법
JP4559318B2 (ja) 同期式メモリ装置及びその動作方法並びにメモリシステム
CN100456387C (zh) 半导体存储器
JPH07169266A (ja) 半導体メモリ
CN101499314A (zh) 存储器装置与其更新方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant