CN1987045B - 钻探时的岩层评价 - Google Patents

钻探时的岩层评价 Download PDF

Info

Publication number
CN1987045B
CN1987045B CN200610169385XA CN200610169385A CN1987045B CN 1987045 B CN1987045 B CN 1987045B CN 200610169385X A CN200610169385X A CN 200610169385XA CN 200610169385 A CN200610169385 A CN 200610169385A CN 1987045 B CN1987045 B CN 1987045B
Authority
CN
China
Prior art keywords
jumping
rings
sample room
fluid
sampling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200610169385XA
Other languages
English (en)
Other versions
CN1987045A (zh
Inventor
S·G·维拉里尔
R·奇莱内克
M·J·斯塔克
K·杜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Prad Research and Development Ltd
Original Assignee
Prad Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prad Research and Development Ltd filed Critical Prad Research and Development Ltd
Publication of CN1987045A publication Critical patent/CN1987045A/zh
Application granted granted Critical
Publication of CN1987045B publication Critical patent/CN1987045B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/08Obtaining fluid samples or testing fluids, in boreholes or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/16Drill collars
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/08Obtaining fluid samples or testing fluids, in boreholes or wells
    • E21B49/081Obtaining fluid samples or testing fluids, in boreholes or wells with down-hole means for trapping a fluid sample

Abstract

提供了可置于穿透地下岩层的井眼中的钻井时采样工具。这种工具包括钻环、至少一个样品室、至少一个流管线以及至少一个盖。钻环可操作连接于钻井时采样工具的钻柱。钻环具有至少一个延伸穿过其外表面与进入空腔的开口。钻环中具有用于使泥浆通过其中的通路。样品室可置于钻环的空腔中。钻环中的流管线、至少一个流管线可操作连接于样品室以便将井下流体传送至其。盖可置于钻环的至少一个开口周围,由此样品室被可拆地固定于其中。

Description

钻探时的岩层评价
技术领域
本发明涉及用于评价地下岩层的技术。更特别而言,本发明涉及用于收集和/或存储从地下岩层获得的流体样品的技术。
背景技术
钻探井眼以便定位和生产烃类。带有位于其一端的钻头的井下钻探工具被推进入地面以便形成井眼。当钻探工具推进时,钻探泥浆被通棺晏焦ぞ哌从地面泥浆池抽出并抽出钻头以便冷茸晏焦ぞ哌并运走切屑。流体流出钻头并回流直至地面以便通过工具再循环。钻探泥浆还用于形成滤饼以便为井眼加衬。
在钻探作业期间,理想的做法是对通过井眼穿透的岩层进行各种评价。在某些情况中,钻探工具可以设置有用于对周围岩层进行试验和/或采样的装置。在某些情况中时,钻探工具可以被除去并且将钢丝绳工具部署于井眼中以便对岩层进行试验和/或采样。例如,请看美国专利No.4,860,581和4,936,139。在其它情况下,可以使用钻探工具进行试验和/或采样。例如,请看美国专利/申请No.5,233,866;。6,230,557;20050109538和20040160858。例如,可以使用这些样品和/或试验来定位有价值的烃类。
岩层评价通常要求将流体从岩层吸入井下工具以便试验和/或采样。各种流体连通装置如探头通常从井下工具延伸并放置成井眼壁接触以便与井眼周围的岩层建立流体连通并将流体吸入井下工具中。典型的探头为从井下工具延伸并靠着井眼的侧壁放置的圆形元件。位于探头端部的橡胶封隔器用来形成与井眼侧壁的密封。
用于与井眼侧壁形成密封的另一装置被称作双管封隔器。利用双管封隔器,两个弹性体环绕着工具沿径向膨胀以便隔离其间的井眼的一部分。环与井眼壁形成密封并且容许流体被吸入井眼的隔离部分中与井下工具中的入口中的。
为井眼加衬的滤饼通常用于帮助探头和/或双管封隔器与井眼壁形成密封。一旦形成密封,通过降低井下工具中的压力将来自岩层的流体通过入口吸入井下工具。用于井下工具的探头和/或封隔器的实例在美国专利No.6,301,959;4,860,581;4,936,139;6,585,045;6,609,568和6,719,049与美国专利申请No.2004/0000433中进行了描述。
如果需要吸入工具中的流体样品,则样品可以收集在一个或多个样品室中或者置于井下工具中的瓶子中。用于钢丝绳工具的此类样品室和采样技术的实例在美国专利No.6688390、6659177和5303775中进行了描述。用于钻探工具的此类样品室和采样技术的实例在美国专利申请No.5233866和2005/0115716中进行了描述。通常,样品室可从井下工具拆除,例如如美国专利/申请No.6837314、4856585和6688390中所示。
尽管采样技术中存在这些进展,仍然需要提供能够在恶劣的钻探环境中提供更有效采样的样品室和/或采样技术。理想的是,此类技术可用于井下钻探工具的有限空间中并且容易接近样品。尤其,此类技术优选地提供了以下特征中的一个或多个:通向样品室和/或用于除去样品室的选择性出入口;用于固定样品室的锁定机构;隔离冲击、振动、周期性变形和/或其它井下应力;保护样品室密封机构;控制与样品室有关的热应力而不会引起应力集中或牺牲实用性;多余的样品室保持器和/或保护器;以及样品室的模块化。此类技术还优选地在无需使用高成本材料来实现所需操作性的情况下实现。
定义
在本说明书全文中,当某些术语首次使用时对其进行定义,同时本说明书中使用的某些其它术语定义如下:
“电”、“电子”和“电气”指的是用于传递电子信号的连接和/或线路。
“电子信号”是指能够传递电能和/或数据(例如二进制数据)的信号。
“模块”是指井下工具特别是具有两个或多个互连模块的多功能或集成井下工具的一部分,用于进行分离的或个别的功能。
“模块化”是指适于连接(互连)模块和/或工具,并且可能利用标准化单元或尺寸构造以便在使用时具有灵活性和多样性。
“单相”指的是保存在样品室中的流体样品,以及是指腔室的压力得到保持或控制以便使得仅通过压力保持在溶液中的样品成分,如气体和沥青烯,在从井眼取回腔室时不应从溶液中析出。
发明内容
根据至少一个方面,本发明涉及可置于穿透地下岩层的井眼中的用于钻探时采样工具的采样模块。这种工具包括钻环、至少一个样品室、至少一个流管线以及至少一个盖。钻环可操作连接于钻探时采样工具的钻柱。钻环具有至少一个延伸穿过其外表面与进入空腔的开口。钻环中具有用于使泥浆通过其中的通路。样品室可置于钻环的空腔中。钻环中的流管线、至少一个流管线可操作连接于样品室以便将井下流体传送至其。盖可置于钻环的至少一个开口周围,由此样品室被可拆地固定于其中。
根据另一方面,本发明涉及通过可置于穿透地下岩层的井眼中的钻探时采样工具进行钻探时采样的方法。这种方法包括将样品室穿过钻探时采样工具的钻环的外表面中的开口放置并放入其中的空腔中,将盖放置在钻环的开口上方,将井下钻探时采样工具部署入井眼中,在钻探时采样工具和岩层之间建立流体连通,将岩层流体经由钻探时采样工具中的入口吸入钻探时采样工具以及将岩层流体从入口传送至样品室。然而,可以根据说明书认识到本发明的其它方面。
附图说明
参考附图中所示的以上概述的本发明的实施例对本发明进行更详细地说明。然而,应当指出,附图只示出了本发明的典型实施例,因此并不会被看作对本发明的范围的限制,因为本发明可容许其它等效的实施例。
图1为具有置于穿透地下岩层的井眼中的井下工具的井场的示意图,该井下工具具有钻探时采样(“SWD”)系统。
图2A为图1的井下工具的一部分的纵向剖面图,更详细地示出了SWD系统的采样模块,该采样模块中具有流体流动系统和多个样品室。
图2B为图2A的采样模块沿着剖面线2B-2B剖开的水平剖面图。
图3是图2A和2B的流体流动系统的示意图。
图4A为图2A的采样模块的局部剖视图,其具有通过双片式盖保持于其中的可拆式样品室。
图4B为一种替代采样模块的局部剖视图,其具有通过多片式盖保持于其中的可拆式样品室。
图5A为图4A的采样模块的一部分的详细剖视图,更详细地示出了其接口。
图5B为替代采样模块和接口的局部剖开的等距视图。
图6A-6D为图4A的采样模块的一部分的详细剖视图,更详细地示出了减震器。
图7为一种替代减震器的等距视图,其具有可用于图4A的采样模块的保持器。
图8A为置于钻环中的图7的减震器的替代视图。
图8B为一种替代减震器和钻环的部件分解图。
图8C为替代减震器和钻环的局部剖开的等距视图。
具体实施方式
为了能够详细地理解本发明的上述特征和优点,可以参考附图中所示的实施例对以上简短概述的本发明进行更特别的说明。然而,应当指出,附图只示出了本发明的典型实施例,因此并不会被看作对本发明的范围的限制,因为本发明可容许其它等效的实施例。
图1示出了井场1,其包括钻塔10,钻塔10带有通过钻柱12从其悬挂并进入井眼11的井下工具100。井下工具100具有位于其下端的钻头15,该钻头15用于将井下工具推进至岩层中并形成井眼。
钻柱12通过转盘16作用下旋转,转盘16由未示出的装置供能,接合着钻柱的上端的钻杆17。钻柱12通过钻杆17和连接至游动滑车(也未示出)的转环19悬挂于钩18上,该转环容许钻柱相对于钩旋转。
所示出的钻塔为陆基平台和井架装置10,用于按照众所周知的方式通过旋转钻进形成井眼11。然而,通过本公开内容,本发明所属领域的普通技术人员将会理解本发明也适用于其它井下应用,如旋转钻探,并且并不限于陆基钻塔。
钻探流体或泥浆26存储于在井场处形成的凹陷27中。泵29通过转环19中的端口将钻探流体26输送至钻柱12内部,引起钻探流体如有向箭头9所示通过钻柱12向下流动。钻探流体通过钻头15中的端口退出钻柱12,然后如方向箭头32所示向上循环通过位于钻柱的外面和井眼的壁之间的,被称为环状空间的区域。按照这种方式,当钻探流体返回至凹陷27以便再循环时,钻探流体润滑钻头15并将岩屑运送直至地面。
井下工具100有时被称作井底钻探工具组合(“BHA”),优选地置于钻头15附近(换句话说,置于离开钻头的若干钻铤长度内)井底钻探工具组合包括具有各种能力如测量、处理和存储信息以及与地面通讯的各个部件。还优选地设置了遥测装置(未示出)以便与底面装置(未示出)通讯。
BHA 100还包括在钻探时采样(“SWD”)系统230,其包括流体连通模块210和采样模块220。这些模块优选地容放在钻铤中以便执行各种岩层评价功能(在下文详细描述)。如图1中所示,流体连通模块210优选地置于采样模块220邻近。所示的流体连通模块具有探头,探头具有用于接收岩层流体的入口。还可设置另外的装置,如泵、量规、传感器、监视器或其它可用于井下采样和/或试验的装置。尽管图1示出为具有带有位于特定模块中的特殊部件的模块化构造,该工具可为整体式或其选择部分可以模块化。模块和/或其中的部件可以贯穿井下工具置于各种构型。
流体连通模块210具有优选地置于支脚或肋212中的流体连通装置214,例如探头。可以使用的示例性流体连通装置示出于美国专利申请No.20050109538中,其全部内容在此引入作为参考。流体连通装置设置有用于接收井下流体的入口和用于使流体经过其中的延伸至井下工具中的流管路(未示出)。流体连通装置优选地可在延伸和缩回位置之间运动,以便选择性地接合井眼11的壁和从岩层F获得多个流体样品。如所示,可以设置背撑活塞250以便帮助将流体连通装置靠着井眼壁放置。
可以使用的流体连通装置的实例,例如探头或封隔器,在美国专利/申请No.US 2005/0109538和5803186中进行了更详细地描述。
各种流体连通装置可以单独使用,或者与突起的装置如支脚或肋结合使用。
图2A和2B示出了井下工具100的一部分,其中图1采样模块220的更详细地示出。图2A为探头模块210和采样模块220的一部分的纵向剖面。图2B为采样模块220沿着图2A的剖面线2B-2B剖开的水平剖面。
采样模块220优选地容放在钻环302中,该钻环302可通过螺纹连接于BHA如图1的探头模块210的相邻钻环。钻环具有支承于其中的芯轴326。通路323在芯轴和钻环之间延伸以便容许泥浆如箭头所示经过其中。
样品室、钻环和相关部件可以由高强度材料如不锈钢、钛或铬镍铁合金制造。然而,可以选择材料以便实现在部件之间匹配的所需热膨胀。特别是,可能希望使用一组低成本、高强度和热膨胀有限的材料,如皮克(peek)或凯夫拉尔(Kevlar)。
接口322设置于其端部处以便提供与相邻钻环的液压和/或电连接。如果需要的话,另外的接口324可设置于另一端以便操作地连接至相邻的钻环。按照这种方式,流体和/或信号可如例如美国专利申请序号11/160,240中所述那样在采样模块和其它模块之间传送。在这种情况下,优选地设置这样一个接口以便在流体连通模块和采样模块之间建立流体连通,从而将由流体连通模块接收的岩层流体传送至采样模块。
所示的接口322位于采样模块220的井口端处以便与相邻的流体连通模块210操作连接。然而,应当理解,一个或多个流体连通模块和/或探头模块可置于井下工具中,其中一个或多个接口位于其任一端或两端以便与相邻的模块操作连接。在某些情况中,一个或更多插入模块可置于流体连通模块和探头模块之间。
采样模块具有流体流动系统301,用于使流体经过钻环302。流体流动系统包括从接口延伸入井下工具中的主流动管线310。流管线优选地通过用于接收由此接收的流体的接口与流体连通模块的流管线保持流体连通。如所示,流管线置于芯轴326中并且将由流体连通模块接收的流体传过采样模块。
如所示,流体流动系统301还具有次级流管线311和倾倒流管线260。次级流管线将来自主流管线310的流体分流至一个或多个样品室314以便收集于其中。还可设置另外的流管线如倾倒流管线260以便将流分流至井眼或井下工具中的其它位置。如所示,设置了分流器332以便选择性地将流体分流至各个位置。可以设置一个或多个这种分流器以便将流体分流至预定位置。
样品室可以设置有各种装置装置如阀、活塞、压力室或用于帮助操纵流体的获取和/或保持这种流体的质量的其它装置。样品室314各自适于通过主流管线310和相应的次级流管线311接收通过探头214(请看图1)获得的一种岩层流体的样品。
如所示,样品室优选地可拆地置于钻环302中的孔303内。盖342置于样品室和钻环302周围以便将样品室保持于其中。
从沿着图2A的线2B-2B剖开的水平剖面可以看到,并且如图2B中所示,采样模块设置有三个样品室314。样品室314优选地在主体内以120度间隔均匀地隔开。然而,应当理解,呈各种构型的一个或多个样品室可以置于钻环周围。另外的样品室还可置于模块和/或井下工具周围的附加竖直位置。
腔室优选地置于钻环302的周边周围。如所示,样品室优选地可拆地置于钻环302中的孔303内。孔被构置成适于接收样品室。优选地,样品室适配于孔中以便在曝露于恶劣的井眼条件时防止受损坏。
通路318延伸通过井下工具。通路优选地限定了多个沿径向突出的叶突320。叶突320的数量优选地等于样品室314的数量,即图2B中的三个。如所示,叶突320以大约60度的间隔在样品室314之间从其突出。优选地,叶突使得绕着样品室的通路的尺寸膨胀以便容许钻探流体穿过其中传送。
有突出部分的轴承318优选地构置成适于为要通过钻柱传送经过样品室314的钻探流体提供适当的流通面积。另外优选地,腔室和/或容器被置于平衡结构,该平衡构型减少了钻孔旋转引起的不稳定运动趋向,减少了对井下工具的腐蚀并且简化了制造。理想的是提供这种构型以便优化采样模块的机械强度,同时便于穿过其中的流体流动。这种构型受到理想地调节以便增强井下工具和钻探时采样系统的可操作性。
图3是图2A-2B的采样模块220的流体流动系统301的示意图。如上所述,流体流动系统301包括分流器332以便选择性地将流分流通过采样模块和多个样品室314。分流器选择性地将流体从主流管线310分流至通向样品室314的次级流管线311和/或通向井眼的倾倒流管线260。
可以提供一个或多个流管线阀以便选择性地将流体贯穿井下工具分流至预定位置。在某些情况中,流体被分流至样品室以便收集。在其它情况下,流体可以依照要求被分流至井眼、通路318或其它位置。
次级流管线311从主流管线310分叉并且延伸至样品室314。样品室可为本领域中已知的用于获取井下流体样品的任意类型的样品室。如所示,样品室优选地包括可滑动活塞360,限定了可变容积样品空腔307和可变容积缓冲空腔309。样品空腔适于接收和容放流体样品。缓冲空腔通常包含缓冲流体,该缓冲流体对活塞施加压力以便在空腔之间保持压力差,该压力差在样品流入样品空腔中时足以保持样品的压力。根据需要,附加特征如压力补偿器、压力室传感器和其它部件可以与样品室一起使用。
样品室还优选地设置有置于样品室中的搅拌器362。搅拌器可为旋转叶片或能够使流体在样品室中运动以便保持其质量的其它混合装置。
所示的每个样品室314具有容器阀330a、330b。容器阀330a优选地设置成选择性地将样品室的样品空腔流动地连接至流管线311。腔室阀330b选择性地将样品室的缓冲空腔流动地连接至压力源如井眼、充氮气腔室或其它压力源。
每个样品室314还与一组位于分流器/路由器332内部的流管线阀328a、328b,以便控制流入样品室的流体。一个或多个流管线阀可以选择性地被致动以便容许流体从流管线310进入一个或多个样品室的样品空腔。可以在一个或多个流管线中使用止回阀以便限制穿过其中的流。
另外的阀可以绕着流管线设置于各种位置以便容许在多个位置之间选择性地保持流体连通。例如,阀334,如安全阀或止回阀,优选地设置于倾倒流管线260中以便容许选择性地与井眼保持流体连通。这样容许岩层流体选择性地将流体从流管线260喷出。这种流体通常被倾倒出倾倒流管线260和工具主体侧壁329。阀334还可优选地以给定差压设置通至井眼。阀334可为安全阀或密封阀,其被动地、主动地或由预定的释放压力控制。安全阀334可用来在采样之前冲洗流管线310和/或防止注入相应样品室314中的流体样品过压。安全阀还可用作防止在地面截留高压的安全措施。
还可根据需要设置另外的流管线和阀以便操纵通过工具的流体的流动。例如,优选地设置井眼流管线315以便在缓冲空腔309和井眼之间建立流体连通。阀330b容许与缓冲腔室选择性地保持流体连通。
在多个采样模块220在工具串中运行的情况下,举例来说,当每个相应模块220的样品室正被填充时,相应的安全阀334可以选择性地操作以便起作用。因此,在流体样品被送往第一采样模块220时,其相应安全阀334可以可操作。一旦第一采样模块220的所有样品室314被充满,其安全阀就被停用。于是可启动另外的采样模块的安全阀以便容许在获采样品(和/或过压保护)之前冲洗另外的采样模块中的流动管线。这些阀的位置和起动可以手动或自动致动以便实现所需操作。
阀328a、328b优选地设置于流管线311中以便容许选择性地在主流管线310和样品空腔307之间保持流体连通。这些阀可以选择性地致动以便顺序地或独立地打开和关闭次级流管线311。
阀328a、b优选地为适于选择性地容许流体连通的电动阀。这些阀还优选地选择性地致动。这些阀可以设置有弹簧加载的杆(未示出),该弹簧加载的杆将阀偏置至任一打开或关闭位置。在某些情况中,阀可为市场上可买到的排气阀或密封阀。
为了操作阀,电流被施加于排气阀垫圈,引起垫圈失效,这又松开弹簧以便推动其相应的杆至其它正常位置。因此可以通过将阀328a从移位的关闭位置致动至正常打开位置而实现流体样品存储,该正常打开位置容许流体样品进入和充满样品室314。收集的样品可以通过将(第二)阀328b从移位的打开位置致动至正常关闭位置而得以密封。
优选地选择性地操作阀以便促进流体通过流管线的流动。阀还可用来密封样品室中的流体。一旦样品室被密封,它们就可以移开以便试验、评价和/或运输。阀330a(阀330b可保持打开以便使容器活塞360的背面暴露至井内流体压力)优选地在采样模块220被从井眼取回以后由地面的操作人员致动以便提供物理通路。相应地,覆盖保护层(如下所述)可以装备有窗口以便快速访问可手动操作的阀——即使当盖被移至关闭样品室孔313的位置(图4)。
可以例如通过使用标准泥浆脉冲遥测技术或其它适当遥测装置(例如有线钻杆)从地面遥控一个或多个阀。采样模块220可以装备有其自身的调制解调器和电子设备(未示出)以便译解和执行遥测信号。替代地,可以手动致动一个或多个阀。还可提供井下处理器以便用于这种致动。
本发明所属领域的普通技术人员将会理解可使用各种阀。本发明所属领域的普通技术人员将会理解可以使用替代的样品室设计。本发明所属领域的普通技术人员将会理解可以使用替代的流体流动系统设计。
图4A和4B示出了用于将样品室可拆地定位于井下工具中的技术。图4A示出了通过盖与井下工具保持在一起的样品室,该盖如环或套筒可以可滑动地定位于钻环的外表面周围以便覆盖其中的一个或多个开口。图4B示出了可置于钻环中的开口上方的盖,如板或盖子。
图4A为采样模块220的局部剖视图,示出了保持于其中的样品室314。样品室置于钻环302中的孔303内。钻环具有用于使泥浆通过其中的通路318。
盖342置于钻环周围以便将样品室保持于井下工具中。样品室314置于钻环302中的孔303内。盖342优选地为可滑动地置于钻环302周围以便提供通向样品室314的出入口的环。这种出入口容许将样品室314插入钻环302和从钻环302退出。
盖342用作门口,呈圆筒形保护盖的形式,优选地紧密安装在钻环302的一部分周围。盖342可在关闭钻环中的一个或多个孔303的位置(请看图4A)和打开钻环中的一个或多个孔303的位置(未示出)之间运动。因此盖提供了选择性的通向样品室314的出入口。当处于关闭位置时,盖还优选地防止较大颗粒如切屑从井眼进入孔中。
盖342可包括一个或多个可沿着钻环302滑动的部件。盖优选地具有适于提供机械保护免受钻探环境影响的外表面。盖还优选地适配于样品室周围以便密封开口和/或将样品室固定就位并且防止由于恶劣的条件如冲击、外部磨损力和振动而致的损坏。
盖342操作地连接至钻环302以便选择性地提供通向样品室的出入口。如所示,盖具有第一盖部分342a和第二盖部分342b。第一盖部分342a通过连接装置如接合螺纹344在钻环302周围固定就位,以便操作连接第一盖部分342a的内表面和钻环302的外表面。
盖可以形成单件式,或者其可以包括两个或多个互补的部分。例如,图4A示出了具有第一和第二盖部分342a、342b的二片式盖342。第一盖部分342a和第二盖部分342b优选地都可滑动地置于工具主体302的开口305周围。第一盖部分342b(?)可以在钻环周围滑动直到其依靠在主体的向下的肩部347上为止。垫片345,或波纹管、弹簧垫圈叠或能够对瓶子轴向加载以便将其固定就位的其它装置,可以置于肩部347和第一盖部分342b之间。第二盖部分342a还可可滑动地置于钻环302周围。盖部分具有适于操作连接于其间的互补的挡块(标为348)。第二盖部分可以在将盖部分置于钻环周围之前或之后操作连接至第一盖部分。第一盖部分还以螺纹连接344拧于钻环上。
盖部分于是可相对于钻环302旋转以便拧紧螺纹连接344并将盖部分固定就位。优选地,在钻探期间,盖牢固地放置以便对盖部分预加载并且减少(或除去)盖部分和工具主体302之间的相对运动。
盖342可以从钻环302除去以便出入样品室。例如,盖342可以旋转以便拧开螺纹连接344从而容许出入样品室。盖342可以设置有一个或多个窗口346。可以使用盖342的窗口346来出入样品室314。可以使用窗口来接近样品室314上的阀330a、330b。窗口346容许在地面接近手动阀330a而不需要移开盖342。另外,本领域的普通技术人员应当理解窗口覆盖物可以栓接或者相反操作连接至工具主体302,而不是通过螺纹接合于其。一个或多个这种窗口和/或盖可以设置在钻环周围以便选择性地提供通向钻环中的样品室的出入口和/或固定钻环中的样品室。
样品室优选地可拆地支承于钻环中。样品室在其一端由减震器552支承。接口550设置在邻近流管线311的相对一端以便将样品室操作连接于其。接口550还优选地适于可松开地固定钻环中的样品室。可以使用接口和减震器来帮助固定工具主体中的样品室。除了盖342之外,这些装置可用来为样品室提供多余的保持机构。
图4B示出了一种替代的采样模块220’。除了样品室314’由盖342’、接口550’和减震器552保持于钻环302中以外,采样模块220’与图4A的采样模块220相同。盖342’包括多个盖部分342c和342d。
盖342d可滑动地置于钻环302的开口305中。盖342’优选地为沿着其边缘具有悬垂部分385的矩形板。盖可以插入钻环中以便使得悬垂部分385接合钻环的内表面400。悬垂部分容许盖滑动地接合钻环的内表面并被保持于其中。一个或多个盖342d通常被构置成使得它们可以落入开口305中并且沿着腔室空腔开口在样品室314(未示出)上方滑动至所需放置。盖可以设置有埋头孔374以便帮助除去盖342d。盖342d可以构置成带有一个或多个窗口,如图4A的窗口346。
盖342c优选地为可连接至开口305周围的钻环302的矩形板。盖优选地通过螺栓、螺钉或其它紧固件可拆地连接至钻环。盖可以可滑动地沿着钻环放置并且固定就位。盖可以设置有从其侧面延伸并具有穿过其中的孔的插座381,以便连接穿过其中的紧固件。
当此处设置了盖时,盖优选地构置成具有适当的宽度以便贴切地适配于钻环的开口305内。可以使用一个或多个这种盖或者类似的或不同的构型。盖可以设置有用于防止对其造成损坏的设备,如图4B的盖342中的应变消除切口390。按照这种方式,盖可以用作防护罩。
图5A为图4A的采样模块的一部分的详图,更详细地示出了接口550。接口包括将设置于其中的样品室314流体地连接至次级流管线311之一的液压杆状采样器340。样品室314具有锥形颈部315,该锥形颈部315具有用于使流体穿过其中的入口。液压杆状采样器340的上部流体密封地与样品室314的锥形颈部315接合,而液压杆状采样器的下部流体密封地与钻环302的次级流管线311接合。
这种保持器机构优选地放置于样品室的每一个端部处以便可松开地保持住样品室。样品室314的第一端可以例如通过样品室颈部315侧向固定。相对的一端通常也可设置有保持器机构。替代地,相对的端部可以通过减震器552(图4A)保持就位。这些保持器机构可以颠倒或者可以使用不同组合的保持器机构。
样品室314的锥形颈部315支承于工具主体302中的互补锥形孔317中。圆锥形面的这种接合构成了样品室所用的保持器的一部分。可以使用锥形颈部来为样品室314提供侧向支承。锥形颈部可以与其它机构如轴向加载设备(如下所述)结合使用以便将样品室支承就位。优选地,即使有也没多少力作用于液压杆状采样器340及其O形环密封341上以便防止杆状采样器/密封材料随着时间的过去发生磨损和腐蚀。液压密封341处缺少力优选地等效于密封341处即使有也只有最小的相对运动,因此减少了经过密封发生渗漏的可能性。
图5B为图4B的采样模块220’的一部分的详图,其带有图4A的接口的替代接口。图5B的样品室314’装备有双楔形或尖塔状的颈部315’,该颈部315’接合着工具主体302中的互补尖塔状孔317’。液压杆状采样器340’置于尖塔状颈部315’中的入口中的以便插入尖塔状孔317’中,从而将样品室流体地联接至流管线311。优选地设置液压密封341’以便使样品室相对于钻环流体地密封。
这种尖塔状接合为样品室提供了扭转支承,并且防止其绕着其轴线在样品室内旋转。可能需要这种功能以便保证样品室314的开口313内的手动阀330a’和330b’正确定位。
图6A-D更详细地示出了图4A的采样模块220的一部分。在这些图中,采样模块220设置有可用作图4A-4B的减震器552和/或552’的保持器552a-d的替代构型。这些保持器帮助支承钻环302的孔303内的样品室314。盖342也帮助将样品室314保持就位。保持器和/或盖还优选地提供减震作用,并且另外帮助防止损坏样品室。
如图6A中所示,保持器552a包括轴向加载装置1050和垫圈852。在钻环302和保持器552a之间还设置了可调节的定位螺钉851以便将样品室314可调节地放置于钻环内。垫圈可为贝尔维尔(belleville)叠垫圈或其它弹簧机构,用于抵消钻探振击、样品室中的内部压力和/或帮助减震。
样品室优选地具有从其一端延伸的顶端815。顶端815优选地设置成用于在样品室的一端处支承垫圈852和轴向加载装置1050。
图6B示出了一种替代的减震器552b。保持器552b基本上与保持器552a相同,但是并不具有定位螺钉851。在这种构型中,支承通过盖342’提供。盖342’的操作与盖342相同,但是设置有阶形内表面343。阶形内表面限定了适于将样品室314支承于钻环302内的盖肩部343。
现在参看图6C,减震器552c与图6A的减震器552a相同,只是还设置有液压千斤顶1051。液压千斤顶包括液压缸1152、液压活塞1154和液压柱塞1156,它们可操作以便沿轴向加载轴向加载衬垫1050。
当盖342打开(未示出)时,液压千斤顶可在加压液压流体作用下(例如使用地面源)延伸以便充分地压缩弹簧元件852。轴向锁定装置(未示出)随后插入并且可解除液压缸1152中的压力。轴向锁定装置的长度优选地适于使得抵抗的弹簧元件的弹簧力在采样模块操作的完全温度和/或压力范围中保持足够,即使采样模块膨胀多于样品室也是如此。
当盖342缩回(未示出)时,液压千斤顶可在加压液压流体作用下(例如使用地面源)延伸以便充分地压缩垫圈852。轴向锁定装置1158随后插入并且解除液压缸1152中的压力。轴向锁定装置1158的长度优选地适于使得抵抗的弹簧元件的弹簧力足够在各种井眼温度和压力中操作。
图6D示出了带有替代千斤顶1051’的替代减震器552d。减震器与图6C的减震器552c相同,只是使用了替代的千斤顶。在这种构型中,千斤顶包括相对的丝杠1060a和1060b、旋转锁定装置1172和起重螺丝1062。
起重螺丝1062接合于相对的丝杠1060a和1060b中。相对的丝杠1060a和1060b设置有螺纹连接1061a和1061b以便与起重螺丝1062上的带螺纹的连接配合。当盖342打开(未示出)时,相对的丝杠1060a和1060b之间的距离可以在应用于中心六角形连杆1171上的转矩作用下增加,直到实现对弹簧元件852的所需压缩为止。随后,旋转锁定装置1172可以插入中心六角形连杆1171周围以便防止进一步旋转。
图7示出了可用作如图4A中所示的样品室所用的减震器的一种替代保持器552e。保持器552e包括轴向加载衬垫1050’和头部部件715。优选地,轴向加载衬垫具有扁平的侧壁751,用于接合样品室314的一种端815’的互补扁平侧壁752并且防止在其间发生相对旋转。头部部件715可以插入轴向加载衬垫1050’和样品室中以便提供其间的操作连接。弹簧元件(未示出)可以设置在样品室314的头部部件815上大约轴向加载衬垫和样品室之间。
图8A-8C示出了可用于图7的样品室314的替代保持器。图8A示出了置于钻环302a中的图7的保持器552e。图8B示出了一种替代保持器552f,其具有轴向加载衬垫1050”,该轴向加载衬垫1050”具有可以插入钻环302b’中的键808。图8C示出了一种替代保持器552g,其具有操作连接至钻环302c’的径向保持器860。这些图的钻环可与前述图中所示的钻环302相同,只是它们适于接收相应的保持器。优选地,这些保持器和钻环适于防止其间的旋转和侧向运动,并且提供扭转支承。
如图8A中所示,保持器552e的轴向加载衬垫1050’具有分别为圆形和扁平的边缘部分804和805。钻环302具有适于接收轴向加载衬垫1050’的圆形空腔806。
在图8B中,保持器552e包括具有矩形周边810和从其延伸的键808的轴向加载衬垫1050’。键808优选地构置成使得其可以可拆地插入钻环302b’中的空腔812中。如所示,键具有在其一端带有顶端814的延伸部分811。顶端814可以插入空腔812中,只是阻碍从其除去。空腔812的尺寸优选地小于顶端814并且提供了夹紧接合顶端以便阻碍除去的内表面(未示出)。在某些情况中,当需要时,可能需要断开顶端814以便使得能够除去样品室。任选地,顶端可制造成使得需要预定的力才容许除去。按照这种方式,理想的做法是在操作期间将样品室314保持就位于钻环中,但是当需要时能够除去。
图8C的替代保持器552g包括操作连接至钻环302c’的臂950。臂950优选地通过一个或多个螺钉951连接至钻环302c’。优选地,臂950可按铰链那样的方式沿径向运动。臂950具有适于接合样品室314并将样品室314保持就位于钻环302c’中的凹形内表面955。
优选地,此处设置的保持器容许选择性地除去样品室。可以使用一个或多个这种保持器以便将样品室可拆地固定于钻环中。优选地,这种保持器帮助将样品室固定就位并且防止冲击、振动或其它损坏力影响样品室。
在操作时,采样模块通过螺纹连接至邻近的钻环以便形成BHA和钻柱。参看图1,采样模块可通过将样品室314加载入钻环302的孔303中而预先装配。接口550通过通过将样品室314的一端邻近流管线311放置而形成。
接口550(亦称预加载机构)可在地面进行调节以便使得应用最小的可接受轴向或其它所需负载以便在采样模块220的预期工作温度范围实现所需的容器隔离,从而补偿更大的热膨胀。
保持器552也可操作连接至样品室的相对端以便将样品室固定就位。盖342于是可可滑动地放置在样品室周围以便将其固定就位。
位于带有液压连接的(较低)端部处的接口550可通过如上所述的锥形接合表面315、317(请看例如图5A)侧向固定。位于相对(较高)端部处的保持器552通常限制样品室314的轴向运动(例如请看图6A-8C)。这两者一起工作以便将样品室保持于钻环302内。盖342随后设置在样品室周围以便密封例如如图4A中所示的样品室的开口305。
一个或多个盖、减震器、保持器、样品室、钻环、润湿杆状采样器和其它装置可以单独和/或组合使用以便提供用于保护样品室及其内装物的机构。优选地,提供多余的机构来实现所需构型以保护样品室。如图4中所示,样品室可以插入钻环302中并且通过接口550、保持器552和盖342固定就位。可以使用各种构型的这些部件来实现所需保护。另外,此类构型可以便于从钻环除去样品室。
一旦采样模块装配好,井下工具就被在钻柱12上部署于井眼中(请看图1)。于是可通过经由探头模块210将流体吸入井下工具中来执行采样操作(图1)。流体从探头模块经由流管线310到达采样模块(图2A)。随后流体可经由分流器332分流到一个或多个样品室(图3)。
阀330b和/或330a可保持打开。特别是,阀330b可保持打开以便将腔室活塞360的背面暴露至井眼流体压力。典型的采样顺序将从岩层流体压力测量开始,然后是泵出操作与现场流体分析(例如使用光学流体分析器)相结合。一旦一定量的泥浆滤液已经抽出,当其开始与滤液一起产生时,还可观察真正的岩层流体。一旦岩层流体与泥浆滤液的比值达到可接受的阈值,就可以决定收集样品。到目前为止,从岩层抽出的液体通常通过探头工具210经由倾倒流管线260抽入井眼中。通常,阀328和335被关闭而阀334被打开以便将流体流引出倾倒流管线260并引至井眼。
在这种冲洗实现之后,电气阀328a可选择性地打开以便将流体样品引入样品室314的相应的样品空腔307。通常,阀328和335被关闭而阀328a、328b被打开以便将流体流引入样品室中。
一旦样品室314根据需要被充满,就可以将电气阀328b移至关闭位置,以便流动地隔离样品室314并获采样品以便取回至地面。电气阀328a、328b可以手动或自动遥控。可以例如使用标准泥浆脉冲遥测技术或其它适当遥测装置(例如有线钻杆)从地面致动阀,或者可以通过BHA100中的处理器(未示出)控制阀。
井下工具然后可从井眼11取回。在取回采样模块220时,样品室314的可手动操作的阀330a、b可以通过打开盖342而关闭以便(多余地)隔离其中的流体样品来保护运输和存储。然后打开被关闭的样品空腔312,并且可以从其除去样品室314以便将腔室运输至适当的实验室,从而可以进行对样品的试验与评价。在取回时,样品室和/或模块可以被一个或多个采样模块和/或腔室代替并且部署于井眼中以便获得更多样品。
根据上述说明书应当理解,在不背离本发明的真实精神的情况下,可以在本发明的优选并且替代实施例中进行各种改进和改变。
本说明书只是用于示例说明,不应被解释为限制意义。本发明的范围应当仅仅由下述的权利要求的语言确定。权利要求中的术语“包括”用来指“至少包括”,因此权利要求中的所述列出的元件为开放式的组。类似地,术语“包含”和“具有”全部用于指开放式的元件组。““一个”和其它单数术语意欲包括其复数形式,除非特别地排除。申请人的明确意图是除了权利要求明确将词“用于…的装置”与相关功能一起使用的情况之外,并不援引35 U.S.C.第112节第6款来对此处的任何权利要求做出任何限制。

Claims (14)

1.一种可置于穿透地下岩层的井眼中的用于钻探时采样工具的采样模块,包括:
钻环,其可操作连接于钻探时采样工具的钻柱,钻环具有至少一个延伸穿过其外表面与进入空腔的开口,钻环中具有用于使泥浆通过其中的通路;
至少一个样品室,其可置于钻环的空腔中;
钻环中的至少一个流管线,该至少一个流管线可操作连接于样品室以便将井下流体传送至样品室;以及
至少一个盖,其可置于钻环的至少一个开口周围,由此样品室被可拆地固定于其中。
2.根据权利要求1所述的采样模块,还包括用于选择性地引导流体穿过至少一个流管线的分流器。
3.根据权利要求1所述的采样模块,其特征在于该至少一个流管线可选择性地放置成与岩层和井眼之一保持流体连通。
4.根据权利要求1所述的采样模块,其特征在于该通路具有多个在该至少一个开口的空腔之间延伸的叶突。
5.根据权利要求1所述的采样模块,还包括至少一个适于将样品室可松开地固定于钻环中的保持器。
6.根据权利要求5所述的采样模块,其特征在于保持器包括减震器。
7.根据权利要求1所述的采样模块,其特征在于至少一个盖包括至少一个可置于钻环外表面周围的环。
8.根据权利要求1所述的采样模块,其特征在于该至少一个盖具有至少一个位于其中的窗口。
9.根据权利要求1所述的采样模块,其中模块设置于井下钻井时采样工具中,该工具包括:
流体连通装置,其可操作连接于钻井时采样工具的钻柱并且可从其上延伸以便与岩层建立流体连通,该流体连通装置具有用于接收井下流体的入口。
10.一种通过可置于穿透地下岩层的井眼中的井下钻探时采样工具进行钻探时采样的方法,包括:
将样品室穿过钻探时采样工具的钻环的外表面中的开口放置并放入其中的空腔中;
将盖放置在钻环的开口上方;
将井下钻探时采样工具布置入井眼中;
在钻探时采样工具和岩层之间建立流体连通;
将岩层流体经由钻探时采样工具中的入口吸入钻探时采样工具;以及
将岩层流体从入口传送至样品室。
11.根据权利要求10所述的方法,还包括将钻井时采样工具取回至表面。
12.根据权利要求11所述的方法,还包括从钻环除去盖。
13.根据权利要求12所述的方法,还包括从钻环除去样品室。
14.根据权利要求10所述的方法,还包括将样品室可松开地固定于钻环中。
CN200610169385XA 2005-12-19 2006-12-19 钻探时的岩层评价 Active CN1987045B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/313004 2005-12-19
US11/313,004 US7367394B2 (en) 2005-12-19 2005-12-19 Formation evaluation while drilling

Publications (2)

Publication Number Publication Date
CN1987045A CN1987045A (zh) 2007-06-27
CN1987045B true CN1987045B (zh) 2012-05-30

Family

ID=37605602

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200610169385XA Active CN1987045B (zh) 2005-12-19 2006-12-19 钻探时的岩层评价

Country Status (8)

Country Link
US (8) US7367394B2 (zh)
CN (1) CN1987045B (zh)
CA (1) CA2568342C (zh)
DE (1) DE102006059936B4 (zh)
FR (1) FR2895013B1 (zh)
GB (1) GB2433274B (zh)
MX (1) MXPA06013946A (zh)
RU (1) RU2416720C2 (zh)

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8736270B2 (en) 2004-07-14 2014-05-27 Schlumberger Technology Corporation Look ahead logging system
US7913774B2 (en) * 2005-06-15 2011-03-29 Schlumberger Technology Corporation Modular connector and method
US7596995B2 (en) * 2005-11-07 2009-10-06 Halliburton Energy Services, Inc. Single phase fluid sampling apparatus and method for use of same
US8429961B2 (en) * 2005-11-07 2013-04-30 Halliburton Energy Services, Inc. Wireline conveyed single phase fluid sampling apparatus and method for use of same
US7367394B2 (en) 2005-12-19 2008-05-06 Schlumberger Technology Corporation Formation evaluation while drilling
US8015868B2 (en) * 2007-09-27 2011-09-13 Baker Hughes Incorporated Formation evaluation using estimated borehole tool position
US20080230221A1 (en) * 2007-03-21 2008-09-25 Schlumberger Technology Corporation Methods and systems for monitoring near-wellbore and far-field reservoir properties using formation-embedded pressure sensors
US9322266B2 (en) * 2007-11-20 2016-04-26 Schlumberger Technology Corporation Formation sampling
US7937223B2 (en) * 2007-12-28 2011-05-03 Schlumberger Technology Corporation Downhole fluid analysis
CN101532385B (zh) * 2008-03-11 2015-12-02 普拉德研究及开发股份有限公司 用于抽取高粘度地层流体样品的方法及装置
US8191416B2 (en) * 2008-11-24 2012-06-05 Schlumberger Technology Corporation Instrumented formation tester for injecting and monitoring of fluids
US8596384B2 (en) 2009-02-06 2013-12-03 Schlumberger Technology Corporation Reducing differential sticking during sampling
US9303506B2 (en) * 2009-02-12 2016-04-05 Halliburton Energy Services, Inc. Drill string tubular with a detection system mounted therein
EP2433161B1 (en) 2009-05-20 2023-08-30 Halliburton Energy Services Inc. Downhole sensor tool for nuclear measurements
WO2010135584A2 (en) 2009-05-20 2010-11-25 Halliburton Energy Services, Inc. Downhole sensor tool with a sealed sensor outsert
US8276662B2 (en) * 2009-07-15 2012-10-02 Schlumberger Technology Corporation Systems and methods to filter and collect downhole fluid
US8757254B2 (en) * 2009-08-18 2014-06-24 Schlumberger Technology Corporation Adjustment of mud circulation when evaluating a formation
EP2486237A4 (en) 2009-10-05 2017-04-26 Schlumberger Technology B.V. Formation testing
WO2011044028A2 (en) 2009-10-05 2011-04-14 Schlumberger Canada Limited Oilfield operation using a drill string
US9309731B2 (en) 2009-10-06 2016-04-12 Schlumberger Technology Corporation Formation testing planning and monitoring
US9793084B2 (en) 2009-11-16 2017-10-17 Schlumberger Technology Corporation Floating intermediate electrode configuration for downhole nuclear radiation generator
US9155185B2 (en) * 2009-11-16 2015-10-06 Schlumberger Technology Corporation Electrode configuration for downhole nuclear radiation generator
US8245781B2 (en) * 2009-12-11 2012-08-21 Schlumberger Technology Corporation Formation fluid sampling
CA2785067A1 (en) * 2009-12-24 2011-06-30 Schlumberger Canada Limited Electric hydraulic interface for a modular downhole tool
US8839871B2 (en) 2010-01-15 2014-09-23 Halliburton Energy Services, Inc. Well tools operable via thermal expansion resulting from reactive materials
AU2014201717A1 (en) * 2010-01-15 2014-04-10 Halliburton Energy Services, Inc. Well tools operable via thermal expansion resulting from reactive materials
US9234421B2 (en) 2010-02-20 2016-01-12 Halliburton Energy Services, Inc. Systems and methods of a collar bore for a sample bottle assembly
US9068405B2 (en) 2010-02-20 2015-06-30 Halliburton Energy Services, Inc. Systems and methods of a sample bottle assembly
AU2015258318B2 (en) * 2010-02-20 2017-08-10 Halliburton Energy Services, Inc. Systems and methods of a sample bottle assembly
GB2493645B (en) * 2010-02-20 2016-10-05 Halliburton Energy Services Inc Clamping system for a downhole sample bottle assembly
US8561698B2 (en) * 2010-06-14 2013-10-22 Schlumberger Technology Corporation Downhole fluid injection
US9429014B2 (en) * 2010-09-29 2016-08-30 Schlumberger Technology Corporation Formation fluid sample container apparatus
US8474533B2 (en) 2010-12-07 2013-07-02 Halliburton Energy Services, Inc. Gas generator for pressurizing downhole samples
US8714254B2 (en) * 2010-12-13 2014-05-06 Schlumberger Technology Corporation Method for mixing fluids downhole
US8708049B2 (en) 2011-04-29 2014-04-29 Schlumberger Technology Corporation Downhole mixing device for mixing a first fluid with a second fluid
US20140345860A1 (en) * 2011-06-30 2014-11-27 Halliburton Energy Services, Inc. Downhole sample module with an accessible captured volume adjacent a sample bottle
US9187964B2 (en) 2011-09-20 2015-11-17 Schlumberger Technology Corporation Mandrel loading systems and methods
US9273546B2 (en) * 2012-02-17 2016-03-01 Baker Hughes Incorporated Apparatus and method for protecting devices downhole
US9534987B2 (en) 2012-04-19 2017-01-03 Schlumberger Technology Corporation Apparatus, system and method for reducing dead volume in a sample container
US9169705B2 (en) 2012-10-25 2015-10-27 Halliburton Energy Services, Inc. Pressure relief-assisted packer
US9416606B2 (en) 2012-11-14 2016-08-16 Schlumberger Technology Corporation While drilling valve system
US9115567B2 (en) 2012-11-14 2015-08-25 Schlumberger Technology Corporation Method and apparatus for determining efficiency of a sampling tool
US9303510B2 (en) * 2013-02-27 2016-04-05 Schlumberger Technology Corporation Downhole fluid analysis methods
US9587486B2 (en) 2013-02-28 2017-03-07 Halliburton Energy Services, Inc. Method and apparatus for magnetic pulse signature actuation
US9212550B2 (en) * 2013-03-05 2015-12-15 Schlumberger Technology Corporation Sampler chamber assembly and methods
US20140262320A1 (en) 2013-03-12 2014-09-18 Halliburton Energy Services, Inc. Wellbore Servicing Tools, Systems and Methods Utilizing Near-Field Communication
US9284817B2 (en) 2013-03-14 2016-03-15 Halliburton Energy Services, Inc. Dual magnetic sensor actuation assembly
US20150075770A1 (en) 2013-05-31 2015-03-19 Michael Linley Fripp Wireless activation of wellbore tools
US9752414B2 (en) 2013-05-31 2017-09-05 Halliburton Energy Services, Inc. Wellbore servicing tools, systems and methods utilizing downhole wireless switches
WO2015006424A1 (en) 2013-07-09 2015-01-15 Schlumberger Canada Limited Valve shift detection systems and methods
GB2533060B (en) * 2013-09-13 2017-04-19 Halliburton Energy Services Inc Sponge pressure equalization system
US20150135816A1 (en) * 2013-11-20 2015-05-21 Schlumberger Technology Corporation Water Line Control For Sample Bottle Filling
US9835029B2 (en) * 2013-12-06 2017-12-05 Schlumberger Technology Corporation Downhole fluid analysis methods for determining viscosity
RU2542016C1 (ru) * 2014-02-07 2015-02-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет" (ФГБОУ ВПО "КубГТУ") Способ обработки прискважинной зоны продуктивного пласта
US11773718B2 (en) 2014-03-07 2023-10-03 Halliburton Energy Services, Inc. Formation fluid sampling methods and systems
US10808523B2 (en) 2014-11-25 2020-10-20 Halliburton Energy Services, Inc. Wireless activation of wellbore tools
US9771798B2 (en) 2014-12-15 2017-09-26 Schlumberger Technology Corporation Single phase capture and conveyance while drilling
CA2971856C (en) * 2015-03-02 2019-04-23 Halliburton Energy Services, Inc. Optical measurement system
US10677053B2 (en) 2016-08-30 2020-06-09 Schlumberger Technology Corporation Fluid compensation system for downhole sampling bottle
US10711608B2 (en) * 2016-12-19 2020-07-14 Schlumberger Technology Corporation Formation pressure testing
US10598001B2 (en) * 2017-11-14 2020-03-24 Baker Hughes, A Ge Company, Llc Removable modular control assembly
WO2019226505A1 (en) 2018-05-21 2019-11-28 Smith International, Inc. Drill bit for use with intensified fluid pressures
EP3818242A4 (en) 2018-07-07 2022-02-16 Smith International, Inc. FIXED CUTTING BIT WITH HIGH FLUID PRESSURES
CN109113789B (zh) * 2018-10-30 2024-02-09 山东安达尔信息科技有限公司 地压多向监测可定位钻孔应力传感器
NO20211396A1 (en) 2019-06-30 2021-11-19 Halliburton Energy Services Inc Drilling tool with thread profile
GB2602572B (en) * 2019-10-09 2023-08-16 Halliburton Energy Services Inc Adjustable valve
CN111624043B (zh) * 2020-06-17 2024-02-06 中国海洋石油集团有限公司 一种流体取样仪器出口控制模块

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4583595A (en) * 1983-12-22 1986-04-22 Schlumberger Technology Corp. Method and apparatus for obtaining fluid samples in a well
US5704425A (en) * 1995-12-15 1998-01-06 Westbay Instruments, Inc. Measurement port coupler and probe interface
CN2305486Y (zh) * 1997-06-10 1999-01-27 顾永强 井口取样器
CN2405011Y (zh) * 1999-08-05 2000-11-08 大庆石油管理局生产测井研究所 井下流体取样器
CN2448924Y (zh) * 2000-06-20 2001-09-19 中国航天科技集团公司第四研究院第四十一所 井下自控液体取样阀门
CN1346423A (zh) * 1999-02-19 2002-04-24 施卢默格海外有限公司 下井装置的开动
CN1097138C (zh) * 1998-08-04 2002-12-25 施卢默格控股有限公司 收集地下岩层数据的井下工具和方法

Family Cites Families (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3011554A (en) * 1956-01-23 1961-12-05 Schlumberger Well Surv Corp Apparatus for investigating earth formations
US3289474A (en) 1963-08-19 1966-12-06 Halliburton Co Borehole porosity testing device
US3437138A (en) * 1966-01-24 1969-04-08 Byron Jackson Inc Drill stem fluid sampler
US3441095A (en) 1967-11-28 1969-04-29 Dresser Ind Retrievable through drill pipe formation fluid sampler
US3611799A (en) * 1969-10-01 1971-10-12 Dresser Ind Multiple chamber earth formation fluid sampler
US3737138A (en) * 1971-09-13 1973-06-05 Foseco Int Apparatus for locking hot tops
US3894780A (en) * 1972-06-19 1975-07-15 Dallas N Broussard Drill pipe protector having tapered latch
US3859851A (en) * 1973-12-12 1975-01-14 Schlumberger Technology Corp Methods and apparatus for testing earth formations
SU883381A1 (ru) 1980-03-24 1981-11-23 Украинский научно-исследовательский институт природных газов Глубинный пробоотборник
US4416152A (en) 1981-10-09 1983-11-22 Dresser Industries, Inc. Formation fluid testing and sampling apparatus
US4507957A (en) * 1983-05-16 1985-04-02 Dresser Industries, Inc. Apparatus for testing earth formations
JPS60100950A (ja) * 1983-11-09 1985-06-04 松下電器産業株式会社 超音波探触子
US4750570A (en) * 1986-10-22 1988-06-14 Barrett Machine Works Formation sampling bullet and cables therefor
US4856585A (en) 1988-06-16 1989-08-15 Halliburton Company Tubing conveyed sampler
US4936139A (en) 1988-09-23 1990-06-26 Schlumberger Technology Corporation Down hole method for determination of formation properties
US4860581A (en) 1988-09-23 1989-08-29 Schlumberger Technology Corporation Down hole tool for determination of formation properties
CA1307359C (en) * 1989-07-14 1992-09-08 Frank Bennett Method and apparatus for locating wet cement plugs in open bore holes
GB9003467D0 (en) * 1990-02-15 1990-04-11 Oilphase Sampling Services Ltd Sampling tool
US5233866A (en) 1991-04-22 1993-08-10 Gulf Research Institute Apparatus and method for accurately measuring formation pressures
US5240072A (en) * 1991-09-24 1993-08-31 Halliburton Company Multiple sample annulus pressure responsive sampler
GB9200182D0 (en) 1992-01-07 1992-02-26 Oilphase Sampling Services Ltd Fluid sampling tool
US5303775A (en) 1992-11-16 1994-04-19 Western Atlas International, Inc. Method and apparatus for acquiring and processing subsurface samples of connate fluid
US5361839A (en) * 1993-03-24 1994-11-08 Schlumberger Technology Corporation Full bore sampler including inlet and outlet ports flanking an annular sample chamber and parameter sensor and memory apparatus disposed in said sample chamber
US5743343A (en) * 1993-09-21 1998-04-28 Simulprobe Technologies, Inc. Method and apparatus for fluid and soil sampling
US5540280A (en) * 1994-08-15 1996-07-30 Halliburton Company Early evaluation system
EP0777813B1 (en) * 1995-03-31 2003-09-10 Baker Hughes Incorporated Formation isolation and testing apparatus and method
EP0781893B8 (en) 1995-12-26 2007-02-14 HALLIBURTON ENERGY SERVICES, Inc. Apparatus and method for early evaluation and servicing of a well
US5826662A (en) * 1997-02-03 1998-10-27 Halliburton Energy Services, Inc. Apparatus for testing and sampling open-hole oil and gas wells
US6026915A (en) 1997-10-14 2000-02-22 Halliburton Energy Services, Inc. Early evaluation system with drilling capability
US6006834A (en) * 1997-10-22 1999-12-28 Halliburton Energy Services, Inc. Formation evaluation testing apparatus and associated methods
US7096975B2 (en) * 1998-07-15 2006-08-29 Baker Hughes Incorporated Modular design for downhole ECD-management devices and related methods
US6301959B1 (en) 1999-01-26 2001-10-16 Halliburton Energy Services, Inc. Focused formation fluid sampling probe
NO990344L (no) 1999-01-26 2000-07-27 Bjoern Dybdahl FremgangsmÕte for bruk ved prøvetaking og/eller mÕling i reservoarvæske
WO2000050736A1 (en) * 1999-02-25 2000-08-31 Baker Hughes Incorporated Apparatus and method for controlling well fluid sample pressure
US6688390B2 (en) * 1999-03-25 2004-02-10 Schlumberger Technology Corporation Formation fluid sampling apparatus and method
US6325146B1 (en) * 1999-03-31 2001-12-04 Halliburton Energy Services, Inc. Methods of downhole testing subterranean formations and associated apparatus therefor
US6216782B1 (en) * 1999-05-18 2001-04-17 Halliburton Energy Services, Inc. Apparatus and method for verification of monophasic samples
EP1257730B1 (en) 2000-02-25 2008-12-03 Baker Hughes Incorporated Apparatus and method for controlling well fluid sample pressure
US6478096B1 (en) 2000-07-21 2002-11-12 Baker Hughes Incorporated Apparatus and method for formation testing while drilling with minimum system volume
EP1381755B1 (en) 2000-07-20 2007-12-26 Baker Hughes Incorporated Drawdown apparatus and method for in-situ analysis of formation fluids
DE60131664T2 (de) 2000-08-15 2008-10-30 Baker-Hughes Inc., Houston Vorrichtung zum formationstesten mit axialen und spiralförmigen öffnungen
US20040035199A1 (en) * 2000-11-01 2004-02-26 Baker Hughes Incorporated Hydraulic and mechanical noise isolation for improved formation testing
US6467544B1 (en) * 2000-11-14 2002-10-22 Schlumberger Technology Corporation Sample chamber with dead volume flushing
US6659177B2 (en) * 2000-11-14 2003-12-09 Schlumberger Technology Corporation Reduced contamination sampling
GB2372040B (en) * 2001-02-07 2003-07-30 Schlumberger Holdings Improvements in or relating to sampling of hydrocarbons from geological formations
US7250768B2 (en) * 2001-04-18 2007-07-31 Baker Hughes Incorporated Apparatus and method for resistivity measurements during rotational drilling
US7011155B2 (en) * 2001-07-20 2006-03-14 Baker Hughes Incorporated Formation testing apparatus and method for optimizing draw down
US7395703B2 (en) * 2001-07-20 2008-07-08 Baker Hughes Incorporated Formation testing apparatus and method for smooth draw down
GB2377952B (en) * 2001-07-27 2004-01-28 Schlumberger Holdings Receptacle for sampling downhole
US7246664B2 (en) * 2001-09-19 2007-07-24 Baker Hughes Incorporated Dual piston, single phase sampling mechanism and procedure
FR2830245B1 (fr) * 2001-09-28 2004-01-02 Otis Elevator Co Dispositif d'entrainement compact notamment pour la translation des portes de cabine d'ascenseur,ensemble moteur et reducteur de vitesse utilise et linteau support
US6729399B2 (en) * 2001-11-26 2004-05-04 Schlumberger Technology Corporation Method and apparatus for determining reservoir characteristics
GB0203252D0 (en) 2002-02-12 2002-03-27 Univ Strathclyde Plasma channel drilling process
US6837314B2 (en) * 2002-03-18 2005-01-04 Baker Hughes Incoporated Sub apparatus with exchangeable modules and associated method
AU2003233565B2 (en) * 2002-05-17 2007-11-15 Halliburton Energy Services, Inc. Method and apparatus for MWD formation testing
AU2003231797C1 (en) * 2002-05-17 2010-02-18 Halliburton Energy Services, Inc. MWD formation tester
US6719049B2 (en) 2002-05-23 2004-04-13 Schlumberger Technology Corporation Fluid sampling methods and apparatus for use in boreholes
US6651738B1 (en) * 2002-05-29 2003-11-25 Baker Hughes Incoporated Downhole isolation device with retained valve member
US6964301B2 (en) 2002-06-28 2005-11-15 Schlumberger Technology Corporation Method and apparatus for subsurface fluid sampling
US7155967B2 (en) * 2002-07-09 2007-01-02 Schlumberger Technology Corporation Formation testing apparatus and method
US7152466B2 (en) * 2002-11-01 2006-12-26 Schlumberger Technology Corporation Methods and apparatus for rapidly measuring pressure in earth formations
US7063174B2 (en) * 2002-11-12 2006-06-20 Baker Hughes Incorporated Method for reservoir navigation using formation pressure testing measurement while drilling
US6907797B2 (en) * 2002-11-12 2005-06-21 Baker Hughes Incorporated Method and apparatus for supercharging downhole sample tanks
US6986282B2 (en) 2003-02-18 2006-01-17 Schlumberger Technology Corporation Method and apparatus for determining downhole pressures during a drilling operation
CN1759229B (zh) * 2003-03-10 2010-05-05 贝克休斯公司 通过岩层速率分析技术进行泵送质量控制的方法和装置
US6997272B2 (en) * 2003-04-02 2006-02-14 Halliburton Energy Services, Inc. Method and apparatus for increasing drilling capacity and removing cuttings when drilling with coiled tubing
US7140436B2 (en) * 2003-04-29 2006-11-28 Schlumberger Technology Corporation Apparatus and method for controlling the pressure of fluid within a sample chamber
CA2524075A1 (en) * 2003-05-02 2004-11-18 Baker Hughes Incorporated A method and apparatus for an advanced optical analyzer
RU2348806C2 (ru) * 2003-05-02 2009-03-10 Бейкер Хьюз Инкорпорейтед Устройство непрерывной регистрации данных для скважинного пробоотборного резервуара
US7083009B2 (en) * 2003-08-04 2006-08-01 Pathfinder Energy Services, Inc. Pressure controlled fluid sampling apparatus and method
US20050028974A1 (en) * 2003-08-04 2005-02-10 Pathfinder Energy Services, Inc. Apparatus for obtaining high quality formation fluid samples
US7178392B2 (en) * 2003-08-20 2007-02-20 Schlumberger Technology Corporation Determining the pressure of formation fluid in earth formations surrounding a borehole
US20050086699A1 (en) * 2003-10-16 2005-04-21 Hamilton Relay, Inc. Video relay system and method
US7114562B2 (en) * 2003-11-24 2006-10-03 Schlumberger Technology Corporation Apparatus and method for acquiring information while drilling
US7124819B2 (en) 2003-12-01 2006-10-24 Schlumberger Technology Corporation Downhole fluid pumping apparatus and method
US6966234B2 (en) * 2004-01-14 2005-11-22 Schlumberger Technology Corporation Real-time monitoring and control of reservoir fluid sample capture
MY140024A (en) * 2004-03-01 2009-11-30 Halliburton Energy Serv Inc Methods for measuring a formation supercharge pressure
US7027928B2 (en) * 2004-05-03 2006-04-11 Baker Hughes Incorporated System and method for determining formation fluid parameters
US7543659B2 (en) 2005-06-15 2009-06-09 Schlumberger Technology Corporation Modular connector and method
US7428925B2 (en) 2005-11-21 2008-09-30 Schlumberger Technology Corporation Wellbore formation evaluation system and method
US7367394B2 (en) * 2005-12-19 2008-05-06 Schlumberger Technology Corporation Formation evaluation while drilling
US20080087470A1 (en) * 2005-12-19 2008-04-17 Schlumberger Technology Corporation Formation Evaluation While Drilling
KR100837078B1 (ko) 2006-09-01 2008-06-12 주식회사 대우일렉트로닉스 저밀도 패리티 체크 부호를 이용한 광정보 기록장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4583595A (en) * 1983-12-22 1986-04-22 Schlumberger Technology Corp. Method and apparatus for obtaining fluid samples in a well
US5704425A (en) * 1995-12-15 1998-01-06 Westbay Instruments, Inc. Measurement port coupler and probe interface
CN2305486Y (zh) * 1997-06-10 1999-01-27 顾永强 井口取样器
CN1097138C (zh) * 1998-08-04 2002-12-25 施卢默格控股有限公司 收集地下岩层数据的井下工具和方法
CN1346423A (zh) * 1999-02-19 2002-04-24 施卢默格海外有限公司 下井装置的开动
CN2405011Y (zh) * 1999-08-05 2000-11-08 大庆石油管理局生产测井研究所 井下流体取样器
CN2448924Y (zh) * 2000-06-20 2001-09-19 中国航天科技集团公司第四研究院第四十一所 井下自控液体取样阀门

Also Published As

Publication number Publication date
DE102006059936A1 (de) 2007-06-28
US20180355716A1 (en) 2018-12-13
US20100326727A1 (en) 2010-12-30
FR2895013B1 (fr) 2015-05-29
US20140116783A1 (en) 2014-05-01
GB2433274B (en) 2008-12-17
US20110220412A1 (en) 2011-09-15
US20100170718A1 (en) 2010-07-08
US8336622B2 (en) 2012-12-25
US10711603B2 (en) 2020-07-14
RU2006145002A (ru) 2008-06-27
US8118097B2 (en) 2012-02-21
US8636064B2 (en) 2014-01-28
US20100170717A1 (en) 2010-07-08
RU2416720C2 (ru) 2011-04-20
US20130092443A1 (en) 2013-04-18
GB2433274A (en) 2007-06-20
US7367394B2 (en) 2008-05-06
CA2568342C (en) 2010-01-12
US20070137896A1 (en) 2007-06-21
DE102006059936B4 (de) 2022-06-15
MXPA06013946A (es) 2008-10-09
CN1987045A (zh) 2007-06-27
FR2895013A1 (fr) 2007-06-22
GB0623129D0 (en) 2006-12-27
CA2568342A1 (en) 2007-06-19
US8056625B2 (en) 2011-11-15

Similar Documents

Publication Publication Date Title
CN1987045B (zh) 钻探时的岩层评价
US7845405B2 (en) Formation evaluation while drilling
US9322266B2 (en) Formation sampling
US4324293A (en) Circulation valve
US3823773A (en) Pressure controlled drill stem tester with reversing valve
CA2546537C (en) Apparatus and method for obtaining downhole samples
AU625245B2 (en) Multi-mode testing tool
US10458232B2 (en) Formation fluid sample container apparatus
US4311197A (en) Annulus pressure operated closure valve with improved reverse circulation valve
WO2006130178A2 (en) Multi-purpose downhole tool
US3437138A (en) Drill stem fluid sampler
US20160168989A1 (en) Single Phase Capture and Conveyance while Drilling
CN105074129A (zh) 取样室组件和方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant