CN1832143B - 高介电常数材料 - Google Patents

高介电常数材料 Download PDF

Info

Publication number
CN1832143B
CN1832143B CN2006100040057A CN200610004005A CN1832143B CN 1832143 B CN1832143 B CN 1832143B CN 2006100040057 A CN2006100040057 A CN 2006100040057A CN 200610004005 A CN200610004005 A CN 200610004005A CN 1832143 B CN1832143 B CN 1832143B
Authority
CN
China
Prior art keywords
layer
capacitor
dielectric
tio
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2006100040057A
Other languages
English (en)
Other versions
CN1832143A (zh
Inventor
S·戈文达拉詹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
Infineon Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies AG filed Critical Infineon Technologies AG
Publication of CN1832143A publication Critical patent/CN1832143A/zh
Application granted granted Critical
Publication of CN1832143B publication Critical patent/CN1832143B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/022Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being a laminate, i.e. composed of sublayers, e.g. stacks of alternating high-k metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02194Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing more than one metal element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/3141Deposition using atomic layer deposition techniques [ALD]
    • H01L21/3142Deposition using atomic layer deposition techniques [ALD] of nano-laminates, e.g. alternating layers of Al203-Hf02
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • H01L28/56Capacitors with a dielectric comprising a perovskite structure material the dielectric comprising two or more layers, e.g. comprising buffer layers, seed layers, gradient layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31604Deposition from a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31604Deposition from a gas or vapour
    • H01L21/31616Deposition of Al2O3

Abstract

电容器(10)包括衬底(12)和两个金属电极(14,18)。在电极之间形成介电层(16)。优选地,该介电层具有大于25的介电常数和对硅具有足够的导带偏移。提出的示例性实施方案使用以下材料体系:Hf uTi vTa wO xN y、Hf uTi vO xN y、Ti uSr vO xN y、Ti uAl vO xN y和Hf uSr vO xN y(其中u、v、w、x和y是在介电叠层中元素的原子比例)。

Description

高介电常数材料
相关申请的交叉参考
本申请涉及如下的共同-未决申请,这里引入其两者作为参考:申请系列No.___________,___________提交,题为“Method to Control InterfacialProperties for Capacitors Using a Metal Flash Layer”(代理号2004P54458)和申请系列No____________,___________提交,题为“DRAM with High K Dielectric StorageCapacitor and Method of Making the Same”(代理号2004P54457)。
技术领域
本发明一般涉及半导体结构和方法,更具体地涉及新型高介电常数材料。
背景技术
电容器是在半导体器件中广泛应用的存储电荷的元件。电容器基本上包含两个被绝缘体分隔的导电板。电容或者被电容器的每个施加电压保存的电荷量以法拉测量,且取决于板的面积、它们之间的距离和绝缘体的介电值。在滤波器、模数转换器、存储器件和控制应用和许多其它类型的半导体器件中使用电容器。例如,动态随机存取存储器(DRAM)单元包括与存取晶体管串连耦合的存储电容器。通过电荷经过存取晶体管并进入电容器,数据可以被存储入存储电容器和从存储电容器读出。
对于DRAM电容器,亚-70nm技术的一些关键需求是低漏电流、低等价氧化物厚度(EOT)、多晶硅耗尽最低化、足够的能带偏移(对于电介质)和在随后的处理期间的热稳定性。为了满足这些需求,已知使用MIS(金属-绝缘体-硅)或者MIM(金属-绝缘体-金属)电容器。关键挑战是优化各个界面属性和使用具有高电容量的电介质。对于包括栅电极的应用,附加的需求包括隧道漏电流和栅电阻的最小化。
对于电容器,许多高介电常数材料是已知的。被提出作为电容器电介质的高介电常数材料的例子是五氧化钽、氧化钛、钛酸锶钡和氧化钛。为了得到大于10的介电常数,现有技术集中在基于HfuAlvSiwOxNy或LauAlvSiwOxNy体系的材料上。这些材料的限制性在于最大介电常数约30。
发明内容
一方面,本发明提供一种k值大于25并且对硅具有足够导带偏移的介电层。本发明的示例实施方案使用以下材料体系:HfuTivTawOxNy、HfuTivOxNy、TiuSrvOxNy、TiuAlvOxNy和HfuSrvOxNy(其中u、v、w、x、y是在介电叠层中元素的原子比例)。
在第一实施方案中形成半导体器件的方法包括形成厚度小于10nm的第一材料的第一层。第一材料具有大于30(和优选大于约50)的介电常数。形成厚度小于10nm的第二材料的第一层。第二材料具有大于1.5eV的能带偏移。然后可以依次形成第一和第二材料的附加层,得到具有目标厚度的薄膜。在一个实施方案中,第一材料是TiO2。第二材料可以是对硅具有大于~1.5eV的导带偏移的氮化物或氧化物,例如SrO、Al2O3、AlN、HfO2、Y2O3、Lan2O3(其中Lan=镧系元素,例如镧、镨、镝等)、Ta2O5、Sr3N2、Ta3N5和/或Hf3N4
另一方面,本发明提供一种具有高电容量以存储电荷和低漏电的电容器。在每种情况下,电容器包括夹在两个导体之间的电介质。电容器可用做存储器中的存储电容器、模拟或混合信号应用或者场效应晶体管的栅/栅电介质/沟道中的电容器。在第一实施方案中,电介质包括Hf、Ti、Ta、O和N。在第二实施方案中,电介质包括Hf、Ti、O和N。在第三实施方案中,电介质包括Ti、Sr、O和N。在第四实施方案中,电介质包括Ti、Al、O和N。在第五实施方案中,电介质包括Hf、Sr、O和N。
本发明包括多个实施方案。在第一实施方案中,形成半导体器件的方法包括在衬底上沉积Hf3N4层,在衬底上沉积HfO2层,和在衬底上沉积TiO2层。Hf3N4、HfO2、TiO2层是介电层的一部分。在一个实施方案中,沉积Hf3N4、HfO2和TiO2层以形成纳米层叠介电层。Hf3N4、HfO2和TiO2层可以退火以形成包括Hf、Ti、O和N的混合化合物。
在另一实施方案中,Ta2O5层可以沉积在衬底上。在这种情况下,可以沉积Hf3N4、HfO2、TiO2和Ta2O5层以形成纳米层叠介电层。任选地,Hf3N4、HfO2、TiO2和Ta2O5层可以退火以形成包括Hf、Ti、Ta、O和N的混合化合物。
在一个实施方案中,在沉积HF3N4层后沉积HfO2层,在沉积HfO2层后沉积TiO2层,在沉积TiO2层后沉积Ta2O5层。
Hf3N4、HfO2、TiO2和Ta2O5层可以是电容器介电层的一部分。这样,导体可以形成在Hf3N4、HfO2、TiO2和Ta2O5层上。
在另一实施方案中,形成半导体器件的方法包括在衬底上沉积HfO2层,在衬底上沉积TiO2层,在衬底上沉积Ti层,从而HfO2、TiO2和Ti构成介电层。
在另一实施方案中,形成半导体器件的方法包括在衬底上沉积SrO层和在衬底上沉积TiO2层。其中SrO和TiO2层构成电介质层。在一个变体中,该方法包括在SrO和TiO2层上沉积第二SrO层,在SrO和TiO2层上沉积第二TiO2层,在SrO和TiO2层和第二SrO和TiO2层上沉积第三SrO层;和在SrO和TiO2层和第二SrO和TiO2层上沉积第三TiO2层。例如,电介质层可以是纳米层叠介电层。如另一例所示,可以退火SrO和TiO2层以形成包括Ti、Sr、O和N的混合化合物。
在各个方面,可以在TiO2层上沉积SrO层,或反之亦然。例如,沉积的SrO层厚度可以为0.5nm-4nm,沉积的TiO2层厚度可以为0.5nm-4nm。在另一实施例中,沉积的SrO层厚度在约1nm的数量级,TiO2层的厚度可以在约1nm的数量级。
在另一实施方案中,形成半导体器件的方法包括在衬底上沉积Al2O3层和在衬底上沉积TiO2层。Al2O3和TiO2层是介电层的一部分。在一个变体中,该方法还包括在Al2O3和TiO2层上沉积第二Al2O3层,在Al2O3和TiO2层上沉积第二TiO2层,在Al2O3和TiO2层和第二Al2O3和TiO2层上沉积第三Al2O3层,和在Al2O3和TiO2层和第二Al2O3和TiO2层上沉积第三TiO2层。例如,介电层可以是纳米层叠介电层。可以进行氮化步骤以使得介电层包括氮含量。在另一实施例中,可以退火Al2O3和TiO2层以形成包括Ti、Al、O和N的混合化合物。
可以在TiO2层上沉积Al2O3层,或反之亦然。在一个例子中,沉积的Al2O3层的厚度为0.5nm-4nm,沉积的TiO2层厚度可以为0.5nm-4nm。在另一实施例中,沉积的Al2O3层厚度在约1nm的数量级,沉积的TiO2层的厚度在约1nm的数量级。
在另一实施方案中,形成半导体器件的方法包括在衬底上沉积Hf3N4层,在衬底上沉积HfO2层,和在衬底上沉积SrO层。Hf3N4、HfO2、SrO层是介电层的一部分。介电层可以是纳米层叠介电层,或退火Hf3N4、HfO2和SrO层以形成包括Hf、Sr、O和N的混合化合物。在一个实施例中,在沉积Hf3N4层后沉积HfO2层,在沉积HfO2层之后沉积SrO层。如其它实施方案所示,介电层可以是电容器介电层,以及导体可以形成在介电层上。
附图说明
为了更全面地理解本发明及其优点,现在参考结合附图的下列描述,其中:
图1提供示出了电容器通用结构(沉积状态)的示意图;
图2说明了基于TiO2和Al2O3交替层的实施方案;
图3说明了基于SrO和TiO2交替层的实施方案;和
图4是具有本发明的栅电介质的晶体管的截面图。
具体实施方式
下面详细描述目前优选实施方案的制造和使用。然而,应当理解本发明提供了许多可应用的创造性的概念,这些概念可在各个广泛的具体上下文中得以体现。描述的具体实施方案仅仅是制造和使用本发明的具体方法的示例,并不限定本发明的范围。
在具体上下文中将关于优选实施方案,也就是电容器描述本发明。然而,本发明也可以应用到使用电介质,特别是那些具有高介电常数的电介质的其它器件和结构。例如,高介电常数材料可以用作场效应晶体管中的栅电介质。
在一方面,本发明描述了能够满足得到低漏电流和高电容量所需的介电常数和其它属性的潜在材料体系。在优选实施方案中,这些材料体系基于TiO2,其具有80左右的介电常数,但对于硅具有非常低的导带偏移(Ec)(<1.2eV),和低带隙(Eg~3.5eV)。用以与TiO2结合的候选物是:Ta2O5(k=26,Ec<1.5eV,Eg~4.5),Al2O3(k=9,Ec=2.8eV,Eg~8),HfO2(k=20,Ec=1.5eV,Eg=5.8eV),La2O3(k=30,Ec=2.3eV,Eg=4.3eV),SrTiO3(k>100),Hf3N4(k~30)和其它。这些材料的组合也是可预见的。
在优选实施方案中,通过原子层沉积(ALD)可以沉积单独的成分。适当的前体可以用于上述各种成分(氧化物、氮化物)的沉积。例如,可能的源是:
a.氧-H2、O2或O3
b.氮-NH3,N2
c.铪-金属烷基氨化物(例如叔乙基甲基氨基铪Tert ethyl methyl aminohafnium),金属卤化物(例如HfCl2),金属醇盐
d.钛-金属卤化物(例如TiCl4),金属有机物(例如TDMAT),金属醇盐(例如Ti(OEt)4)
e.铝-金属烷基氨化物(例如三甲基铝),金属醇盐。
f.Ta-金属烷基氨化物(例如三丁基亚氨三-二乙氨基钽或TBTDET),金属有机物,金属醇盐。
g.Ru-金属环戊二烯基(例如Ru(Cp)2-二环戊二烯合铷,Ru(乙基Cp)2)
h.Sr-金属环戊二烯基,金属烷基氨化物,金属β-二酮盐,金属醇盐
图1示出了本发明优选实施方案的一个示例。电容器10包括由介电层16分开的两个导体(即衬底12、电极14和电极18)。在所述实施方案中,在衬底12和电极18之间包括底部金属电极层14。该层可以包括金属闪层以清洁界面。该闪层可以是对氧具有高亲和力和熔点(同时对于金属和氧化物)高于1000℃的任何金属。该金属电极14可以由纯金属(例如Ru、Hf、Ti、Ta....)、氮化物(例如TiN、TaN、HfN、这些的混合物)或碳氮化物(例如TiCN、NbCN、HfCN、TaCN....)形成。例如,TiN可以使用TiCl4和NH3通过ALD沉积。
衬底12可以是大块硅衬底的上部分或在另一层上的硅层。作为示例,硅层12可以是绝缘体上的硅(SOI)衬底的一部分,在另一层上的外延生长层(例如硅锗上的硅),或由晶片结合技术形成的硅层。该硅层也可以是形成在衬底上的层,例如用作栅电极或在叠层电容器中使用的电极的多晶硅层。任选地使用除了硅的半导体,例如锗、硅锗、砷化镓和其它。任选地,可以使用非半导体衬底12。例如,可以在介电层12上形成电容器结构。
在图1中描述的实施方案包括与硅衬底12直接接触的金属层14。该金属层14是任选的。如果包括,通过使用热处理或适当的等离子体增强沉积工艺的原子层沉积,可以沉积金属电极层。关于金属层14的进一步细节在共同未决申请序列No.___________(代理号2004P54458)提供,这里引入其内容作为参考。
在图1中示出了另一任选金属层18。该顶金属电极18可以由纯金属(例如Ru、Hf、Ti、Ta....)、氮化物(例如TiN、TaN、HfN、这些的混合物)或碳氮化物(例如TiCN、NbCN、HfCN、TaCN....)形成。例如,TiN可以使用TiCl4和NH3通过ALD沉积。
在衬底12(和在所述实施方案中,电极14,如果包括)上形成介电层16。在优选实施方案中,通过单独成分的ALD沉积介电层16。下面提供材料的具体示例。该层的厚度(典型约2nm-约20nm)、单独子层的厚度、和层的顺序是可变的,且取决于要得到的电容增强(capacitance enhancement)。
在第一实施方案中,通过具有高介电常数材料的顺序层和具有高能带偏移(例如大于1.5-2eV)的随后层形成纳米叠层。由于高介电常数材料会保留电荷且高能带偏移会避免漏电流,优选材料的该组合。例如,如上所述,TiO2具有80左右的优异的介电常数,但是导带偏移非常低。因此TiO2本身并不是优选的。然而,该材料可以优选地与一些材料结合,其帮助增加能带偏移。参考图2和3描述两个示例。
优选实施方案包括如图2中所示的TiO2和Al2O3的纳米叠层,或如图3中所示的TiO2和Hf3N4的纳米叠层。如下所描述的,也可以选择性地使用其它材料。在这两个附图中,在金属电极14(如果包括)上沉积TiO2层。底电极可以仅由金属闪层、闪层和金属电极的组合形成,或仅仅由金属电极形成。典型地该TiO2非常薄,例如小于10nm且优选在约1nm的数量级。在图2的实施方案中,在TiO2层上沉积Al2O3层,在图3的实施方案中,在TiO2层上沉积Hf3N4层。在两种情况下,新沉积的层具有与TiO2层大约相同的厚度。然后通过重复沉积顺序(其也可以改变以改变叠层中元素的总体组成),建立纳米叠层,直至得到了目标厚度。可替换的方法将会由具有比介电常数较高的材料例如TiO2对于硅更高的导带偏移并优选具有更高带隙的材料(例如Al2O3)开始纳米叠层结构。然后如上所述可以建立该结构。
在沉积介电层后,可以引入任选的RTP退火/炉子退火.优选地,使用具有受控气氛的快速热处理(RTP)进行退火.任选地,可以使用受控的炉子退火.在RTP示例中,可以加热该结构到约400℃至约1100℃的温度约10至约60秒的时间.在炉子退火示例中,可以加热该结构到约400℃至约1000℃的温度约5至约30分钟的时间.
在任选的退火之后,可以沉积任选的顶金属电极18。该顶金属电极18可以由纯金属(例如Ru、Hf、Ti、Ta....)、氮化物(例如TiN、TaN、HfN、这些的混合物)或碳氮化物(例如TiCN、NbCN、HfCN、TaCN....)形成。例如,TiN可以使用TiCl4和NH3通过ALD沉积。
对于纳米叠层,单独层(例如SrO、Al2O3、TiO2、Hf3N4、AlN、HfO2)是数nm厚。在优选实施方案中,该厚度优选为约0.5nm-约4nm,典型地为约1nm。理想地这些层就保持为沉积状态。然而,在高温退火期间在每个层之间的界面处会产生一些混合/反应。
在另一实施方案中,电介质16可以是混合化合物。在这种情况下,形成薄层,然后退火该结构以形成例如单一化合物。对于混合化合物,单独层厚度(沉积状态)典型地小于0.5nm以保证更均匀的薄膜。在高温退火之后,理想的情况是薄膜不结晶,且不会分离成几个明显的化合物(其是可能的,取决于薄膜的组成)。可以用于预测退火后存在的相的典型方法是使用量子化学计算、分子轨道理论和自由能量最小化技术。由于可能是不完全稳定的热力学系统,对混合化合物退火效果的具体细节非常难于预测,任何实施会需要使用技术如高分辨TEM、电子能量损耗谱、罗斯福背散射、X-射线光电子能谱或其它的结合进行实际核实(verification)。在任何情况下,本发明包括从纳米叠层到混合化合物和在中间的所有相。
在另一实施方案中,形成具有低漏电流和高电容量的电容器的方法包括基于TiO2和钙钛矿如SrTiO3的氧化物/氮化物/氧氮化物的明智(judicious)混合。这里公开了五种示例体系。下面将会描述这些体系的每一个。这些体系可以作为纳米叠层或混合化合物而得以实施。
第一体系使用HfuTivTawOxNy。在优选实施方案中,0<u<60,0<v<60,0<w<60,0<x<50和0<y<50,和u+v+w+x+y~100。(可以理解可能存在某些污染物如Cl、C和H,取决于沉积工艺。为了确定体系中材料比,忽略了这些污染物)。该实施方案包括所有可能的混合氧化物、氮化物和氧氮化物的组合。例如,混合氧化物可以通过沉积Hf3N4、HfO2、TiO2和Ta2O5的交替层形成。这可以通过增加子层的厚度转变成纳米叠层结构。可以通过改变每个子层的循环数定制(tailor)该组成。
如示例所示,Hf3N4层沉积的厚度为约0.5nm-约3nm,优选约2nm。然后HfO2层沉积的厚度为约0.5nm-约3nm,优选约2nm。TiO2层的厚度可以沉积为约0.5nm-约3nm,优选约2nm。最后,Ta2O5层的厚度可以沉积为约0.5nm-约3nm,优选约2nm。可以重复这四个层约1至10次。
也可以改变沉积的顺序和单独层的厚度以改变随后的介电叠层的属性。这会是用于形成纳米叠层结构的方法。通过减小该层的厚度到1nm或更小(优选接近于单层或约0.5nm厚度),可以以混合氧氮化物的形式处理该二元混合物的相同组。另一变体是仅使用这些二元混合物的子集。例如,可以使用HfO2和TiO2以产生HfuTivOx(其是把HfuTivTawOxNy中的w和y设定为0的结果)。一旦介电叠层的沉积完成,可以如上所述进行随后的处理。
第二实施例使用HfuTivOxNy体系,包括混合氧化物、氮化物和氧氮化物的所有可能组合。在优选实施方案中,0<u<60,0<v<60,0<x<50和0<y<50,和u+v+x+y~100(可能存在某些污染物如Cl、C和H,取决于沉积工艺)。例如,通过沉积Hf3N4、HfO2和TiO2的交替层可以形成混合氧化物。通过增加子层的厚度,这可以转化成纳米叠层结构。例如,可以形成TiO2和HfO2的纳米叠层。通过使用适当的氮化退火(例如在形成气体、NH3气氛或N2气氛中),可以在该结构中引入氮。通过改变每个子层的循环数,可以定制该组成。
另一选项是沉积HfO2、TiO2和Ti层。(这是在HfuTivOxNy中y设为等于0的例子)。然后可以独立地控制叠层的Ti含量。可以使用Ti的吸气效应以控制各个氧化物的氧含量。例如,可以沉积第一Ti(例如0.3-1nm厚)层。在其后可以形成HfO2层(0.3-1nm厚)。可以沉积另一Ti(例如0.3-1nm厚)层。接着可以沉积TiO2(例如0.3-1nm厚)层。可以重复该顺序以得到富Ti结构。可以使用更厚的二元混合物(1nm或更大)层以形成纳米叠层结构。例如为了减小Ti含量,可以除去在HfO2和TiO2之间的Ti层。任选地,可以相对于HfO2或TiO2层的厚度增加Ti层的相对厚度。
另一体系使用TiuSrvOxNy,以及包括混合氧化物、氮化物和氧氮化物的所有可能组合。在优选实施方案中,0<u<60,0<v<60,0<x<50和0<y<50,和u+v+x+y~100(可能存在某些污染物如Cl、C和H,取决于沉积工艺)。例如,通过沉积SrO、Sr3N2和TiO2的交替层可以形成混合氧化物。通过增加子层的厚度,其可以转化成纳米叠层结构。通过改变每个子层的循环数,可以定制该组成。
在原子层沉积(ALD)工艺中,通过交替引入前体(例如TiCl4,Ti的可能来源)、使用惰性气体(例如氩)清洗处理室、引入包含用于化合物膜的保留成分的前体/反应物(例如NH3,N的可能来源),随后通过使用惰性气体(例如氩)以抽取室,沉积化合物膜。这构成了一个ALD循环。如果优化处理参数,ALD产生自身限定生长,其最后厚度为ALD循环数的函数。通过改变用于不同二元混合物的顺序和循环数,ALD可以用作产生纳米叠层或混合氧氮化物,其中所述二元混合物用来沉积介电膜。例如,可以重复SrO、Sr3N2和TiO2的每一个的1ALD循环直到得到所希望的厚度。任选地,Sr3N2的三个循环和TiO2的一个循环可以接着SrO的两个循环。扩展这个方法,可以形成多种组成,以及对于u、v、x和y设定不同的值。
另一方法是例如通过改变TiO2和SrO层形成混合氧化物。一旦形成了TixSruOx氧化物,通过使用适当的氮化退火(例如在形成气体、NH3气氛或N2气氛中),可以在该结构中引入氮。在沉积混合氧化物膜完成后,可以进行该退火。RTP退火是优选方法,在约400℃-1000℃的温度进行直到60秒。通过使用炉子在约500℃至1100℃的温度下加热约5至约30分钟,也可以实现氮化。
另一任选方案是沉积SrO、TiO2和Ti层。然后可以单独控制叠层的Ti含量。可以使用Ti的吸气效应控制各种氧化物的氧含量。这里的方法类似于上述方法。例如如果使用ALD,可以重复SrO、Ti和TiO2的每一个的1ALD循环直到得到所希望的厚度。任选地,Ti的三个循环和TiO2的一个循环可以接着SrO的两个循环。扩展这个方法,可以形成多个组成,以及对于u、v、x和y设定不同的值。
另一系统使用TiuAlvOxNy,包括混合氧化物、氮化物和氧氮化物的所有可能组合。在优选实施方案中,0<u<60,0<v<60,0<x<50和0<y<50,和u+v+x+y~100(可能存在某些污染物如Cl、C和H,取决于沉积工艺)。例如,通过沉积Al2O3、AlN和TiO2的交替层可以形成混合氧化物。通过增加子层的厚度,其可以转化成纳米叠层结构。上述ALD方法可以再次应用到该实施方案。
另一方法是形成混合氧化物,如通过改变TiO2和Al2O3层。一旦形成了TixAluOx氧化物,通过使用适当的氮化退火(例如在形成气体、NH3气氛或N2气氛中),可以在该结构中引入氮。在完成混合氧化膜的沉积后,可以进行退火。RTP退火是优选方法,在约400℃至1000℃的温度进行直到约60秒。通过使用炉子在约500℃至1100℃的温度下加热约5至30分钟,也可以实现氮化。
这里描述的最后实施方案是HfuSrvOxNy体系,包括混合氧化物、氮化物和氧氮化物的所有可能组合。在优选实施方案中,0<u<60,0<v<60,0<x<50和0<y<50,和u+v+x+y~100(可能存在某些污染物如Cl、C和H,取决于沉积工艺)。例如,通过沉积HfO2、SrO、Sr3N2和/或Hf3N4的交替层可以形成混合氧化物。通过增加子层的厚度,其可以转化成纳米叠层结构。上述ALD方法可以再次应用到该实施方案。
另一方法是形成混合氧化物,如通过改变HfO2和SrO层。一旦形成了HfxSruOx氧化物,通过使用适当的氮化退火(例如在形成气体、NH3气氛或N2气氛中),可以在该结构中引入氮。在完成混合氧化膜的沉积后,可以进行该退火。RTP退火是优选方法,在约400℃至1000℃的温度进行直到60秒。通过使用炉子在500℃至1100℃的温度下加热约5至30分钟,可以实现氮化。
在沉积足够厚度的电介质薄膜后,该薄膜可以要么经受高温退火,或送去进行顶金属电极的沉积。如果进行退火,优选实施方案使用具有受控气氛的快速热处理(RTP)。例如,在约400℃至1000℃的温度处在N2或NH3气氛中加热该器件,持续约10秒至60秒的时间。在另一任选实施方案中,可以使用受控炉子退火。在该实施方案的一个示例中,在N2或NH3气氛中在约500℃至1100℃的温度下加热该器件,持续约5分钟至30分钟的时间。
在形成电介质后,可以形成顶电极18。如上所述,顶电极18可以是纯金属(或纯的多种金属)、导电氮化物、氮化碳或者这些材料的各种组合。在两个导体18和12/14之间的电介质16形成电容器。
如果需要,这个结构可以经受退火(具有受控氧气和/或氮气分压的RTP或基于炉子的方法)。一个任选的方法是省略退火并在该结构上覆盖多晶(或非晶)硅。顺流退火可以得到所希望的薄膜稳定性。一些氮化物如HfN,特别容易被氧化,在暴露在大气之前应该覆盖一些更稳定的薄膜(例如TiN)。
本发明的电介质可以用于许多应用中。在共同未决申请序列No.__________(代理号2004P54457)中描述了可使用本发明的DRAM结构的示例,这里引入其申请作为参考。在另一示例中,使用本发明方面的MIM(金属-绝缘体-金属)电容器可以使用在混合信号和模拟应用中。
本发明的电介质也可以用作晶体管的栅电介质。图4说明了使用本发明方面的晶体管30。该晶体管30包括形成在半导体(例如单晶硅)主体10中位于源/漏区34和36之间的沟道32。其可以是这里描述的任何电介质的栅电介质14形成在沟道层上方。使用已知工艺在沟道区上形成栅电极38。
尽管参考说明性的实施方案描述了本发明,但是本发明并不倾向于以限制的方式描述。说明性实施方案和本发明的其它实施方案的各种修改和组合,对于参考本说明书的本领域技术人员是显而易见的。因此附加的权利要求书将会包括任何这样的修改或实施方案。

Claims (23)

1.一种形成半导体器件的方法,该方法包括:
提供半导体衬底:
在该半导体衬底上形成厚度小于10nm的第一材料的第一层,该第一材料具有大于30的介电常数;
在该半导体衬底上形成厚度小于10nm的第二材料的第二层,该第二材料对于硅具有大于1.5eV的导带偏移;
在半导体衬底上形成厚度小于10nm的第一材料的第三层;和
在半导体衬底上形成厚度小于10nm的第二材料的第四层,其中形成第一、第二、第三和第四层以由第一材料和第二材料的交替层形成电介质。
2.如权利要求1的方法,其中第一材料包括TiO2
3.如权利要求2的方法,其中第二材料包括SrO。
4.如权利要求2的方法,其中第二材料包括Al2O3
5.如权利要求2的方法,其中第二材料包括HfO2
6.如权利要求5的方法,进一步包括邻接第一材料层或第二材料层形成第三材料层,该第三材料层包括Hf3H4
7.如权利要求2的方法,其中第二材料包括Hf3H4
8.如权利要求1的方法,其中在半导体衬底上形成第一材料的第一层。
9.如权利要求8的方法,其中在覆盖半导体衬底上的金属电极上形成第一材料的第一层。
10.如权利要求8的方法,进一步包括在第二材料的第二层上形成第二导体,以使得第一导体形成电容器的第一板,第二导体形成电容器的第二板。
11.如权利要求1的方法,其中在第二层之前形成第一层,在第三层之前形成第二层,在第四层之前形成第三层。
12.如权利要求1的方法,进一步包括退火第一材料的第一层、第一材料的第二层、第二材料的第一层和第二材料的第二层。
13.如权利要求12的方法,其中退火形成第一材料和第二材料的混合化合物。
14.一种电容器,包括:
第一电容器板;
第二电容器板;和
在第一电容器板和第二电容器板之间的电容器电介质,该电容器电介质包括材料的组合,该组合选自(a)Hf、Ti、O和N;(b)Hf、Ti、Ta、O和N;(c)Ti、Sr、O和N;(d)Ti、Al、O和N;(e)Hf、Sr、O和N中的任意一种。
15.如权利要求14的电容器,其中第一电容器板包括半导体材料。
16.如权利要求15的电容器,其中第一电容器板进一步包括金属。
17.如权利要求16的电容器,其中第一电容器板包括硅化钛。
18.如权利要求14的电容器,其中第一电容器板包括金属,以及第二电容器板包括金属。
19.如权利要求14的电容器,其中电容器电介质包括Hf、Ti、O和N。
20.如权利要求19的电容器。其中电容器电介质还包括Ta。
21.如权利要求14的电容器,其中电容器电介质包括Ti、Sr、O和N。
22.如权利要求14的电容器,其中电容器电介质包括Ti、Al、O和N。
23.如权利要求14的电容器,其中电容器电介质包括Hf、Sr、O和N。
CN2006100040057A 2005-01-07 2006-01-06 高介电常数材料 Expired - Fee Related CN1832143B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/031,716 US7316962B2 (en) 2005-01-07 2005-01-07 High dielectric constant materials
US11/031716 2005-01-07

Publications (2)

Publication Number Publication Date
CN1832143A CN1832143A (zh) 2006-09-13
CN1832143B true CN1832143B (zh) 2010-05-12

Family

ID=36650743

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006100040057A Expired - Fee Related CN1832143B (zh) 2005-01-07 2006-01-06 高介电常数材料

Country Status (3)

Country Link
US (2) US7316962B2 (zh)
CN (1) CN1832143B (zh)
DE (1) DE102006000615B4 (zh)

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6921702B2 (en) * 2002-07-30 2005-07-26 Micron Technology Inc. Atomic layer deposited nanolaminates of HfO2/ZrO2 films as gate dielectrics
US7588988B2 (en) 2004-08-31 2009-09-15 Micron Technology, Inc. Method of forming apparatus having oxide films formed using atomic layer deposition
US20070001231A1 (en) * 2005-06-29 2007-01-04 Amberwave Systems Corporation Material systems for dielectrics and metal electrodes
US7432139B2 (en) 2005-06-29 2008-10-07 Amberwave Systems Corp. Methods for forming dielectrics and metal electrodes
US7927948B2 (en) 2005-07-20 2011-04-19 Micron Technology, Inc. Devices with nanocrystals and methods of formation
KR100717768B1 (ko) * 2005-08-30 2007-05-11 주식회사 하이닉스반도체 반도체 소자의 캐패시터 및 그 형성방법과, 비휘발성메모리 소자 및 그 제조방법
KR100648860B1 (ko) * 2005-09-08 2006-11-24 주식회사 하이닉스반도체 유전막 및 그 형성방법과, 상기 유전막을 구비한 반도체메모리 소자 및 그 제조방법
US7592251B2 (en) * 2005-12-08 2009-09-22 Micron Technology, Inc. Hafnium tantalum titanium oxide films
TWI267879B (en) * 2005-12-21 2006-12-01 Ind Tech Res Inst Metal-insulator-metal capacitor
US7763923B2 (en) * 2005-12-29 2010-07-27 Taiwan Semiconductor Manufacturing Co., Ltd. Metal-insulator-metal capacitor structure having low voltage dependence
US20070237697A1 (en) * 2006-03-31 2007-10-11 Tokyo Electron Limited Method of forming mixed rare earth oxide and aluminate films by atomic layer deposition
US7759746B2 (en) * 2006-03-31 2010-07-20 Tokyo Electron Limited Semiconductor device with gate dielectric containing aluminum and mixed rare earth elements
US8097300B2 (en) * 2006-03-31 2012-01-17 Tokyo Electron Limited Method of forming mixed rare earth oxynitride and aluminum oxynitride films by atomic layer deposition
US7816737B2 (en) * 2006-03-31 2010-10-19 Tokyo Electron Limited Semiconductor device with gate dielectric containing mixed rare earth elements
US8012442B2 (en) * 2006-03-31 2011-09-06 Tokyo Electron Limited Method of forming mixed rare earth nitride and aluminum nitride films by atomic layer deposition
JP2008028051A (ja) * 2006-07-20 2008-02-07 Elpida Memory Inc ナノラミネート構造誘電膜の形成方法
US7727908B2 (en) 2006-08-03 2010-06-01 Micron Technology, Inc. Deposition of ZrA1ON films
JP5248508B2 (ja) * 2006-09-22 2013-07-31 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード ルテニウム含有膜の堆積方法
WO2008042695A2 (en) * 2006-09-29 2008-04-10 Tokyo Electron Limited Semiconductor devices containing nitrided high dielectric constant films and method of forming
US20080079111A1 (en) * 2006-09-29 2008-04-03 Tokyo Electron Limited Semiconductor devices containing nitrided high dielectric constant films
US7767262B2 (en) * 2006-09-29 2010-08-03 Tokyo Electron Limited Nitrogen profile engineering in nitrided high dielectric constant films
EP1942528A1 (en) * 2007-01-04 2008-07-09 Interuniversitair Microelektronica Centrum Electronic device and process for manufacturing the same
JP5313171B2 (ja) 2007-02-21 2013-10-09 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード ルテニウムベースの膜を基板上に形成するための方法
US7851915B2 (en) * 2007-04-30 2010-12-14 Stmicroelectronics S.A. Electronic component comprising a titanium carbonitride (TiCN) barrier layer and process of making the same
US7772073B2 (en) * 2007-09-28 2010-08-10 Tokyo Electron Limited Semiconductor device containing a buried threshold voltage adjustment layer and method of forming
US8852460B2 (en) * 2008-03-19 2014-10-07 Air Liquide Electronics U.S. Lp Alkali earth metal precursors for depositing calcium and strontium containing films
EP2271789A1 (en) * 2008-03-26 2011-01-12 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Deposition of ternary oxide films containing ruthenium and alkali earth metals
JP2009283850A (ja) * 2008-05-26 2009-12-03 Elpida Memory Inc キャパシタ用絶縁膜及びその形成方法、並びにキャパシタ及び半導体装置
US7811840B2 (en) * 2008-05-28 2010-10-12 Micron Technology, Inc. Diodes, and methods of forming diodes
KR100928456B1 (ko) * 2009-06-01 2009-11-25 주식회사 동진쎄미켐 이온화되지 않는 열활성 나노촉매를 포함하는 화학 기계적 연마 슬러리 조성물 및 이를 이용한 연마방법
US8107218B2 (en) * 2009-06-02 2012-01-31 Micron Technology, Inc. Capacitors
US20120087059A1 (en) * 2009-06-11 2012-04-12 Panasonic Corporation Capacitor and method for manufacturing capacitor
US8236372B2 (en) * 2009-06-12 2012-08-07 Micron Technology, Inc. Methods of forming capacitors having dielectric regions that include multiple metal oxide-comprising materials
US8310807B2 (en) * 2009-06-12 2012-11-13 Micron Technology, Inc. Capacitors having dielectric regions that include multiple metal oxide-comprising materials
FI20095947A0 (fi) * 2009-09-14 2009-09-14 Beneq Oy Monikerrospinnoite, menetelmä monikerrospinnoitteen valmistamiseksi, ja sen käyttötapoja
TWI392759B (zh) * 2009-09-28 2013-04-11 Univ Nat Taiwan 透明導電薄膜及其形成方法
US8076241B2 (en) * 2009-09-30 2011-12-13 Tokyo Electron Limited Methods for multi-step copper plating on a continuous ruthenium film in recessed features
JP5375497B2 (ja) * 2009-10-01 2013-12-25 トヨタ自動車株式会社 半導体装置、及び、半導体装置の製造方法
WO2011106072A2 (en) 2010-02-23 2011-09-01 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Use of ruthenium tetroxide as a precursor and reactant for thin film depositions
US8357614B2 (en) 2010-04-19 2013-01-22 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Ruthenium-containing precursors for CVD and ALD
EP2434529B1 (en) * 2010-09-28 2020-02-12 IMEC vzw Metal-insulator-metal capacitor for use in semiconductor devices and manufacuring method therfor
JP5932221B2 (ja) * 2011-01-14 2016-06-08 ピーエスフォー ルクスコ エスエイアールエルPS4 Luxco S.a.r.l. 半導体装置
US8440520B2 (en) 2011-08-23 2013-05-14 Tokyo Electron Limited Diffused cap layers for modifying high-k gate dielectrics and interface layers
US8633118B2 (en) 2012-02-01 2014-01-21 Tokyo Electron Limited Method of forming thin metal and semi-metal layers by thermal remote oxygen scavenging
US8865538B2 (en) 2012-03-30 2014-10-21 Tokyo Electron Limited Method of integrating buried threshold voltage adjustment layers for CMOS processing
US20130264680A1 (en) * 2012-04-05 2013-10-10 Uchicago Argonne Llc NANOLAMINATES OF Al2O3/TiO2 WITH GIANT DIELECTRIC CONSTANT LOW-LEAKAGE-LOW LOSS-EXTENDED FREQUENCY OPERATION FOR NEW-GENERATION NANOELECTRONICS AND ENERGY STORAGE DEVICES
CN102903756A (zh) * 2012-09-07 2013-01-30 中国电子科技集团公司第五十五研究所 金刚石金属-绝缘体-半导体结构场效应晶体管及制备法
US8865581B2 (en) 2012-10-19 2014-10-21 Tokyo Electron Limited Hybrid gate last integration scheme for multi-layer high-k gate stacks
US20150187900A1 (en) * 2013-12-26 2015-07-02 Sadasivan Shankar Composite materials for use in semiconductor components
WO2015191641A1 (en) 2014-06-10 2015-12-17 Smart Hybrid Systems Incorporated High energy density capacitor with micrometer structures and nanometer components
US10312026B2 (en) 2015-06-09 2019-06-04 Smart Hybird Systems Incorporated High energy density capacitor with high aspect micrometer structures and a giant colossal dielectric material
CN105161415B (zh) * 2015-08-31 2018-06-22 上海集成电路研发中心有限公司 高介电常数薄膜-氧化铝叠层结构绝缘薄膜及其制备方法
US10164003B2 (en) * 2016-01-14 2018-12-25 Taiwan Semiconductor Manufacturing Company Ltd. MIM capacitor and method of forming the same
US10840350B2 (en) * 2016-10-31 2020-11-17 Taiwan Semiconductor Manufacturing Co., Ltd. Nanolaminate structure, semiconductor device and method of forming nanolaminate structure
US10847316B2 (en) * 2018-09-20 2020-11-24 Taiwan Semiconductor Manufacturing Co., Ltd. MIM device with laminated dielectric layers
CN111834209A (zh) * 2019-04-22 2020-10-27 中芯国际集成电路制造(上海)有限公司 半导体器件及其形成方法
CN111223669B (zh) * 2020-01-10 2021-08-03 河南理工大学 一种高储能密度的固态电介质薄膜电容器及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5195018A (en) * 1991-07-03 1993-03-16 Samsung Electronics Co., Ltd. High dielectric constant capacitor and method for manufacturing the same
US5510173A (en) * 1993-08-20 1996-04-23 Southwall Technologies Inc. Multiple layer thin films with improved corrosion resistance
CN1458692A (zh) * 2002-05-17 2003-11-26 台湾积体电路制造股份有限公司 具有高介电常数与低漏电流特性的金属电容器

Family Cites Families (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62111432A (ja) * 1985-11-08 1987-05-22 Fujitsu Ltd 半導体装置の製造方法
US4884123A (en) * 1987-02-19 1989-11-28 Advanced Micro Devices, Inc. Contact plug and interconnect employing a barrier lining and a backfilled conductor material
DE69327600T2 (de) * 1992-02-28 2000-06-21 St Microelectronics Inc Herstellungsverfahren von Submikronkontakten
KR940010393A (ko) 1992-10-05 1994-05-26 윌리엄 이. 힐러 티타늄 질화물과 폴리실리콘으로 구성되는 적층된 층들을 이용하는 게이트 전극
US6181498B1 (en) * 1994-01-20 2001-01-30 Sony Corporation Recording and reproducing apparatus, information signal recording and reproducing system and method of managing invalid area information
JP3500707B2 (ja) * 1994-06-28 2004-02-23 ソニー株式会社 接続構造の形成方法、及び接続構造の設計方法
US6294420B1 (en) * 1997-01-31 2001-09-25 Texas Instruments Incorporated Integrated circuit capacitor
TW406317B (en) * 1997-06-27 2000-09-21 Siemens Ag Method to produce a barrier-layer in a semiconductor-body and semiconductor component with such a barrier-layer
US6258675B1 (en) 1997-12-18 2001-07-10 Advanced Micro Devices, Inc. High K gate electrode
US6222218B1 (en) * 1998-09-14 2001-04-24 International Business Machines Corporation DRAM trench
US6211544B1 (en) * 1999-03-18 2001-04-03 Infineon Technologies North America Corp. Memory cell layout for reduced interaction between storage nodes and transistors
US6640403B2 (en) * 1999-03-22 2003-11-04 Vanguard International Semiconductor Corporation Method for forming a dielectric-constant-enchanced capacitor
US6228192B1 (en) * 1999-04-20 2001-05-08 Altantic Research Corporation Double base propellant containing 5-aminotetrazole
US6150209A (en) 1999-04-23 2000-11-21 Taiwan Semiconductor Manufacturing Company Leakage current reduction of a tantalum oxide layer via a nitrous oxide high density annealing procedure
US6465828B2 (en) * 1999-07-30 2002-10-15 Micron Technology, Inc. Semiconductor container structure with diffusion barrier
KR100705926B1 (ko) * 1999-12-22 2007-04-11 주식회사 하이닉스반도체 반도체 소자의 캐패시터 제조방법
US6407435B1 (en) * 2000-02-11 2002-06-18 Sharp Laboratories Of America, Inc. Multilayer dielectric stack and method
US6261917B1 (en) * 2000-05-09 2001-07-17 Chartered Semiconductor Manufacturing Ltd. High-K MOM capacitor
US6383873B1 (en) * 2000-05-18 2002-05-07 Motorola, Inc. Process for forming a structure
US6617206B1 (en) * 2000-06-07 2003-09-09 Micron Technology, Inc. Method of forming a capacitor structure
KR100403611B1 (ko) 2000-06-07 2003-11-01 삼성전자주식회사 금속-절연체-금속 구조의 커패시터 및 그 제조방법
US6451646B1 (en) * 2000-08-30 2002-09-17 Micron Technology, Inc. High-k dielectric materials and processes for manufacturing them
US6518634B1 (en) * 2000-09-01 2003-02-11 Motorola, Inc. Strontium nitride or strontium oxynitride gate dielectric
US6812091B1 (en) * 2000-09-26 2004-11-02 Infineon Technologies Ag Trench capacitor memory cell
US6664186B1 (en) * 2000-09-29 2003-12-16 International Business Machines Corporation Method of film deposition, and fabrication of structures
US6660660B2 (en) * 2000-10-10 2003-12-09 Asm International, Nv. Methods for making a dielectric stack in an integrated circuit
US20020137329A1 (en) 2000-11-01 2002-09-26 Edberg Fang Method for fabricating a barrier layer
US6485828B2 (en) 2000-12-01 2002-11-26 Oji Paper Co., Ltd. Flat synthetic fiber, method for preparing the same and non-woven fabric prepared using the same
US6794705B2 (en) * 2000-12-28 2004-09-21 Infineon Technologies Ag Multi-layer Pt electrode for DRAM and FRAM with high K dielectric materials
US20020089023A1 (en) * 2001-01-05 2002-07-11 Motorola, Inc. Low leakage current metal oxide-nitrides and method of fabricating same
US6451664B1 (en) * 2001-01-30 2002-09-17 Infineon Technologies Ag Method of making a MIM capacitor with self-passivating plates
US7371633B2 (en) * 2001-02-02 2008-05-13 Samsung Electronics Co., Ltd. Dielectric layer for semiconductor device and method of manufacturing the same
US6518610B2 (en) * 2001-02-20 2003-02-11 Micron Technology, Inc. Rhodium-rich oxygen barriers
JP2004523918A (ja) 2001-03-09 2004-08-05 インフィネオン テクノロジーズ アクチエンゲゼルシャフト 半導体メモリセルおよびその製造方法
KR100417855B1 (ko) 2001-04-30 2004-02-11 주식회사 하이닉스반도체 반도체소자의 캐패시터 및 그 제조방법
KR100422565B1 (ko) * 2001-06-12 2004-03-12 주식회사 하이닉스반도체 반도체 소자의 캐패시터 제조방법
JP3863391B2 (ja) * 2001-06-13 2006-12-27 Necエレクトロニクス株式会社 半導体装置
US6642131B2 (en) * 2001-06-21 2003-11-04 Matsushita Electric Industrial Co., Ltd. Method of forming a silicon-containing metal-oxide gate dielectric by depositing a high dielectric constant film on a silicon substrate and diffusing silicon from the substrate into the high dielectric constant film
US6511876B2 (en) * 2001-06-25 2003-01-28 International Business Machines Corporation High mobility FETS using A1203 as a gate oxide
US20030006480A1 (en) * 2001-06-29 2003-01-09 Jenny Lian MIMCap with high dielectric constant insulator
US6495428B1 (en) * 2001-07-11 2002-12-17 Micron Technology, Inc. Method of making a capacitor with oxygenated metal electrodes and high dielectric constant materials
US6783997B2 (en) * 2001-12-19 2004-08-31 Texas Instruments Incorporated Gate structure and method
US6787831B2 (en) * 2002-01-15 2004-09-07 Infineon Technologies Aktiengesellschaft Barrier stack with improved barrier properties
US6767795B2 (en) * 2002-01-17 2004-07-27 Micron Technology, Inc. Highly reliable amorphous high-k gate dielectric ZrOXNY
US6667669B2 (en) * 2002-04-02 2003-12-23 Northrop Grumman Corporation Differential pin diode attenuator
US6664161B2 (en) * 2002-05-01 2003-12-16 International Business Machines Corporation Method and structure for salicide trench capacitor plate electrode
US7054136B2 (en) * 2002-06-06 2006-05-30 Avx Corporation Controlled ESR low inductance multilayer ceramic capacitor
US6734079B2 (en) * 2002-06-13 2004-05-11 Taiwan Semiconductor Manufacturing Co., Ltd Microelectronic fabrication having sidewall passivated microelectronic capacitor structure fabricated therein
KR100507860B1 (ko) * 2002-06-21 2005-08-18 주식회사 하이닉스반도체 산화저항막을 구비한 캐패시터 및 그 제조 방법
DE10228547C1 (de) * 2002-06-26 2003-10-30 Infineon Technologies Ag Verfahren zur Herstellung eines vergrabenen Strap-Kontakts in einer Speicherzelle
US6921702B2 (en) * 2002-07-30 2005-07-26 Micron Technology Inc. Atomic layer deposited nanolaminates of HfO2/ZrO2 films as gate dielectrics
JP2004079687A (ja) 2002-08-13 2004-03-11 Tokyo Electron Ltd キャパシタ構造、成膜方法及び成膜装置
TW200408323A (en) 2002-08-18 2004-05-16 Asml Us Inc Atomic layer deposition of high k metal oxides
US6794262B2 (en) * 2002-09-23 2004-09-21 Infineon Technologies Ag MIM capacitor structures and fabrication methods in dual-damascene structures
US6858524B2 (en) * 2002-12-03 2005-02-22 Asm International, Nv Method of depositing barrier layer for metal gates
US7031138B2 (en) * 2002-12-09 2006-04-18 Infineon Technologies Ag Ferroelectric capacitor and process for its manufacture
KR100505675B1 (ko) * 2003-02-27 2005-08-03 삼성전자주식회사 전극 표면에 대한 다단계 습식 처리 과정을 도입한커패시터 제조 방법
US20040168627A1 (en) * 2003-02-27 2004-09-02 Sharp Laboratories Of America, Inc. Atomic layer deposition of oxide film
US6930059B2 (en) * 2003-02-27 2005-08-16 Sharp Laboratories Of America, Inc. Method for depositing a nanolaminate film by atomic layer deposition
KR100539198B1 (ko) 2003-03-10 2005-12-27 삼성전자주식회사 금속-절연체-금속 캐패시터 및 그 제조 방법
KR101159070B1 (ko) * 2003-03-11 2012-06-25 삼성전자주식회사 고유전율 산화막 형성방법, 이 방법으로 형성된 유전막이구비된 커패시터 및 그 제조방법
EP1617467A4 (en) * 2003-03-26 2009-12-16 Riken METHOD FOR MANUFACTURING DIELECTRIC INSULATING THIN FILM AND DIELECTRIC INSULATING MATERIAL
JP4563655B2 (ja) 2003-04-23 2010-10-13 株式会社日立製作所 半導体装置及びその製造方法
US6949442B2 (en) * 2003-05-05 2005-09-27 Infineon Technologies Ag Methods of forming MIM capacitors
US20040226217A1 (en) * 2003-05-16 2004-11-18 University Of Chicago Fuel processor for producing hydrogen from hydrocarbon fuels
US7049192B2 (en) * 2003-06-24 2006-05-23 Micron Technology, Inc. Lanthanide oxide / hafnium oxide dielectrics
KR100555543B1 (ko) 2003-06-24 2006-03-03 삼성전자주식회사 원자층 증착법에 의한 고유전막 형성 방법 및 그고유전막을 갖는 커패시터의 제조 방법
KR100508094B1 (ko) * 2003-06-26 2005-08-17 삼성전자주식회사 커패시터를 구비하는 반도체 소자 및 그 형성 방법
KR100541551B1 (ko) * 2003-09-19 2006-01-10 삼성전자주식회사 적어도 3층의 고유전막들을 갖는 아날로그 커패시터 및그것을 제조하는 방법
US7282757B2 (en) * 2003-10-20 2007-10-16 Taiwan Semiconductor Manufacturing Company, Ltd. MIM capacitor structure and method of manufacture
US20050202659A1 (en) * 2004-03-12 2005-09-15 Infineon Technologies North America Corp. Ion implantation of high-k materials in semiconductor devices
US7588988B2 (en) 2004-08-31 2009-09-15 Micron Technology, Inc. Method of forming apparatus having oxide films formed using atomic layer deposition
US20060088660A1 (en) * 2004-10-26 2006-04-27 Putkonen Matti I Methods of depositing lead containing oxides films
US7064043B1 (en) * 2004-12-09 2006-06-20 Texas Instruments Incorporated Wafer bonded MOS decoupling capacitor
US7355235B2 (en) * 2004-12-22 2008-04-08 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and method for high-k gate dielectrics

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5195018A (en) * 1991-07-03 1993-03-16 Samsung Electronics Co., Ltd. High dielectric constant capacitor and method for manufacturing the same
US5510173A (en) * 1993-08-20 1996-04-23 Southwall Technologies Inc. Multiple layer thin films with improved corrosion resistance
CN1458692A (zh) * 2002-05-17 2003-11-26 台湾积体电路制造股份有限公司 具有高介电常数与低漏电流特性的金属电容器

Also Published As

Publication number Publication date
DE102006000615A1 (de) 2006-07-27
US20080096363A1 (en) 2008-04-24
CN1832143A (zh) 2006-09-13
DE102006000615B4 (de) 2012-06-14
US7316962B2 (en) 2008-01-08
US7863202B2 (en) 2011-01-04
US20060151823A1 (en) 2006-07-13

Similar Documents

Publication Publication Date Title
CN1832143B (zh) 高介电常数材料
EP1570525B1 (en) Method for forming a dielectric stack
US20060205143A1 (en) DRAM with high K dielectric storage capacitor and method of making the same
US8203176B2 (en) Dielectric, capacitor using dielectric, semiconductor device using dielectric, and manufacturing method of dielectric
US7217643B2 (en) Semiconductor structures and methods for fabricating semiconductor structures comprising high dielectric constant stacked structures
JP5517918B2 (ja) キャパシタとそれを有する半導体装置並びにそれらの製造方法
KR101052587B1 (ko) 유전체막 및 유전체막을 사용하는 반도체 디바이스
US11515157B2 (en) Semiconductor device and method for fabricating the same
US20030096473A1 (en) Method for making metal capacitors with low leakage currents for mixed-signal devices
US8828836B2 (en) Method for fabricating a DRAM capacitor
CN101183646A (zh) 半导体器件及其制造方法
DE102008000003A1 (de) Halbleiteranordnungen und Verfahren zur Herstellung derselben
CN100386842C (zh) 利用金属闪光层控制电容器界面特性的方法
US20050132549A1 (en) Method for making metal capacitors with low leakage currents for mixed-signal devices
JPWO2009057589A1 (ja) キャパシタとそれを有する半導体装置およびキャパシタの製造方法
CN107689393B (zh) 一种半导体器件及其制造方法
KR20050003050A (ko) 란탄옥사이드 유전막을 구비하는 캐패시터 및 그 제조 방법
KR20050067446A (ko) 반도체 소자의 캐패시터 형성방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
C56 Change in the name or address of the patentee
CP01 Change in the name or title of a patent holder

Address after: Munich, Germany

Patentee after: Infineon Technologies AG

Address before: Munich, Germany

Patentee before: INFINEON TECHNOLOGIES AG

TR01 Transfer of patent right

Effective date of registration: 20120920

Address after: Munich, Germany

Patentee after: QIMONDA AG

Address before: Munich, Germany

Patentee before: Infineon Technologies AG

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20151223

Address after: German Berg, Laura Ibiza

Patentee after: Infineon Technologies AG

Address before: Munich, Germany

Patentee before: QIMONDA AG

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100512

Termination date: 20170106

CF01 Termination of patent right due to non-payment of annual fee