CN1918575A - 用于流动监测和控制的系统及方法 - Google Patents

用于流动监测和控制的系统及方法 Download PDF

Info

Publication number
CN1918575A
CN1918575A CNA2005800046254A CN200580004625A CN1918575A CN 1918575 A CN1918575 A CN 1918575A CN A2005800046254 A CNA2005800046254 A CN A2005800046254A CN 200580004625 A CN200580004625 A CN 200580004625A CN 1918575 A CN1918575 A CN 1918575A
Authority
CN
China
Prior art keywords
pressure
valve
sensor
mode
computer program
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2005800046254A
Other languages
English (en)
Inventor
卡瑞格·L·步鲁杜尔
马尔考·拉维迪尔里
罗伯特·F·麦克罗克林
卡尔·J·尼尔梅耶
徐杰华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Entegris Inc
Original Assignee
Entegris Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Entegris Inc filed Critical Entegris Inc
Publication of CN1918575A publication Critical patent/CN1918575A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/363Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction with electrical or electro-mechanical indication
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7758Pilot or servo controlled
    • Y10T137/7761Electrically actuated valve

Abstract

一种控制设备(30)包括接收流的入口(32)、将流引导到流系统的其他部件的出口(34)、压力损失元件(36)、压力损失元件(36)上游的用来测量上游压力的压力传感器(38)、压力损失元件(36)下游的用来测量下游压力的压力传感器(40)、可包括处理器、存储器和确定流体流速以产生阀门控制信号的软件指令的控制器(42),以及响应阀门控制信号调节流体流的阀门(44)、蝶形阀、空气驱动阀。

Description

用于流动监测和控制的系统及方法
相关申请
本申请是Brodeur等人于2004年2月12日提交的名称为“流监测和控制的系统及方法”的美国专利申请10/777,300在35U.S.C§120下的部分接续申请并要求其优先权。该申请在此整体引入作为参考。
技术领域
本发明的实施方案一般地涉及流动监测和控制领域,更特别地涉及在某个范围的流速上监测和/或控制流动。
背景技术
在半导体制造中,流过制造工具的流体流的准确控制对于衬底上电路的精确制造是关键的。为了控制当前半导体制造系统中的流体流,质量流量计确定系统中流的流速,并且如果要调节流速,质量流控制器相应地打开或关闭阀门。虽然热质量流量计变得更普遍,但许多当前系统依赖压差质量流量计。在压差质量流量计中,两个压力传感器读出担当压力损失诱发元件的阻塞物两边的压降,该阻塞物具有基于已知的流体动力学原理计算气体流速的已知区域。使用计算的气体流速,质量流控制器可以调节阀门以增加或减小流速。
依赖阻塞物两边的压差的现有技术系统典型地具有有限的工作范围。更特别地,在低流速下因为两个传感器之间的压差变得如此小使得与系统噪声相比难以识别,因此工作范围经常是有限的。因此,例如,即使流控制器物理上能够控制每秒0-100mL速度下的流,该控制器只能准确地控制具有每秒20-100mL速度的流,因为在每秒20mL以下,两个压力传感器的压差是难以识别的。
为了将工作范围延伸至更低流速,在某些现有技术系统中,使用具有更小横截面积的阻塞物来增加读出的压力。虽然这使流量计可以探测更低流速,但利用更限制性的阻塞物对于给定的流供给压力减小流量计的最大流量,通常是不能令人满意的解决方案。
发明内容
本发明的实施方案提供减小早先研发的流监测和控制系统及方法的缺点的流监测和控制的系统及方法。更特别地,本发明的实施方案提供能够使用单个压力传感器控制流的流控制设备。在一种工作模式中,流控制设备可以基于从多个压力传感器的压力测量值确定的压差来控制流。例如,流控制设备可以基于压力损失元件上游的压力传感器和压力损失元件下游的压力传感器的压力测量值之间的压差来控制流。在另一种工作模式中,流控制设备可以基于某个压力传感器如下游压力传感器读出的压力来控制流。流控制设备可以在预先确定点在工作模式之间自动切换。在本发明的一种实施方案中,该预先确定点可以是处于某个压差。本发明的另一种实施方案提供仅基于单个压力传感器的压力测量值来控制流的系统。
本发明的实施方案还可以包括能够确定是否已发生可能要求重新校准流控制设备的改变的流控制设备。在本发明的一种实施方案中,控制器可以监测压力传感器(例如下游压力传感器)的波动。如果波动超过预先确定量,那么控制器可以产生指示必须重新校校准流设备的警报。
本发明的一种实施方案可以包括流控制设备,它具有入口、与入口流体连通的出口、与入口和出口流体连通的在入口和出口之间的压力损失元件、位于压力损失元件上游的用来测量流过流控制设备的流体的第一压力的压力传感器、位于压力损失元件下游的用来测量流过流控制设备的流体的第二压力的压力传感器,以及连接到第一压力传感器和第二压力传感器以产生阀门驱动信号的控制器。控制器可以在第一工作模式期间基于第一压力和第二压力之间的压差来产生阀门控制信号。控制器还可以在第二工作模式期间基于某个压力传感器的测量压力来产生阀门控制信号。可以基于预定义参数(例如预置压差、传感器之一的预置压力、某个传感器的读数波动,或其他参数)自动切换工作模式。
本发明的另一种实施方案可以包括计算机程序产品,它包括存储在至少一种计算机可读媒介上的并可由至少一个处理器执行的一组计算机指令:接收第一压力的测量值;接收第二压力的测量值;根据第一工作模式工作,其中可执行计算机指令基于第一压力和第二压力之间的压差来计算流速;根据第二工作模式工作,其中可工作计算机指令基于某个压力传感器的测量压力来计算流速;以及基于预定义参数在第一工作模式和第二工作模式之间切换。
本发明的又一种实施方案可以包括测量第一压力;测量第二压力;在第一工作模式中基于第一压力和第二压力之间的压差来产生阀门控制信号;在第二工作模式中基于某个压力传感器的测量压力来产生阀门控制信号;以及根据预定义参数在第一工作模式和第二工作模式之间切换。
本发明的又一种实施方案可以包括接收传感器的压力测量值、监测压力测量值的波动、将波动与预先确定限制比较以及如果波动大于预先确定限制产生警报的一组可执行的计算机指令。
本发明的又一种实施方案可以包括接收位于压力损失元件上游的上游传感器的上游压力、接收压力损失元件下游的下游压力测量值、监测阀门的阀门位置、确定测量压力之间的压差以及基于测量压力之间的压差、阀门位置和阀门分辨率来确定控制分辨率的一组可执行的计算机指令。
本发明的又一种实施方案可以包括监测流的方法,它包括测量第一压力、测量第二压力;在第一工作模式中,基于第一压力和第二压力之间的压差来确定流速;在第二工作模式中,基于某个压力传感器的测量压力确定流速;以及根据预定义参数在第一工作模式和第二工作模式之间切换。
本发明的又一种实施方案可以包括计算机程序产品,它包括存储在至少一种计算机可读媒介上的可由至少一个处理器执行的一组计算机指令:接收第一压力的测量值;接收第二压力的测量值;根据第一工作模式工作,其中可执行计算机指令基于第一压力和第二压力之间的压差来产生阀门控制信号;根据第二工作模式工作,其中可操作计算机指令基于某个压力传感器的测量压力来产生阀门控制信号;以及根据预定义参数在第一工作模式和第二工作模式之间切换。
本发明的又一种实施方案包括流控制设备,它包括入口、与入口流体连通的出口、可以是流体控制设备的唯一压力传感器的第一压力传感器,以及连接到压力传感器的控制器。控制器可以用来基于单个压力传感器(即流体控制设备的第一压力传感器)的测量压力来产生阀门控制信号。
本发明的另一种实施方案包括基于单个压力传感器的测量值调节流过流控制设备的流的方法,该方法包括测量第一压力传感器的压力、基于第一压力传感器的压力测量值和一组校准参数来计算流速,将流速和设定点比较并基于计算流速和设定点的压差来产生阀门控制信号。
本发明的又一种实施方案包括计算机程序产品,它包括具有接收第一压力传感器的压力测量值、基于第一压力传感器的压力测量值和一组校准参数来计算流速、将流速和设定点比较以及基于计算流速和设定点之间的压差来产生阀门控制信号的可执行指令的一组计算机指令。
本发明的实施方案通过提供更大范围的流控制提供了优于现有技术流控制设备的一个优点。
本发明的实施方案通过提供低流速下测量流速的更高准确性提供了优于现有技术流控制设备的另一个优点。
本发明的实施方案通过提供监测并指出是否需要重新校准或是否已出现误差提供了优于现有技术流控制设备的又一个优点。
附图说明
可以通过参考下面结合附图进行的描述来获得本发明及其优点的更完整理解,附图中相似参考数字指示相似特征,其中:
图1是根据本发明一种实施方案的流控制设备的示意图示;
图2是流控制设备一种实施方案的图示;
图3是控制器一种实施方案的图示;
图4是控制流的方法的一种实施方案的流程图;
图5是监测压力传感器以确定下游系统是否已改变的一种方法的流程图;
图6是根据本发明另一种实施方案的流控制设备的示意图示;
图7是使用单个压力传感器的流控制设备的图示;
图8是使用单个压力传感器的流控制设备的另一种实施方案的图示;以及
图9是说明使用单个压力传感器的测量值来控制流的一种实施方案的流程图。
具体实施方式
在附图中说明本发明的优选实施方案,相似数字用来指示各个附图中相似和相应部分。
本发明的实施方案提供流控制器,它能够减小或消除与现有技术流控制系统及方法相关的问题。本发明的一种实施方案包括具有上游和下游压力传感器的流控制器。在一种工作模式中,流控制器可以基于上游和下游传感器的压力测量值之间的压差来控制流速。在另一种工作模式中,压力控制器可以基于某个压力传感器如下游压力传感器所读出的压力来控制流速。流控制器可以包括在工作模式之间自动切换的逻辑。第一工作模式可以与较高流速关联,而第二工作模式可以与较低流速关联。
图1是根据本发明一种实施方案的流控制设备30的图示。流控制设备30可以包括接收流的入口32、将流指引导到流系统的其他部件的出口34、压力损失元件36(例如节流板、小直径管、收窄区或其他压力损失元件)、在压力损失元件36上游的用来测量上游压力的压力传感器38(称作“上游压力传感器”)、在压力损失元件36下游的用来测量下游压力的压力传感器40(称作“下游压力传感器”)、可包括处理器、存储器以及确定流体流速和/或产生阀门控制信号的软件指令的控制器42,以及响应阀门控制信号调节流体流的阀门44(例如节流闸门阀、提升阀、蝶形阀、空气驱动阀或本领域中已知的其他阀门)。
上游压力传感器38和下游压力传感器40可以是电容类型的、压电类型的、变换器类型的或本领域中已知的其他压力传感器类型。暴露于流过流控制设备30的流体中的上游压力传感器38和下游压力传感器40的部分可以关于流体呈化学惰性。可通过例如电连接将控制器42连接到上游压力传感器38、下游压力传感器40和阀门44。阀门可以包括具有部件如微控制器的阀门驱动,以处理阀门控制信号并响应阀门控制信号打开或关闭阀门44。
流体(气体或液体)可以在入口32进入流控制设备30,流过阀门44和压力损失元件36,并在出口34流出流控制设备30。上游压力传感器38和下游压力传感器40可以产生上游压力信号46和下游压力信号48,它们可以是分别表示上游压力传感器38和下游压力传感器40的压力测量值的数字或模拟信号。
使用例如存储在计算机可读媒介上的软件指令,控制器42可以基于上游压力传感器38和/或下游压力传感器40所测量的压力产生阀门控制信号50来打开或关系阀门44以获得期望流速。根据本发明的一种实施方案,控制器42可以确定上游压力测量值和下游压力测量值之间的压差。该压差可以是上游压力传感器38和下游压力传感器40的压力测量值之差的任意表示。例如,压差可以表示为压力值(例如100Pa)或具有特定电压值(例如100mV)的信号,或者表示压力测量值之差的任何其他格式。控制器42可以将压差和设定点比较,以根据任意控制方案(例如比例-积分(“PI”)控制方案、比例-积分-微分(“PID”)控制方案,或本领域中已知或开发的任何其他控制方案)来产生阀门控制信号50。基于控制信号50,可以打开或关闭阀门44来调节流速。
基于上游压力传感器38和下游压力传感器40的测量压力之间的压差计算流速可以在较高流速下提供可接受的准确性。但是,当流速降低时,上游压力传感器38和下游压力传感器40的信噪比可能变得很低,使得难以基于测量压力的压差进行准确流速计算。换句话说,在低流速下,压差可能变得从噪声中难以识别。为了处理该问题,根据本发明的一种实施方案,控制器42可以切换成基于单个流传感器所测量的压力来计算流速。
控制器42可以基于已知的流体动力学方程和/或在校准期间建立的传感器读数与流速的经验对照基于特定压力传感器所读出的压力来计算流速。根据本发明的一种实施方案,流控制设备30可以在安装时校准以确定安装流控制设备30的系统中某个传感器的读出压力和流速之间的对应关系。这可以包括对流控制设备30下游部件所引起的影响计算流速的压力损失而校准流控制设备30。基于该校准,控制器42可以产生响应特定传感器(例如上游压力传感器38或下游压力传感器40)的压力信号产生阀门控制信号50来调节流体流速。应当注意当控制器42基于特定传感器的测量值产生控制信号时,另一个传感器可以处于“关闭”状态,或者可以继续发送压力测量值给控制器42。
在基于压差计算流速和基于特定压力传感器所测量的压力计算流速之间的切换可以在任意确定点发生。作为例子,但不作为限制,当压差变得足够小、特定传感器所测量的压力下降到特定水平以下或者任一个或两个传感器的波动超过单个传感器将提供更准确流的限制时,控制器42可以做出切换。
因此,本发明的一种实施方案可以包括流控制设备,它包括入口、出口、与入口和出口流体连通的压力损失元件、上游传感器、下游传感器和控制器。上游压力传感器可以测量上游压力,并且下游压力传感器可以测量下游压力。在第一范围的流速上,控制器可以基于测量压力的压差产生阀门控制信号。在第二范围的流速上,控制器可以基于上游或下游压力传感器所测量的压力产生阀门控制信号。流控制设备还可以包括能够响应阀门控制信号打开或关闭的阀门。控制器可以在预确定点在第一工作模式(即控制信号基于压差)和第二工作模式(控制信号基于某个压力传感器的压力)之间自动切换。
图2是流控制设备30的一种实施方案的图示。流控制设备30可以包括接收流的入口32、将流引导到流系统的其他部件的出口34、将流体从入口32引导到出口34的流通道35、压力损失元件36、上游压力传感器38、下游压力传感器40、产生阀门控制信号的控制器42,以及响应阀门控制信号调节流体流的阀门44。
控制器42可以从上游压力传感器38和下游压力传感器40接收表示各个传感器处的测量压力的信号。该信号可以是用电压等级、比特或本领域中已知的任何其他方式表示测量压力的模拟或数字信号。控制器42可以例如通过产生差信号和/或计算压差来确定测量压力之间的压差。控制器42可以基于压差或基于从上游和/或下游压力传感器接收的压力信号来产生阀门控制信号。阀门44可以响应接收的阀门控制信号打开或关闭。
图3是控制器42的一种实施方案的图示。控制器42可以包括模拟到数字(A/D)转换器52,它从上游压力传感器和下游压力传感器接收信号并将接收的信号转换成数字格式。处理器54(例如CPU,ASIC或本领域中已知的其他处理器)可以从A/D转换器52接收表示测量压力的数字值,并计算压差。基于压差或者上游或下游传感器任一个的测量压力,处理器54可以产生表示阀门应该打开或关闭多少来调节流体流的数字控制信号。A/D转换器52可以将数字值转换成模拟的阀门控制信号并将模拟控制阀门信号发送到阀门。
处理器54可以通过执行软件程序来产生数字控制信号,软件程序可以包括存储为计算机可读存储器58(例如EEPROM、RAM、ROM、闪存、磁盘存储器、光盘存储器或本领域中已知的其他计算机可读存储器)的可由处理器54访问的一组计算机指令56的控制算法。在一种工作模式中,控制算法可以使用操作员、校准和/或工厂参数基于测量压力之间的压差来计算数字控制信号,或者在另一种工作模式中,控制算法可以使用上游或下游压力传感器的测量压力来计算数字控制信号。控制算法可以在预确定点在第一模式和第二模式之间自动切换。例如,当压差降低到预确定水平以下时,控制算法可以从第一模式切换到第二模式。处理器54可以在每个周期或基于预先确定方案决定是否在第一工作模式和第二工作模式之间切换。
控制算法可以使用本领域中已知的任意控制方案包括但不限于PID、具有偏移的改良PID或本领域中已知的其他控制算法来计算某个工作模式的数字控制信号。基本的操作创建误差信号。然后对某个阀门校正误差信号。通过A/D转换器52将校正的误差信号从数字格式转换成模拟信号,并且将作为结果的模拟信号发送到驱动控制阀门到新位置的电压到电流转换器。
控制器42可以包括另外的输入/输出能力。例如,控制器42可以包括支持管理功能例如更新计算机指令56的串行接口。另外,控制器42可以包括跟其他流控制设备、管理计算机或能够在网络上交流的其他设备通信的网络接口。
计算机指令可以用多种方式实现控制算法。例如,控制信号可以是基于将计算值(例如计算的压力值、压差值或计算的流速值)跟设定点比较。作为另一个例子,除了数字计算测量压力之间的压差外,控制器可以使用加法器产生差信号来计算测量压力之间的压差。在该情况中,在第一工作模式中,控制信号可以是基于将压差信号跟设定点比较。在第二工作模式中,控制器可以将压力信号而不是计算的压力值和设定点比较。
图4是说明根据本发明一种实施方案的流控制方法的流程图。可以用具有执行存储在计算机可读媒介上的一组计算机指令(例如软件程序)的一个或多个处理器的控制器来实现图4的方法。当产生控制信号时,控制器可以使用多个输入参数,包括压差阈值60、预置的流校准参数62、现场流校准参数64和设定点66,并且可以基于测量压力之间的压差或特定传感器的压力来计算流速。可以将输入参数存储在计算机可读媒介(例如RAM、ROM、磁存储设备或本领域中已知的其他计算机可读媒介)上。
压差阈值60可以用来确定控制器何时在基于读出压力之间的压差产生控制信号或基于某个读出压力产生控制信号之间切换。根据本发明的一种实施方案,可以基于下游压力、压差、供给压力和阀门位置来计算压差阈值60。当确定压差阈值60时,流体可以流过流控制设备直到获得流控制设备的满量程(即供给压力)的大约10%的压差。例如,如果供给压力是100psi,那么控制器可以调节阀门直到获得10psi的压差。在该点上,可以用控制器测量下游压力和阀门位置。下游压力确定系统的“负载”,而阀门位置给出供给压力和阀门有效剩余范围的指示。
使用上面的值,可以如下确定流控制设备的控制分辨率:
Res=(dP%(valve position%))*valve resolution(psi/step)[等式1]
其中,dP%是压差是流控制设备的供给压力的百分比,valveposition%是阀门打开的百分比;valve resolution是典型地由阀门制造商确定的某个阀门的分辨率。
如果由[等式1]确定的控制分辨率与期望的控制分辨率值相比不足时,意味着斜面太高,控制器可以调节阀门来获得更高的压差。当由[等1]产生的控制分辨率被认为足够时,可以选择相应的压差作为压差阈值60。该点用做传感器的信噪比妨碍准确的压差读数的代理点。根据本发明的一种实施方案,可以由控制器自动执行确定压差阈值60。应当注意,在本发明的其他实施方案中,可以用其他方案确定或可以任意地确定压差阈值60。
现场流校准参数64可以包括基于流系统中流控制设备的安装为某个流控制设备计算的参数。现场流校准参数反映在流控制设备下游的设备将影响到流控制设备所读出压力的事实。而这对基于压差计算的流速几乎没有影响,它可能显著影响由某个压力传感器计算的流速。因此,可以在安装之后重新校准流控制设备,以建立对于下游设备的现场流校准参数64。可以例如通过手动输入系统特定值或通过自动软件控制设备例程来执行该现场校准。因为在较低流速下控制器典型地基于特定传感器的压力来确定流速,在本发明的一种实施方案中,可以基于流过流体控制设备的流体的层流来建立校准参数64。只要流速对应层流,那么对流黏性和下游压力损失的补偿仅要求一个偏移值用做现场流校准参数64。
预置的流校准参数62可以包括基于气体类型、流控制设备设置或其他参数计算流速的参数。可以根据本领域中已知的任意校准技术来建立预置的流校准参数62。设定点66表示期望流速。可以将计算的流速跟设定点66比较来确定打开或关闭阀门多少。可以通过例如远程计算机、工作员或以本领域中已知的任意方式自动更新设定点66。
在步骤70,控制器可以从上游和下游压力传感器接收压力测量值,并且在步骤72可以计算压差。在步骤74,控制器可以将计算的压差跟压差阈值60比较。如果计算的压差大于压差阈值60,那么控制可以进行到步骤76,否则控制可以进行到步骤78。
在步骤76,控制器可以使用预置的流校准参数62基于测量压力之间的压差计算流速。可以根据本领域中已知的基于测量压力的压差计算流速的任意方案来进行这一步。另一方面,在步骤78,控制器可以使用现场流校准参数64来确定流速。可以根据基于单个压力计算流速的任意方案来执行这一步,包括比较测量压力跟流速的校准曲线(例如存储在控制器的存储器或可由控制器访问的其他计算机可读媒介中)。
在步骤80,控制器可以将计算的流速跟设定点比较。如果流速不等于设定点,那么在步骤82控制器可以基于特定传感器的压力(例如下游传感器的测量压力)来计算误差增益。相反地,如果流速正好等于设定点,那么控制器可以基于测量压力之间的压差来计算误差增益(步骤84)。在步骤86,控制器可以将误差增益转换成模拟阀门控制信号,并将该阀门控制信号发送给阀门。可以重复步骤70-84。
应当注意在步骤74控制器确定是基于测量压力的压差还是基于特定传感器的压力来计算流速。每次要计算流速时可以进行该确定。在本发明的另一种实施方案中,可以根据预确定时间表(例如每30毫秒)进行该确定。在本发明的该实施方案中,控制器可以在确定是否应当切换到另一个工作模式之前,在预先确定的一段时间内根据某个工作模式(例如根据步骤76或步骤78)计算流速。此外,可以用质量流量计来执行步骤70-78以确定流速。在该情况中,可以任意地确定压差阈值60(或其他预置参数)。
如结合图4所描述的,可以通过在安装时对下游部件所引起的压降校准流控制设备并基于从单个传感器的压力读数来计算流速。如果下游部件改变,那么所需偏移也可以改变。如果在分配过程中安装新的管道系统、移动流控制单元、下游过滤器变得受限、松动管子移位或发生任何可能影响传感器读数的其他事件时,这将会发生。
根据本发明的一种实施方案,控制器使用存储在可由控制器访问的计算机可读媒介中的计算机指令可以监测上游和下游传感器中的一个或两个以保证传感器的压力测量值不会在期望范围之外波动。例如,如果在分配过程中上游压力传感器测量0.75psi而下游压力传感器测量0.25psi,那么可以配置控制器如果在分配过程中用下游传感器控制时下游传感器读数在+/-0.05psi界限之外(0.45至0.55psi的压差)则产生警报。基于压力传感器的波动的警报可以指出系统已改变,要求流控制设备的重新校准,或者指出流控制设备没有正确地工作。如果控制器不监测波动,那么下游传感器读数可能增加到0.5psi(指示控制器后面系统的0.25psi的压力增加),导致改变实际流速的降低(例如计算值的50%)。
图5是说明监测过程的一种实施方案的流程图。在步骤90,控制器可以接收传感器(例如图1的下游传感器)的压力测量值。在步骤92,控制器可以将当前压力读数和一个或多个先前压力读数比较,以确定压力传感器的波动。如果在步骤93确定波动落在预置范围之外,那么在步骤94控制器可以产生警报。警报可以是电子邮件通知、可听警报、可视警报或本领域中已知的其他错误状态通知。可以任意地重复步骤90-94。可以在能够执行计算机指令的任意流控制设备中将图5的监测步骤实施为一组计算机指令,并且图5的监测过程不局限于结合图1-4所描述的提供多个模式流控制的流控制设备。
图6是流控制设备100的另一种实施方案的图示。流控制设备100可以包括接收流的入口、将流引导到流系统的其他部件的出口104、压力损失元件106(例如节流板、小直径管、收窄区或其他压力损失元件)、压力损失元件106上游的感测上游压力的压力传感器108(称作“上游压力传感器”)、压力损失元件106下游的感测下游压力的压力传感器110(称作“下游压力传感器”)、产生阀门控制信号的控制器112,以及响应阀门控制信号调节流体流的阀门114(例如节流闸门阀、提升阀、蝶形阀、空气驱动阀或本领域中已知的其他阀门)。
上游压力传感器108和下游压力传感器110可以是电容类型的、压电类型的、转换器或本领域中已知的其他压力传感器类型。控制器112通过例如电连接可以连接到上游压力传感器108、下游压力传感器110和阀门114。虽然为了简单没有显示,但是在控制器112、上游压力传感器108、下游压力传感器110和阀门114之间可以有中间逻辑。阀门114还可以包括部件如微控制器,以处理阀门控制信号和响应阀门控制信号打开或关闭阀门。流体控制器设备100可以跟图1的流体控制设备30同样地工作,除了流体在流过阀门之前先流过压力损失元件之外。
应当注意在图6的实施方案中,因为下游压力传感器110在阀门114的上游,下游压力传感器110的压力会因为阀门114的改变而波动。因此,为了确定下游系统是否已改变和是否需要重新校准,可以在阀门114的下游添加第三传感器。如结合图5所描述的,控制器可以监测第三传感器的压力波动,并且如果波动太大则可以产生警报。在另一种实施方案中,可以监测阀门位置。如果阀门位置改变大于预先确定量,那么控制器可以产生警报。
图7是根据本发明一种实施方案的流控制设备700的图示。流控制设备700可以包括接收流的入口702、将流引导到流系统的其他部件的出口704、压力传感器708、可包括处理器、存储器以及用于确定流速和/或产生阀门控制信号的软件指令的控制器712,以及响应阀门控制信号调节流体流的阀门714(例如节流闸门阀、提升阀、蝶形阀、空气驱动阀或本领域中已知的其他阀门)。
压力传感器708可以是电容类型的、压电类型的、转换器类型的或本领域中已知的其他压力传感器类型。上游压力传感器708暴露于流过流控制设备700的流体的部分可以关于流体呈化学惰性。控制器712通过例如电连接可以连接到压力传感器708和阀门714。阀门可以包括具有部件如微控制器的阀门驱动,以处理阀门控制信号和响应阀门控制信号打开或关闭阀门714。
流体(气体或液体)可以在入口712进入流控制设备700,流过阀门704,以及在出口704流出流控制设备700。压力传感器708可产生表示压力传感器708的压力测量值的数字或模拟信号压力信号716。
控制器712基于压力传感器708所测量的压力使用例如存储在计算机可读媒介上的软件指令可以产生打开或关闭阀门714的阀门控制信号720来获得期望流速。根据一种实施方案,控制器702可以基于单个流传感器测量的压力来计算流速。
控制器712可以基于已知的流体动力学方程和/或校准过程中建立的传感器读数跟流速的经验对照基于某个压力传感器所读出的压力计算流速。根据本发明的一种实施方案,可以在安装时校准流控制设备700以确定安装流控制设备700的系统中传感器708的读出压力和流速之间的对应关系。这可以包括对流控制设备700下游的部件所引起的影响计算流速的压力损失校准流控制设备700。基于该校准,控制器702可以响应特定传感器(例如传感器708)的压力信号产生阀门控制信号720来调节流体流速。
图8是流控制设备800的另一种实施方案的图示。流控制设备800可以包括接收流的入口802、将流引导到流系统的其他部件的出口804、读出压力的压力传感器810、产生阀门控制信号的控制器812,以及响应阀门控制信号调节流体流的阀门814(例如节流闸门阀、提升阀、蝶形阀、空气驱动阀或本领域中已知的其他阀门)。
压力传感器810可以是电容类型的、压电类型的、转换器或本领域中已知的其他压力传感器类型。控制器812通过例如电连接可以连接到压力传感器810和阀门814。虽然为了简单没有显示,在控制器812、压力传感器810和阀门814之间可以有中间逻辑。阀门814还可以包括部件如微控制器,以处理阀门控制信号和响应阀门控制信号打开或关闭阀门。流体控制设备800类似于图7的流体控制设备700,除了压力传感器位于阀门的下游。
应当注意在图8的实施方案中,因为压力传感器810在阀门814的下游,下游压力传感器810的压力会因为阀门814的改变而波动。因此,为了确定下游系统是否已改变和是否需要重新校准,可以在阀门814的下游添加额外的传感器。如结合图5所描述的,控制器可以监测该额外传感器的压力波动,并且如果波动太大则可以产生警报。在另一种实施方案中,可以监测阀门的位置。如果阀门位置改变大于预先确定量,那么控制器可以产生警报。
图9是说明使用单个传感器的流控制方法的一种实施方案。可以用具有执行存储在计算机可读媒介上的一组计算机指令(例如软件程序)的一个或多个处理器的控制器来实施图9的方法。在产生控制信号时控制器可以使用包括现场流校准参数904的多个输入参数。可以将输入参数存储在计算机可读媒介上(例如RAM、ROM、磁存储设备或本领域中已知的其他计算机可读媒介)。
现场流校准参数904可以包括基于流系统中流控制设备的安装为该流控制设备计算的参数。现场流校准参数反映流控制设备下游的设备将影响流控制设备读出的压力的事实。虽然这对基于压差计算的流速可以几乎没有影响,但它可以显著地影响从某个压力传感器计算的流速。因此,可以在安装之后重新校准流控制设备,对下游设备建立现场流校准参数904。可以通过例如手动输入系统特定值或通过自动软件控制设备例程来执行现场校准。因为在较低流速下,控制器典型地基于某个传感器的压力来确定流速,在本发明的一种实施方案中可以基于流过流体控制设备的流体的层流来建立参数904。只要流速对应层流,对流体黏性和下游压力损失的补偿仅需要一个偏移值用做现场流校准参数904。
在步骤910,控制器可以接收压力传感器的压力测量值。在步骤912,控制器可以使用现场流校准参数904来确定流速。可以根据基于单个压力计算流速的任意方案来执行这一步,包括比较测量压力和流速的校准曲线(例如存储在控制器的存储器或可由控制器访问的其他计算机可读媒介中)。
在步骤914,控制器可以将计算的流速跟设定点比较。如果流速不等于设定点,那么在步骤916,控制器可以基于某个传感器的压力计算误差增益。在步骤918,控制器可以将误差增益转换成模拟阀门控制信号并将该阀门控制信号发送给阀门。如果需要或希望,可以任意地重复图9的步骤。另外,应当注意可以基于PI控制例程、PID控制例程或其他控制例程进行控制。
因此,具有单个压力传感器的流控制设备可用跟根据使用单个传感器控制流的工作模式而工作的具有多个传感器的流控制设备相同的方法来控制流。单个压力传感器流控制器还可以包括监测单个传感器(或其他传感器)的压力测量值的波动或阀门位置的波动的能力,以产生指示下游压力的改变的警报。
如上所述,通过在安装时对下游部件所引起的压降校准流控制设备,可以基于单个传感器的压力读数来计算流速。如果下游部件改变,那么所需的偏移也会改变。如果在分配过程中安装新的管道系统、移动流控制单元、下游过滤器变得受限、松动管子移位或发生可能影响传感器读数的任意其他事件时,这可能发生。如果下游部件改变,可以对整个系统的改变重新校准流控制单元(即可以更新现场校准参数)。
应当注意,使用单个传感器的控制的可重复性依赖于下游压降的可重复性,一般地随下游压降增加而增加。如果某个现场配置中下游压降不足以产生足够的可重复性,那么可以在压力传感器的下游添加额外的管道系统如线圈来增加下游压降和增加可重复性。
虽然已参考特定实施方案描述本发明,应当注意实施方案是说明性的,本发明的范围不局限于这些实施方案。上面描述的实施方案的许多变化、修改、添加和改进是可能的。这些变化、修改、添加和改进落入在下面权利要求书中详述的发明范围中。

Claims (73)

1.一种流控制设备,包括:
入口;
与入口流体连通的出口;
与入口和出口流体连通的在入口和出口之间的压力损失元件;
位于压力损失元件上游的用来测量流过流控制设备的流体的第一压力的第一压力传感器;
位于压力损失元件下游的用来测量流过流控制设备的流体的第二压力的第二压力传感器;以及
连接到第一压力传感器和第二压力传感器的控制器,配置该控制器使得:
根据第一工作模式工作,其中在第一工作模式期间控制器基于第一压力和第二压力之间的压差来产生阀门控制信号;
根据第二工作模式工作,其中在第二工作模式期间控制器基于特定压力传感器的测量压力来产生阀门控制信号;以及
根据预定义参数在第一工作模式和第二工作模式之间切换。
2.根据权利要求1的流控制设备,还包括阀门,它响应阀门控制信号,位于入口和出口之间并连接到控制器。
3.根据权利要求1的流控制设备,其中在第二工作模式中,控制器基于上游压力传感器的测量压力来产生阀门控制信号。
4.根据权利要求1的流控制设备,其中在第二工作模式中,控制器基于下游压力传感器的测量压力来产生阀门控制信号。
5.根据权利要求1的流控制设备,其中预定义参数包括压差阈值。
6.根据权利要求5的流控制设备,其中还配置控制器使得:
确定第一压力和第二压力之间的压差;
将压差和压差阈值比较;以及
如果第一压力和第二压力之间的压差大于压差阈值,那么根据第一工作模式工作。
7.根据权利要求5的流控制设备,其中还配置控制器使得:
确定第一压力和第二压力之间的压差;
将压差和压差阈值比较;以及
如果第一压力和第二压力之间的压差小于压差阈值,那么根据第二工作模式工作。
8.根据权利要求5的流控制设备,其中还配置控制器以便基于第一压力和第二压力之间的压差、供给压力和阀门位置来计算压差阈值。
9.根据权利要求1的流控制设备,其中还配置控制器使得:
监测第一或第二传感器的波动;以及
如果波动大于预先确定量则产生警报。
10.根据权利要求1的流控制设备,其中还配置控制器使得:
监测阀门的阀门位置改变;以及
如果阀门位置改变大于预先确定量则产生警报。
11.一种计算机程序产品,包括:
存储在至少一种计算机可读媒介上可由至少一个处理器执行的一组计算机指令,以便:
接收第一压力的测量值;
接收第二压力的测量值;
根据第一工作模式工作,其中计算机指令可执行基于第一压力和第二压力之间的压差来计算流速;
根据第二工作模式工作,其中计算机指令可操作为基于特定压力传感器的测量压力来计算流速;以及
根据预定义参数在第一工作模式和第二工作模式之间切换。
12.根据权利要求11的计算机程序产品,其中在第二工作模式中,这组计算机指令可执行基于从下游压力传感器接收的第二压力的测量值来计算流速。
13.根据权利要求11的计算机程序产品,其中在第二工作模式中,这组计算机指令可执行基于从上游压力传感器接收的第一压力的测量值来计算流速。
14.根据权利要求11的计算机程序产品,其中预定义参数包括压差阈值。
15.根据权利要求14的计算机程序产品,其中可执行计算机指令以便:
确定第一压力和第二压力之间的压差;
将压差和压差阈值比较;以及
如果第一压力和第二压力之间的压差大于压差阈值,那么根据第一工作模式工作。
16.根据权利要求14的计算机程序产品,其中可执行这组计算机指令以便:
确定第一压力和第二压力之间的压差;
将压差和压力阈值比较;以及
如果第一压力和第二压力之间的压差小于压差阈值,那么根据第二工作模式工作。
17.根据权利要求14的计算机程序产品,其中这组计算机指令可执行基于第一压力和第二压力之间的压差、供给压力和阀门位置来计算压差阈值。
18.根据权利要求11的计算机程序产品,其中还可执行这组计算机指令以便:
监测压力传感器的波动;以及
如果波动大于预先确定量则产生警报。
19.根据权利要求11的计算机程序产品,其中还可执行这组计算机指令以便:
监测阀门的阀门位置改变;以及
如果阀门位置的改变大于预先确定量则产生警报。
20.一种控制流的方法,包括:
测量第一压力;
测量第二压力;
在第一工作模式中,基于第一压力和第二压力之间的压差来产生阀门控制信号;
在第二工作模式中,基于特定传感器的测量压力来产生阀门控制信号;以及
根据预定义参数在第一工作模式和第二工作模式之间切换。
21.根据权利要求20的方法,还包括响应阀门控制信号打开或关闭阀门。
22.根据权利要求20的方法,其中基于特定压力传感器的测量压力产生阀门控制信号包括基于上游压力传感器的测量压力来产生阀门控制信号。
23.根据权利要求20的方法,其中基于特定压力传感器的测量压力产生阀门控制信号包括基于下游压力传感器的测量压力来产生阀门控制信号。
24.根据权利要求20的方法,其中预定义参数包括压差阈值。
25.根据权利要求24的方法,还包括:
确定第一压力和第二压力之间的压差;
将压差和压差阈值比较;以及
如果第一压力和第二压力之间的压差大于压差阈值,那么根据第一工作模式工作。
26.根据权利要求24的方法,还包括:
确定第一压力和第二压力之间的压差;
将压差和压差阈值比较;以及
如果第一压力和第二压力之间的压差小于压差阈值,那么根据第二工作模式工作。
27.根据权利要求24的方法,还包括基于第一压力和第二压力之间的压差、供给压力和阀门位置来计算压差阈值。
28.根据权利要求20的方法,还包括:
监测第二传感器的波动;以及
如果波动大于预先确定量则产生警报。
29.根据权利要求20的方法,还包括:
监测阀门位置的阀门位置改变;以及
如果阀门位置改变大于预先确定量则产生警报。
30.一种计算机程序产品,包括存储在至少一种计算机可读媒介上的一组计算机指令,可由至少一个处理器执行这组计算机指令,以便:
接收传感器的压力测量值;
监测压力测量值的波动;
将波动与预先确定的限度比较;
如果波动大于预先确定限度则产生警报。
31.根据权利要求30的计算机程序产品,其中传感器是压力损失元件下游的传感器。
32.根据权利要求30的计算机程序产品,其中传感器是阀门下游的传感器。
33.一种计算机程序产品,包括存储在至少一种计算机可读媒介上的一组计算机指令,可由至少一个处理器执行这组计算机指令,以便:
从位于压力损失元件上游的上游传感器接收上游压力;
从压力损失元件的下游接收压力测量值;
监测阀门的阀门位置;
确定测量压力之间的压差;以及
基于测量压力之间的压差、阀门位置和阀门分辨率确定控制分辨率。
34.根据权利要求33的计算机程序产品,其中还可执行这组计算机指令,以便:
确定控制分辨率是否是可接受的;
如果控制分辨率不可接受,那么产生引起阀门将阀门位置改变到新的阀门位置而建立更大压差的信号;
接收新的上游压力;
接收新的下游压力;
基于新的上游压力和新的下游压力确定该更大的压差;以及
基于该更大的压差、新的阀门位置和阀门分辨率确定新的控制分辨率。
35.根据权利要求33的计算机程序产品,其中还可执行这组计算机指令,以便:
确定控制分辨率是否是可接受的;
如果控制分辨率可接受,那么选择该压差作为压差阈值。
36.根据权利要求33的计算机程序产品,其中计算机指令还可执行基于随后压差和压差阈值的比较在第一工作模式和第二工作模式之间切换。
37.根据权利要求33的计算机程序产品,其中通过下述方法还可执行这组计算机指令来确定控制分辨率:
将表示为满量程压力的百分比的压差乘以表示为阀门打开的百分比的阀门位置;以及
乘以阀门分辨率。
38.一种方法,包括:
从传感器接收压力测量值;
监测压力测量值的波动;
将波动和预先确定限度比较;
如果波动大于预先确定限度则产生警报。
39.根据权利要求38的计算机程序产品,其中传感器是压力损失元件下游的传感器。
40.根据权利要求38的计算机程序产品,其中传感器是阀门下游的传感器。
41.一种计算机程序产品,包括:
存储在至少一种计算机可读媒介上可由至少一个处理器执行的一组计算机指令,以便:
接收第一压力的测量值;
接收第二压力的测量值;
根据第一工作模式工作,其中可执行计算机指令基于第一压力和第二压力之间的压差来产生阀门控制信号;
根据第二工作模式工作,其中可操作计算机指令基于特定压力传感器的测量压力来产生阀门控制信号;以及
根据预定义参数在第一工作模式和第二工作模式之间切换。
42.根据权利要求41的计算机程序产品,其中在第二工作模式中,这组计算机指令可执行基于从下游压力传感器接收的第二压力的测量值来产生阀门控制信号。
43.根据权利要求41的计算机程序产品,其中在第二工作模式中,这组计算机指令可执行基于上游压力传感器的第一压力的测量值来产生阀门控制信号。
44.根据权利要求41的计算机程序产品,其中预定义参数包括压差阈值。
45.根据权利要求44的计算机程序产品,其中可执行计算机指令以便:
确定第一压力和第二压力之间的压差;
将压差和压差阈值比较;以及
如果第一压力和第二压力之间的压差大于压差阈值,那么根据第一工作模式工作。
46.根据权利要求44的计算机程序产品,其中可执行这组计算机指令以便:
确定第一压力和第二压力之间的压差;将压差和压差阈值比较;以及
如果第一压力和第二压力之间的压差小于压差阈值,那么根据第二工作模式工作。
47.根据权利要求13的计算机程序产品,其中这组计算机指令可执行基于第一压力和第二压力之间的压差、供给压力和阀门位置来计算压差阈值。
48.根据权利要求41的计算机程序产品,其中还可执行这组计算机指令以便:
监测压力传感器的波动;以及
如果波动大于预先确定量则产生警报。
49.根据权利要求41的计算机程序产品,其中还可执行这组计算机指令使得:
监测阀门的阀门位置改变;以及
如果阀门位置改变大于预先确定量则产生警报。
50.一种监测流的方法,包括:
测量第一压力;
测量第二压力;
在第一工作模式中,基于第一压力和第二压力之间的压差来确定流速;
在第二工作模式中,基于特定压力传感器的测量压力来确定流速;以及
根据预定义参数在第一工作模式和第二工作模式之间切换。
51.根据权利要求50的方法,其中基于特定压力传感器的测量压力确定流速包括基于上游压力传感器的测量压力确定流速。
52.根据权利要求50的方法,其中基于特定压力传感器的测量压力确定流速包括基于下游压力传感器的测量压力确定流速。
53.根据权利要求50的方法,其中预定义参数包括压差阈值。
54.根据权利要求53的方法,还包括:
确定第一压力和第二压力之间的压差;
将压差和压差阈值比较;以及
如果第一压力和第二压力之间的压差大于压差阈值,那么根据第一工作模式工作。
55.根据权利要求53的方法,还包括:
确定第一压力和第二压力之间的压差;
将压差和压差阈值比较;以及
如果第一压力和第二压力之间的压差小于压差阈值,那么根据第二工作模式工作。
56.一种流控制设备,包括:
入口;
与入口流体连通的出口;
测量流过流控制设备的流体的压力的第一压力传感器;以及
连接到压力传感器的控制器,配置该控制器以便基于单个压力传感器的测量压力来产生阀门控制信号,其中该单个压力传感器是第一压力传感器。
57.根据权利要求56的流控制设备,还包括响应阀门控制信号的、位于入口和出口之间并连接到控制器的阀门。
58.根据权利要求57的流控制设备,其中第一压力传感器位于阀门的上游。
59.根据权利要求57的流控制设备,其中第一压力传感器位于阀门的下游。
60.根据权利要求56的流控制设备,其中还可操作控制器以便:
接收第一压力传感器的压力测量值;
监测压力测量值的波动;
将波动和预先确定限度比较;以及
如果波动大于预先确定限度则产生警报。
61.根据权利要求56的流控制设备,其中还可操作控制器以便:
监测阀门的阀门位置改变;以及
如果阀门位置的改变大于预先确定量则产生警报。
62.一种计算机程序产品,用于基于单个压力传感器的测量值调节流过流控制设备的流,该计算机程序产品包括存储在至少一种计算机可读媒介上可由至少一个处理器执行的一组计算机指令,以便:
接收第一压力传感器的压力测量值;
基于第一压力传感器的压力测量值和一组校准参数计算流速;
将流速和设定点比较;以及
基于计算流速和设定点之间的差来产生阀门控制信号。
63.根据权利要求62的计算机程序产品,其中校准参数包括现场校准参数。
64.根据权利要求62的计算机程序产品,其中这组计算机指令还包括以下可执行指令:
监测压力测量值的波动;
将波动和预先确定限度比较;以及
如果波动大于预先确定限度则产生警报。
65.根据权利要求64的计算机程序产品,其中由第一传感器产生监测的压力测量值。
66.根据权利要求65的计算机程序产品,其中由另一个压力传感器产生监测的压力测量值。
67.根据权利要求62的计算机程序产品,其中这组计算机指令还包括以下可执行指令:
监测阀门的阀门位置改变;以及
如果阀门位置的改变大于预先确定量则产生警报。
68.一种基于单个压力传感器的测量值调节流过流控制设备的流的方法,该方法包括:
测量第一压力传感器的压力;
基于第一压力传感器的压力测量值和一组校准参数计算流速;
将流速和设定点比较;以及
基于计算流速和设定点之间的差产生阀门控制信号。
69.根据权利要求68的方法,还包括通过进行现场校准产生校准参数。
70.根据权利要求68的方法,还包括:
监测压力测量值的波动;
将波动和预先确定限度比较;以及
如果波动大于预先确定限度则产生警报。
71.根据权利要求70的方法,其中由第一传感器产生监测的压力测量值。
72.根据权利要求70的方法,其中由另一个压力传感器产生监测的压力测量值。
73.根据权利要求68的方法,还包括:
监测阀门的阀门位置改变;以及
如果阀门位置的改变大于预先确定量则产生警报。
CNA2005800046254A 2004-02-12 2005-02-09 用于流动监测和控制的系统及方法 Pending CN1918575A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/777,300 2004-02-12
US10/777,300 US6973375B2 (en) 2004-02-12 2004-02-12 System and method for flow monitoring and control

Publications (1)

Publication Number Publication Date
CN1918575A true CN1918575A (zh) 2007-02-21

Family

ID=34837957

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2005800046254A Pending CN1918575A (zh) 2004-02-12 2005-02-09 用于流动监测和控制的系统及方法

Country Status (8)

Country Link
US (2) US6973375B2 (zh)
EP (1) EP1716516A4 (zh)
JP (3) JP2007522587A (zh)
KR (2) KR101323503B1 (zh)
CN (1) CN1918575A (zh)
SG (2) SG149738A1 (zh)
TW (1) TWI361341B (zh)
WO (1) WO2005081169A1 (zh)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103733156A (zh) * 2011-08-09 2014-04-16 日立金属株式会社 利用自适应阀启动位置的质量流量控制器算法
CN103930972A (zh) * 2011-09-29 2014-07-16 应用材料公司 用于监控耦合至处理腔室的流量控制器的方法
CN104254863A (zh) * 2011-10-24 2014-12-31 哈佛大学校长及研究员协会 通过人工智能和移动健康技术、在不损害准确性的情况下对病症进行增强诊断
CN105043436A (zh) * 2015-05-08 2015-11-11 大连理工大学 一种自适应深海自容式监测装置及其工作方法
CN105159334A (zh) * 2015-06-23 2015-12-16 长沙开元仪器股份有限公司 一种气体流量调节装置
CN105484990A (zh) * 2010-02-26 2016-04-13 恩特格里公司 用于最优化泵的操作的方法和系统
CN105579826A (zh) * 2013-09-03 2016-05-11 株式会社岛津制作所 流量调整装置及具备其的分析装置
CN105593648A (zh) * 2013-07-12 2016-05-18 约翰·C·卡拉马诺斯 流体控制测量装置
CN105988402A (zh) * 2015-03-23 2016-10-05 费希尔控制产品国际有限公司 具有回路和阀控制能力的集成过程控制器
TWI629429B (zh) * 2013-09-12 2018-07-11 蘭姆研究公司 群集質量流裝置及將其併入之複式線路質量流裝置
CN108778478A (zh) * 2016-03-23 2018-11-09 阿法拉伐股份有限公司 用于分散流体中的微粒的设备和方法
CN109404603A (zh) * 2017-08-18 2019-03-01 广东核电合营有限公司 一种气动调节阀的故障在线监测的方法和装置
US10591175B2 (en) 2013-07-12 2020-03-17 Best Technologies, Inc. Low flow fluid controller apparatus and system
US10839950B2 (en) 2017-02-09 2020-11-17 Cognoa, Inc. Platform and system for digital personalized medicine
CN112135972A (zh) * 2018-05-09 2020-12-25 J·瓦格纳有限责任公司 用于运行输送设备的方法及输送设备
US10874355B2 (en) 2014-04-24 2020-12-29 Cognoa, Inc. Methods and apparatus to determine developmental progress with artificial intelligence and user input
CN112654994A (zh) * 2018-09-04 2021-04-13 朗姆研究公司 针对在衬底处理系统的气体输送系统中的硬件部件的软件仿真器
CN112654387A (zh) * 2018-07-02 2021-04-13 米奈特朗尼克斯神经有限公司 用于沿中枢神经系统进行治疗的系统、导管和方法
US11176444B2 (en) 2019-03-22 2021-11-16 Cognoa, Inc. Model optimization and data analysis using machine learning techniques
US11429121B2 (en) 2013-07-12 2022-08-30 Best Technologies, Inc. Fluid flow device with sparse data surface-fit-based remote calibration system and method
US11815923B2 (en) 2013-07-12 2023-11-14 Best Technologies, Inc. Fluid flow device with discrete point calibration flow rate-based remote calibration system and method

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7673223B2 (en) * 2001-06-15 2010-03-02 Qualcomm Incorporated Node processors for use in parity check decoders
US6633856B2 (en) * 2001-06-15 2003-10-14 Flarion Technologies, Inc. Methods and apparatus for decoding LDPC codes
DE10251486A1 (de) * 2002-11-05 2004-05-19 Linde Ag Verfahren und Vorrichtung zur Gaserückgewinnung
US6957375B2 (en) * 2003-02-26 2005-10-18 Flarion Technologies, Inc. Method and apparatus for performing low-density parity-check (LDPC) code operations using a multi-level permutation
US6973375B2 (en) 2004-02-12 2005-12-06 Mykrolis Corporation System and method for flow monitoring and control
US7740024B2 (en) * 2004-02-12 2010-06-22 Entegris, Inc. System and method for flow monitoring and control
US7107128B2 (en) * 2004-02-13 2006-09-12 Entegris, Inc. System for controlling fluid flow
CN101048645A (zh) * 2004-08-13 2007-10-03 恩特格里公司 用于流量设备的校准的系统和方法
JP2006153677A (ja) * 2004-11-30 2006-06-15 Dainippon Screen Mfg Co Ltd 差圧式流量計、流量制御装置および基板処理装置
US7814936B2 (en) * 2005-11-16 2010-10-19 Fisher Controls International Llc Sound pressure level feedback control
WO2007094198A1 (ja) * 2006-02-16 2007-08-23 Nikon Corporation 投影光学系、露光装置、露光方法、ディスプレイの製造方法、マスク及びマスクの製造方法
WO2007127616A2 (en) * 2006-04-12 2007-11-08 Benjamin Pless Cavitation heating system and method
US7517469B2 (en) * 2006-04-28 2009-04-14 Sokudo Co., Ltd. Method and system to measure flow velocity and volume
ES2324195T1 (es) * 2006-07-14 2009-08-03 Thermojet Do Brasil, Ltda. Sistema para el control del caudal de gas y valvula de control de gas.
WO2008036010A1 (en) * 2006-09-19 2008-03-27 Industriell Plåtproduktion Ab Exhaust gas system
GB0619243D0 (en) * 2006-09-29 2006-11-08 Rolls Royce Plc Activation sensing
KR20090060412A (ko) * 2006-10-03 2009-06-12 가부시키가이샤 호리바 에스텍 매스 플로우 컨트롤러
KR20090075816A (ko) * 2006-11-02 2009-07-09 가부시키가이샤 호리바 에스텍 차압식 매스 플로우 컨트롤러에 있어서 진단 기구
US8265794B2 (en) * 2007-10-01 2012-09-11 Westlock Controls Corporation Knowledge based valve control method
WO2009065174A1 (en) * 2007-11-21 2009-05-28 Structural Monitoring Systems Ltd Comparative pressure monitoring instrument
US7693606B2 (en) * 2007-12-21 2010-04-06 Rosemount Inc. Diagnostics for mass flow control
JP4885901B2 (ja) * 2008-03-31 2012-02-29 株式会社山武 流量制御システム
EP2128515A1 (en) * 2008-05-30 2009-12-02 Koninklijke Philips Electronics N.V. A water appliance having a flow control unit and a filter assembly
DE102008040062A1 (de) * 2008-07-02 2010-01-07 Robert Bosch Gmbh Verfahren zum Betreiben eines Fluidventils mit einer oszillierenden Ventilbewegung
US20100307600A1 (en) * 2009-02-19 2010-12-09 Crucs Holdings, Llc Apparatus and method for automatically disabling utilities
JP2010247028A (ja) * 2009-04-13 2010-11-04 Renesas Electronics Corp プラズマ処理装置、異常検出装置、及び異常検出方法
KR101090904B1 (ko) 2009-11-11 2011-12-08 이재형 미소 유량계 및 그 작동방법
JP2011124343A (ja) * 2009-12-09 2011-06-23 Tokyo Electron Ltd 基板処理装置、基板処理方法及びこの基板処理方法を実行させるためのプログラムを記録した記録媒体
US9267831B2 (en) 2010-01-29 2016-02-23 General Electric Company Systems and methods for determining a real time solid flow rate in a solid-gas mixture
JP5501806B2 (ja) * 2010-03-05 2014-05-28 サーパス工業株式会社 圧力センサ、差圧式流量計及び流量コントローラ
US20130168890A1 (en) * 2011-07-11 2013-07-04 Moldcool International Llc Method for characterizing, monitoring, and controlling a mold, die, or injection barrel
US9644796B2 (en) 2011-09-29 2017-05-09 Applied Materials, Inc. Methods for in-situ calibration of a flow controller
JP5433660B2 (ja) * 2011-10-12 2014-03-05 Ckd株式会社 ガス流量監視システム
US8276890B1 (en) 2012-01-31 2012-10-02 Gerald Kloehn Pressure monitoring panel for aeration basins
JP5868815B2 (ja) * 2012-09-03 2016-02-24 株式会社堀場エステック 流量制御装置
US9133959B2 (en) * 2012-09-07 2015-09-15 Pentair Flow Services Ag Virtual limit switch
CN103809621B (zh) * 2012-11-13 2018-04-06 深圳迈瑞生物医疗电子股份有限公司 以机械式控制作为备用的电控式流量控制系统
CN103274223A (zh) * 2013-06-21 2013-09-04 北京爱社时代科技发展有限公司 一种气力输料专用节气单元及其控制系统
CN104806888B (zh) * 2014-01-24 2017-07-04 上海华林工业气体有限公司 一种生产co用旁路控制系统
JP6404639B2 (ja) * 2014-08-22 2018-10-10 株式会社堀場製作所 燃料流量測定装置
EP3043228B1 (de) * 2015-01-09 2018-09-19 Levitronix GmbH Strömungsregler sowie verfahren zum einstellen vorgebbaren volumenstroms
ITUB20153506A1 (it) 2015-09-09 2017-03-09 Fimcim Spa Impianto di condizionamento e/o riscaldamento e processo di controllo dello stesso impianto
ITUB20153497A1 (it) 2015-09-09 2017-03-09 Fimcim Spa Impianto di condizionamento e/o riscaldamento e processo di controllo dello stesso impianto
CN108240884B (zh) * 2016-12-23 2020-04-17 中国石油化工股份有限公司 流化床反应器的进料分布器的压降监测系统和监测方法
GB201704766D0 (en) * 2017-01-05 2017-05-10 Illumia Inc System and methods for selective effluent collection
EP3372881A1 (de) * 2017-03-07 2018-09-12 VAT Holding AG Optimierte druckregelung für und mit einem vakuumventil
JP6913498B2 (ja) * 2017-04-18 2021-08-04 東京エレクトロン株式会社 流量制御器の出力流量を求める方法及び被処理体を処理する方法
US10761070B2 (en) * 2017-12-26 2020-09-01 Shimadzu Corporation Flow controller and gas chromatograph apparatus using the same
US10558227B2 (en) 2018-02-15 2020-02-11 Johnson Controls Technology Company System and method for output compensation in flow sensors using pulse width modulation
US11002461B2 (en) * 2018-02-15 2021-05-11 Johnson Controls Technology Company System and method for output compensation in flow sensors
US20200348702A1 (en) * 2019-04-30 2020-11-05 Illinois Tool Works Inc. Advanced pressure based mass flow controllers and diagnostics
DE102019209091A1 (de) * 2019-06-24 2020-12-24 Festo Se & Co. Kg Verfahren zum Betreiben eines Fluidsystems, Fluidsystem und Computerprogrammprodukt
US20220355384A1 (en) * 2019-06-25 2022-11-10 SLM Solutions Group AG Powder supply system, method of operating a powder supply system and apparatus for producing a three-dimensional work piece
CN112944007B (zh) * 2019-12-11 2023-09-01 浙江三花智能控制股份有限公司 控制方法、控制系统及电动阀
CN112058754B (zh) * 2020-08-24 2022-04-08 阳光新能源开发股份有限公司 水清洗系统及其控制方法
DE102020210777A1 (de) * 2020-08-26 2022-03-03 Festo Se & Co. Kg Durchflussregler, Ventilanordnung und Verfahren

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711473B2 (ja) * 1990-10-25 1995-02-08 旭化成工業株式会社 異常検出方法および装置
US5277215A (en) * 1992-01-28 1994-01-11 Kokusai Electric Co., Ltd. Method for supplying and discharging gas to and from semiconductor manufacturing equipment and system for executing the same
GB2334281B (en) 1995-02-09 1999-09-29 Baker Hughes Inc A downhole inflation/deflation device
JP3291161B2 (ja) * 1995-06-12 2002-06-10 株式会社フジキン 圧力式流量制御装置
GB2338801B (en) * 1995-08-30 2000-03-01 Baker Hughes Inc An improved electrical submersible pump and methods for enhanced utilization of electrical submersible pumps in the completion and production of wellbores
US5684245A (en) * 1995-11-17 1997-11-04 Mks Instruments, Inc. Apparatus for mass flow measurement of a gas
US5944048A (en) * 1996-10-04 1999-08-31 Emerson Electric Co. Method and apparatus for detecting and controlling mass flow
FI116587B (fi) 1997-10-17 2005-12-30 Metso Automation Oy Menetelmä ja laitteisto turvalaitteen toimintakunnon todentamiseksi
JPH11259140A (ja) * 1998-03-13 1999-09-24 Kokusai Electric Co Ltd 流量制御装置
US6026849A (en) * 1998-06-01 2000-02-22 Thordarson; Petur High pressure regulated flow controller
JP3522544B2 (ja) * 1998-08-24 2004-04-26 忠弘 大見 流体可変型流量制御装置
US6152162A (en) * 1998-10-08 2000-11-28 Mott Metallurgical Corporation Fluid flow controlling
US6464464B2 (en) * 1999-03-24 2002-10-15 Itt Manufacturing Enterprises, Inc. Apparatus and method for controlling a pump system
CN1274810A (zh) * 1999-05-21 2000-11-29 株式会社岛津制作所 多阀门装置
US6119710A (en) * 1999-05-26 2000-09-19 Cyber Instrument Technologies Llc Method for wide range gas flow system with real time flow measurement and correction
US6539315B1 (en) * 1999-06-29 2003-03-25 Fisher Controls International, Inc. Regulator flow measurement apparatus
US6510746B1 (en) * 1999-07-12 2003-01-28 Ford Global Technologies, Inc. Gas flow measurement
US6578435B2 (en) 1999-11-23 2003-06-17 Nt International, Inc. Chemically inert flow control with non-contaminating body
EP1269027B1 (en) * 2000-03-08 2005-07-27 Rosemount Inc. Bi-directional differential pressure flow sensor
FR2811577B1 (fr) * 2000-07-11 2003-05-23 Taema Installation de ventilation en gaz d'un patient
US6467505B1 (en) * 2000-10-11 2002-10-22 Flowmatrix Inc. Variable pressure regulated flow controllers
US6564824B2 (en) * 2001-04-13 2003-05-20 Flowmatrix, Inc. Mass flow meter systems and methods
US7004453B1 (en) * 2001-04-25 2006-02-28 Mykrolis Corporation Pendulum valve with a full range of position control
US6564874B2 (en) * 2001-07-11 2003-05-20 Schlumberger Technology Corporation Technique for facilitating the pumping of fluids by lowering fluid viscosity
US6595295B1 (en) * 2001-08-03 2003-07-22 Wood Group Esp, Inc. Electric submersible pump assembly
US6631882B2 (en) 2001-08-09 2003-10-14 Robert Mack Method and apparatus to test a shutdown device while process continues to operate
JP4102564B2 (ja) * 2001-12-28 2008-06-18 忠弘 大見 改良型圧力式流量制御装置
JP2003280745A (ja) * 2002-03-25 2003-10-02 Stec Inc マスフローコントローラ
US7073392B2 (en) * 2002-07-19 2006-07-11 Celerity, Inc. Methods and apparatus for pressure compensation in a mass flow controller
US7032606B1 (en) * 2002-11-07 2006-04-25 Tri-Tech Medical Inc. Manifold system and method for compressed medical gases
US6843439B1 (en) 2003-07-07 2005-01-18 Pure Fishing, Inc. Anti-reverse bail control
US6973375B2 (en) 2004-02-12 2005-12-06 Mykrolis Corporation System and method for flow monitoring and control

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105484990A (zh) * 2010-02-26 2016-04-13 恩特格里公司 用于最优化泵的操作的方法和系统
CN103733156A (zh) * 2011-08-09 2014-04-16 日立金属株式会社 利用自适应阀启动位置的质量流量控制器算法
CN103930972B (zh) * 2011-09-29 2017-01-18 应用材料公司 用于监控耦合至处理腔室的流量控制器的方法
CN103930972A (zh) * 2011-09-29 2014-07-16 应用材料公司 用于监控耦合至处理腔室的流量控制器的方法
CN104254863A (zh) * 2011-10-24 2014-12-31 哈佛大学校长及研究员协会 通过人工智能和移动健康技术、在不损害准确性的情况下对病症进行增强诊断
CN104254863B (zh) * 2011-10-24 2019-02-19 哈佛大学校长及研究员协会 通过人工智能和移动健康技术、在不损害准确性的情况下对病症进行增强诊断
US11231196B2 (en) 2013-07-12 2022-01-25 Best Technologies, Inc. Test stand data table-based fluid flow device with remote calibration system and method
US10955159B2 (en) 2013-07-12 2021-03-23 Best Technologies, Inc. Variable aperture fluid flow assembly
US11947370B2 (en) 2013-07-12 2024-04-02 Best Technologies, Inc. Measuring pressure in a stagnation zone
US11815923B2 (en) 2013-07-12 2023-11-14 Best Technologies, Inc. Fluid flow device with discrete point calibration flow rate-based remote calibration system and method
US11698646B2 (en) 2013-07-12 2023-07-11 Best Technologies, Inc. HVAC self-balancing components and controls
US11687101B2 (en) 2013-07-12 2023-06-27 Best Technologies, Inc. HVAC self-balancing components and controls
US11681306B2 (en) 2013-07-12 2023-06-20 Best Technologies, Inc. Low flow fluid device and pre-piped hydronics
US11429121B2 (en) 2013-07-12 2022-08-30 Best Technologies, Inc. Fluid flow device with sparse data surface-fit-based remote calibration system and method
CN105593648B (zh) * 2013-07-12 2019-11-05 约翰·C·卡拉马诺斯 流体控制测量装置
US10591175B2 (en) 2013-07-12 2020-03-17 Best Technologies, Inc. Low flow fluid controller apparatus and system
US10655875B2 (en) 2013-07-12 2020-05-19 Best Technologies, Inc. Low flow fluid device and pre-piped hydronics
US11231195B2 (en) 2013-07-12 2022-01-25 Best Technologies, Inc. HVAC self-balancing components and controls
CN105593648A (zh) * 2013-07-12 2016-05-18 约翰·C·卡拉马诺斯 流体控制测量装置
CN105579826A (zh) * 2013-09-03 2016-05-11 株式会社岛津制作所 流量调整装置及具备其的分析装置
TWI629429B (zh) * 2013-09-12 2018-07-11 蘭姆研究公司 群集質量流裝置及將其併入之複式線路質量流裝置
US10874355B2 (en) 2014-04-24 2020-12-29 Cognoa, Inc. Methods and apparatus to determine developmental progress with artificial intelligence and user input
US10845781B2 (en) 2015-03-23 2020-11-24 Fisher Controls International Llc Integrated process controller with loop and valve control capability
CN105988402A (zh) * 2015-03-23 2016-10-05 费希尔控制产品国际有限公司 具有回路和阀控制能力的集成过程控制器
CN105043436A (zh) * 2015-05-08 2015-11-11 大连理工大学 一种自适应深海自容式监测装置及其工作方法
CN105159334A (zh) * 2015-06-23 2015-12-16 长沙开元仪器股份有限公司 一种气体流量调节装置
CN108778478A (zh) * 2016-03-23 2018-11-09 阿法拉伐股份有限公司 用于分散流体中的微粒的设备和方法
CN108778478B (zh) * 2016-03-23 2021-10-26 阿法拉伐股份有限公司 用于分散流体中的微粒的设备和方法
US10839950B2 (en) 2017-02-09 2020-11-17 Cognoa, Inc. Platform and system for digital personalized medicine
US10984899B2 (en) 2017-02-09 2021-04-20 Cognoa, Inc. Platform and system for digital personalized medicine
CN109404603A (zh) * 2017-08-18 2019-03-01 广东核电合营有限公司 一种气动调节阀的故障在线监测的方法和装置
CN112135972A (zh) * 2018-05-09 2020-12-25 J·瓦格纳有限责任公司 用于运行输送设备的方法及输送设备
US11897699B2 (en) 2018-05-09 2024-02-13 J. Wagner Gmbh Method for operating a delivery apparatus, and delivery apparatus
CN112654387B (zh) * 2018-07-02 2023-08-15 米奈特朗尼克斯神经有限公司 用于沿中枢神经系统进行治疗的系统、导管和方法
CN112654387A (zh) * 2018-07-02 2021-04-13 米奈特朗尼克斯神经有限公司 用于沿中枢神经系统进行治疗的系统、导管和方法
CN112654994A (zh) * 2018-09-04 2021-04-13 朗姆研究公司 针对在衬底处理系统的气体输送系统中的硬件部件的软件仿真器
US11176444B2 (en) 2019-03-22 2021-11-16 Cognoa, Inc. Model optimization and data analysis using machine learning techniques
US11862339B2 (en) 2019-03-22 2024-01-02 Cognoa, Inc. Model optimization and data analysis using machine learning techniques

Also Published As

Publication number Publication date
JP2010176707A (ja) 2010-08-12
EP1716516A1 (en) 2006-11-02
JP5613748B2 (ja) 2014-10-29
SG149738A1 (en) 2009-02-27
KR20120081221A (ko) 2012-07-18
JP2013058251A (ja) 2013-03-28
SG145614A1 (en) 2008-09-29
JP5186530B2 (ja) 2013-04-17
EP1716516A4 (en) 2008-05-21
US20050182524A1 (en) 2005-08-18
TW200600990A (en) 2006-01-01
US6973375B2 (en) 2005-12-06
KR101362601B1 (ko) 2014-02-12
KR20060135740A (ko) 2006-12-29
TWI361341B (en) 2012-04-01
US20060052904A1 (en) 2006-03-09
WO2005081169A1 (en) 2005-09-01
KR101323503B1 (ko) 2013-10-31
US7610117B2 (en) 2009-10-27
JP2007522587A (ja) 2007-08-09

Similar Documents

Publication Publication Date Title
CN1918575A (zh) 用于流动监测和控制的系统及方法
CN101536159B (zh) 进行实际流量检验的方法
CN101484858B (zh) 流量控制阀的控制方法和控制系统
US7740024B2 (en) System and method for flow monitoring and control
JP4585035B2 (ja) 流量比率制御装置
KR102146011B1 (ko) 질량 유량 제어기 검증을 위한 시스템들 및 방법들
KR101599343B1 (ko) 유량 모니터 부착 압력식 유량 제어 장치
CN1087422C (zh) 用于科里奥利效应质量流量计中的故障检测和校正的方法和装置
KR20100091901A (ko) 유량 콘트롤러
CN1461429A (zh) 流体流量控制器及操作方法
CN1350668A (zh) 带有实时流量测量和修正的宽范围气流系统
CN1683817A (zh) 控制流体流动的装置、方法和系统
CN1613037A (zh) 流测量模块和方法
CN101839737A (zh) 质量流量计及控制器以及质量流量计及控制器系统
CN101069069A (zh) 利用密度信息测量流体压力的方法和装置
CN1908836A (zh) 用于控制可变孔流量计的阀位置的方法和装置
CN105588582B (zh) 一种测控定位装置的位置标定方法和系统
KR20140129225A (ko) 반도체 제조 장치의 가스 분류 공급 장치
CN1751280A (zh) 半导体制造装置和半导体制造方法
CN103403503A (zh) 处理液用流量计
EP3791242A1 (en) Methods and apparatus for multiple channel mass flow and ratio control systems
CN104729605A (zh) 河流流量监测系统及其水位流量标定方法
CN102147625B (zh) 一种再生酸密度检测控制装置及方法
WO2008146484A1 (ja) 物理量変化履歴記録方法及びそのプログラム、並びに流量計測装置及び流体供給システム
JP2008506116A (ja) フロー測定およびマスフロー調整器の検証のための方法およびシステム

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication