DE10139992A1 - Verfahren und Vorrichtung zur Regelung der Gemischzusammensetzung für einen Ottomotor mit NOx-Speicherkatalysator während einer Regenerationsphase - Google Patents

Verfahren und Vorrichtung zur Regelung der Gemischzusammensetzung für einen Ottomotor mit NOx-Speicherkatalysator während einer Regenerationsphase

Info

Publication number
DE10139992A1
DE10139992A1 DE10139992A DE10139992A DE10139992A1 DE 10139992 A1 DE10139992 A1 DE 10139992A1 DE 10139992 A DE10139992 A DE 10139992A DE 10139992 A DE10139992 A DE 10139992A DE 10139992 A1 DE10139992 A1 DE 10139992A1
Authority
DE
Germany
Prior art keywords
value
exhaust gas
catalytic converter
regeneration phase
storage catalytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE10139992A
Other languages
English (en)
Other versions
DE10139992B4 (de
Inventor
Ngoc-Hoa Huynh
Ulf-Peter Schmeling
Lorenz Salzer
Peter Gerl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayerische Motoren Werke AG
Audi AG
Dr Ing HCF Porsche AG
Volkswagen AG
Mercedes Benz Group AG
Original Assignee
Bayerische Motoren Werke AG
DaimlerChrysler AG
Audi AG
Dr Ing HCF Porsche AG
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke AG, DaimlerChrysler AG, Audi AG, Dr Ing HCF Porsche AG, Volkswagen AG filed Critical Bayerische Motoren Werke AG
Priority to DE10139992A priority Critical patent/DE10139992B4/de
Priority to DE50209061T priority patent/DE50209061D1/de
Priority to EP02015987A priority patent/EP1284351B1/de
Priority to US10/218,903 priority patent/US6871492B2/en
Publication of DE10139992A1 publication Critical patent/DE10139992A1/de
Application granted granted Critical
Publication of DE10139992B4 publication Critical patent/DE10139992B4/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/011Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more purifying devices arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • F01N3/0885Regeneration of deteriorated absorbents or adsorbents, e.g. desulfurization of NOx traps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1463Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases downstream of exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/141Introducing closed-loop corrections characterised by the control or regulation method using a feed-forward control element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/405Multiple injections with post injections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

Die vorliegende Erfindung schafft ein Verfahren und eine Vorrichtung zur Regelung der Gemischzusammensetzung für einen Ottomotor mit NO¶x¶-Speicherkatalysator während einer Regenerationsphase. Der lambda-Wert (lambda¶M¶) des dem NO¶x¶-Speicherkatalysator (5) zugeführten Abgases wird im Verlauf der Regenerationsphase in Abhängigkeit von dem lambda-Wert (lambda¶K¶) des vom NO¶x¶-Speicherkatalysator (5) ausgestoßenen Abgases in Richtung eines Wertes von Eins geregelt.

Description

  • Die vorliegende Erfindung betrifft ein Verfahren und eine Vorrichtung zur Regelung der Gemischzusammensetzung für einen Ottomotor mit NOx-Speicherkatalysator während einer Regenerationsphase.
  • Die Schadstoffemission von Ottomotoren kann durch eine katalytische Nachbehandlung wirksam vermindert werden. Dabei geht es im Wesentlichen darum, schädliche Bestandteile aus dem Abgas zu entfernen. Ein Katalysator fördert die Nachverbrennung von reaktiven CO und HC zu ungefährlichem Kohlendioxid (CO2) und Wasser (H2O) und reduziert gleichzeitig im Abgas vorkommende Stickoxide (NOx) zu neutralem Stickstoff (N2).
  • Üblich ist beispielsweise der Dreiwege-Katalysator, der alle drei Schadstoffe CO, HC und NOx gleichzeitig abbaut. Er hat ein Röhrengerüst aus einer Keramik, die mit Edelmetallen, vorzugsweise mit Platin und Rhodium beschichtet ist, wobei letztere den chemischen Abbau der Schadstoffe beschleunigen.
  • Das katalytische Dreiwege-Verfahren setzt voraus, daß das Gemisch stöchiometrisch zusammengesetzt ist. Eine stöchiometrische Gemischzusammensetzung ist durch eine Luftzahl λ = 1,00 charakterisiert. Bei dieser Gemischzusammensetzung arbeitet der Katalysator mit einem sehr hohen Wirkungsgrad. Schon eine Abweichung von nur einem Prozent beeinträchtigt die Wirksamkeit der Schadstoffumsetzung erheblich.
  • Die bekannt λ-Sonde liefert zur Verwendung bei der Gemischregelung ein Signal über die augenblickliche Gemischzusammensetzung an das Steuergerät. Die λ-Sonde ist im Abgasrohr des Motors an einer Stelle eingebaut, an der über den gesamten Betriebsbereich des Motors die für die Funktion des Systems nötige Abgashomogenität vorhanden ist.
  • Aus Verbrauchsgründen ist es wünschenswert, fremdgezündete Ottomotoren ähnlich wie Dieselmotoren bei möglichst vielen Betriebszuständen mit Luftüberschuß, also mager (λ > 1), zu betreiben, um so die Drosselverluste beim Ladungswechsel zu vermindern. Die erreichbaren λ-Werte sind vom Gemischaufbereitungskonzept des Grundmotors abhängig und können bei Schichtlademotoren oder Direkteinspritzern bis zum sechsfachen Luftüberschuß (λ = 6) reichen.
  • In dieser mageren Betriebsart sind die bekannten Dreiwege-Katalysatoren jedoch nutzlos, da sie ein stöchiometrisches (λ = 1) Gemisch und Abgas benötigen, um die Stickoxide (NOx) umzuwandeln.
  • Als Problemlösung sind NOx-Speicherkatalysatoren denkbar, die während des Magerbetriebs NOx aus dem Abgas entfernen, indem sie es speichern. Regenerationsphasen werden künstlich durch die Motorsteuerung erzeugt, wenn beispielsweise der NOx-Gehalt des Abgases hinter dem NOx-Speicherkatalysator einen vorbestimmten Schwellwert überschreitet. Die Regeneration wird üblicherweise durch eine Einstellung des λ-Wertes der Hauptverbrennung (λM) von einem mageren Wert auf einen fetten Wert kleiner als 1, z. B. 0,76, begonnen. Sie wird dann beendet, wenn eine vorbestimmte Zeitspanne der Fettphase vorüber ist. In diesem Augenblick wird das Gemisch also wieder mager eingestellt.
  • Es sind eine große Anzahl von Veröffentlichungen bekannt, die sich mit der Problematik der NOx-Speicherung und der Regeneration des NOx-Speicherkatalysators auseinandersetzen. Die Aufgabenstellung für die Motorsteuerung beinhaltet zwei Punkte:
    Erstens ist der Beladungszustand des Katalysators zu erfassen, zweitens ist in der NOx-Regenerationsphase die Bereitstellung von Reduktionsmittel exakt auf den Bedarf abzustimmen, da sich das Reduktionsmittel ebenfalls aus testrelevanten Schadstoffen zusammensetzt. Darüber hinaus soll der Umschaltvorgang zwischen Mager- und Fettphase für den Fahrer nicht wahrnehmbar sein. Die bekannten Verfahren operieren ausnahmslos mit zeitlich gesteuerten Strategien einer Fett-Mager-Umschaltung, deren Tastverhältnis mehr oder weniger aufwendig durch Erfassung der anfallenden NOx- Masse bestimmt wird. Auch sind Strategien bekannt, die mit Hilfe eines NOx-Sensors den Durchbruch des Speichers anmessen und bei Bedarf eine Regeneration auslösen. Von den NOx-Sensoren ist weiterhin bekannt, daß sie eine erhebliche Querempfindlichkeit zu NH3 aufweisen, so daß sie die korrekte NOx-Konzentration nur bei stöchiometrischer und überstöchiometrischer (λ ≥ 1; NHg-freier) Abgaszusammensetzung angeben können.
  • Die bekannten Verfahren bedingen einen erheblichen Abstimmungsaufwand, besonders bei der Berücksichtigung unterschiedlicher Lastzustände. Das Alterungsverhalten und der Grad der Schwefelvergiftung des NOx-Speicherkatalysators sind nur mit erheblichem steuertechnischen Aufwand und keineswegs zuverlässig zu beherrschen. Mit anderen Worten ändert sich die Verarbeitungsgeschwindigkeit während des Regenerationsvorgangs, da sie vom Alterungs- und S-Vergiftungszustand abhängig ist. Fest vorgegebene Dauer und unveränderliches λM während der Regeneration führen somit bei gealterten oder vergifteten NOx-Speicherkatalysatoren unweigerlich zu signifikanter Erhöhung der CO- und HC-Emissionen.
  • Fig. 5 zeigt eine schematische Darstellung eines bekannten direkteinspritzenden Ottomotors mit NOx-Speicherkatalysator.
  • In Fig. 5 bezeichnen 1 eine Brennkraftmaschine mit vier Zylindern A bis D, 2 einen Luftfilter, 3 eine Drosselklappe, 20 Ansaugleitungen und 40 Drallklappen zur Turbulenzerzeugung für die jeweiligen Zylinder A bis D, 9 eine Abgasleitung, 4a/4b einen jeweiligen Dreiwege-Vorkatalysator für die Zylindergruppe B, C bzw. A, D, 5 einen NOx- Speicherkatalysator, 10a einen λM-Sensor, 10b einen λK-/NOx-Sensor sowie 8 einen Nachschalldämpfer.
  • Fig. 6 ein Zeitablaufdiagramm der λ-Werte λM vor dem NOx-Speicherkatalysator und λK nach dem NOx-Speicherkatalysator bei einer Regenerationsphase des NOx- Speicherkatalysators vom Ottomotor nach Fig. 5.
  • Wie aus Fig. 6 ersichtlich, wird der λM-Wert zu einer vorgegebenen Zeit abrupt von einem mageren Wert von 1,45 auf einen fetten Wert von 0,76 geändert. Insgesamt dauert die Regenerationsphase nach Fig. 6 fünf Sekunden, wonach der λM-Wert wieder auf den ursprünglichen mageren Wert von 1,45 zurückgestellt wird.
  • Hinsichtlich des Verlaufs des λK-Werts hinter dem NOx Speicherkatalysator lassen sich drei verschiedene Phasen erkennen. In Phase 1 erfolgt eine vollständige Umsetzung des angebotenen Reduktionsmittels (CO, HC), weshalb der Wert von λK knapp oberhalb von 1 liegt. In Phase 2 erfolgt eine verlangsamte Umsetzung des angebotenen Reduktionsmittels und damit ein Durchbruch von HC und CO. In dieser Phase 2 fällt der Wert von λK leicht unter den stöchiometrischen Wert ab, und zwar im gezeigten Beispiel auf etwa 0,92. In Phase 3 erfolgt ein Abklingen der Umsetzung des angebotenen Reduktionsmittels verbunden mit einem Abfall des λK-Wertes auf den λM-Wert. Entsprechend nimmt in dieser Phase der abgasschädliche HC/CO-Durchbruch stark zu. Der vorliegenden Erfindung liegt die Erkenntnis zugrunde, daß ein λK-Verlauf wünschenswert wäre, wie er in Fig. 6 mit der gestrichelten Linie S2 bezeichnet ist und etwa konstant bei λK ungefähr gleich 1 bis zur Ende der Regenerationsphase verläuft. Ein entsprechender Verlauf des λM-Wertes ist in Fig. 6 durch die strichpunktierte Linie S1 dargestellt. Mit anderen Worten, müßte dafür gesorgt werden, dass der λM-Wert vor dem NOx-Speicherkatalysator mit Einsetzen der verlangsamten Umsetzung des angebotenen Reduktionsmittels angehoben wird, um dem HC/CO-Durchschlag und der damit verbundenen Absenkung des λK-Wertes entgegenzuwirken.
  • Eine Aufgabe der vorliegenden Erfindung liegt daher darin, ein Verfahren und eine Vorrichtung zur Regelung der Gemischzusammensetzung für einen Ottomotor mit NOx- Speicherkatalysator während einer Regenerationsphase zu schaffen, welche auch bei gealterten oder vergifteten NOx-Speicherkatalysatoren keine Erhöhten CO- und HC- Emissionen mit sich bringen.
  • Das erfindungsgemäße Verfahren zur Regelung der Gemischzusammensetzung für einen Ottomotor mit NOx-Speicherkatalysator während einer Regenerationsphase gemäß Anspruch 1 bzw. die entsprechende Vorrichtung nach Anspruch 8 weisen den Vorteil auf, daß sich ein erfindungsgemäß gestaltetes bzw. betriebenes System den Eigenschaften verschiedener Katalysatorbeschichtungen oder verschiedenen Alterungs- oder Schwefelvergiftungszuständen automatisch anpasst. Aus dem Regelverhalten lassen sich zudem Rückschlüsse auf den Zustand des Speicherkatalysators ziehen, so daß daraus Informationen zum Schwefelregenerationsbedarf oder zu Diagnosezwecken ableitbar sind.
  • Die der vorliegenden Erfindung zugrundeliegende Idee besteht darin, daß der λM-Wert des dem NOx-Speicherkatalysator zugeführten Abgases im Verlauf der Regenerationsphase in Abhängigkeit von dem λK-Wert des vom NOx -Speicherkatalysator ausgestoßenen Abgases in einem geschlossenen Regelkreis in Richtung eines Wertes von Eins zurückgeregelt wird. Die Regelung in Richtung des Wertes von Eins setzt bevorzugt erst ab einem vorbestimmten Interventionswert λi ein.
  • Die Erfindung sieht vorzugsweise die Benutzung eines handelsüblichen NOx-Sensors stromab des NOx-Speicherkatalysator vor, der neben der NOx Konzentration auch das λK des Abgases mißt. Die Erfindung macht sich den Umstand zu Nutze, daß das λK nach dem NOx-Speicherkatalysator bei Anfettung unabhängig vom λM vor dem NOx- Speicherkatalysator genau so lange stöchiometrisch (= 1) oder überstöchiometrisch (>1) bleibt, wie der NOx-Speicherkatalysator das angebotene Reduktionsmittel (CO, HC) vollständig verarbeiten kann.
  • In den Unteransprüchen finden sich vorteilhafte Weiterbildungen und Verbesserungen des jeweiligen Gegenstandes der Erfindung.
  • Gemäß einer bevorzugten Weiterbildung ist die Regelung derart eingerichtet, daß der λK- Wert des vom NOx-Speicherkatalysator ausgestoßenen Abgases einen Wert von Eins nicht oder nur unwesentlich unterschreitet.
  • Gemäß einer weiteren bevorzugten Weiterbildung wird die Regenerationsphase eingeleitet, wenn der NOx-Gehalt des vom NOx-Speicherkatalysator ausgestoßenen Abgases einen vorbestimmten Wert überschreitet.
  • Gemäß einer weiteren bevorzugten Weiterbildung wird die Regenerationsphase beendet, wenn das Signal eines dem NOx-Speicherkatalysator nachgeschalteten NOx-Sensors und/oder dessen Steigung einen vorbestimmten Wert überschreitet. Vorteilhafterweise kann dabei die NH3-Querempfindlichkeit eines NOx-Sensors stromab des NOx- Speicherkatalysator genutzt werden, die den Abschluss der Speicherregeneration beträchtlich vor dem λK-Signal ankündigt. Es ist sinnvoll, das Ende der Regeneration nicht nur über Schwellwert des NOx-Signals (NH3-Signal), sondern auch dessen Steigung zu detektieren.
  • Gemäß einer weiteren bevorzugten Weiterbildung wird die Regenerationsphase beendet, wenn der λK-Wert des vom NOx-Speicherkatalysator ausgestoßenen Abgases einen vorbestimmten Wert unterschreitet. Dieser Ansatz ist wegen einer langen Gaslaufzeit zwischen Brennraum (Reduktionsmittelerzeugung) und Messort (stromab NOx Speicherkatalysator) allerdings weniger effektiv.
  • Gemäß einer weiteren bevorzugten Weiterbildung wird der λM-Wert des dem NOx- Speicherkatalysator zugeführten Abgases am Beginn der Regenerationsphase auf einen konstanten Vorsteuerwert λREG geregelt und die Regelung in Richtung des Wertes von Eins erst begonnen wird, wenn der λK-Wert des vom NOx-Speicherkatalysator ausgestoßenen Abgases einen vorbestimmten Interventionswert λi unterschreitet. Es hat sich als günstig herausgestellt, zum Regeln der Gemischzusammensetzung das Signal der motornahen λ-Sonde mit einem der Regenerationsaufgabe angepasstem Vorsteuerwert 0.76 < λREG < 1 zu verwenden, um die erforderliche Regelgeschwindigkeit und Genauigkeit sicherzustellen. Im weiteren Regenerationsverlauf wird der λM-Wert entsprechend dem Regenerationsfortschritt durch einen vorgegebenen festen oder adaptiven Algorithmus modifiziert.
  • Gemäß einer weiteren bevorzugten Weiterbildung der konstante Vorsteuerwert λREG dadurch erhalten, daß eine vorbestimmte Nacheinspritzung durchgeführt wird und der λ- Wert der Hauptverbrennung derart geregelt wird, daß der λM-Wert des dem NOx- Speicherkatalysator zugeführten Abgases den konstanten Vorsteuerwert λREG annimmt.
  • Die Bereitstellung des erforderlichen Reduktionsmittels kann sowohl durch Überfetten der zur Leistungserzeugung der Verbrennungsmaschine genutzten Verbrennung (Hauptverbrennung), als auch durch Nacheinspritzen erfolgen. Bei Reduktionsmittelzugabe mittels überfetteter Hauptverbrennung (0.76 < λM <1.0) wird bevorzugt CO, bei Reduktionsmittelzugabe mittels Nacheinspritzung bevorzugt HC als Reduktionsmittel erzeugt. Bei bevorzugtem Einsatz von CO als Reduktionsmittel entsteht in Phase 1 der Regeneration ein unerwünschter Durchbruch von NOx, der überwiegend aus NO (Stickmonoxid) besteht.
  • Bei bevorzugtem HC-Einsatz in dieser Phase 1 entsteht dieser NOx Durchbruch nicht oder zumindest erheblich vermindert. Die Ursache liegt in der Konkurrenzsituation, die während Phase 1 zwischen NOx Speicher und O2-Speichern der Katalysatoren besteht. Erst wenn die O2-Speicher geleert sind kann CO NOx zuverlässig bis zu N2 reduzieren. Diese Ausführungsform schlägt deshalb vor, während Phase 1 der Regeneration den HC-Gehalt des Abgases mittels Nacheinspritzung auf z. B. einen Wert > 3000 ppm vor dem NOx Speicherkatalysator einzustellen und die Phasen 2 und 3 durch Anfetten der Hauptverbrennung zu regenerieren und dabei den λ-Wert der Hauptverbrennung zu regeln. Das ist deshalb vorteilhaft, da hohe HC-Konzentrationen bei fortschreitender Regeneration nicht mehr umgesetzt werden und zu HC-Durchbrüchen führen.
  • Gemäß einer weiteren bevorzugten Weiterbildung regelt die Regelung den λ-Wert des dem NOx-Speicherkatalysator zugeführten Abgases nach folgender Beziehung:
    λM = λREG + k.(λi - λk)
    wobei k eine Konstante, λM der λ-Wert der Hauptverbrennung und λK der λ-Wert des vom NOx-Speicherkatalysator ausgestoßenen Abgases sind.
  • Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und in der nachfolgenden Beschreibung näher erläutert.
  • Es zeigen:
  • Fig. 1 ein Zeitablaufdiagramm der λ-Werte λM vor dem NOx-Speicherkatalysator und λK nach dem NOx-Speicherkatalysator sowie des Signals des NOx-Sensors 10b bei einer Regenerationsphase des NOx-Speicherkatalysators vom Ottomotor nach Fig. 5 zur Erläuterung einer Ausführungsform des erfindungsgemäßen Verfahrens;
  • Fig. 2 ein Zeitablaufdiagramm der λ-Werte λM vor dem NOx-Speicherkatalysator und λK nach dem NOx-Speicherkatalysator bei einer Regenerationsphase des NOx- Speicherkatalysators vom Ottomotor nach Fig. 5 zur Erläuterung einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens;
  • Fig. 3 eine Illustration zur Erläuterung einer Regeneration mit der Hauptverbrennung;
  • Fig. 4 eine Illustration zur Erläuterung einer Regeneration mit einer Nacheinspritzung;
  • Fig. 5 eine schematische Darstellung eines bekannten direkteinspritzenden Ottomotors mit NOx-Speicherkatalysator; und
  • Fig. 6 ein Zeitablaufdiagramm der λ-Werte λM vor dem NOx-Speicherkatalysator und λK nach dem NOx-Speicherkatalysator bei einer Regenerationsphase des NOx- Speicherkatalysators vom Ottomotor nach Fig. 5.
  • In den Figuren bezeichnen gleiche Bezugszeichen gleiche oder funktionsgleiche Elemente.
  • Ohne Beschränkung der Allgemeinheit wird die vorliegende Erfindung nachstehend anhand eines direkteinspritzenden Ottomotors mit NOx-Speicherkatalysator erläutert, wie oben im Zusammenhang mit Fig. 5 näher beschrieben.
  • Fig. 1 ist ein Zeitablaufdiagramm der λ-Werte λM vor dem NOx-Speicherkatalysator und λK nach dem NOx-Speicherkatalysator sowie des Signals des NOx-Sensors 10b bei einer Regenerationsphase des NOx-Speicherkatalysators vom Ottomotor nach Fig. 5 zur Erläuterung einer Ausführungsform des erfindungsgemäßen Verfahrens.
  • Gemäß Fig. 1 bewirkt das vom Sensor 10b erfaßte NOx-Signal das Einsetzen der Regenerationsphase durch ein Überschreiten eines vorbestimmten Schwellenwerts TNO.
  • Dabei wird der λ-Wert λM der Hauptverbrennung zum Zeitpunkt t1 von einem mageren Wert λmager (z. B. 6) abrupt auf einen fetten Vorsteuerwert λReg von beispielsweise 0,76 gesetzt und bis zum Zeitpunkt t2 dort konstant gehalten.
  • Der λ-Wert λK hinter dem NOx-Speicherkatalysator 5, welcher mittels des Sensors 10b erfaßt wird, nimmt zwischen dem Zeitpunkt t1 und dem Zeitpunkt t2 auf einen Interventionswert λi ab. Dieses Erreichen des Interventionswertes λi bewirkt, daß der λ- Wert λM der Hauptverbrennung entsprechend der Beziehung
    λM = λReg + k(λi - λK)
    geregelt wird, wobei k eine Konstante, λM der λ-Wert der Hauptverbrennung und λK der λ-Wert des vom NOx-Speicherkatalysator 5 ausgestoßenen Abgases ist. Dabei wird der Wert λK ebenfalls vom Sensor 10b hinter dem NOx-Speicherkatalysator 5 erfaßt.
  • Durch diese Regelung ergibt sich ein Anstieg des λ-Wertes λM mit zunehmender Zeitdauer der Regenerationsphase. Diese abnehmende Anfettung hat zur Folge, daß der verlangsamten Umsetzung des angebotenen Reduktionsmittels (CO, HC) im NOx- Speicherkatalysator 5 Rechnung getragen wird und eine Freisetzung ungewollter HC- und CO-Emissionen entgegengewirkt wird.
  • Das vom Sensor 10b erfaßte NOx-Signal zeigt nach Beginn der Regenerationsphase einen sogenannten Desorptionsspitzenwert DP, der daher rührt, daß durch das Anfetten der Hauptverbrennung bevorzugt CO als Reduktionsmittel in der Phase 1, d. h. bis zum Erreichen des Interventionswertes λi, eingesetzt wird. Nach Erreichen des Desorptionsspitzenwerts DP fällt das NOx-Signal wieder stark ab. Erst am Ende der Regenerationsphase steigt das NOx-Signal aufgrund der NH3-Querempfindlichkeit des Sensors 10b wieder stark an und erreicht zum Zeitpunkt t3 eine Steigung SN bei einem Wert TNH.
  • Bei Erreichen dieses Zeitpunkts t3 wird der λ-Wert λM der Hauptverbrennung wieder auf den Wert λmager zurückgestellt, was die Regenerationsphase beendet. Eine weitere Möglichkeit, die Regenerationsphase zu beenden, wäre die Erfassung des Abfalls des λK-Wertes nach Beendigung der Regeneration, insbesondere das Festsetzen eines Schwellwertes Tλ für den λK-Wert, wie in Fig. 1 ebenfalls angedeutet. Allerdings ist dies nicht sehr effektiv, wenn eine lange Gaslaufzeit zwischen dem Brennraum, also dem Raum der Reduktionsmittelerzeugung, und dem Messort des Sensors 10b stromab des NOx-Speicherkatalysators 5 vorliegt.
  • Durch diese Art der Regelung des λM-Wertes gemäß der ersten Ausführungsform kann das System zur Regelung der Gemischtzusammensetzung während der Regenerationsphase automatisch an Alterungs- und/oder Schwefelvergiftungszustände angepaßt werden.
  • Fig. 2 ist ein Zeitablaufdiagramm der λ-Werte λM vor dem NOx-Speicherkatalysator und λK nach dem NOx-Speicherkatalysator bei einer Regenerationsphase des NOx- Speicherkatalysators vom Ottomotor nach Fig. 5 zur Erläuterung einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens.
  • Bei der Ausführungsform gemäß Fig. 2 erfolgt die Reduktionsmittelzugabe in der Phase 1 durch eine Nacheinspritzung NI. Mit anderen Worten wird der konstante Vorsteuerwert λReg dadurch erhalten, daß die vorbestimmte Nacheinspritzung NI durchgeführt wird und der λ-Wert der Hauptverbrennung derart komplementär geregelt, daß der λM-Wert des dem NOx-Speicherkatalysator 5 zugeführten Abgases den konstanten Vorsteuerwert λReg annimmt, und zwar so lange, bis der Interventionswert λi durch λK erreicht ist.
  • Dies hat den Vorteil, daß der unerwünschte NOx-Durchbruch in der Phase 1, der zum Desorptionsspitzenwert DP gemäß Fig. 1 führt, vermieden werden kann. Bei dieser Ausführungsform wird der Tatsache Rechnung getragen, daß CO erst dann NOx zuverlässig bis zu N2 reduzieren kann, wenn die O2-Speicher geleert sind. Dieses Leeren der O2-Speicher erfolgt durch vermehrte Zugabe von HC durch die Nacheinspritzung bei Beginn der Regenerationsphase.
  • Fig. 3 ist eine Illustration zur Erläuterung einer Regeneration mit der Hauptverbrennung, und Fig. 4 eine Illustration zur Erläuterung einer Regeneration mit einer Nacheinspritzung.
  • Wie in Fig. 4 illustriert, beträgt in der Phase der Nacheinsprizung NI der CO-Gehalt vor dem NOx-Speicherkatalysator 5 nur 0,8%, während der HC-Gehalt 3000 ppm beträgt. Da HC in dieser Phase das NO2, welches vorzugsweise an BaO gebunden ist, NO2 nicht reduziert, sondern zunächst die O2-Speicher, welche vorzugsweise an Pt oder Ce gebunden sind, reduziert. Erst mit Erreichen des Interventionswerts λi wird die Nacheinspritzung NI gestoppt und der λM-Wert gemäß der oben erläuterten Beziehung ausgehend vom Vorsteuerwert λReg in Richtung λ = 1 geregelt.
  • Dies hat zur Folge, daß in der Phase 2 und 3, in denen geregelt wird, ein CO-Gehalt von 3,5% und ein HC-Gehalt von 500 ppm vor dem NOx-Speicherkatalysator 5 vorliegt, wie in Fig. 3 verdeutlicht.
  • Da durch diese Art der Regeneration der NOx-Durchbruch in Phase 1 vermieden werden kann, kann hier der Abschluß der Speicherregeneration noch einfacher durch Verfolgung des Anstiegs des NOx-Signals in Folge der NH3-Querempfindlichkeit des Sensors 10b erfaßt werden.
  • Obwohl die vorliegende Erfindung vorstehend anhand bevorzugter Ausführungsbeispiele beschrieben wurde, ist sie darauf nicht beschränkt, sondern auf vielfältige Weise modifizierbar.
  • Insbesondere kann beispielsweise die Anpassung des λ-Werts des dem NOx -Speicherkatalysator zugeführten Abgases nicht durch Vergleich mit einem Interventionswert, sondern auch adaptiv unter Einbeziehung vorangegangener Regenerationen geschehen.

Claims (16)

1. Verfahren zur Regelung der Gemischzusammensetzung für einen Ottomotor mit NOx- Speicherkatalysator (5) während einer Regenerationsphase, dadurch gekennzeichnet, daß der λ-Wert (λM) des dem NOx-Speicherkatalysator (5) zugeführten Abgases im Verlauf der Regenerationsphase in Abhängigkeit von dem λ-Wert (λK) des vom NOx -Speicherkatalysator (5) ausgestoßenen Abgases in Richtung eines Wertes von Eins geregelt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Regelung derart eingerichtet ist, daß der λ-Wert (λK) des vom NOx-Speicherkatalysator (5) ausgestoßenen Abgases einen Wert von Eins nicht oder nur unwesentlich unterschreitet.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Regenerationsphase eingeleitet wird, wenn der NOx-Gehalt des vom NOx -Speicherkatalysator (5) ausgestoßenen Abgases einen vorbestimmten Wert (TNO) überschreitet.
4. Verfahren nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß die Regenerationsphase beendet wird, wenn das Signal eines dem NOx-Speicherkatalysator (5) nachgeschalteten NOx-Sensors (10b) und/oder dessen Steigung (SN) einen vorbestimmten Wert (TNH) überschreitet.
5. Verfahren nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß die Regenerationsphase beendet wird, wenn der λ-Wert (λK) des vom NOx -Speicherkatalysator (5) ausgestoßenen Abgases einen vorbestimmten Wert (Tλ) unterschreitet.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der λ-Wert (λM) des dem NOx-Speicherkatalysator (5) zugeführten Abgases am Beginn (t1) der Regenerationsphase auf einen konstanten Vorsteuerwert (λREG) geregelt wird und die Regelung in Richtung des Wertes von Eins erst begonnen wird, wenn der λ-Wert (λK) des vom NOx-Speicherkatalysator (5) ausgestoßenen Abgases einen vorbestimmten Interventionswert (λi) unterschreitet.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß der konstante Vorsteuerwert (λReg) dadurch erhalten wird, daß eine vorbestimmte Nacheinspritzung (NI) durchgeführt wird und der λ-Wert der Hauptverbrennung derart geregelt wird, daß der λ-Wert (λM) des dem NOx-Speicherkatalysator (5) zugeführten Abgases den konstanten Vorsteuerwert (λReg) annimmt.
8. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß die Regelung den λ- Wert (λM) des dem NOx-Speicherkatalysator (5) zugeführten Abgases nach folgender Beziehung regelt:
λM = λReg + k.(λi - λK)
wobei k eine Konstante, λM der λ-Wert der Hauptverbrennung und λK der λ-Wert des vom NOx-Speicherkatalysator (5) ausgestoßenen Abgases sind.
9. Vorrichtung zur Regelung der Gemischzusammensetzung für einen Ottomotor mit NOx-Speicherkatalysator (5) während einer Regenerationsphase mit:
einer Regelungseinrichtung zum Regeln des λ-Werts (λM) des dem NOx -Speicherkatalysator (5) zugeführten Abgases im Verlauf der Regenerationsphase in Abhängigkeit von dem λ-Wert (λK) des vom NOx-Speicherkatalysator (5) ausgestoßenen Abgases in Richtung eines Wertes von Eins.
10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß die Regelungseinrichtung derart eingerichtet ist, daß der λ-Wert (λK) des vom NOx-Speicherkatalysator (5) ausgestoßenen Abgases einen Wert von Eins nicht oder nur unwesentlich unterschreitet.
11. Vorrichtung nach Anspruch 9 oder 10, dadurch gekennzeichnet, daß die Regelungseinrichtung die Regenerationsphase einleitet, wenn der NOx-Gehalt des vom NOx-Speicherkatalysator (5) ausgestoßenen Abgases einen vorbestimmten Wert (TNO) überschreitet.
12. Vorrichtung nach Anspruch 9, 10 oder 11, dadurch gekennzeichnet, daß die Regelungseinrichtung die Regenerationsphase beendet, wenn das Signal eines dem NOx- Speicherkatalysator (5) nachgeschalteten NOx-Sensors (10b) und/oder dessen Steigung (SN) einen vorbestimmten Wert (TNH) überschreitet.
13. Vorrichtung nach Anspruch 9, 10 oder 11, dadurch gekennzeichnet, daß die Regelungseinrichtung die Regenerationsphase beendet, wenn der λ-Wert (λK) des vom NOx-Speicherkatalysator (5) ausgestoßenen Abgases einen vorbestimmten Wert (Tλ) unterschreitet.
14. Vorrichtung nach einem der vorhergehenden Ansprüche 9 bis 13, dadurch gekennzeichnet, daß die Regelungseinrichtung den λ-Wert (λM) des dem NOx -Speicherkatalysator (5) zugeführten Abgases am Beginn (t1) der Regenerationsphase auf einen konstanten Vorsteuerwert (λReg) regelt und die Regelung auf den Werts von Eins erst beginnt, wenn der λ-Wert (λK) des vom NOx-Speicherkatalysator (5) ausgestoßenen Abgases einen vorbestimmten Interventionswert (λi) unterschreitet.
15. Vorrichtung nach Anspruch 14, dadurch gekennzeichnet, daß die Regelungseinrichtung den Vorsteuerwert (λReg) dadurch regelt, daß eine vorbestimmte Nacheinspritzung (NI) durchgeführt wird und der λ-Wert der Hauptverbrennung derart geregelt wird, daß der λ-Wert (λM) des dem NOx-Speicherkatalysator (5) zugeführten Abgases den konstanten Vorsteuerwert (λReg) annimmt.
16. Vorrichtung nach Anspruch 14 oder 15, dadurch gekennzeichnet, daß die Regelungseinrichtung den λ-Wert (λM) des dem NOx-Speicherkatalysator (5) zugeführten Abgases nach folgender Beziehung regelt:
λM = λReg + k.(λi - λK)
wobei k eine Konstante, λM der λ-Wert der Hauptverbrennung und λK der λ-Wert des vom NOx-Speicherkatalysator (5) ausgestoßenen Abgases sind.
DE10139992A 2001-08-16 2001-08-16 Verfahren zur Regelung der Gemischzusammensetzung für einen Ottomotor mit NOx-Speicherkatalysator während einer Regenerationsphase Expired - Fee Related DE10139992B4 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE10139992A DE10139992B4 (de) 2001-08-16 2001-08-16 Verfahren zur Regelung der Gemischzusammensetzung für einen Ottomotor mit NOx-Speicherkatalysator während einer Regenerationsphase
DE50209061T DE50209061D1 (de) 2001-08-16 2002-07-18 Verfahren und Vorrichtung zur Regelung der Gemischzuammensetzung für einen Ottomotor mit NOx-Speicherkatalysator während einer Regenerationsphase
EP02015987A EP1284351B1 (de) 2001-08-16 2002-07-18 Verfahren und Vorrichtung zur Regelung der Gemischzuammensetzung für einen Ottomotor mit NOx-Speicherkatalysator während einer Regenerationsphase
US10/218,903 US6871492B2 (en) 2001-08-16 2002-08-15 Process and system for controlling the mixture composition for a spark ignition Otto engine with an NOx storage catalyst during a regeneration phase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10139992A DE10139992B4 (de) 2001-08-16 2001-08-16 Verfahren zur Regelung der Gemischzusammensetzung für einen Ottomotor mit NOx-Speicherkatalysator während einer Regenerationsphase

Publications (2)

Publication Number Publication Date
DE10139992A1 true DE10139992A1 (de) 2003-03-06
DE10139992B4 DE10139992B4 (de) 2006-04-27

Family

ID=7695475

Family Applications (2)

Application Number Title Priority Date Filing Date
DE10139992A Expired - Fee Related DE10139992B4 (de) 2001-08-16 2001-08-16 Verfahren zur Regelung der Gemischzusammensetzung für einen Ottomotor mit NOx-Speicherkatalysator während einer Regenerationsphase
DE50209061T Expired - Fee Related DE50209061D1 (de) 2001-08-16 2002-07-18 Verfahren und Vorrichtung zur Regelung der Gemischzuammensetzung für einen Ottomotor mit NOx-Speicherkatalysator während einer Regenerationsphase

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE50209061T Expired - Fee Related DE50209061D1 (de) 2001-08-16 2002-07-18 Verfahren und Vorrichtung zur Regelung der Gemischzuammensetzung für einen Ottomotor mit NOx-Speicherkatalysator während einer Regenerationsphase

Country Status (3)

Country Link
US (1) US6871492B2 (de)
EP (1) EP1284351B1 (de)
DE (2) DE10139992B4 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2862709A1 (fr) * 2003-11-25 2005-05-27 Bosch Gmbh Robert Procede pour optimiser les valeurs des gaz d'echappement d'un moteur thermique
DE102016218794A1 (de) 2016-09-29 2018-03-29 Robert Bosch Gmbh Stationärer Erdgasmotor mit wenigstens einem Stickoxidsensor
DE102016015082A1 (de) 2016-12-17 2018-06-21 Daimler Ag Verfahren zum Betreiben einer Abgasanlage eines Kraftwagens und Abgasanlage

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7694887B2 (en) 2001-12-24 2010-04-13 L-1 Secure Credentialing, Inc. Optically variable personalized indicia for identification documents
EP1467834A4 (de) 2001-12-24 2005-04-06 Digimarc Id Systems Llc Lasergeätzte sicherheitsmerkmale zur identifikation von dokumenten und herstellungsverfahren dafür
CA2471457C (en) 2001-12-24 2011-08-02 Digimarc Id Systems, Llc Covert variable information on id documents and methods of making same
WO2003088144A2 (en) * 2002-04-09 2003-10-23 Digimarc Id Systems, Llc Image processing techniques for printing identification cards and documents
US7824029B2 (en) 2002-05-10 2010-11-02 L-1 Secure Credentialing, Inc. Identification card printer-assembler for over the counter card issuing
US7804982B2 (en) 2002-11-26 2010-09-28 L-1 Secure Credentialing, Inc. Systems and methods for managing and detecting fraud in image databases used with identification documents
FR2849105B1 (fr) * 2002-12-18 2007-03-16 Renault Sa Procede de commande d'un moteur a combustion interne pour la regeneration de moyens de purification des gaz d'echappement et dispositif associe
DE602004030434D1 (de) 2003-04-16 2011-01-20 L 1 Secure Credentialing Inc Dreidimensionale datenspeicherung
US7018442B2 (en) * 2003-11-25 2006-03-28 Caterpillar Inc. Method and apparatus for regenerating NOx adsorbers
JP4349119B2 (ja) * 2003-12-19 2009-10-21 いすゞ自動車株式会社 排気ガス浄化方法及び排気ガス浄化システム
CN101598051B (zh) * 2004-06-08 2013-03-06 卡明斯公司 修正吸附器再生的触发水平的方法
US7168243B2 (en) * 2005-03-07 2007-01-30 Caterpillar Inc NOx adsorber and method of regenerating same
US7155334B1 (en) * 2005-09-29 2006-12-26 Honeywell International Inc. Use of sensors in a state observer for a diesel engine
US7654079B2 (en) * 2006-11-07 2010-02-02 Cummins, Inc. Diesel oxidation catalyst filter heating system
US7533523B2 (en) * 2006-11-07 2009-05-19 Cummins, Inc. Optimized desulfation trigger control for an adsorber
US7654076B2 (en) * 2006-11-07 2010-02-02 Cummins, Inc. System for controlling absorber regeneration
US7707826B2 (en) * 2006-11-07 2010-05-04 Cummins, Inc. System for controlling triggering of adsorber regeneration
US7594392B2 (en) * 2006-11-07 2009-09-29 Cummins, Inc. System for controlling adsorber regeneration
DE102007046353B3 (de) * 2007-09-27 2009-04-16 Continental Automotive Gmbh Regenerationsverfahren für einen Speicherkatalysator
FR2926592B1 (fr) * 2008-01-18 2012-07-13 Peugeot Citroen Automobiles Sa Procede d'injection d'agent reducteur dans une ligne d'echappement
US8701390B2 (en) * 2010-11-23 2014-04-22 International Engine Intellectual Property Company, Llc Adaptive control strategy
US10920645B2 (en) 2018-08-02 2021-02-16 Ford Global Technologies, Llc Systems and methods for on-board monitoring of a passive NOx adsorption catalyst

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0598917B2 (de) * 1992-06-12 2009-04-15 Toyota Jidosha Kabushiki Kaisha Abgasemissionssteuerungssystem für verbrennungsmotoren
US5771685A (en) * 1996-10-16 1998-06-30 Ford Global Technologies, Inc. Method for monitoring the performance of a NOx trap
DE19644407C2 (de) * 1996-10-25 1999-09-23 Daimler Chrysler Ag Verfahren zur Reduzierung der Emissionen einer Brennkraftmaschine
US6105365A (en) * 1997-04-08 2000-08-22 Engelhard Corporation Apparatus, method, and system for concentrating adsorbable pollutants and abatement thereof
WO1998055742A1 (de) * 1997-06-03 1998-12-10 Siemens Aktiengesellschaft VERFAHREN ZUR REGENERATION EINES NOx-SPEICHERKATALYSATORS
JP3709655B2 (ja) * 1997-06-09 2005-10-26 日産自動車株式会社 内燃機関の排気浄化装置
DE19747222C1 (de) * 1997-10-25 1999-03-04 Daimler Benz Ag Verbrennungsmotoranlage mit Stickoxid-Speicherkatalysator und Betriebsverfahren hierfür
DE19801815A1 (de) * 1998-01-19 1999-07-22 Volkswagen Ag Mager-Regeneration von NOx-Speichern
JP3456401B2 (ja) * 1998-02-12 2003-10-14 日産自動車株式会社 内燃機関の排気浄化装置
DE19816276C2 (de) * 1998-04-11 2000-05-18 Audi Ag Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE19823923C2 (de) * 1998-05-28 2003-04-17 Siemens Ag Verfahren zur Stickoxidreduzierung im Abgas einer Brennkraftmaschine
DE19824915C1 (de) * 1998-06-04 1999-02-18 Daimler Benz Ag Verfahren zum Wechseln der Betriebsart einer direkt-einspritzenden Otto-Brennkraftmaschine
DE19843879C2 (de) * 1998-09-25 2003-05-08 Bosch Gmbh Robert Betrieb eines Verbrennungsmotors in Verbindung mit einem NOx-Speicherkatalysator und einem NOx-Sensor
DE19851843B4 (de) * 1998-11-10 2005-06-09 Siemens Ag Verfahren zur Sulfatregeneration eines NOx-Speicherkatalysators für eine Mager-Brennkraftmaschine
DE19910664A1 (de) * 1999-03-11 2000-09-14 Volkswagen Ag Verfahren zur De-Sulfatierung eines NOx-Speicherkatalysators
IT1310465B1 (it) * 1999-09-07 2002-02-18 Magneti Marelli Spa Metodo autoadattativo di controllo di un sistema di scarico per motori a combustione interna ad accensione comandata.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2862709A1 (fr) * 2003-11-25 2005-05-27 Bosch Gmbh Robert Procede pour optimiser les valeurs des gaz d'echappement d'un moteur thermique
DE102016218794A1 (de) 2016-09-29 2018-03-29 Robert Bosch Gmbh Stationärer Erdgasmotor mit wenigstens einem Stickoxidsensor
DE102016015082A1 (de) 2016-12-17 2018-06-21 Daimler Ag Verfahren zum Betreiben einer Abgasanlage eines Kraftwagens und Abgasanlage

Also Published As

Publication number Publication date
EP1284351B1 (de) 2006-12-27
DE50209061D1 (de) 2007-02-08
US6871492B2 (en) 2005-03-29
EP1284351A3 (de) 2004-06-16
EP1284351A2 (de) 2003-02-19
US20030056500A1 (en) 2003-03-27
DE10139992B4 (de) 2006-04-27

Similar Documents

Publication Publication Date Title
EP1284351B1 (de) Verfahren und Vorrichtung zur Regelung der Gemischzuammensetzung für einen Ottomotor mit NOx-Speicherkatalysator während einer Regenerationsphase
DE60303867T2 (de) Vorrichtung und Verfahren zur Schwefelentgiftung eines Katalysators einer Dieselbrennkraftmaschine
DE102015223934A1 (de) System und Verfahren zur Abgasreinigung mittels Mager-NOx-Falle (LNT) und Katalysator mit selektiver katalytischer Reduktion
EP1305507B1 (de) Verfahren zum betreiben eines katalysators
EP1106798B1 (de) Vorrichtung und Verfahren zur NOx- und/oder SOx-Regeneration eines NOx-Speicherkatalysators
EP1192343B1 (de) VERFAHREN ZUR INITIIERUNG UND ÜBERWACHUNG EINER ENTSCHWELFELUNG VON WENIGSTENS EINEM IN EINEM ABGASKANAL EINER VERBRENNUNGSKRAFTMASCHINE ANGEORDNETEN NOx-SPEICHERKATALYSATOR
DE10115967B4 (de) Verfahren und eine Vorrichtung zur Nachbehandlung eines Abgases
DE102017115399A1 (de) Abgasnachbehandlungssystem und Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors
EP1204815B1 (de) Verfahren zur regelung einer abgastemperatur einer magerbrennkraftmaschine während einer entschwefelung eines katalysators
EP1179124B1 (de) Verfahren zur entschwefelung
DE10153901B4 (de) Verfahren und Vorrichtung zur Entschwefelung eines einem Dieselmotor nachgeschalteten NOx-Speicherkatalysators
DE102004009999B4 (de) Brennkraftmaschine mit einem Kompressionsverhältnismodifizierer
DE102017101610A1 (de) Verfahren zur Reduzierung der Kaltstart-Emissionen bei einem fremdgezündeten Verbrennungsmotor
EP1252420B1 (de) Vorrichtung und verfahren zur steuerung einer nox-regeneration eines nox-speicherkatalysators
DE10010031B4 (de) Verfahren und Vorrichtung zur Durchführung einer NOx-Regeneration eines in einem Abgaskanal einer Verbrennungskraftmaschine angeordneten NOx-Speicherkatalysators
DE10123148A1 (de) Verfahren und Vorrichtung zur Entschwefelung eines Vorkatalysators
DE10202935A1 (de) Verfahren und Vorrichtung zur Entschwefelung eines Vorkatalysators
DE102004052062A1 (de) Verfahren und Vorrichtung zur Regenerierung von Speicherkatalysatoren
DE102017201399A1 (de) Abgasnachbehandlungssystem
EP1365131B1 (de) Verfahren zur Steuerung eines NOx-Speicherkatalysators
DE10114523B4 (de) Verfahren zur Steuerung einer NOx-Regeneration eines im Abgasstrang einer Verbrennungskraftmaschine angeordneten NOx-Speicherkatalysators
DE10347446B4 (de) Verfahren zur Aufheizung und zur Desulfatisierung eines Hauptkatalysators einer mehrflutigen Abgaslage einer mehrzylindrigen Brennkraftmaschine eines Fahrzeugs, insbesondere eines Kraftfahrzeugs
DE102022205212A1 (de) Verfahren und Vorrichtung zum Betreiben eines Abgassystems für einen Verbrennungsmotor sowie ein Motorsystem
DE10122301A1 (de) Verfahren und Vorrichtung zur Regelung der Gemischzusammensetzung für einen Ottomotor mit katalytischer Abgasnachbehandlung
DE102018218950A1 (de) Verfahren zum Betrieb einer Abgasnachbehandlungsvorrichtung zum Reinigen eines Abgasstromes eines Kraftfahrzeugs mit einer Brennkraftmaschine

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8364 No opposition during term of opposition
8327 Change in the person/name/address of the patent owner

Owner name: BAYERISCHE MOTOREN WERKE AG, 80809 MUENCHEN, DE

Owner name: DAIMLERCHRYSLER AG, 70327 STUTTGART, DE

Owner name: AUDI AG, 85057 INGOLSTADT, DE

Owner name: DR.ING.H.C. F. PORSCHE AG, 70435 STUTTGART, DE

Owner name: VOLKSWAGEN AG, 38440 WOLFSBURG, DE

8327 Change in the person/name/address of the patent owner

Owner name: VOLKSWAGEN AG, 38440 WOLFSBURG, DE

Owner name: DR.ING.H.C. F. PORSCHE AG, 70435 STUTTGART, DE

Owner name: AUDI AG, 85057 INGOLSTADT, DE

Owner name: DAIMLER AG, 70327 STUTTGART, DE

Owner name: BAYERISCHE MOTOREN WERKE AG, 80809 MUENCHEN, DE

8327 Change in the person/name/address of the patent owner

Owner name: BAYERISCHE MOTOREN WERKE AKTIENGESELLSCHAFT, 8, DE

Owner name: DR. ING. H.C. F. PORSCHE AKTIENGESELLSCHAFT, 7, DE

Owner name: VOLKSWAGEN AG, 38440 WOLFSBURG, DE

Owner name: DAIMLER AG, 70327 STUTTGART, DE

Owner name: AUDI AG, 85057 INGOLSTADT, DE

8339 Ceased/non-payment of the annual fee