CN1842924A - 制造电阻可变材料单元的方法和装置 - Google Patents

制造电阻可变材料单元的方法和装置 Download PDF

Info

Publication number
CN1842924A
CN1842924A CNA038108968A CN03810896A CN1842924A CN 1842924 A CN1842924 A CN 1842924A CN A038108968 A CNA038108968 A CN A038108968A CN 03810896 A CN03810896 A CN 03810896A CN 1842924 A CN1842924 A CN 1842924A
Authority
CN
China
Prior art keywords
silver
layer
electrode
technology
memory cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA038108968A
Other languages
English (en)
Other versions
CN100517791C (zh
Inventor
K·A·坎贝尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Technology Inc
Original Assignee
Micron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micron Technology Inc filed Critical Micron Technology Inc
Publication of CN1842924A publication Critical patent/CN1842924A/zh
Application granted granted Critical
Publication of CN100517791C publication Critical patent/CN100517791C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/841Electrodes
    • H10N70/8416Electrodes adapted for supplying ionic species
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/24Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
    • H10N70/245Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies the species being metal cations, e.g. programmable metallization cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of the switching material, e.g. layer deposition
    • H10N70/026Formation of the switching material, e.g. layer deposition by physical vapor deposition, e.g. sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/041Modification of the switching material, e.g. post-treatment, doping
    • H10N70/046Modification of the switching material, e.g. post-treatment, doping by diffusion, e.g. photo-dissolution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8822Sulfides, e.g. CuS
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8825Selenides, e.g. GeSe

Abstract

本发明涉及用于制造具有改进的数据保持特性和更高的转换速度的存储单元(400)或电阻可变材料的方法和装置。在根据本发明的一个实施例的存储单元(400)中,在有源层中结合硒化银(406)和诸如锗硒化物(GexSe(1-x))的硫族化物玻璃(404),在电极(402,410)之间施加电势时该有源层支持导电通道的形成。可以有利地在相对大的硒化银(406)和玻璃层(404)的厚度范围内制造本发明的实施例。

Description

制造电阻可变材料单元的方法和装置
技术领域
本发明总体涉及存储器技术。具体地,本发明涉及使用硫族化物玻璃形成的存储器器件。
背景技术
计算机以及其它数字系统使用存储器存储程序和数据。存储器的一种通常形式是随机存取存储器(RAM)。很多存储器件,诸如动态随机存取存储器件(DRAM)和静态随机存取存储器件(SRAM)都是易失性存储器。当移去电源时,易失性存储器会丢失其数据。此外,某些易失性存储器,诸如DRAM器件甚至在持续供电时仍需要周期性更新循环以保持其数据。
相对于易失性存储器件可能会遇到数据丢失,非易失性存储器件在移去电源时仍能保持数据。非易失性存储器件的例子包括只读存储器(ROM)、可编程只读存储器(PROM),可擦除可编程只读存储器(EPROM)、电可擦除可编程只读存储器(EEPROM)等。
Kozicki等在名为“Programmable metallization cellstructure and method of making same”的美国专利No.6,084,796中公开了被称为可编程导体存储单元或可编程金属化单元(PMC)的另一种类型的非易失性存储器件。这种存储单元可以集成在存储器件中,这种存储器件被称为可编程导体随机存取存储器(PCRAM)。可编程金属化单元另外的应用包括用作可编程电阻和可编程电容。
制造可编程导体存储单元的一种传统技术是向诸如锗硒化物(GexSe(1-x))的硫族化物玻璃中光掺杂银(Ag)。正如Mitkova等在“Dual Chemical Role of Ag as an Additive in ChalcogenideGlasses”,Physical Review Letters,Vol.83,no.19(Nov.8,1999),pp.3848-3851中报道的Ag只能光掺杂掺入形成硒化银和新的玻璃化学计量主链的特殊化学计量的玻璃中。此外,能够采用银(Ag)掺杂的玻璃是“软”的,并且相对于刚性玻璃转换相对慢。Boolchand等在Onset of Rigidity in steps in Chalcogenide Glass,Properties and Applications of Amorphous Materials,pp.97-132,(2001)中,观察到当x=0.23时GexSe(1-x)玻璃从软到刚性转变,其中x对应于锗的摩尔浓度。
此外,Mitkova等发现在Mitkova的参考文献的图1中区域II定义的化学计量范围内的玻璃在掺入银(Ag)时不会形成硒化银。例如,诸如锗硒化物(Ge40Se60)的刚性玻璃当使用银(Ag)光掺杂时不会形成硒化银,因此不能用作存储开关。
在使用银(Ag)光掺杂的GexSe1-x玻璃中出现硒化银使得这种玻璃可以用作存储开关。用于通过光掺杂引入银(Ag)的玻璃是软的,并且相对于刚性玻璃,其电开关更慢且具有更差的存储保持力。当使用银(Ag)光掺杂时,优选的刚性玻璃例如Ge40Se60不形成硒化银。然而,在引入硒化银的系统中以及诸如Ge40Se60的刚性玻璃中有相对快的开关时间和相对好的存储保持力。所需要的是制备这种类型的存储器的技术。
发明内容
本发明的实施例克服了现有技术的缺点。本发明的实施例包括可以有利地以相对高的速率和相对高的产量制造电阻可变材料存储单元的工艺。所述电阻可变存储单元的特征还在于相对于传统可编程导体存储单元可以有利地提高开关速度、改善转换一致性以及改善数据保持力和工作温度范围。
有利地是,本发明的实施例可以在相对宽的硫族化银和玻璃层的厚度范围内制造。因此,可以不用相对精确地控制银和玻璃厚度来制造存储单元,而精确控制在传统光掺杂工艺中为保持玻璃中适量的银(Ag)而不在存储单元中引入结晶化是必须的。此外,本发明的实施例可以有利地在诸如Ge40Se60的刚性玻璃上形成存储单元,而正常地在所述玻璃主链中引入银(Ag)使得难以获得存储转换。这些玻璃另外的优点在于具有较高的玻璃转变温度。
在一个实施例中,银(Ag)不直接加入锗硒化物(GexSe(1-x))中。因此,有利地是不用考虑银(Ag)层与锗硒化物(GexSe(1-x))层的粘附。
根据本发明的一个实施例包括具有硫族化银层和诸如锗硒化物(GexSe(1-x))的硫族化物玻璃层的存储单元。硫族化银层和硫族化物玻璃层形成在两个电极之间,这两个电极也是制备而成的。这些电极可以由诸如钨(W)、氮化钨(WN)、钛(Ti)等制成。硫族化银可以对应于多种材料,例如硒化银、硫化银、碲化银和氧化银。硫族化物玻璃可以对应于多种材料,例如锗硒化物(GexSe(1-x))、锗硫化物(GexS(1-x))和砷硒化物(AsxSey)。
根据本发明的另一实施例包括在两个电极之间放置银(Ag)层、诸如锗硒化物(GexSe(1-x))的硫族化物玻璃层和硒化银层。在一个实施例中,这些层的排列使得硫族化物玻璃放置在银(Ag)层和硒化银层之间。硫族化物玻璃可以从诸如Ge40Se60和Ge25Se75的各种玻璃中选择。在一个实施例中,硒化银层含银略少并且银(Ag)在银(Ag)层中的出现允许存储单元按要求工作。
根据本发明的另一实施例包括具有共沉积的硒化银和锗硒化物(GexSe(1-x))的存储单元。该存储单元可以对应于非易失性存储器或易失性存储器。
根据本发明的一个实施例是制造存储器的工艺。该工艺在底电极上形成有源层。该工艺基本不使用紫外(UV)光掺杂步骤,形成包括诸如硒化银的硫族化银和诸如锗硒化物的含硒玻璃的有源层。该工艺也形成顶电极层使得施加在顶电极层和底电极层之间的电压在这两个电极之间产生导电通路,或者使已经连接这两个电极的导电通路中断。
根据本发明的另一个实施例包括在存储单元中制造有源层的物理气相沉积(PVD)工艺。该PVD工艺通过基本同时在底电极上共沉积诸如硒化银的硫族化银和诸如锗硒化物(GexSe(1-x))的硫族化物玻璃制造有源层。该工艺在该有源层上形成顶电极使得施加在顶电极层和底电极之间的电压或电势差能够在该有源层中形成或中断导电通路。
根据本发明的另一个实施例包括通过形成硫族化物玻璃层和形成硒化银层而在衬底组件中形成有源层的沉积工艺。这些层放置在顶电极层和底电极层之间。在一个实施例中,硫族化物玻璃是锗硒化物(GexSe(1-x)),并且除了硒化银之外没有其它的银(Ag)源。在另一实施例中,硫族化物玻璃是锗硒化物(GexSe(1-x))并且所述电极中的至少一个是银(Ag)。
根据本发明的另一实施例包括通过形成锗硒化物(GexSe(1-x))和银(Ag)的层以及形成硒化银层而制备存储单元的有源层的工艺。
附图说明
现在将参照下述附图描述本发明的这些和其它特征。这些附图和相关的描述只是为了说明本发明的优选实施例,并不意图限制本发明的范围。
图1示出了根据本发明的一个实施例的工艺,该工艺通过形成硒化银和硫族化物玻璃层而形成有源层。
图2示出了根据本发明的一个实施例的工艺,该工艺通过共沉积硒化银和硫族化物玻璃而形成有源层。
图3示出了根据本发明的一个实施例的工艺,该工艺通过沉积锗硒化物(GexSe(1-x))和银(Ag)的层以及硒化银层而形成有源层。
图4示出了一个存储单元,其有源层通过形成硒化银和硫族化物玻璃层而形成。
图5示出了一个存储单元,其有源层通过共沉积硒化银和硫族化物玻璃形成。
图6示出了一个存储单元,其有源层通过形成银(Ag)层、形成硫族化物玻璃层和形成硒化银层而形成。
具体实施方式
虽然本发明将根据特定的优选实施例进行描述,但是对于本领域的技术人员显而易见的其它实施例,包括那些不具备此处描述的所有优点和特征的实施例也都在本发明的范围内。因此本发明的范围仅由所附权利要求定义。
虽然说明书中使用硒化银和锗硒化物为例说明,但是本领域的技术人员将能够理解此处所描述的原理和优点也适用于其它类型的银的硫族化物和硫族化物玻璃。例如,其它银的硫族化物包括硫化银、碲化银和氧化银。另一种硫族化物玻璃包括砷硒化物(AsxSey)。
本申请人已经发现在锗硒化物(GexSe(1-x))内的硒化银区域是电阻可变材料存储单元中的银(Ag)紫外(UV)光掺杂锗硒化物玻璃的存储开关特征的来源。Mitkova等使用调制差示扫描量热法(MDSC)实验观察到玻璃形成区域I(富硒玻璃)的锗硒化物(GexSe(1-x))玻璃的银(Ag)光掺杂会导致硒化银的相分离以及新化学计量的锗硒化物(GeySe(1-y))主链。
图1示出了根据本发明的一个实施例的工艺100,该工艺100通过形成硒化银层和硫族化物玻璃层来制备存储单元的有源层。此处所使用的术语“硒化银”包括化学计量的硒化银(Ag2Se)、富银的硒化银(Ag2+xSe)以及含银少的硒化银(Ag2-xSe)。此处所使用的术语“硫族化物玻璃”,包括具有元素周期表的VIA族(或16族)元素的玻璃。VIA族元素包括硫(S)、硒(Se)、碲(Te)、钋(Po)和氧(O)。在一个实施例中,该工艺有利地消除了UV光掺杂步骤。
该工艺可应用于相当多种的衬底组件。有利地,电阻可变材料单元的许多结构,诸如Kozicki等在美国专利No.6,084,796中所描述的“PROM构造的MDM”,不需要局部晶体管(local transistor)作为存储元件的部件,因此可以在各种衬底上形成而不只是在半导体上形成。例如,电阻可变材料单元可以在诸如塑料衬底的其它材料上形成。衬底组件应当是电绝缘的以便施加在电极之间的电势差在所述单元中形成或中断导电通路。当衬底组件并不本征绝缘时,该工艺也可以形成绝缘层,例如氧化硅层(SiO2),以电绝缘该电阻可变材料单元。在一个实施例中,衬底组件是硅以便于将制成的存储单元与诸如开关或晶体管的电子器件集成。
该工艺在衬底组件上形成110导电膜以形成存储单元的第一电极。用于形成导电膜的材料可以从多种导电材料中选取。在一个实施例中,该工艺沉积钨(W)作为第一电极。该工艺在形成110第一电极后形成120硒化银层。
该工艺在第一电极上形成120硒化银薄膜或层。在图1所示的工艺中,该工艺首先形成120硒化银层,然后形成130锗硒化物(GexSe(1-x))层。本领域的普通技术人员可以理解在另一个实施例中,该工艺首先形成130锗硒化物(GexSe(1-x))层,然后形成120硒化银层。可以使用多种工艺形成120硒化银层。优选使用物理气相沉积(PVD)技术,例如蒸发沉积和溅射,形成120硒化银层。也可以使用其它技术,例如化学气相沉积(CVD)、共蒸发以及在银(Ag)层上沉积硒(Se)层来形成硒化银。
直接沉积硒化银是有利的,因此消除了使用UV辐射对衬底光掺杂的需要。当然,仍然可以使用UV光掺杂。当仍然使用UV光掺杂时,直接形成硒化银层仍能够有利地减少所施加的UV辐射的强度和/或持续时间。此外有利的是,由于光不需要照在硒化银层上,可以如图1所示在形成130硫族化物层之前形成120硒化银层。该工艺从形成120硒化银层前进到形成130硫族化物层。
该工艺形成130硫族化物玻璃层。例如,硫族化物玻璃可以是锗硒化物(GexSe(1-x))、硒化砷(As2Se3)等。优选形成的硫族化物玻璃是锗硒化物(GexSe(1-x))。在一个实施例中,x的范围是约0.2~约0.43。典型的硫族化物玻璃是Ge40Se60
优选该工艺形成120硒化银层,以及该工艺形成130锗硒化物(GexSe(1-x))层,使得硒化银层的厚度为约300埃~1000埃(),且锗硒化物(GexSe(1-x))层的厚度为约200~1000。在一个实施例中,硒化银层的厚度约为400,且锗硒化物(GexSe(1-x))层是厚度约为250的Ge40Se60层。
该工艺形成140电阻可变材料单元的第二电极,并且工艺结束。本领域的普通技术人员可以理解第一电极和第二电极可以分别对应于,例如顶电极和底电极,或对应于侧电极。由该工艺形成的硒化银层120和由该工艺形成130的硫族化物玻璃层置于第一电极和第二电极之间。当在第一电极和第二电极之间施加电势时,在硒化银层和硫族化物玻璃层中形成或中断导电通路。
导电通路的形成降低了电极之间的电阻。在除去所施加的电势后所述导电通路保持。这种性质允许电阻可变材料单元的一些实施例以非易失的方式保持信息。
图2示出了根据本发明的实施例的形成存储单元的有源层的另一个工艺200。在所示的工艺中,通过基本在单个步骤中沉积硒化银和硫族化物玻璃来形成有源层。在一个实施例中,该工艺有利地消除了UV光掺杂步骤。
图2所示的工艺也可以广泛地应用于早前结合图1所述的各种衬底组件。该工艺在衬底组件上形成210导电膜以形成存储单元的第一电极。用于形成所述导电膜的材料可以从结合图1所述的多种导电材料中选取。该工艺从形成210第一电极前进到形成220有源层。
该工艺形成220有源层,在该有源层中形成导电通路或导电通路被中断。所示的工艺共沉积220硒化银和硫族化物玻璃以形成220有源层。在一个实施例中,使用诸如蒸发沉积、溅射等的物理气相沉积(PVD)技术形成220有源层。硫族化物玻璃包括诸如锗硒化物(GexSe(1-x))、砷的硒化物(As2Se3)等的材料。在一个实施例中,硫族化物玻璃是锗硒化物(GexSe(1-x)),其中x为约0.2~约0.43。
由该工艺形成的有源层的厚度可以在相对宽的范围内变化。优选该工艺形成220厚度为约500~约2000的有源层。更优选该工艺形成220厚度为约500~约700的有源层。在一个实例中,形成220厚度约为500埃()的有源层。
有利地,所示的工艺可以不使用UV辐射光掺杂银Ag来形成有源层。在另一个实施例中,仍然使用UV光掺杂。该工艺从形成220有源层前进到形成230第二电极。
该工艺在衬底组件上形成230导电膜以形成存储单元的第二电极,并且该工艺结束。形成220的有源层布置在第一电极和第二电极之间。当在第一电极和第二电极之间施加电势时,根据所施加的电势的极性形成或中断导电通路。导电通路的形成和/或中断是稳定的并且可以作为阻抗的变化探测出。
图3示出了根据本发明的一个实施例的工艺300,在该工艺中通过沉积锗硒化物(GexSe(1-x))和银(Ag)的层以及硒化银层形成存储单元的有源层。在一个实施例中,x为约0.2~约0.43。
该工艺在衬底组件上形成310导电膜以形成存储单元的第一电极。用于形成导电膜的材料可以从多种导电材料中选取。在一个实施例中,该工艺沉积钨(W)作为第一电极。该工艺从形成310第一电极前进到形成320锗硒化物(GexSe(1-x))和银(Ag)的层或薄膜。
该工艺在第一电极上形成320锗硒化物(GexSe(1-x))和银(Ag)的(多)层。该工艺可以形成一层锗硒化物(GexSe(1-x))和银(Ag)的层或者分别形成锗硒化物(GexSe(1-x))层和银(Ag)层分开的层。在一个实施例中,该工艺共沉积锗硒化物(GexSe(1-x))和银(Ag)以形成320层。在另一个实施例中,该工艺通过分别沉积锗硒化物(GexSe(1-x))层和银(Ag)层形成320锗硒化物(GexSe(1-x))和银(Ag)的(多)层。根据本发明的一个实施例,形成相对薄的银(Ag)层,然后形成锗硒化物(GexSe(1-x))层。在一个实施例中,相对薄的银(Ag)层的厚度大约为50。硒化银层不应当邻近该相对薄的银(Ag)层形成。优选该工艺形成320的锗硒化物(GexSe(1-x))和银(Ag)的膜或层的厚度为约250~约1000。
在图3所示的工艺中,该工艺先形成320锗硒化物(GexSe(1-x))和银(Ag)的(多)层,然后形成330硒化银层。优选该工艺形成330硒化银层的厚度为约300~约1000。对于本领域的普通技术人员,可以理解在另一实施例中该工艺先形成330硒化银层,然后形成320锗硒化物(GexSe(1-x))和银(Ag)的(多)层。此外,沉积相对薄的银(Ag)膜有利地允许形成含银稍少的硒化银层,这是因为对于该存储单元有额外量的银可以利用。
可以使用多种工艺形成320锗硒化物(GexSe(1-x))和银(Ag)的(多)层。优选使用诸如蒸发沉积和溅射的物理气相沉积(PVD)技术来形成320锗硒化物(GexSe(1-x))和银(Ag)的层。也可以使用诸如化学气相沉积(CVD)和共蒸发的其它技术。该工艺从形成320锗硒化物(GexSe(1-x))和银(Ag)的(多)层前进到形成330硒化银层。
该工艺形成330硒化银层。该硒化银层应当在锗硒化物(GexSe(1-x))层上或在共沉积的银(Ag)和锗硒化物(GexSe(1-x))层上形成,而不直接在银(Ag)层上形成。有利的是,硒化银是直接沉积的并且不需要UV光掺杂步骤。
该工艺形成340存储单元的第二电极并且工艺结束。对于本领域的一个普通技术人员,可以理解第一电极和第二电极可以分别对应于例如顶电极和底电极,或者对应于侧电极。通过该工艺形成320的锗硒化物(GexSe(1-x))和银(Ag)的(多)层和通过该工艺形成330的硒化银层夹在第一电极和第二电极之间。当在第一电极和第二电极之间施加电势时,在硒化银层和锗硒化物(GexSe(1-x))和银(Ag)的(多)层中形成或中断导电通路。
存储的信息可对应于可编程的电阻以及对应于二进制数据存储。在一个实施例中,该存储单元存储二进制数据,第一状态对应于电极间相对低的电阻,第二状态对应于电极间相对高的电阻。此外,电极的极性可以被反向以改变该导电通路,因而允许该存储单元被擦除以及被再次编程。
图4示出乐根据本发明的一个实施例的存储单元400,其具有通过形成硒化银和硫族化物玻璃层而制成的有源层。所示的存储单元400包括第一电极402、第一体层404、第二体层406、绝缘体408和第二电极410。
第一电极形成在衬底组件上并与其接触。在一个实施例中,该衬底组件是硅,第一电极402连接到诸如交叉点的导体上以便存储单元400能被编程和读取。本领域的技术人员将会理解存储单元400可以在多种衬底材料上形成,并不仅限于例如硅的半导体。例如,存储单元400可以在塑料衬底上形成。第一电极402可以由多种材料以及由多种材料的组合制成。例如,第一电极402可以由钨(W)、氮化钨(WN)、多晶硅等制成。
当制成存储单元400后,第一体层404和第二体层406形成该存储单元400的体。第一体层404在第一电极402上形成,第二体层406在第一体层404上形成。
在所示的实施例中,第一体层404是硒化银层,第二体层是诸如锗硒化物(GexSe(1-x))的硫族化物玻璃的层。在另一实施例中,第一体层404是硫族化物玻璃层而第二体层406是硒化银层。
在所示的实施例中,绝缘体408包围由第一体层404和第二体层406形成的体。绝缘体408使该体与其它存储单元的体绝缘,同时防止有源材料不希望的扩散。绝缘体408可以用多种材料形成,例如氮化硅(Si3N4)。当然,可以在多个步骤中形成绝缘体408并可以包含多个结构。
第二电极410在第二体层406上和绝缘体408上形成。第二电极410可以由多种材料形成,例如银(Ag)、钛(Ti)、钨(W)、氮化钨(WN)等。第一电极402和第二电极410之间施加的电压使得在存储单元400的体内形成导电通路或使形成的导电通路变化。
图5示出了根据本发明的一个实施例的存储单元500,其具有通过共沉积硒化银和硫族化物玻璃形成的有源层。所示的存储单元500包括第一电极502、有源层506、绝缘体508和第二电极510。
第一电极502形成在衬底组件上。该衬底组件可以对应于多种材料,包括塑料和硅。优选第一电极502与诸如交叉点的导体连接以便对存储单元500编程和读取。第一电极可以由多种材料以及由多种材料的组合形成。
有源层506在第一电极502上形成。在所示的实施例中,有源层506是共沉积的硒化银和例如锗硒化物(GexSe(1-x))的硫族化物玻璃的层。
在所示的实施例中,绝缘体508围绕有源层506。绝缘体508使有源层506与其它存储单元绝缘并同时防止有源材料不希望的扩散。绝缘体508可以用多种材料形成,例如氮化硅(Si3N4)。
第二电极510形成在有源层506上和绝缘体508上。第二电极510可以用多种材料形成,例如银(Ag)、钛(Ti)、钨(W)、氮化钨(WN)等。施加在第一电极502和第二电极510之间的电势使得有源层506中的导电通路响应于该施加的电势形成或中断。
图6示出了根据本发明的一个实施例的存储单元600,其具有通过形成银层、硫族化物玻璃层和硒化银层而形成的有源层。所示的存储单元600包括第一电极602、第一体层603、第二体层604、第三体层606、绝缘体608和第二电极610。
第一电极602在衬底组件上形成并与其接触。在一个实施例中,该衬底组件是硅,并且第一电极602连接到诸如交叉点的导体上以便存储单元600可以被编程和读取。第一电极可以由多种材料以及由多种材料的组合形成,例如钨(W)、氮化钨(WN)、钛(Ti)等。
当制备存储单元600时,第一体层603、第二体层604以及第三体层606形成存储单元600的体。第一体层603形成在第一电极602上,第二体层604形成在第一体层603上,第三体层606形成在第二体层604上。
在所示的实施例中,第一体层603是银(Ag)层,第二体层604是诸如锗硒化物(GexSe(1-x))的硫族化物玻璃的层,第三体层606是硒化银层。在另一个实施例中,第一体层603是硒化银层,第二体层604是硫族化物玻璃层,第三体层603是银(Ag)层。
在所示的实施例中,绝缘体608围绕由第一体层603、第二体层604和第三体层606形成的体。绝缘体608使该体与其它存储单元的体绝缘并且同时阻止有源材料不希望的扩散。绝缘体608可以由多种材料形成,例如氮化硅(Si3N4)。当然,绝缘体608可以在多个步骤中形成并且可以包括多个结构。
第二电极610形成在第三体层606上和绝缘体608上。第二电极610可以由多种材料形成,例如钨(Ag)。施加在第一电极602和第二电极610之间的电势引起在存储单元600内体的导电通路的形成或变换。
上面描述了本发明的各种不同实施例。虽然参照这些具体的实施例描述了本发明,但这些描述只是对本发明的说明并不意图限制本发明。本领域的技术人员可以在不脱离本发明的真正实质和范围的情况下作出各种修改和应用,本发明的范围由所附权利要求定义。

Claims (45)

1、一种存储单元,包括:
沉积在衬底体上的第一电极;
第二电极,第一电极和第二电极提供对该存储单元的访问;
置于第一电极和第二电极之间的硫族化银第一层,该第一层形成存储单元体的第一部分;以及
形成该存储单元体的第二部分的硫族化物玻璃的第二层,该第二层也置于第一电极和第二电极之间,该硫族化物玻璃允许响应于施加在第一电极和第二电极之间的电势在第一电极和第二电极之间形成导电通路。
2、权利要求1的存储单元,其中硫族化银第一层直接形成在第一电极上。
3、权利要求1的存储单元,其中硫族化物玻璃的第二层直接形成在第一电极上。
4、权利要求1的存储单元,其中硫族化银包括硒化银。
5、权利要求1的存储单元,其中硫族化银包括硫化银。
6、权利要求1的存储单元,其中硫族化银包括碲化银。
7、权利要求1的存储单元,其中硫族化银包括氧化银。
8、权利要求1的存储单元,其中硫族化物玻璃包括锗硒化物(GexSe(1-x))。
9、权利要求1的存储单元,其中硫族化物玻璃包括砷硒化物(AsxSey)。
10、权利要求1的存储单元,其中硫族化物玻璃包括锗硫化物(GexS(1-x))。
11、权利要求1的存储单元,其中硫族化物玻璃从包含硒、能够掺杂银并且能够在用银掺杂后保持为非晶材料的硫族化物玻璃的组中选取。
12、权利要求1的存储单元,还包括形成该存储单元体的第三部分的银(Ag)的第三层,该第三层也位于第一电极和第二电极之间,其中第一层、第二层和第三层的布置使得硫族化物玻璃的第二层置于硫族化银第一层和银(Ag)第三层之间。
13、权利要求1的存储单元,其中第一电极和第二电极中的至少一个包含钨(W)。
14、一种存储单元,包括:
第一电极;
第二电极,该第一电极和该第二电极提供对该存储单元的访问;以及
置于该第一电极和第二电极之间的存储单元体,其中该存储单元体包括共沉积的硒化银和锗硒化物(GexSe(1-x))。
15、权利要求14的存储单元,其中x的范围是约0.2~约0.43。
16、权利要求14的存储单元,其中锗硒化物(GexSe(1-x))是Ge40Se60
17、权利要求14的存储单元,其中锗硒化物(GexSe(1-x))是Ge25Se75
18、权利要求14的存储单元,其中该存储单元体中硒化银与锗硒化物(GexSe(1-x))之比为约1∶1~约5∶1。
19、权利要求14的存储单元,其中该存储单元体中硒化银与锗硒化物(GexSe(1-x))之比为约1.43∶1~约2∶1。
20、权利要求14的存储单元,其中该存储单元体中硒化银与锗硒化物(GexSe(1-x))之比为约1.72∶1~约1.75∶1。
21、一种在衬底组件中制造存储器结构的工艺,该工艺包括:
形成与在衬底组件中的导电区域接触的底电极;
在该底电极上形成有源层,其中该有源层包括硫族化银和含硒的玻璃,该有源层的形成基本不使用紫外(UV)光掺杂步骤并且不使用热掺杂步骤;以及
形成顶电极层以便施加在顶电极层和底电极层之间的电压在该有源层中产生电场。
22、权利要求21的工艺,其中含硒的玻璃是锗硒化物(GexSe(1-x)),其中x的范围是约0.2~约0.43。
23、权利要求21的工艺,其中硫族化银包括硒化银。
24、一种在存储单元中制备有源层的物理气相沉积(PVD)工艺,该工艺包括:
形成与半导体基底材料中的导电区域接触的底电极;
在该底电极上同时沉积硫族化银和硫族化物玻璃;以及
形成顶电极层,其中施加到该顶电极层和该底电极层上的电压在该有源层中产生电场。
25、权利要求24的工艺,其中沉积硫族化银和硫族化物玻璃进一步包括:
蒸发硒化银作为硫族化银;
蒸发锗硒化物(GexSe(1-x))作为硫族化物玻璃;
在沉积室内部引入气化的硒化银和气化的锗硒化物(GexSe(1-x));以及
同时在底电极上沉积气化的硒化银和气化的锗硒化物(GexSe(1-x))以形成有源层。
26、权利要求24的工艺,其中x的范围是约0.2~约0.43。
27、权利要求24的工艺,其中沉积有源层使得在有源层中作为硫族化银的硒化银与作为硫族化物玻璃的锗硒化物(GexSe(1-x))体积比为约1∶1~约5∶1。
28、制造集成电路的至少一部分的沉积工艺,该工艺包括:
形成与半导体基底材料中导电区域接触的底电极;
形成硫族化物玻璃层;
形成硫族化银层,其中硫族化物玻璃层和硫族化银层彼此相邻并形成有源层,该有源层在有电场的情况下能够支持导电通路的形成;以及
形成顶电极层,使得硫族化物玻璃层和硫族化银层位于顶电极层和底电极层之间,其中施加在顶电极层和底电极层之间的电势在该有源层内产生电场。
29、权利要求28的工艺,其中硫族化物玻璃层是锗硒化物(GexSe(1-x)),并且该工艺形成的该硫族化物玻璃层的厚度为约200埃()~约1000。
30、权利要求28的工艺,其中硫族化物玻璃包括锗硒化物(GexSe(1-x))。
31、权利要求28的工艺,其中硫族化物玻璃包括硒化砷(As2Se3)。
32、权利要求28的工艺,其中硫族化物玻璃包括锗硫化物(GexS(1-x))。
33、权利要求28的工艺,其中硫族化银包括硒化银。
34、权利要求28的工艺,其中硫族化银包括硫化银。
35、权利要求28的工艺,其中硫族化银包括碲化银。
36、权利要求28的工艺,其中硫族化银包括氧化银。
37、权利要求28的工艺,其中该工艺使用蒸发沉积形成硫族化物玻璃层和硫族化银层。
38、权利要求28的工艺,其中该工艺使用溅射沉积形成硫族化物玻璃层和硫族化银层。
39、一种在衬底组件中形成有源层的工艺,在向电极施加电势时该有源层能够支持导电通路的形成,该工艺包括:
提供第一量的锗硒化物(GexSe(1-x))和第二量的银(Ag);
沉积该第一量的锗硒化物(GexSe(1-x))和该第二量的银(Ag);
提供第三量的硒化银;以及
沉积该第三量的硒化银。
40、权利要求39的工艺,其中所沉积的第一量的锗硒化物(GexSe(1-x))和第二量的银(Ag)形成厚约250埃()~约1000的层。
41、权利要求39的工艺,其中第三量的硒化银厚约300埃()~1000。
42、权利要求39的工艺,其中第一量的锗硒化物(GexSe(1-x))和第二量的银(Ag)是分别沉积的,并且沉积第一量的锗硒化物(GexSe(1-x))使得所淀积的锗硒化物(GexSe(1-x))位于所沉积的银(Ag)和所沉积的硒化银之间。
43、一种在衬底组件中形成有源层的工艺,在有电场时该有源能够支持导电通路的形成,该工艺包括:
提供硒化银并且不提供其它银(Ag)源;
提供锗硒化物(GexSe(1-x));以及
通过结合该硒化银和该锗硒化物(GexSe(1-x))形成所述有源层。
44、权利要求43的工艺,其中x为约0.2~约0.43。
45、权利要求43的工艺,其中该工艺通结合硒化银和锗硒化物(GexSe(1-x))使得硒化银和锗硒化物(GexSe(1-x))的体积比为约1∶1~约5∶1形成所述有源层。
CNB038108968A 2002-03-14 2003-03-12 制造电阻可变材料单元的方法和装置 Expired - Lifetime CN100517791C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/100,450 2002-03-14
US10/100,450 US6849868B2 (en) 2002-03-14 2002-03-14 Methods and apparatus for resistance variable material cells

Publications (2)

Publication Number Publication Date
CN1842924A true CN1842924A (zh) 2006-10-04
CN100517791C CN100517791C (zh) 2009-07-22

Family

ID=28039822

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB038108968A Expired - Lifetime CN100517791C (zh) 2002-03-14 2003-03-12 制造电阻可变材料单元的方法和装置

Country Status (10)

Country Link
US (2) US6849868B2 (zh)
EP (1) EP1483795B1 (zh)
JP (2) JP4824278B2 (zh)
KR (1) KR100561254B1 (zh)
CN (1) CN100517791C (zh)
AT (1) ATE472826T1 (zh)
AU (1) AU2003220344A1 (zh)
DE (1) DE60333175D1 (zh)
TW (1) TWI248673B (zh)
WO (1) WO2003079443A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI473261B (zh) * 2008-09-29 2015-02-11 Sandisk 3D Llc 具有堆疊結構之金屬-絕緣體-絕緣體-金屬二極體

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6560155B1 (en) * 2001-10-24 2003-05-06 Micron Technology, Inc. System and method for power saving memory refresh for dynamic random access memory devices after an extended interval
US7319057B2 (en) * 2001-10-30 2008-01-15 Ovonyx, Inc. Phase change material memory device
US7087919B2 (en) * 2002-02-20 2006-08-08 Micron Technology, Inc. Layered resistance variable memory device and method of fabrication
US6855975B2 (en) * 2002-04-10 2005-02-15 Micron Technology, Inc. Thin film diode integrated with chalcogenide memory cell
US7015494B2 (en) * 2002-07-10 2006-03-21 Micron Technology, Inc. Assemblies displaying differential negative resistance
US7364644B2 (en) * 2002-08-29 2008-04-29 Micron Technology, Inc. Silver selenide film stoichiometry and morphology control in sputter deposition
KR100481866B1 (ko) * 2002-11-01 2005-04-11 삼성전자주식회사 상변환 기억소자 및 그 제조방법
US7314776B2 (en) * 2002-12-13 2008-01-01 Ovonyx, Inc. Method to manufacture a phase change memory
TWI245288B (en) * 2003-03-20 2005-12-11 Sony Corp Semiconductor memory element and semiconductor memory device using the same
US7259039B2 (en) * 2003-07-09 2007-08-21 Spansion Llc Memory device and methods of using and making the device
US7015504B2 (en) * 2003-11-03 2006-03-21 Advanced Micro Devices, Inc. Sidewall formation for high density polymer memory element array
JP4792714B2 (ja) * 2003-11-28 2011-10-12 ソニー株式会社 記憶素子及び記憶装置
JP5434967B2 (ja) * 2003-11-28 2014-03-05 ソニー株式会社 記憶素子及び記憶装置
US7928420B2 (en) * 2003-12-10 2011-04-19 International Business Machines Corporation Phase change tip storage cell
DE102004025615B4 (de) * 2004-05-25 2008-09-04 Qimonda Ag Verfahren zum Herstellen einer Festkörperelektrolytspeicherzelle
US7190048B2 (en) * 2004-07-19 2007-03-13 Micron Technology, Inc. Resistance variable memory device and method of fabrication
US20060028895A1 (en) * 2004-08-09 2006-02-09 Carl Taussig Silver island anti-fuse
US7687830B2 (en) * 2004-09-17 2010-03-30 Ovonyx, Inc. Phase change memory with ovonic threshold switch
KR100827653B1 (ko) * 2004-12-06 2008-05-07 삼성전자주식회사 상변화 기억 셀들 및 그 제조방법들
US7317200B2 (en) * 2005-02-23 2008-01-08 Micron Technology, Inc. SnSe-based limited reprogrammable cell
US7521705B2 (en) 2005-08-15 2009-04-21 Micron Technology, Inc. Reproducible resistance variable insulating memory devices having a shaped bottom electrode
US7491962B2 (en) 2005-08-30 2009-02-17 Micron Technology, Inc. Resistance variable memory device with nanoparticle electrode and method of fabrication
US7973384B2 (en) * 2005-11-02 2011-07-05 Qimonda Ag Phase change memory cell including multiple phase change material portions
JP4396621B2 (ja) 2005-12-02 2010-01-13 ソニー株式会社 記憶素子及び記憶装置
US7825033B2 (en) * 2006-06-09 2010-11-02 Micron Technology, Inc. Methods of forming variable resistance memory cells, and methods of etching germanium, antimony, and tellurium-comprising materials
WO2008047530A1 (en) * 2006-10-16 2008-04-24 Panasonic Corporation Non-volatile storage device and method for manufacturing the same
WO2008088599A2 (en) 2006-10-19 2008-07-24 Boise State University Forced ion migration for chalcogenide phase change memory device
US20080164453A1 (en) * 2007-01-07 2008-07-10 Breitwisch Matthew J Uniform critical dimension size pore for pcram application
KR100885184B1 (ko) * 2007-01-30 2009-02-23 삼성전자주식회사 전기장 및 자기장에 의해 독립적으로 제어될 수 있는 저항특성을 갖는 메모리 장치 및 그 동작 방법
US7888228B2 (en) * 2007-04-05 2011-02-15 Adesto Technology Corporation Method of manufacturing an integrated circuit, an integrated circuit, and a memory module
KR20090013419A (ko) * 2007-08-01 2009-02-05 삼성전자주식회사 상변화 기억 소자 및 그 형성 방법
WO2009152108A2 (en) * 2008-06-10 2009-12-17 Advanced Technology Materials, Inc. GeSbTe MATERIAL INCLUDING SUPERFLOW LAYER(S), AND USE OF Ge TO PREVENT INTERACTION OF Te FROM SbXTeY AND GeXTeY RESULTING IN HIGH Te CONTENT AND FILM CRISTALLINITY
US8238146B2 (en) * 2008-08-01 2012-08-07 Boise State University Variable integrated analog resistor
US8467236B2 (en) 2008-08-01 2013-06-18 Boise State University Continuously variable resistor
US7825479B2 (en) 2008-08-06 2010-11-02 International Business Machines Corporation Electrical antifuse having a multi-thickness dielectric layer
US20100078758A1 (en) * 2008-09-29 2010-04-01 Sekar Deepak C Miim diodes
US7615439B1 (en) * 2008-09-29 2009-11-10 Sandisk Corporation Damascene process for carbon memory element with MIIM diode
US20100123117A1 (en) * 2008-11-19 2010-05-20 Seagate Technology Llc Non volatile memory cells including a filament growth layer and methods of forming the same
US20100140578A1 (en) * 2008-12-05 2010-06-10 Seagate Technology Llc Non volatile memory cells including a composite solid electrolyte layer
TWI401796B (zh) * 2008-12-30 2013-07-11 Ind Tech Res Inst 導通微通道記憶體元件及其製造方法
US20110079709A1 (en) * 2009-10-07 2011-04-07 Campbell Kristy A Wide band sensor
US8198124B2 (en) 2010-01-05 2012-06-12 Micron Technology, Inc. Methods of self-aligned growth of chalcogenide memory access device
US8284590B2 (en) 2010-05-06 2012-10-09 Boise State University Integratable programmable capacitive device
JP2012039041A (ja) * 2010-08-11 2012-02-23 Sony Corp メモリ素子
JP2012039042A (ja) * 2010-08-11 2012-02-23 Sony Corp メモリ素子
US9573809B2 (en) * 2012-03-30 2017-02-21 Micron Technology, Inc. Method of forming a metal chalcogenide material and methods of forming memory cells including same
KR101431656B1 (ko) * 2013-04-05 2014-08-21 한국과학기술연구원 저머늄 및 셀레늄을 이용한 칼코지나이드 스위칭 소자 및 그 제조방법
KR101436924B1 (ko) * 2013-04-11 2014-09-03 한국과학기술연구원 질소 도핑된 칼코지나이드 물질을 갖는 오보닉 문턱 스위칭 소자 및 그 제조방법
US8956939B2 (en) 2013-04-29 2015-02-17 Asm Ip Holding B.V. Method of making a resistive random access memory device
JP2014216647A (ja) 2013-04-29 2014-11-17 エーエスエムアイピー ホールディング ビー.ブイ. 金属ドープされた抵抗切り替え層を有する抵抗変化型メモリを製造する方法
US9520562B2 (en) 2013-07-19 2016-12-13 Asm Ip Holding B.V. Method of making a resistive random access memory
US9472757B2 (en) 2013-07-19 2016-10-18 Asm Ip Holding B.V. Method of making a resistive random access memory device
US9583699B2 (en) 2015-06-01 2017-02-28 Boise State University Tunable variable resistance memory device
US9583703B2 (en) 2015-06-01 2017-02-28 Boise State University Tunable variable resistance memory device
KR102530067B1 (ko) * 2016-07-28 2023-05-08 삼성전자주식회사 가변 저항 메모리 소자 및 그 제조 방법
US11316484B2 (en) * 2017-05-25 2022-04-26 Boise State University Optically gated transistor selector for variable resistive memory device
US10700226B2 (en) * 2017-05-25 2020-06-30 Boise State University Optically activated transistor, switch, and photodiode
US11050023B2 (en) * 2019-07-01 2021-06-29 International Business Machines Corporation CBRAM with controlled bridge location

Family Cites Families (168)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3271591A (en) 1963-09-20 1966-09-06 Energy Conversion Devices Inc Symmetrical current controlling device
US3622319A (en) 1966-10-20 1971-11-23 Western Electric Co Nonreflecting photomasks and methods of making same
US3868651A (en) 1970-08-13 1975-02-25 Energy Conversion Devices Inc Method and apparatus for storing and reading data in a memory having catalytic material to initiate amorphous to crystalline change in memory structure
US3753110A (en) 1970-12-24 1973-08-14 Sanyo Electric Co Timing apparatus using electrochemical memory device
US3743847A (en) 1971-06-01 1973-07-03 Motorola Inc Amorphous silicon film as a uv filter
US4267261A (en) 1971-07-15 1981-05-12 Energy Conversion Devices, Inc. Method for full format imaging
US3961314A (en) 1974-03-05 1976-06-01 Energy Conversion Devices, Inc. Structure and method for producing an image
US3966317A (en) 1974-04-08 1976-06-29 Energy Conversion Devices, Inc. Dry process production of archival microform records from hard copy
US4177474A (en) 1977-05-18 1979-12-04 Energy Conversion Devices, Inc. High temperature amorphous semiconductor member and method of making the same
US4115872A (en) 1977-05-31 1978-09-19 Burroughs Corporation Amorphous semiconductor memory device for employment in an electrically alterable read-only memory
US4203123A (en) 1977-12-12 1980-05-13 Burroughs Corporation Thin film memory device employing amorphous semiconductor materials
JPS5565365A (en) 1978-11-07 1980-05-16 Nippon Telegr & Teleph Corp <Ntt> Pattern forming method
DE2901303C2 (de) 1979-01-15 1984-04-19 Max Planck Gesellschaft Zur Foerderung Der Wissenschaften E.V., 3400 Goettingen Festes Ionenleitermaterial, seine Verwendung und Verfahren zu dessen Herstellung
US4276368A (en) * 1979-05-04 1981-06-30 Bell Telephone Laboratories, Incorporated Photoinduced migration of silver into chalcogenide layer
US4312938A (en) 1979-07-06 1982-01-26 Drexler Technology Corporation Method for making a broadband reflective laser recording and data storage medium with absorptive underlayer
US4269935A (en) 1979-07-13 1981-05-26 Ionomet Company, Inc. Process of doping silver image in chalcogenide layer
US4316946A (en) 1979-12-03 1982-02-23 Ionomet Company, Inc. Surface sensitized chalcogenide product and process for making and using the same
US4499557A (en) 1980-10-28 1985-02-12 Energy Conversion Devices, Inc. Programmable cell for use in programmable electronic arrays
US4405710A (en) * 1981-06-22 1983-09-20 Cornell Research Foundation, Inc. Ion beam exposure of (g-Gex -Se1-x) inorganic resists
US4737379A (en) 1982-09-24 1988-04-12 Energy Conversion Devices, Inc. Plasma deposited coatings, and low temperature plasma method of making same
US4545111A (en) 1983-01-18 1985-10-08 Energy Conversion Devices, Inc. Method for making, parallel preprogramming or field programming of electronic matrix arrays
US4608296A (en) 1983-12-06 1986-08-26 Energy Conversion Devices, Inc. Superconducting films and devices exhibiting AC to DC conversion
US4795657A (en) 1984-04-13 1989-01-03 Energy Conversion Devices, Inc. Method of fabricating a programmable array
US4673957A (en) 1984-05-14 1987-06-16 Energy Conversion Devices, Inc. Integrated circuit compatible thin film field effect transistor and method of making same
US4670763A (en) 1984-05-14 1987-06-02 Energy Conversion Devices, Inc. Thin film field effect transistor
US4769338A (en) 1984-05-14 1988-09-06 Energy Conversion Devices, Inc. Thin film field effect transistor and method of making same
US4843443A (en) 1984-05-14 1989-06-27 Energy Conversion Devices, Inc. Thin film field effect transistor and method of making same
US4668968A (en) 1984-05-14 1987-05-26 Energy Conversion Devices, Inc. Integrated circuit compatible thin film field effect transistor and method of making same
US4678679A (en) 1984-06-25 1987-07-07 Energy Conversion Devices, Inc. Continuous deposition of activated process gases
US4646266A (en) 1984-09-28 1987-02-24 Energy Conversion Devices, Inc. Programmable semiconductor structures and methods for using the same
US4664939A (en) 1985-04-01 1987-05-12 Energy Conversion Devices, Inc. Vertical semiconductor processor
US4637895A (en) 1985-04-01 1987-01-20 Energy Conversion Devices, Inc. Gas mixtures for the vapor deposition of semiconductor material
US4710899A (en) 1985-06-10 1987-12-01 Energy Conversion Devices, Inc. Data storage medium incorporating a transition metal for increased switching speed
US4671618A (en) 1986-05-22 1987-06-09 Wu Bao Gang Liquid crystalline-plastic material having submillisecond switch times and extended memory
US4766471A (en) 1986-01-23 1988-08-23 Energy Conversion Devices, Inc. Thin film electro-optical devices
US4818717A (en) 1986-06-27 1989-04-04 Energy Conversion Devices, Inc. Method for making electronic matrix arrays
US4728406A (en) 1986-08-18 1988-03-01 Energy Conversion Devices, Inc. Method for plasma - coating a semiconductor body
US4809044A (en) 1986-08-22 1989-02-28 Energy Conversion Devices, Inc. Thin film overvoltage protection devices
US4845533A (en) 1986-08-22 1989-07-04 Energy Conversion Devices, Inc. Thin film electrical devices with amorphous carbon electrodes and method of making same
US4853785A (en) 1986-10-15 1989-08-01 Energy Conversion Devices, Inc. Electronic camera including electronic signal storage cartridge
US4788594A (en) 1986-10-15 1988-11-29 Energy Conversion Devices, Inc. Solid state electronic camera including thin film matrix of photosensors
US4847674A (en) 1987-03-10 1989-07-11 Advanced Micro Devices, Inc. High speed interconnect system with refractory non-dogbone contacts and an active electromigration suppression mechanism
US4800526A (en) 1987-05-08 1989-01-24 Gaf Corporation Memory element for information storage and retrieval system and associated process
US4891330A (en) 1987-07-27 1990-01-02 Energy Conversion Devices, Inc. Method of fabricating n-type and p-type microcrystalline semiconductor alloy material including band gap widening elements
US4775425A (en) 1987-07-27 1988-10-04 Energy Conversion Devices, Inc. P and n-type microcrystalline semiconductor alloy material including band gap widening elements, devices utilizing same
US5272359A (en) 1988-04-07 1993-12-21 California Institute Of Technology Reversible non-volatile switch based on a TCNQ charge transfer complex
GB8910854D0 (en) 1989-05-11 1989-06-28 British Petroleum Co Plc Semiconductor device
JPH03238882A (ja) * 1990-02-16 1991-10-24 Hitachi Ltd 情報の記憶用素子
US5159661A (en) 1990-10-05 1992-10-27 Energy Conversion Devices, Inc. Vertically interconnected parallel distributed processor
US5314772A (en) 1990-10-09 1994-05-24 Arizona Board Of Regents High resolution, multi-layer resist for microlithography and method therefor
JPH0770731B2 (ja) 1990-11-22 1995-07-31 松下電器産業株式会社 電気可塑性素子
US5166758A (en) 1991-01-18 1992-11-24 Energy Conversion Devices, Inc. Electrically erasable phase change memory
US5406509A (en) 1991-01-18 1995-04-11 Energy Conversion Devices, Inc. Electrically erasable, directly overwritable, multibit single cell memory elements and arrays fabricated therefrom
US5534712A (en) 1991-01-18 1996-07-09 Energy Conversion Devices, Inc. Electrically erasable memory elements characterized by reduced current and improved thermal stability
US5536947A (en) 1991-01-18 1996-07-16 Energy Conversion Devices, Inc. Electrically erasable, directly overwritable, multibit single cell memory element and arrays fabricated therefrom
US5296716A (en) 1991-01-18 1994-03-22 Energy Conversion Devices, Inc. Electrically erasable, directly overwritable, multibit single cell memory elements and arrays fabricated therefrom
US5596522A (en) 1991-01-18 1997-01-21 Energy Conversion Devices, Inc. Homogeneous compositions of microcrystalline semiconductor material, semiconductor devices and directly overwritable memory elements fabricated therefrom, and arrays fabricated from the memory elements
US5414271A (en) 1991-01-18 1995-05-09 Energy Conversion Devices, Inc. Electrically erasable memory elements having improved set resistance stability
US5534711A (en) 1991-01-18 1996-07-09 Energy Conversion Devices, Inc. Electrically erasable, directly overwritable, multibit single cell memory elements and arrays fabricated therefrom
US5335219A (en) 1991-01-18 1994-08-02 Ovshinsky Stanford R Homogeneous composition of microcrystalline semiconductor material, semiconductor devices and directly overwritable memory elements fabricated therefrom, and arrays fabricated from the memory elements
US5341328A (en) 1991-01-18 1994-08-23 Energy Conversion Devices, Inc. Electrically erasable memory elements having reduced switching current requirements and increased write/erase cycle life
US5128099A (en) 1991-02-15 1992-07-07 Energy Conversion Devices, Inc. Congruent state changeable optical memory material and device
US5219788A (en) 1991-02-25 1993-06-15 Ibm Corporation Bilayer metallization cap for photolithography
US5177567A (en) 1991-07-19 1993-01-05 Energy Conversion Devices, Inc. Thin-film structure for chalcogenide electrical switching devices and process therefor
US5359205A (en) 1991-11-07 1994-10-25 Energy Conversion Devices, Inc. Electrically erasable memory elements characterized by reduced current and improved thermal stability
US5238862A (en) 1992-03-18 1993-08-24 Micron Technology, Inc. Method of forming a stacked capacitor with striated electrode
JPH0628841A (ja) * 1992-07-08 1994-02-04 Makoto Yano 化学反応を利用した記憶素子
KR940004732A (ko) 1992-08-07 1994-03-15 가나이 쯔또무 패턴 형성 방법 및 패턴 형성에 사용하는 박막 형성 방법
US5350484A (en) 1992-09-08 1994-09-27 Intel Corporation Method for the anisotropic etching of metal films in the fabrication of interconnects
US5418640A (en) 1993-05-03 1995-05-23 The United States Of America As Represented By The Secretary Of The Air Force Spatially graded optical switch
US5818749A (en) 1993-08-20 1998-10-06 Micron Technology, Inc. Integrated circuit memory device
US5363329A (en) 1993-11-10 1994-11-08 Eugeniy Troyan Semiconductor memory device for use in an electrically alterable read-only memory
BE1007902A3 (nl) 1993-12-23 1995-11-14 Philips Electronics Nv Schakelelement met geheugen voorzien van schottky tunnelbarriere.
US5500532A (en) 1994-08-18 1996-03-19 Arizona Board Of Regents Personal electronic dosimeter
JP2643870B2 (ja) 1994-11-29 1997-08-20 日本電気株式会社 半導体記憶装置の製造方法
US5543737A (en) 1995-02-10 1996-08-06 Energy Conversion Devices, Inc. Logical operation circuit employing two-terminal chalcogenide switches
US5879955A (en) * 1995-06-07 1999-03-09 Micron Technology, Inc. Method for fabricating an array of ultra-small pores for chalcogenide memory cells
JP3363154B2 (ja) 1995-06-07 2003-01-08 ミクロン テクノロジー、インコーポレイテッド 不揮発性メモリセル内のマルチステート材料と共に使用するスタック/トレンチダイオード
US5869843A (en) 1995-06-07 1999-02-09 Micron Technology, Inc. Memory array having a multi-state element and method for forming such array or cells thereof
US5751012A (en) 1995-06-07 1998-05-12 Micron Technology, Inc. Polysilicon pillar diode for use in a non-volatile memory cell
US6420725B1 (en) 1995-06-07 2002-07-16 Micron Technology, Inc. Method and apparatus for forming an integrated circuit electrode having a reduced contact area
US5789758A (en) 1995-06-07 1998-08-04 Micron Technology, Inc. Chalcogenide memory cell with a plurality of chalcogenide electrodes
US5714768A (en) 1995-10-24 1998-02-03 Energy Conversion Devices, Inc. Second-layer phase change memory array on top of a logic device
US5694054A (en) 1995-11-28 1997-12-02 Energy Conversion Devices, Inc. Integrated drivers for flat panel displays employing chalcogenide logic elements
US5591501A (en) 1995-12-20 1997-01-07 Energy Conversion Devices, Inc. Optical recording medium having a plurality of discrete phase change data recording points
US6653733B1 (en) * 1996-02-23 2003-11-25 Micron Technology, Inc. Conductors in semiconductor devices
US5687112A (en) 1996-04-19 1997-11-11 Energy Conversion Devices, Inc. Multibit single cell memory element having tapered contact
US5852870A (en) 1996-04-24 1998-12-29 Amkor Technology, Inc. Method of making grid array assembly
US5851882A (en) 1996-05-06 1998-12-22 Micron Technology, Inc. ZPROM manufacture and design and methods for forming thin structures using spacers as an etching mask
US5761115A (en) 1996-05-30 1998-06-02 Axon Technologies Corporation Programmable metallization cell structure and method of making same
US5789277A (en) 1996-07-22 1998-08-04 Micron Technology, Inc. Method of making chalogenide memory device
US5814527A (en) 1996-07-22 1998-09-29 Micron Technology, Inc. Method of making small pores defined by a disposable internal spacer for use in chalcogenide memories
US5998244A (en) * 1996-08-22 1999-12-07 Micron Technology, Inc. Memory cell incorporating a chalcogenide element and method of making same
US5825046A (en) 1996-10-28 1998-10-20 Energy Conversion Devices, Inc. Composite memory material comprising a mixture of phase-change memory material and dielectric material
US5846889A (en) 1997-03-14 1998-12-08 The United States Of America As Represented By The Secretary Of The Navy Infrared transparent selenide glasses
US5998066A (en) 1997-05-16 1999-12-07 Aerial Imaging Corporation Gray scale mask and depth pattern transfer technique using inorganic chalcogenide glass
US5952671A (en) 1997-05-09 1999-09-14 Micron Technology, Inc. Small electrode for a chalcogenide switching device and method for fabricating same
US6031287A (en) 1997-06-18 2000-02-29 Micron Technology, Inc. Contact structure and memory element incorporating the same
US5933365A (en) 1997-06-19 1999-08-03 Energy Conversion Devices, Inc. Memory element with energy control mechanism
US6051511A (en) 1997-07-31 2000-04-18 Micron Technology, Inc. Method and apparatus for reducing isolation stress in integrated circuits
EP1235227B1 (en) 1997-12-04 2004-08-25 Axon Technologies Corporation Programmable sub-surface aggregating metallization structure
US6011757A (en) 1998-01-27 2000-01-04 Ovshinsky; Stanford R. Optical recording media having increased erasability
JPH11273148A (ja) * 1998-03-20 1999-10-08 Toshiba Corp 光ディスクおよびその記録再生方法
US6297170B1 (en) 1998-06-23 2001-10-02 Vlsi Technology, Inc. Sacrificial multilayer anti-reflective coating for mos gate formation
US5912839A (en) 1998-06-23 1999-06-15 Energy Conversion Devices, Inc. Universal memory element and method of programming same
US6469364B1 (en) 1998-08-31 2002-10-22 Arizona Board Of Regents Programmable interconnection system for electrical circuits
US6388324B2 (en) * 1998-08-31 2002-05-14 Arizona Board Of Regents Self-repairing interconnections for electrical circuits
US6487106B1 (en) 1999-01-12 2002-11-26 Arizona Board Of Regents Programmable microelectronic devices and method of forming and programming same
US6635914B2 (en) * 2000-09-08 2003-10-21 Axon Technologies Corp. Microelectronic programmable device and methods of forming and programming the same
US6825489B2 (en) 2001-04-06 2004-11-30 Axon Technologies Corporation Microelectronic device, structure, and system, including a memory structure having a variable programmable property and method of forming the same
US6177338B1 (en) * 1999-02-08 2001-01-23 Taiwan Semiconductor Manufacturing Company Two step barrier process
EP1159743B1 (en) * 1999-02-11 2007-05-02 Arizona Board of Regents Programmable microelectronic devices and methods of forming and programming same
US6072716A (en) 1999-04-14 2000-06-06 Massachusetts Institute Of Technology Memory structures and methods of making same
US6143604A (en) 1999-06-04 2000-11-07 Taiwan Semiconductor Manufacturing Company Method for fabricating small-size two-step contacts for word-line strapping on dynamic random access memory (DRAM)
US6350679B1 (en) * 1999-08-03 2002-02-26 Micron Technology, Inc. Methods of providing an interlevel dielectric layer intermediate different elevation conductive metal layers in the fabrication of integrated circuitry
US6423628B1 (en) 1999-10-22 2002-07-23 Lsi Logic Corporation Method of forming integrated circuit structure having low dielectric constant material and having silicon oxynitride caps over closely spaced apart metal lines
US6914802B2 (en) 2000-02-11 2005-07-05 Axon Technologies Corporation Microelectronic photonic structure and device and method of forming the same
US6440837B1 (en) 2000-07-14 2002-08-27 Micron Technology, Inc. Method of forming a contact structure in a semiconductor device
US6563156B2 (en) 2001-03-15 2003-05-13 Micron Technology, Inc. Memory elements and methods for making same
US6339544B1 (en) * 2000-09-29 2002-01-15 Intel Corporation Method to enhance performance of thermal resistor device
US6563164B2 (en) * 2000-09-29 2003-05-13 Ovonyx, Inc. Compositionally modified resistive electrode
US6567293B1 (en) * 2000-09-29 2003-05-20 Ovonyx, Inc. Single level metal memory cell using chalcogenide cladding
US6555860B2 (en) * 2000-09-29 2003-04-29 Intel Corporation Compositionally modified resistive electrode
JP4025527B2 (ja) * 2000-10-27 2007-12-19 松下電器産業株式会社 メモリ、書き込み装置、読み出し装置およびその方法
US6809401B2 (en) * 2000-10-27 2004-10-26 Matsushita Electric Industrial Co., Ltd. Memory, writing apparatus, reading apparatus, writing method, and reading method
JP4118500B2 (ja) * 2000-11-01 2008-07-16 独立行政法人科学技術振興機構 ポイントコンタクト・アレー
US6653193B2 (en) 2000-12-08 2003-11-25 Micron Technology, Inc. Resistance variable device
US6696355B2 (en) * 2000-12-14 2004-02-24 Ovonyx, Inc. Method to selectively increase the top resistance of the lower programming electrode in a phase-change memory
US6569705B2 (en) * 2000-12-21 2003-05-27 Intel Corporation Metal structure for a phase-change memory device
US6534781B2 (en) * 2000-12-26 2003-03-18 Ovonyx, Inc. Phase-change memory bipolar array utilizing a single shallow trench isolation for creating an individual active area region for two memory array elements and one bipolar base contact
US6531373B2 (en) * 2000-12-27 2003-03-11 Ovonyx, Inc. Method of forming a phase-change memory cell using silicon on insulator low electrode in charcogenide elements
US6687427B2 (en) * 2000-12-29 2004-02-03 Intel Corporation Optic switch
US6638820B2 (en) * 2001-02-08 2003-10-28 Micron Technology, Inc. Method of forming chalcogenide comprising devices, method of precluding diffusion of a metal into adjacent chalcogenide material, and chalcogenide comprising devices
US6727192B2 (en) 2001-03-01 2004-04-27 Micron Technology, Inc. Methods of metal doping a chalcogenide material
US6348365B1 (en) 2001-03-02 2002-02-19 Micron Technology, Inc. PCRAM cell manufacturing
US6818481B2 (en) 2001-03-07 2004-11-16 Micron Technology, Inc. Method to manufacture a buried electrode PCRAM cell
US6734455B2 (en) * 2001-03-15 2004-05-11 Micron Technology, Inc. Agglomeration elimination for metal sputter deposition of chalcogenides
US6473332B1 (en) 2001-04-04 2002-10-29 The University Of Houston System Electrically variable multi-state resistance computing
US6855977B2 (en) 2001-05-07 2005-02-15 Advanced Micro Devices, Inc. Memory device with a self-assembled polymer film and method of making the same
US7102150B2 (en) 2001-05-11 2006-09-05 Harshfield Steven T PCRAM memory cell and method of making same
US6570784B2 (en) * 2001-06-29 2003-05-27 Ovonyx, Inc. Programming a phase-change material memory
US6511867B2 (en) * 2001-06-30 2003-01-28 Ovonyx, Inc. Utilizing atomic layer deposition for programmable device
US6514805B2 (en) * 2001-06-30 2003-02-04 Intel Corporation Trench sidewall profile for device isolation
US6511862B2 (en) * 2001-06-30 2003-01-28 Ovonyx, Inc. Modified contact for programmable devices
US6673700B2 (en) * 2001-06-30 2004-01-06 Ovonyx, Inc. Reduced area intersection between electrode and programming element
US6951805B2 (en) * 2001-08-01 2005-10-04 Micron Technology, Inc. Method of forming integrated circuitry, method of forming memory circuitry, and method of forming random access memory circuitry
US6590807B2 (en) * 2001-08-02 2003-07-08 Intel Corporation Method for reading a structural phase-change memory
US6737312B2 (en) * 2001-08-27 2004-05-18 Micron Technology, Inc. Method of fabricating dual PCRAM cells sharing a common electrode
US6955940B2 (en) * 2001-08-29 2005-10-18 Micron Technology, Inc. Method of forming chalcogenide comprising devices
US6784018B2 (en) * 2001-08-29 2004-08-31 Micron Technology, Inc. Method of forming chalcogenide comprising devices and method of forming a programmable memory cell of memory circuitry
US6881623B2 (en) * 2001-08-29 2005-04-19 Micron Technology, Inc. Method of forming chalcogenide comprising devices, method of forming a programmable memory cell of memory circuitry, and a chalcogenide comprising device
US20030047765A1 (en) * 2001-08-30 2003-03-13 Campbell Kristy A. Stoichiometry for chalcogenide glasses useful for memory devices and method of formation
US6709958B2 (en) * 2001-08-30 2004-03-23 Micron Technology, Inc. Integrated circuit device and fabrication using metal-doped chalcogenide materials
US6646902B2 (en) * 2001-08-30 2003-11-11 Micron Technology, Inc. Method of retaining memory state in a programmable conductor RAM
US6507061B1 (en) * 2001-08-31 2003-01-14 Intel Corporation Multiple layer phase-change memory
US7113474B2 (en) * 2001-09-01 2006-09-26 Energy Conversion Devices, Inc. Increased data storage in optical data storage and retrieval systems using blue lasers and/or plasmon lenses
US6545287B2 (en) * 2001-09-07 2003-04-08 Intel Corporation Using selective deposition to form phase-change memory cells
US6690026B2 (en) * 2001-09-28 2004-02-10 Intel Corporation Method of fabricating a three-dimensional array of active media
AU2002362662A1 (en) * 2001-10-09 2003-04-22 Axon Technologies Corporation Programmable microelectronic device, structure, and system, and method of forming the same
US6566700B2 (en) * 2001-10-11 2003-05-20 Ovonyx, Inc. Carbon-containing interfacial layer for phase-change memory
US6545907B1 (en) * 2001-10-30 2003-04-08 Ovonyx, Inc. Technique and apparatus for performing write operations to a phase change material memory device
US6576921B2 (en) * 2001-11-08 2003-06-10 Intel Corporation Isolating phase change material memory cells
US6815818B2 (en) * 2001-11-19 2004-11-09 Micron Technology, Inc. Electrode structure for use in an integrated circuit
US6791859B2 (en) * 2001-11-20 2004-09-14 Micron Technology, Inc. Complementary bit PCRAM sense amplifier and method of operation
US6512241B1 (en) * 2001-12-31 2003-01-28 Intel Corporation Phase change material memory device
US7151273B2 (en) * 2002-02-20 2006-12-19 Micron Technology, Inc. Silver-selenide/chalcogenide glass stack for resistance variable memory
US6671710B2 (en) * 2002-05-10 2003-12-30 Energy Conversion Devices, Inc. Methods of computing with digital multistate phase change materials
US6918382B2 (en) * 2002-08-26 2005-07-19 Energy Conversion Devices, Inc. Hydrogen powered scooter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI473261B (zh) * 2008-09-29 2015-02-11 Sandisk 3D Llc 具有堆疊結構之金屬-絕緣體-絕緣體-金屬二極體

Also Published As

Publication number Publication date
JP2009147350A (ja) 2009-07-02
EP1483795B1 (en) 2010-06-30
JP2005521245A (ja) 2005-07-14
KR100561254B1 (ko) 2006-03-15
EP1483795A2 (en) 2004-12-08
US20040149980A1 (en) 2004-08-05
WO2003079443A3 (en) 2004-04-01
TWI248673B (en) 2006-02-01
US7030405B2 (en) 2006-04-18
CN100517791C (zh) 2009-07-22
WO2003079443A2 (en) 2003-09-25
AU2003220344A8 (en) 2003-09-29
TW200307365A (en) 2003-12-01
AU2003220344A1 (en) 2003-09-29
KR20040091743A (ko) 2004-10-28
JP5005670B2 (ja) 2012-08-22
US6849868B2 (en) 2005-02-01
ATE472826T1 (de) 2010-07-15
JP4824278B2 (ja) 2011-11-30
DE60333175D1 (de) 2010-08-12
US20030173558A1 (en) 2003-09-18

Similar Documents

Publication Publication Date Title
CN1842924A (zh) 制造电阻可变材料单元的方法和装置
KR100586716B1 (ko) 도핑된 칼코겐화물 층 형성 방법, 칼코겐화물 메모리 소자를 형성하는 방법 및 불휘발성 메모리 소자를 형성하는 방법
CN1647292A (zh) 用于电阻可变存储器的硒化银/硫族化物玻璃叠层
US7087454B2 (en) Fabrication of single polarity programmable resistance structure
US7518212B2 (en) Graded GexSe100-x concentration in PCRAM
US7087919B2 (en) Layered resistance variable memory device and method of fabrication
US7294527B2 (en) Method of forming a memory cell
US20060252176A1 (en) Memory element and its method of formation
US20030047765A1 (en) Stoichiometry for chalcogenide glasses useful for memory devices and method of formation
CN1656618A (zh) 晶体管结构和制造该晶体管结构的方法
CN101064331A (zh) 利用自对准工艺制造的相变存储器
CN1763987A (zh) 锑前体、使用该锑前体的相变存储器件及其制造方法
CN1897292A (zh) 半导体存储器
CN1573844A (zh) 图像显示装置
CN1449021A (zh) 自对准可编程相变存储器件及其制造方法
CN1787224A (zh) 记忆体元件的制造方法、记忆体元件与相变化记忆体元件
US7163837B2 (en) Method of forming a resistance variable memory element
CN1773692A (zh) 记忆胞及其制造方法、半导体元件与记忆胞阵列
KR20060082868A (ko) 저항 스위칭 반도체 메모리
CN1725512A (zh) 半导体器件及其制造方法
TW200814382A (en) Process for producing semiconductor memory device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20090722