DE10200165A1 - Verfahren zur Reduzierung der Latenzzeit bei der interaktiven Datenkommunikation über ein Satellitennetzwerk - Google Patents

Verfahren zur Reduzierung der Latenzzeit bei der interaktiven Datenkommunikation über ein Satellitennetzwerk

Info

Publication number
DE10200165A1
DE10200165A1 DE10200165A DE10200165A DE10200165A1 DE 10200165 A1 DE10200165 A1 DE 10200165A1 DE 10200165 A DE10200165 A DE 10200165A DE 10200165 A DE10200165 A DE 10200165A DE 10200165 A1 DE10200165 A1 DE 10200165A1
Authority
DE
Germany
Prior art keywords
data packets
data
client computer
server computer
mudp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE10200165A
Other languages
English (en)
Inventor
Klaus Rock
Ute Rock
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ROCK TECHNOLOGIES LTD.,, HAMILTON, BM
Original Assignee
Klaus Rock
Ute Rock
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Klaus Rock, Ute Rock filed Critical Klaus Rock
Priority to DE10200165A priority Critical patent/DE10200165A1/de
Priority to AT02795280T priority patent/ATE512509T1/de
Priority to US10/331,387 priority patent/US8082357B2/en
Priority to PCT/EP2002/014793 priority patent/WO2003056718A1/de
Priority to AU2002360091A priority patent/AU2002360091A1/en
Priority to EP02795280A priority patent/EP1466425B1/de
Publication of DE10200165A1 publication Critical patent/DE10200165A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18578Satellite systems for providing broadband data service to individual earth stations
    • H04B7/18586Arrangements for data transporting, e.g. for an end to end data transport or check
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/16Implementation or adaptation of Internet protocol [IP], of transmission control protocol [TCP] or of user datagram protocol [UDP]
    • H04L69/164Adaptation or special uses of UDP protocol
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/16Implementation or adaptation of Internet protocol [IP], of transmission control protocol [TCP] or of user datagram protocol [UDP]
    • H04L69/165Combined use of TCP and UDP protocols; selection criteria therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/40Network security protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/16Implementation or adaptation of Internet protocol [IP], of transmission control protocol [TCP] or of user datagram protocol [UDP]

Abstract

Ein Verfahren zur Reduzierung der Latenzzeit bei der interaktien Datenkommunikation zwischen einem Client-Rechner (12) und einem Server-Rechner (8), die über ein einen geostationären Satelliten (6) enthaltendes Satellitennetzwerk (1) miteinander verbunden sind, wobei auf dem Server-Rechner (8) ein Datenverarbeitungsprogramm (10) ausgeführt wird, welches Daten erzeugt, die in Form von Datenpaketen (20, 20¶m¶, 20¶mUDP¶) auf den Client-Rechner (12) übertragen und von diesem über ein mit den Client-Rechner (12) verbundenes Anzeigemedium (14) in Form eines interaktiven Anwenderprogramms (26) dargestellt werden, und wobei dem Bediener des Client-Rechners (12) durch eine vom Anwenderprogramm (26) dargestellte Eingabeaufforderung (22) die Eingabe von weiteren Daten signalisiert wird, die in Form von weiteren Datenpaketen (24, 24¶m¶, 24¶mUDP¶) über das Satellitennetzwerk (1) an den Server-Rechner (8) übersandt werden, zeichnet sich dadurch aus, dass das Übersenden der weiteren Datenpakete (24, 24¶m¶, 24¶mUDP¶) vom Client-Rechner (12) an den Server-Rechner (8) im Wesentlichen ohne eine Rückbestätigung des Empfangs der übersandten weiteren Datenpakete (24, 24¶m¶, 24¶mUDP¶) durch den Server-Rechner (8) erfolgt.

Description

  • Die Erfindung betrifft ein Verfahren zur Reduzierung der Latenzzeit bei der interaktiven Datenkommunikation zwischen einem Client-Rechner und einem Server-Rechner, die über ein einen geostationären Satelliten enthaltendes Satellitennetzwerk miteinander verbunden sind, gemäß dem Oberbegriff von Anspruch 1, sowie ein Satellitennetzwerk zur Durchführung des Verfahrens gemäß dem Oberbegriff von Anspruch 21.
  • Bei der Datenkommunikation über Satellitennetzwerke werden bevorzugter Weise geostationäre Satelliten eingesetzt, die in einer Entfernung von ca. 36 000 km über der Erdoberfläche positioniert werden und sich mit der Erde unter Beibehaltung einer im Wesentlichen festen Position gegenüber der Erdoberfläche mitbewegen. Hierdurch erscheint es von der Erde aus betrachtet so, als wenn der Satellit stationär über dem unterhalb des Satelliten gelegenen Gebiet der Erdoberfläche stehen würde, in welchem die Kommunikation mit dem Satelliten möglich ist. Dieses Gebiet wird häufig auch als "Footprint" bezeichnet.
  • Es gibt mittlerweile zahlreiche Satelliten, die sich praktisch wie Perlen auf einer Schnur in einem Abstand von ca. 36 000 km über dem Äquator aufreihen.
  • Aufgrund dieses großen Abstandes und der endlichen Ausbreitungsgeschwindigkeit von elektromagnetischen Signalen tritt bei der Datenkommunikation über geostationäre Satelliten das Problem auf, dass die Laufzeit eines elektromagnetischen Signals von einem Sender auf der Erde zum Satelliten und von dort aus zum Empfänger ca. 0,24 Sekunden beträgt, so dass eine vom Empfänger ohne Zeitverzögerung abgesandte Antwort den Sender infolge der sich zusätzlich ergebenden elektronischen Zeitverluste bei der Signalwandlung frühestens erst nach ca. 2 Sekunden erreicht.
  • Für die interaktive Datenkommunikation zwischen einem Client-Rechner und einem Server-Rechner, bei der der Server-Rechner die eigentliche Datenverarbeitung durchführt, und der Client-Rechner lediglich die Funktion eines intelligenten Terminals übernimmt, welches aus den über den geostationären Satelliten vom Server-Rechner übertragenen Daten eine interaktive Bildschirmdarstellung für den Benutzer des Client-Rechners erzeugt, führt diese häufig auch als Latenzzeit bezeichnete Zeitverzögerung zwangsweise dazu, dass ein vom Benutzer des Client-Rechners z. B. über eine Tastatur eingegebenes Zeichen oder eine Mausbewegung frühestens nach zwei Sekunden durch ein entsprechendes Echo des Server-Rechners auf dem Bildschirm des Client-Rechners bestätigt wird.
  • Aufgrund dieser bei der interaktiven Datenkommunikation nicht hinnehmbaren Zeitverzögerung von ca. 2 Sekunden, die bei jeder Eingabe des Benutzers über die Tastatur, Maus oder sonstige Dateneingabeeinrichtung des Client-Rechners auftritt, sind interaktive Client-Server-Anwendungen, wie z. B. ASP-Software mit datengetriebenen Anwendungen, die z. B. bei terrestrischen Verbindungen bei einer großen Anzahl von Benutzern in vorteilhafter Weise mit Hilfe von Betriebssystemen wie UNIX oder Windows 2000 Server etc., durchgeführt werden können, über geostationäre Satelliten in der Praxis nicht realisierbar.
  • Andererseits eignen sich Satellitenverbindungen aufgrund ihrer hohen Bandbreite und Übertragungssicherheit bestens zur Übertragung von Massendaten, wie beispielsweise analogen und digitalen Fernsehsendungen, Videos sowie Internet-Downloads, was darauf zurückzuführen ist, dass hierbei keine interaktiven Abfragen und Rückbestätigungen über den Satelliten übertragen werden müssen.
  • Diese Massendaten werden über sogenannte Satelliten-HUBS und mit diesen verbundene zentrale Server-Rechner als fortlaufender Datenstrom an den geostationären Satelliten gesendet, und von diesem im Bereich des Footprints des Satelliten an eine Vielzahl von Satelliten-Empfangsanlagen verteilt.
  • Demgemäß ist es eine Aufgabe der vorliegenden Erfindung, ein Verfahren sowie ein Satellitennetzwerk zur Durchführung des Verfahrens zu schaffen, mit denen sich die Latenzzeit bei der interaktiven Datenkommunikation zwischen einem Client-Rechner und einem Server-Rechner, die über einen geostationären Satelliten miteinander verbunden sind, reduzieren lässt.
  • Diese Aufgabe wird gemäß der Erfindung durch die Merkmale von Anspruch 1, 2, 21, 22, 23 und 24 gelöst.
  • Weitere Merkmale der Erfindung sind in den Unteransprüchen enthalten.
  • Nach dem erfindungsgemäßen Verfahren zur Reduzierung der Latenzzeit bei der interaktiven Datenkommunikation zwischen einem Client-Rechner und einem Server- Rechner, sind die beiden Rechner über ein einen geostationären Satelliten enthaltendes Satellitennetzwerk miteinander verbunden. Hierbei wird auf dem Server-Rechner ein interaktives Datenverarbeitungsprogramm ausgeführt, z. B. eine Datenbankanwendung, ein Textverarbeitungsprogramm etc., welches Daten erzeugt, die in Form von Datenpaketen über das Satellitennetzwerk auf den Client-Rechner übertragen und von diesem über ein mit dem Client-Rechner verbundenes Anzeigemedium, beispielsweise einen Monitor, in Form eines interaktiven Anwenderprogramms dargestellt werden. Dem Bediener des Client-Rechners, der mit dem interaktiven Anwenderprogramm arbeitet, wird hierbei auf dem Monitor durch eine vom Anwenderprogramm erzeugte Eingabeaufforderung, z. B. einen blinkenden Cursor, eine Bildschirmmitteilung, ein akustisches Signal oder in sonstiger Weise signalisiert, dass das Anwenderprogramm die Eingabe von weiteren Daten benötigt, die vom Bediener über ein Eingabemedium, z. B. über eine Tastatur, ein Grafiktablett, eine Maus oder ein sonstiges Eingabegerät einzugeben sind. Die weiteren Daten werden dann vom Client-Rechner in Form von weiteren Datenpaketen über das Satellitennetzwerk an den Server-Rechner übersandt, der die Daten der weiteren Datenpakete dazu verwendet, mit der Ausführung des Datenverarbeitungsprogramms fortzufahren.
  • Das erfindungsgemäße Verfahren zeichnet sich dadurch aus, dass das Übersenden der weiteren Datenpakete vom Client-Rechner an den Server-Rechner im Wesentlichen ohne eine Rückbestätigung des Empfangs der übersandten weiteren Datenpakete durch den Server-Rechner erfolgt.
  • Alternativ hierzu kann in entsprechender Weise das Übersenden der Datenpakete vom Server-Rechner an den Client-Rechner ebenfalls im Wesentlichen ohne eine Rückbestätigung des Empfangs der übersandten Datenpakete durch den Client-Rechner erfolgen, was bei einigen Anwendungen bereits für ein praktikables Arbeiten schon ausreichend sein kann. Im Hinblick auf eine optimale Ausführungsgeschwindigkeit des interaktiven Programms auf dem Client-Rechner ist es in diesem Zusammenhang jedoch von Vorteil, wenn sowohl das Hinaufsenden der weiteren Daten vom Client-Rechner zum Server-Rechner, als auch das Heruntersenden der Daten vom Server-Rechner zum Client- Rechner im Wesentlichen ohne die Übersendung von Rückbestätigungen oder Aufforderungen zu Rückbestätigungen erfolgt.
  • Hierbei bedeutet "im Wesentlichen", dass eine Rückbestätigung im Vergleich mit herkömmlichen bekannten interaktiven Client-Server-Anwendungen, die eine terrestrische Netzwerkverbindung nutzen, bei der eine Bestätigung in der Regel nach jedem übersandten Datenpaket erfolgen muss, erheblich seltener übertragen wird, beispielsweise nach 100 oder mehr übersandten Datenpaketen.
  • Wie der Anmelder gefunden hat, wird es hierdurch bei der interaktiven Datenkommunikation über einen geostationären Satelliten in überraschender Weise überhaupt erst möglich, interaktive Client-Server-Anwendungen, wie z. B. ASP-Software oder Internetanwendungen, mit einer Geschwindigkeit ablaufen zu lassen, die der Bediener derartiger Client-Server-Anwendungen bei seiner interaktiven Arbeit mit derartigen Anwendungen als Mindestvoraussetzung für ein effizientes Arbeiten erwartet, und überdies von terrestrischen Verbindungen her bereits gewohnt ist.
  • Dies ist darauf zurückzuführen, dass anders als bei terrestrischen Systemen - bei denen insbesondere im Bereich des Internets ein ständiges Rückbestätigen des korrekten Empfangs der übertragenen Datenpakete zwischen Client-Rechner und Server-Rechner aufgrund des ständigen Wechsels der Übertragungswege innerhalb der terrestrischen Netzwerkverbindung (Routing) zwingend erforderlich ist - die Übertragung von Daten über Satellitennetzwerke mit geostationären Satelliten in höchstem Maße zuverlässig und im Wesentlichen auf einen festen Übertragungsweg beschränkt ist. Wie vom Anmelder erkannt wurde; kann hierdurch auch ohne die ständige Übersendung von Rückbestätigungen (Acknowledgements), bzw. die Übersendung von Aufforderungen zur Rückbestätigung des Empfangs von zuvor übersandten Datenpaketen - die jeweils eine Zeitverzögerung von mindestens 2 Sekunden mit sich bringen - eine interaktive Arbeit am Client-Rechner mit einer sehr hohen Zuverlässigkeit und in einer Weise erfolgen, wie sie von Client-Server-Anwendungen her bekannt ist, die über terrestrischen Netzwerkverbindungen betrieben werden.
  • Ein weiterer Vorteil, der mit dem erfindungsgemäßen Verfahren verbunden ist, besteht darin, dass die Übertragung der Daten zwischen den mit dem Server in Verbindung stehenden Bodenstationen (Satelliten-HUBS) und dem geostationären Satelliten, sowie zwischen dem Satelliten und den zahlreichen Empfangsstationen, die je nach Client- Server-System bis zu einige tausend Stationen umfassen können, mit einer bei terrestrischen Systemen nicht erreichbaren Abhörsicherheit erfolgt.
  • Gemäß der bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens werden die vom Server-Rechner an den Client-Rechner übersandten Datenpakete und vorzugsweise auch die vom Client-Rechner an den Server-Rechner übersandten weiteren Datenpakete über den geostationären Satelliten in Übereinstimmung mit dem UDP-Netzwerkübertragungsprotokoll übertragen. Dieses UDP-Netzwerkübertragungsprotokoll stellt zwar ein bekanntes Standard-Übertragungsprotokoll beim einseitigen Herunterladen von großen Datenmengen wie Videobildern oder Musikdateien etc., von Servern dar, bei denen das Auftreten von vereinzelten Fehlern in den Datenpaketen bis auf eine geringfügige Reduzierung der Qualität nicht von Bedeutung ist; es eignet sich jedoch aufgrund der fehlenden Möglichkeiten von Rückbestätigungen in keinster Weise als Übertragungsprotokoll für interaktive Client-Server-Anwendungen, bei denen die Datenübertragung über eine terrestrische Netzwerkverbindung erfolgt, und bei denen bereits das Fehlen von nur einigen Daten-Bits in einem Datenpaket das erneute Übersenden des gesamten Pakets erfordert.
  • Hierbei werden die in Übereinstimmung mit dem UDP-Netzwerkübertragungsprotokoll vom Server-Rechner zum Client-Rechner übertragenen Datenpakete und/oder die in umgekehrter Richtung vom Client-Rechner zum Server-Rechner übertragenen weiteren Datenpakete durch eine Konvertierung aus Datenpaketen und/oder weiteren Datenpaketen generiert, die vom Server-Rechner, bzw. vom Client-Rechner zur Übertragung nach dem TCP-Netzwerkübertragungsprotokoll erzeugt wurden, welches das derzeitige Standard- Übertragungsprotokoll für eine fehlerfreie Übertragung von Daten über das Internet darstellt, und von nahezu allen derzeit verwendeten Betriebssystemen für Client-Server- Anwendungen benutzt wird.
  • Die Konvertierung kann hierbei durch eine entsprechende Software auf dem Client- Rechner, bzw. eine entsprechende Software auf dem Server-Rechner erfolgen, die ein nach dem TCP-Standard erzeugtes Datenpaket durch den Austausch oder Verändern der entsprechenden Teile des Datenpakets in bekannter Weise in ein dem UDP-Standard entsprechendes Datenpaket überführt. Die Software greift hierbei vorzugsweise auf der Ebene des Betriebssystems ein, was bei dem unter der Bezeichnung "Windows 2000 Server" der Microsoft Corporation, USA vertriebenen Betriebssystem z. B. im Bereich des als "Winsocket" bezeichneten Programmmoduls erfolgen kann. Die Umwandlung kann jedoch in gleicher Weise mit Hilfe von geeigneten Hardwareeinrichtungen erfolgen, die z. B. durch entsprechend ausgestaltete Teile von Netzwerkkarten, über die der Client- Rechner, bzw. der Server-Rechner mit ihrer zugehörigen Satelliten-Sende/Empfangseinheit gekoppelt sind, realisiert sein können.
  • Gemäß einer weiteren Ausgestaltung des erfindungsgemäßen Verfahrens wird der Aufbau der Netzwerkverbindung und/oder der Abschluss der Übertragung der Datenpakete und/oder weiteren Datenpakete zwischen dem Client-Rechner und dem Server-Rechner über den geostationären Satelliten durch Übertragung eines Datenpakets und/oder eines weiteren Datenpakets veranlasst, welches zur Übertragung in Übereinstimmung mit dem TCP-Netzwerkübertragungsprotokoll erzeugt und vorzugsweise nicht konvertiert wurde. Hierdurch wird ein sicherer Verbindungsaufbau über den Satelliten und eine Zuordnung der Netzwerkverbindung zu einem festen Port oder Übertragungskanal des geostationären Satelliten gewährleistet, was bei der sich anschließenden Übertragung nach dem UDP- Netzwerkübertragungsprotokoll durch Konvertierung der TCP-Datenpakete in UDP- Datenpakete für eine störungsfreie Datenübertragung in beiden Richtungen ohne den Einsatz von Rückbestätigungen (Acknowledgements) sorgt.
  • Um das Verhalten des interaktiven Anwenderprogramms dem Verhalten eines über eine terrestrische Verbindung betriebenen Anwenderprogramms noch weiter anzunähern, kann es weiterhin vorgesehen sein, dass die weiteren Datenpakete vor dem Versenden an den Server-Rechner auf redundante Daten hin untersucht, und ermittelte redundante Daten aus den weiteren Datenpaketen entfernt oder durch bereits eingegebene oder vorgehaltene Daten ersetzt werden. Das Entfernen der redundanten Daten aus den weiteren Datenpakten kann hierbei entweder hardwaremäßig durch eine Hardwareeinrichtung des Client- Rechners oder durch ein auf dem Client-Rechner laufendes Datenverarbeitungsprogramm erfolgen, welches vorzugsweise ebenfalls auf Betriebssystemebene angreift.
  • Die aus den weiteren Datenpaketen entfernten redundanten Daten können in den weiteren Datenpaketen vom Client-Rechner übersandte, sich periodisch wiederholende Teile von Daten umfassen, insbesondere Teile von Daten, die die Aufrechterhaltung der Netzwerkverbindung zwischen dem Client-Rechner und dem Server-Rechner gewährleisten.
  • Gemäß einer in Hinblick auf eine hohe Arbeitsgeschwindigkeit weiter optimierten Ausgestaltung des erfindungsgemäßen Verfahrens werden die sich periodisch wiederholenden Teile von Daten, die durch die entsprechende Betriebssystemsoftware des Client-Rechners zur Übersendung an den Server-Rechner erzeugt werden, und die aus den weiteren Datenpakten entfernt wurden, durch den Server-Rechner selbständig erzeugt, ohne dass diese vom Client-Rechner tatsächlich übersandt wurden.
  • In entsprechender Weise werden die vom Server-Rechner erzeugten Datenpakete vor dem Versenden an den Client-Rechner auf redundante Daten hin untersucht und ermittelte redundante Daten aus den Datenpaketen entfernt. Es besteht jedoch die Möglichkeit, dass die ermittelten redundanten Daten in den Datenpakten durch Daten ersetzt werden, die im Server-Rechner z. B. abgespeichert sind oder bei Bedarf durch eine Berechnung erzeugt werden.
  • Hierbei kann das Entfernen der redundanten Daten aus den Datenpakten hardwaremäßig durch eine Hardwareeinrichtung des Server-Rechners oder softwaremäßig durch ein auf dem Server-Rechner laufendes Datenverarbeitungsprogramm erfolgen.
  • Die in den Datenpaketen enthaltenen und aus diesen zu entfernenden redundanten Daten in den vom Server-Rechner übersandten Datenpaketen umfassen dabei insbesondere sich periodisch wiederholende Teile von Daten, die vom interaktiven Anwenderprogramm zur interaktiven Darstellung der auf dem Bildschirm verwendeten Blinkdarstellungen von Eingabeaufforderungen benötigt werden. Sie können jedoch in gleicher Weise Teile von Daten umfassen, die vom Client-Rechner zur Aufrechterhaltung der Netzwerkverbindung zwischen dem Client-Rechner und dem Server-Rechner benötigt werden.
  • Gemäß einer weiteren Ausführungsform der Erfindung werden die aus den vom Server- Rechner übersandten Datenpaketen entfernten, sich periodisch wiederholenden Teile von Daten durch den Client-Rechner vorzugsweise selbständig erzeugt, ohne dass diese vom Server-Rechner tatsächlich übersandt wurden. So kann insbesondere die Blinkdarstellung des Cursors auf dem Bildschirm des Client-Rechners softwaremäßig durch den Client- Rechner selbst selbstständig erzeugt werden, ohne dass hierzu entsprechende Daten vom Server-Rechner in regelmäßigen Abständen übersandt werden müssen.
  • Weiterhin kann es vorgesehen sein, dass der Client-Rechner Mittel aufweist, welche häufig wiederkehrende Datenfolgen in den Datenpaketen ermitteln, eine Kopie dieser häufig wiederkehrenden Datenfolgen oder eine diesen Datenfolgen entsprechende Bilddarstellung in einem Speicher des Client-Rechners ablegen und anstelle der wiederkehrenden Datenfolgen die im Speicher abgelegte Kopie der Datenfolgen oder die Bilddarstellung zur Darstellung auf dem interaktiven Anzeigemedium bringen.
  • Bei der bevorzugten Ausführungsform der Erfindung werden mehrere der zwischen dem Server-Rechner und dem Client-Rechner über den geostationären Satelliten übertragenen Datenpakete und/oder weiteren Datenpakete zu größeren Datenpaketen und/oder größeren weiteren Datenpaketen zusammengefasst, um den Datendurchsatz zu erhöhen. Hierbei wird die Länge der zusammengefassten größeren Datenpakete und/oder der zusammengefassten größeren weiteren Datenpakete vorzugsweise derart gewählt, dass eine Übertragung der Datenpakete über den geostationären Satelliten gerade noch ohne eine Fragmentierung der Datenpakete erfolgt. Diese optimierte Größe der Datenpakete und/oder weiteren Datenpakete - in Fachkreisen häufig auch als "Maximum Transmission Unit " (MTU) bezeichnet - wird vorzugsweise durch den Server-Rechner bei der Einrichtung des Satellitennetzwerks für jede einzelne Verbindung zu einem Client-Rechner auf der Basis von verbindungsspezifischen Parametern bestimmt, was beispielsweise durch Übertragen von Testdatenpaketen unterschiedlicher Länge und Messen der zugehörigen Übertragungsdauer erfolgen kann.
  • In gleicher Weise besteht jedoch die Möglichkeit, die optimierte Größe (MTU) der größeren Datenpakete und/oder der größeren weiteren Datenpakete durch den Server- Rechner während des Datenaustauschs zwischen dem Client-Rechner und dem Server- Rechner für die jeweilige Verbindung zum Client-Rechner auf der Basis von verbindungsspezifischen Parametern von Zeit zu Zeit dynamisch zu bestimmen, z. B. durch Berechnung oder durch eine Variation der Größe der Datenpakete.
  • Gemäß eines weiteren der Erfindung zugrunde liegenden Gedankens umfasst ein Satellitennetzwerk zur Durchführung des zuvor beschriebenen Verfahrens einen über einen geostationären Satelliten mit einem Client-Rechner verbundenen Server-Rechner, wobei auf dem Server-Rechner ein Datenverarbeitungsprogramm ausgeführt wird, welches Daten erzeugt, die in Form von Datenpaketen auf den Client-Rechner übertragen und von diesem über ein mit dem Client-Rechner verbundenes Anzeigemedium in Form eines interaktiven Anwenderprogramms dargestellt werden. Hierbei wird dem Bediener des Client-Rechners durch eine vom Anwenderprogramm dargestellte Eingabeaufforderung die Eingabe von weiteren Daten signalisiert, die in Form von weiteren Datenpaketen über das Satellitennetzwerk an den Server-Rechner übersandt werden.
  • Das erfindungsgemäße Satellitennetzwerk zeichnet sich dadurch aus, dass das Übersenden der weiteren Datenpakete vom Client-Rechner an den Server-Rechner im Wesentlichen ohne eine Rückbestätigung des Empfangs der übersandten weiteren Datenpakete durch den Server-Rechner erfolgt. Hierbei bedeutet "im Wesentlichen", dass eine Rückbestätigung im Vergleich mit herkömmlichen bekannten interaktiven Client-Server-Anwendungen, die eine terrestrische Netzwerkverbindung nutzen, bei der eine Bestätigung in der Regel nach jedem Datenpaket erfolgen muss, erheblich seltener übertragen wird, beispielsweise nach 50, 100 oder mehr übersandten Datenpaketen.
  • Alternativ hierzu kann in entsprechender Weise das Übersenden der Datenpakete vom Server-Rechner an den Client-Rechner ebenfalls im Wesentlichen ohne eine Rückbestätigung des Empfangs der übersandten Datenpakete durch den Client-Rechner erfolgen, was bei einigen Anwendungen bereits schon für ein praktikables Arbeiten ausreichend ist. Im Hinblick auf eine optimale Ausführungsgeschwindigkeit des interaktiven Programms auf dem Client-Rechner ist es in diesem Zusammenhang jedoch von Vorteil, wenn sowohl das Hinaufsenden der weiteren Daten vom Client-Rechner zum Server-Rechner, als auch das Heruntersenden der Daten vom Server-Rechner zum Client- Rechner im Wesentlichen ohne die Übersendung von Rückbestätigungen oder Aufforderungen zu Rückbestätigungen erfolgt.
  • Bei dem zuvor genannten Satellitennetzwerk handelt es sich insbesondere um ein IP- Satellitennetzwerk, bei dem die Datenpakete und weiteren Datenpakete nach dem Internet Protokoll (IP) versandt werden, welches die Grundebene für die Datenkommunikation zwischen zwei Rechnern darstellt, auf der das TCP- sowie das UDP-Netzwerkübertragungsprotokoll aufsetzen.
  • Schließlich umfasst ein weiterer dem erfindungsgemäßen Prinzip zugrundeliegender Gedanke einen Datenträger mit einem Softwareprogramm, welches die Reduzierung der Latenzzeit bei der interaktiven Datenkommunikation zwischen einem Client-Rechner und einem Server-Rechner nach dem zuvor beschriebenen Verfahren durchführt, die über ein einen geostationären Satelliten enthaltendes Satellitennetzwerk miteinander verbunden sind. Der Datenträger kann hierbei insbesondere die Festplatte des Client-Rechners und/oder Server-Rechners, oder aber auch ein externer Datenträger, wie eine CD-ROM oder DVD-ROM oder ein sonstiges Trägermedium beinhalten.
  • Das auf dem Datenträger gespeicherte Softwareprogramm zeichnet sich durch einen Programmcode aus, der die vom Client-Rechner während der Darstellung des interaktiven Anwenderprogramms oder der Eingabe von Daten erzeugten, an den Server-Rechner zu übersendenden Aufforderungen zu Rückbestätigungen des Empfang der weiteren Datenpakete im Wesentlichen vollständig aus den weiteren Datenpaketen entfernt, bevor diese an den Server-Rechner übersandt werden, bzw. in der umgekehrten Richtung die vom Datenverarbeitungsprogramm des Server-Rechners während der Darstellung des interaktiven Anwenderprogramms erzeugten, an den Client-Rechner zu übersendenden Aufforderungen zu Rückbestätigungen des Empfangs der Datenpakete im Wesentlichen vollständig aus den Datenpaketen entfernt, bevor diese an den Client-Rechner übersendet werden.
  • Die Erfindung wird nachfolgend mit Bezug auf die Zeichnung anhand einer bevorzugten Ausführungsform beschrieben.
  • In der Zeichnung zeigt:
  • Fig. 1 eine schematische Darstellung eines erfindungsgemäßen Satellitennetzwerks mit den einzelnen Verfahrensschritten zur erfindungsgemäßen Reduzierung der Latenzzeit bei einer interaktiven Client-Server-Anwendung.
  • Wie in Fig. 1 dargestellt ist, umfasst ein erfindungsgemäßes Satellitennetzwerk 1 eine serverseitige Bodenstation (Satelliten-HUB) 2 sowie eine clientseitige Bodenstation (4, die über einen geostationären Satelliten 6 zur Datenkommunikation miteinander verbunden sind.
  • Die serverseitige Bodenstation 2 ist über nicht näher bezeichnete Leitungen mit einem Server-Rechner 8 verbunden, der mit einem Client-Server-Betriebssystem wie z. B. UNIX oder dem Betriebssystem "Windows 2000 Server" betrieben wird, und auf dem ein Datenverarbeitungsprogramm 10, z. B. eine Tabellenkalkulation, ausgeführt wird.
  • Die clientseitige Bodenstation 4 ist über ebenfalls nicht näher bezeichnete Datenleitungen mit einem Client-Rechner 12 verbunden, an den ein Anzeigemedium in Form eines Monitors 14 sowie ein Eingabemedium in Form einer Tastatur 16 und/oder Maus 18 zur Dateneingabe angeschlossen sind. Der Client-Rechner 12 wird dabei mit dem clientseitigen Teil des Client-Server Betriebssystems betrieben, beispielsweise dem unter der Bezeichnung "Terminal Service" bekannten Betriebssystem der Microsoft Corporation, welches vom Datenverarbeitungsprogramm 10 des Server-Rechners 8 erzeugte und in Form von Datenpaketen 20 übersandte Daten erhält, die auf dem Monitor 14 als interaktives Anwenderprogramm 26 dargestellt werden, was in Fig. 1 durch die schematisch eingezeichneten Kreisdiagramme angedeutet ist.
  • Der Bediener des interaktiven Anwenderprogramms wird bei der Arbeit mit dem Anwenderprogramm 26 durch eine auf dem Monitor 14 dargestellte Eingabeaufforderung 22, z. B. in Form eines blinkenden Cursors oder einer Textmitteilung wie "PRESS ENTER TO CONTINUE" dazu aufgefordert, weitere Daten über die Tastatur 16 oder die Maus 18 einzugeben, die in Form von weiteren Datenpaketen 24 über den geostationären Satelliten 6 zum Server 8 gesandt und von diesem für die weitere Ausführung des Datenverarbeitungsprogramms 10 benötigt werden.
  • Wie der Darstellung von Fig. 1 weiterhin entnommen werden kann, werden die Datenpakete 20 durch das Datenverarbeitungsprogramm 10 als einzelne Datenpakete erzeugt, die den Anforderungen nach dem TCP-IP Netzwerkübertragungsprotokoll genügen. Dies bedeutet, dass die Datenpakete 20 insbesondere Daten enthalten, die Rückbestätigungen über den Empfang von zuvor vom Client-Rechner 12 empfangenen Datenpaketen oder aber Aufforderungen an den Client-Rechner 12 zur Übersendung von Rückbestätigungen für den sicheren Erhalt der jeweiligen Datenpakete 20 darstellen. Diese TCP-Datenpakete 20 werden nach ihrer Erzeugung vorzugsweise einem Redundanzfilter 28 zugeführt, der die vom Server- Rechner 8 erzeugten Datenpakete 20 vor dem Versenden an den Client-Rechner 12 über den geostationären Satelliten 6 auf redundante Daten 20 r hin untersucht und die ermittelten redundanten Daten 20 r aus den Datenpaketen 20 entfernt oder - falls für die jeweilige Anwendung sinnvoll - durch im Server-Rechner 8 vorgehaltene Daten, die vom Client- Rechner beispielsweise zur Aufrechterhaltung der Netzwerkverbindung zwischen dem Client-Rechner und dem Server-Rechner benötigt werden, ersetzt.
  • Der Redundanzfilter 28 kann dabei entweder hardwaremäßig durch eine Hardwareeinrichtung des Server-Rechners 8 oder aber auch softwaremäßig durch ein auf dem Server-Rechner 8 laufendes Datenverarbeitungsprogramm realisiert sein.
  • Im Anschluss daran werden die um die redundanten Daten 24 r bereinigten Datenpakete 20 einer serverseitigen Einheit 30 zur Optimierung der Paketgröße zugeführt, welche die Datenpakete 20 zu größeren Datenpakten 20 m zusammenfasst, deren Länge der maximal ohne eine Fragmentierung über das Netzwerk 1 übertragbaren Paketlänge (MTU) entspricht.
  • Die optimierten Datenpakete 20 m werden anschließend einem Protokoll-Konverter 32 zugeführt. Der Protokoll-Konverter 32, der vorzugsweise ebenfalls softwaremäßig im Server- Rechner 8 realisiert ist, konvertiert die TCP-konformen Datenpakete 20 m in der Weise, dass diese nach der Konvertierung den Erfordernissen des UDP-Netzwerkübertragungsprotokolls genügen und die darin enthaltenen Rückbestätigungen, bzw. die Aufforderungen zur Übersendung von Rückbestätigungen eliminiert oder zumindest neutralisiert sind. Die konvertierten Datenpakete 20 mUDP werden anschließend an die serverseitige Bodenstation 2 weitergeleitet und von dort aus über den geostationären Satelliten 6 an die clientseitige Bodenstation 4 übertragen, von wo aus sie vorzugsweise ohne weitere Konvertierung dem Client-Rechner 12 zugeführt werden, der diese Datenpakete 20 mUDP unmittelbar weiterverarbeitet und die darin enthaltenen Daten zur Darstellung auf dem Monitor 14 bringt.
  • Wenn der Bediener des Client-Rechners 12 bei seiner Arbeit mit dem interaktiven Anwendungsprogramm eine Eingabe über die Tastatur 16 oder die Maus 18 vornimmt, beispielsweise als Antwort auf die Bildschirmdarstellung, die vom Client-Rechner 12, bzw. dessen Betriebssystem aus den zuvor vom Server-Rechner 8 übersandten Datenpaketen 20 mUDP erzeugt wurde, werden die eingegebenen Befehle und weiteren Daten vom Betriebssystem des Client-Rechners 12 in Form von weiteren Datenpaketen 24 erzeugt, die den Anforderungen des TCP-IP Netzwerkübertragungsprotokolls entsprechen.
  • Die in dieser Weise erzeugten weiteren TCP-Datenpakete 24 werden gemäß der Darstellung von Fig. 1 nach ihrer Erzeugung vorzugsweise einem weiteren Redundanzfilter 34 zugeführt, der die weiteren Datenpakete 24 vor dem Versenden an den Server-Rechner 8 über den geostationären Satelliten 6 auf redundante Daten 24 r hin untersucht und die ermittelten redundanten Daten 24 r aus den weiteren Datenpaketen 24 entfernt, oder - falls für die jeweilige Anwendung sinnvoll - durch im Client-Rechner 12 vorgehaltene Daten, die vom Server-Rechner 8 insbesondere zur Aufrechterhaltung der Netzwerkverbindung zwischen dem Client-Rechner 12 und dem Server-Rechner 8 benötigt werden, ersetzt.
  • Der weitere Redundanzfilter 34 kann dabei entweder hardwaremäßig durch eine Hardwareeinrichtung des Client-Rechners 12 oder aber auch softwaremäßig durch ein auf dem Client-Rechner 12 laufendes Datenverarbeitungsprogramm realisiert sein, welches im Falle des Einsatzes von "Windows 2000 Server" als Betriebssystem an dem als "Winsocket" bezeichneten Bereich des Betriebssystems des Client-Rechners 12 eingreift.
  • Im Anschluss daran werden die um die redundanten Daten 24 r bereinigten weiteren Datenpakete 24 einer clientseitigen Einheit 36 zur Optimierung der Paketgröße zugeführt, welche die weiteren Datenpakete 24 zu größeren weiteren Datenpakten 24 m zusammenfasst, deren Länge der maximal ohne eine Fragmentierung über das Netzwerk 1 übertragbaren Paketlänge (MTU) entspricht.
  • Die in dieser Weise optimierten weiteren Datenpakete 24 m werden anschließend einem weiteren Protokoll-Konverter 38 zugeführt, der vorzugsweise ebenfalls softwaremäßig im Client-Rechner 12 realisiert ist, und der die dem TCP-Standard entsprechenden weiteren Datenpakete optimierter Länge 24 m in der Weise konvertiert, dass diese nach der Konvertierung den Erfordernissen des UDP-Netzwerkübertragungsprotokolls genügen und die darin enthaltenen Rückbestätigungen, bzw. die Aufforderungen zur Übersendung von Rückbestätigungen eliminiert oder zumindest neutralisiert sind. Die konvertierten weiteren Datenpakete 24 mUDP optimierter Länge werden anschließend an die clientseitige Bodenstation 4 weitergeleitet und von dort aus über den geostationären Satelliten 6 an die serverseitige Bodenstation 2 übertragen, von wo aus sie vorzugsweise ohne weitere Konvertierung dem Server-Rechner 12 zugeführt werden. Der Server-Rechner 12 übernimmt diese optimierten und konvertierten weiteren Datenpakete 24 mUDP vorzugsweise unmittelbar ohne eine vorherige Rückkonvertierung in TCP-konforme Pakete, und übergibt die darin enthaltenen weiteren Daten an das Datenverarbeitungsprogramm 10.
  • Die zuvor beschriebenen Manipulationen der Datenpakete 20 und weiteren Datenpakete 24 durch die Redundanzfilter 28, 34, die Einheiten 30 und 36 zur Optimierung der Paketlänge, sowie die TCP-UDP-Konverter 32 und 38 werden bei der bevorzugten Ausführungsform der Erfindung vorzugsweise durch ein entsprechendes Softwareprogramm realisiert, welches z. B. auf einem mobilen Datenträger 40 in Form einer CD-Rom transportiert und auf die jeweiligen Festplatten des Server-Rechners 8 und/oder des Client-Rechners 12 zur Ausführung aufgespielt werden kann. Die softwaremäßige Realisierung auf dem Server- Rechner 8 bzw. auf dem Client-Rechner 12 ist in Fig. 1 durch die punktierte Darstellung angedeutet. Liste der Bezugszeichen 1 Satellitennetzwerk
    2 serverseitige Bodenstation
    4 clientseitige Bodenstation
    6 geostationärer Satellit
    8 Server-Rechner
    10 Datenverarbeitungsprogramm auf Server-Rechner
    12 Client-Rechner
    14 Monitor
    16 Tastatur
    18 Maus
    20 Datenpakete, die von Server-Rechner erzeugt werden
    20 r redundante Daten in Datenpaketen
    20 m Datenpakete optimierter Länge
    20 mUDP Datenpakete nach Konvertierung, die UDP-Standard genügen
    22 Eingabeaufforderung
    24 weitere Datenpakete
    24 r redundante Daten in den weiteren Datenpaketen
    24 m weitere Datenpakete optimierter Länge
    24 mUDP weitere Datenpakete nach Konvertierung, die UDP-Standard genügen
    26 interaktives Anwenderprogramm auf Client-Rechner
    28 Redundanzfilter für Datenpakte
    30 serverseitige Einheit zur Optimierung der Paketlänge
    32 Protokoll-Konverter
    34 weiterer Redundanzfilter
    36 clientseitige Einheit zur Optimierung der Paketlänge
    38 weiterer Protokoll-Konverter
    40 Datenträger mit Softwareprogramm

Claims (24)

1. Verfahren zur Reduzierung der Latenzzeit bei der interaktiven Datenkommunikation zwischen einem Client-Rechner (12) und einem Server-Rechner (8), die über ein einen geostationären Satelliten (6) enthaltendes Satellitennetzwerk (1) miteinander verbunden sind, wobei auf dem Server-Rechner (8) ein Datenverarbeitungsprogramm (10) ausgeführt wird, welches Daten erzeugt, die in Form von Datenpaketen (20, 20 m, 20mUDP) auf den Client-Rechner (12) übertragen und von diesem über ein mit dem Client-Rechner (12) verbundenes Anzeigemedium (14) in Form eines interaktiven Anwenderprogramms (26) dargestellt werden, und wobei dem Bediener des Client- Rechners (12) durch eine vom Anwenderprogramm (26) dargestellte Eingabeaufforderung (22) die Eingabe von weiteren Daten signalisiert wird, die in Form von weiteren Datenpaketen (24, 24 m, 24 mUDP) über das Satellitennetzwerk (1) an den Server-Rechner (8) übersandt werden, dadurch gekennzeichnet, dass das Übersenden der weiteren Datenpakete (24, 24 m, 24 mUDP) vom Client-Rechner (12) an den Server-Rechner (8) im Wesentlichen ohne eine Rückbestätigung des Empfangs der übersandten weiteren Datenpakete (24, 24 m, 24 mUDP) durch den Server- Rechner (8) erfolgt.
2. Verfahren, insbesondere nach Anspruch 1, zur Reduzierung der Latenzzeit bei der interaktiven Datenkommunikation zwischen einem Client-Rechner (12) und einem Server-Rechner (8), die über ein einen geostationären Satelliten (6) enthaltendes Satellitennetzwerk (1) miteinander verbunden sind, wobei auf dem Server-Rechner (8) ein Datenverarbeitungsprogramm (10) ausgeführt wird, welches Daten erzeugt, die in Form von Datenpaketen (20, 20 m, 20 mUDP) auf den Client-Rechner (12) übertragen und von diesem über ein mit dem Client-Rechner (12) verbundenes Anzeigemedium (14) in Form eines interaktiven Anwenderprogramms (26) dargestellt werden, und wobei dem Bediener des Client-Rechners (12) durch eine vom Anwenderprogramm (26) dargestellte Eingabeaufforderung (22) die Eingabe von weiteren Daten signalisiert wird, die in Form von weiteren Datenpaketen (24, 24 m, 24 mUDP) über das Satellitennetzwerk (1) an den Server-Rechner (8) übersandt werden, dadurch gekennzeichnet, dass das Übersenden der Datenpakete (20, 20 m, 20 mUDP) vom Server-Rechner (8) an den Client-Rechner (12) im Wesentlichen ohne eine Rückbestätigung des Empfangs der übersandten Datenpakete (20, 20 m, 20 mUDP) durch den Client-Rechner (12) erfolgt.
3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Datenpakete (20, 20 m, 20 mUDP) und/oder die weiteren Datenpakete (24, 24 m, 24 mUDP) über den geostationären Satelliten (6) in Übereinstimmung mit dem UDP- Netzwerkübertragungsprotokoll übertragen werden.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die in Übereinstimmung mit dem UDP-Netzwerkübertragungsprotokoll übertragenen Datenpakete (20 mUDP) und/oder weiteren Datenpakete (24 mUDP) durch Konvertierung aus Datenpaketen und/oder weiteren Datenpaketen generiert werden, die zur Übertragung gemäß dem TCP-Netzwerkübertragungsprotokoll erzeugt wurden.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass der Abschluss der Übertragung der Datenpakete (20) und/oder weiteren Datenpakete (24) zwischen dem Client-Rechner (12) und dem Server-Rechner (8) über den geostationären Satelliten (6) durch Übertragung eines Datenpakets (20) und/oder eines weiteren Datenpakets (24) veranlasst wird, welches zur Übertragung in Übereinstimmung mit dem TCP-Netzwerkübertragungsprotokoll erzeugt wird.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die weiteren Datenpakete (24) vor dem Versenden an den Server-Rechner auf redundante Daten (24 r) hin untersucht und ermittelte redundante Daten (24 r) aus den weiteren Datenpaketen (24) entfernt oder durch bereits eingegeben Daten ersetzt werden.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass das Entfernen der redundanten Daten (24r) aus den weiteren Datenpakten hardwaremäßig durch eine Hardwareeinrichtung des Client-Rechners (8) erfolgt.
8. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass das Entfernen der redundanten Daten (24 r) aus den weiteren Datenpakten softwaremäßig durch ein auf dem Client-Rechner (12) laufendes Datenverarbeitungsprogramm erfolgt.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die redundanten Daten (24 r) in den weiteren Datenpaketen vom Client-Rechner (12) übersandte, sich periodisch wiederholende Teile von Daten umfassen, insbesondere Teile von Daten, die die Aufrechterhaltung der Netzwerkverbindung zwischen dem Client-Rechner (12) und dem Server-Rechner (8) gewährleisten.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass die sich periodisch wiederholenden Teile von Daten durch den Server-Rechner (8) selbständig erzeugt werden, ohne dass diese vom Client-Rechner (12) tatsächlich übersandt wurden.
11. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die vom Server-Rechner (8) erzeugten Datenpakete (20) vor dem Versenden an den Client-Rechner auf redundante Daten (20 r) hin untersucht und ermittelte redundante Daten (20 r) aus den Datenpaketen entfernt oder durch im Server-Rechner (8) vorgehaltene Daten ersetzt werden.
12. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass das Entfernen der redundanten Daten (20 r) aus den Datenpakten (20) hardwaremäßig durch eine Hardwareeinrichtung des Server-Rechners (8) erfolgt.
13. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass das Entfernen der redundanten Daten (20 r) aus den Datenpakten (20) softwaremäßig durch ein auf dem Server-Rechner (8) laufendes Datenverarbeitungsprogramm erfolgt.
14. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die redundanten Daten (20 r) in den vom Server-Rechner (8) übersandten Datenpaketen (20) sich periodisch wiederholende Teile von Daten umfassen, insbesondere vom interaktiven Anwenderprogramm (26) zur interaktiven Darstellung auf dem Anzeigemedium verwendete Blinkdarstellungen von Eingabeaufforderungen (22) und/oder Teile von Daten in den Datenpaketen (20), die vom Client-Rechner (12) zur Aufrechterhaltung der Netzwerkverbindung zwischen dem Client-Rechner (12) und dem Server-Rechner (8) benötigt werden.
15. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass die aus den vom Server-Rechner (8) übersandten Datenpaketen (20) entfernten, sich periodisch wiederholenden Teile von Daten (20 r) durch den Client-Rechner (12) selbständig erzeugt werden, ohne dass diese vom Server-Rechner (8) tatsächlich übersandt wurden.
16. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Client-Rechner (12) Mittel aufweist, welche häufig wiederkehrende Datenfolgen in den Datenpaketen (20) ermitteln, eine Kopie dieser häufig wiederkehrenden Datenfolgen oder eine diesen Datenfolgen entsprechende Bilddarstellung in einem Speicher des Client-Rechners (12) ablegen und anstelle der wiederkehrenden Datenfolgen die im Speicher abgelegte Kopie der Datenfolgen oder die Bilddarstellung zur Darstellung auf dem Anzeigemedium (14) bringen.
17. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mehrere der zwischen dem Server-Rechner (8) und dem Client-Rechner (12) über den geostationären Satelliten (6) zu übertragenden Datenpakete (20) und/oder weiteren Datenpakete (24) zur größeren Datenpaketen (20 m) und/oder größeren weiteren Datenpaketen (24 m) zusammengefasst werden.
18. Verfahren nach Anspruch 17, dadurch gekennzeichnet, dass die zusammengefassten größeren Datenpakete (20 m) und/oder die zusammengefassten größeren weiteren Datenpakete (24 m) eine optimierte Größe aufweisen, derart, dass eine Übertragung über den geostationären Satelliten (6) ohne eine Fragmentierung der Datenpakete erfolgt.
19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, dass die optimierte Größe der größeren Datenpakete (20 m) und/oder der größeren weiteren Datenpakete (24 m) durch den Server-Rechner (8) bei der Einrichtung des Satellitennetzwerks (1) für die jeweilige Verbindung zum Client-Rechner (12) auf der Basis von verbindungsspezifischen Parametern bestimmt wird.
20. Verfahren nach Anspruch 18, dadurch gekennzeichnet, dass die optimierte Größe der größeren Datenpakete (20 m) und/oder der größeren weiteren Datenpakete (24 m) durch den Server-Rechner (8) während des Datenaustauschs zwischen dem Client-Rechner (12) und dem Server-Rechner (8) für die jeweilige Verbindung zum Client-Rechner (12) auf der Basis von verbindungsspezifischen Parametern bestimmt wird.
21. Satellitennetzwerk (1) zur Durchführung des Verfahrens nach einem der vorhergehenden Ansprüche, umfassend einen über einen geostationären Satelliten (6) mit einem Client-Rechner (12) verbundenen Server-Rechner (8), wobei auf dem Server-Rechner (8) ein Datenverarbeitungsprogramm (10) ausgeführt wird, welches Daten erzeugt, die in Form von Datenpaketen (20, 20 m, 20 mUDP) auf den Client- Rechner (12) übertragen und von diesem über ein mit dem Client-Rechner verbundenes Anzeigemedium (14) in Form eines interaktiven Anwenderprogramms (26) dargestellt werden, und wobei dem Bediener des Client-Rechners (12) durch eine vom Anwenderprogramm (26) dargestellte Eingabeaufforderung (22) die Eingabe von weiteren Daten signalisiert wird, die in Form von weiteren Datenpaketen (24, 24 m, 24 mUDP) über das Satellitennetzwerk (1) an den Server-Rechner (8) übersandt werden, dadurch gekennzeichnet, dass das Übersenden der weiteren Datenpakete (24, 24 m, 24 mUDP) vom Client-Rechner (12) an den Server-Rechner (8) im Wesentlichen ohne eine Rückbestätigung des Empfangs der übersandten weiteren Datenpakete (24, 24 m, 24 mUDP) durch den Server- Rechner (8) erfolgt.
22. Satellitennetzwerk zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 21, umfassend einen über einen geostationären Satelliten (6) mit einem Client- Rechner (12) verbundenen Server-Rechner (8), wobei auf dem Server-Rechner (8) ein Datenverarbeitungsprogramm (10) ausgeführt wird, welches Daten erzeugt, die in Form von Datenpaketen (20, 20 m, 20 mUDP) auf den Client-Rechner (12) übertragen und von diesem über ein mit dem Client-Rechner verbundenes Anzeigemedium (14) in Form eines interaktiven Anwenderprogramms (26) dargestellt werden, und wobei dem Bediener des Client-Rechners (12) durch eine vom Anwenderprogramm (26) dargestellte Eingabeaufforderung (22) die Eingabe von weiteren Daten signalisiert wird, die in Form von weiteren Datenpaketen (24, 24 m, 24 mUDP) über das Satellitennetzwerk (1) an den Server-Rechner (8) übersandt werden, dadurch gekennzeichnet, dass das Übersenden der Datenpakete (20, 20 m, 20 mUDP) vom Server-Rechner (8) an den Client-Rechner (12) im Wesentlichen ohne eine Rückbestätigung des Empfangs der übersandten Datenpakete (20, 20 m, 20 mUDP) durch den Client-Rechner (12) erfolgt.
23. Datenträger mit einem Softwareprogramm zur Reduzierung der Latenzzeit bei der interaktiven Datenkommunikation zwischen einem Client-Rechner (12) und einem Server-Rechner (8), die über ein einen geostationären Satelliten (6) enthaltendes Satellitennetzwerk (1) miteinander verbunden sind, wobei auf dem Server-Rechner (8) ein Datenverarbeitungsprogramm (10) ausgeführt wird, welches Daten erzeugt, die in Form von Datenpaketen (20, 20 m, 20 mUDP) auf den Client-Rechner übertragen und von diesem über ein mit dem Client-Rechner (12) verbundenes Anzeigemedium (14) in Form eines interaktiven Anwenderprogramms (26) dargestellt werden, und wobei dem Bediener des Client-Rechners durch eine vom Anwenderprogramm (26) dargestellte Eingabeaufforderung (22) die Eingabe von weiteren Daten signalisiert wird, die in Form von weiteren Datenpaketen (24, 24 m, 24 mUDP) über das Satellitennetzwerk (1) an den Server-Rechner (8) übersandt werden, gekennzeichnet durch einen Programmcode, der die vom Client-Rechner (12) während der Darstellung des interaktiven Anwenderprogramms (26) oder der Eingabe von Daten erzeugten, an den Server-Rechner (8) zu übersendenden Aufforderungen zu Rückbestätigungen des Empfang der weiteren Datenpakete (24, 24 m, 24 mUDP) im Wesentlichen vollständig aus den weiteren Datenpaketen entfernt, bevor diese an den Server-Rechner (8) übersandt werden.
24. Datenträger mit einem Softwareprogramm zur Reduzierung der Latenzzeit bei der interaktiven Datenkommunikation zwischen einem Client-Rechner (12) und einem Server-Rechner (8), die über ein einen geostationären Satelliten (6) enthaltendes Satellitennetzwerk (1) miteinander verbunden sind, wobei auf dem Server-Rechner (8) ein Datenverarbeitungsprogramm (10) ausgeführt wird, welches Daten erzeugt, die in Form von Datenpaketen (20, 20 m, 20 mUDP) auf den Client-Rechner übertragen und von diesem über ein mit dem Client-Rechner (12) verbundenes Anzeigemedium (14) in Form eines interaktiven Anwenderprogramms (26) dargestellt werden, und wobei dem Bediener des Client-Rechners durch eine vom Anwenderprogramm (26) dargestellte Eingabeaufforderung (22) die Eingabe von weiteren Daten signalisiert wird, die in Form von weiteren Datenpaketen (24, 24 m, 24 mUDP) über das Satellitennetzwerk (1) an den Server-Rechner (8) übersandt werden, gekennzeichnet, durch einen Programmcode, der die vom Datenverarbeitungsprogramm (10) des Server-Rechners (8) während der Darstellung des interaktiven Anwenderprogramms (26) erzeugten, an den Client-Rechner (12) zu übersendenden Aufforderungen zu Rückbestätigungen des Empfang der Datenpakete (20, 20 m, 20 mUDP) im Wesentlichen vollständig aus den Datenpaketen entfernt, bevor diese an den Client-Rechner (12) übersandt werden.
DE10200165A 2002-01-04 2002-01-04 Verfahren zur Reduzierung der Latenzzeit bei der interaktiven Datenkommunikation über ein Satellitennetzwerk Withdrawn DE10200165A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE10200165A DE10200165A1 (de) 2002-01-04 2002-01-04 Verfahren zur Reduzierung der Latenzzeit bei der interaktiven Datenkommunikation über ein Satellitennetzwerk
AT02795280T ATE512509T1 (de) 2002-01-04 2002-12-30 Verfahren zur reduzierung der latenzzeit bei der interaktiven datenkommunikation über ein satellitennetzwerk
US10/331,387 US8082357B2 (en) 2002-01-04 2002-12-30 Method for reducing the latency time for interactive data communication via a satellite network
PCT/EP2002/014793 WO2003056718A1 (de) 2002-01-04 2002-12-30 Verfahren zur reduzierung der latenzzeit bei der interaktiven datenkommunikation über ein satellitennetzwerk
AU2002360091A AU2002360091A1 (en) 2002-01-04 2002-12-30 Method for the reduction of latency during interactive data communication via a satellite network
EP02795280A EP1466425B1 (de) 2002-01-04 2002-12-30 Verfahren zur reduzierung der latenzzeit bei der interaktiven datenkommunikation über ein satellitennetzwerk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10200165A DE10200165A1 (de) 2002-01-04 2002-01-04 Verfahren zur Reduzierung der Latenzzeit bei der interaktiven Datenkommunikation über ein Satellitennetzwerk

Publications (1)

Publication Number Publication Date
DE10200165A1 true DE10200165A1 (de) 2003-07-10

Family

ID=7711524

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10200165A Withdrawn DE10200165A1 (de) 2002-01-04 2002-01-04 Verfahren zur Reduzierung der Latenzzeit bei der interaktiven Datenkommunikation über ein Satellitennetzwerk

Country Status (6)

Country Link
US (1) US8082357B2 (de)
EP (1) EP1466425B1 (de)
AT (1) ATE512509T1 (de)
AU (1) AU2002360091A1 (de)
DE (1) DE10200165A1 (de)
WO (1) WO2003056718A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004088949A2 (de) * 2003-04-02 2004-10-14 Rock Technologies Limited Verfahren zur reduzierung der latenzzeit bei der interaktiven datenkommunikation zwischen einem terminal server und einem terminal-server client in einem geostationären satellitennetzwerk
WO2006027367A1 (de) * 2004-09-10 2006-03-16 Kai Lauterjung Datenkommunikationssystem, sowie datenkommunikationsverfahren
WO2006037600A1 (de) * 2004-10-01 2006-04-13 Rock Technologies Inc. Verfahren zur reduzierung der latenzzeit bei der interaktiven datenkommunikation zwischen einem terminal server und einem terminal-server client in einem drahtlosen telekommunikationsnetzwerk

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2004272192C1 (en) 2003-09-10 2010-05-06 Hyperdata Technologies, Inc. Internet protocol optimizer
US7957402B2 (en) * 2005-08-08 2011-06-07 American Megatrends, Inc. UDP to TCP bridge
US8788706B2 (en) * 2006-02-27 2014-07-22 Vudu, Inc. Method and system for managing data transmission between devices behind network address translators (NATs)
US7756134B2 (en) 2006-05-02 2010-07-13 Harris Corporation Systems and methods for close queuing to support quality of service
US7894509B2 (en) * 2006-05-18 2011-02-22 Harris Corporation Method and system for functional redundancy based quality of service
US7990860B2 (en) 2006-06-16 2011-08-02 Harris Corporation Method and system for rule-based sequencing for QoS
US8064464B2 (en) 2006-06-16 2011-11-22 Harris Corporation Method and system for inbound content-based QoS
US7856012B2 (en) 2006-06-16 2010-12-21 Harris Corporation System and methods for generic data transparent rules to support quality of service
US20070291767A1 (en) * 2006-06-16 2007-12-20 Harris Corporation Systems and methods for a protocol transformation gateway for quality of service
US8516153B2 (en) 2006-06-16 2013-08-20 Harris Corporation Method and system for network-independent QoS
US7916626B2 (en) 2006-06-19 2011-03-29 Harris Corporation Method and system for fault-tolerant quality of service
US8730981B2 (en) 2006-06-20 2014-05-20 Harris Corporation Method and system for compression based quality of service
US7769028B2 (en) 2006-06-21 2010-08-03 Harris Corporation Systems and methods for adaptive throughput management for event-driven message-based data
US8300653B2 (en) 2006-07-31 2012-10-30 Harris Corporation Systems and methods for assured communications with quality of service
WO2009088749A2 (en) * 2008-01-02 2009-07-16 Harmonic, Inc. Methods and system for efficient data transfer over hybrid fiber coax infrastructure
US8554832B1 (en) * 2011-03-01 2013-10-08 Asana, Inc. Server side user interface simulation
CN104717041A (zh) * 2015-04-01 2015-06-17 北京百度网讯科技有限公司 数据传输方法和装置
GB2592314A (en) * 2019-10-01 2021-08-25 Pismo Labs Technology Ltd Modified methods and system of transmitting and receiving transmission control protocol segments over internet protocol packets
CN111107100B (zh) * 2019-12-30 2022-03-01 杭州迪普科技股份有限公司 用于传输工业协议流量报文的设备
CN113162675B (zh) * 2021-03-09 2022-04-12 浙江吉利控股集团有限公司 基于窄带卫星通信的数据传输系统、方法、装置及电子设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10017631A1 (de) * 2000-04-05 2001-10-18 Teles Ag Verfahren und Gateway zum transparenten Übertragen von Außenband-Signalisierungsinformationen über ein Paketvermittlungsnetz

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010013123A1 (en) * 1991-11-25 2001-08-09 Freeman Michael J. Customized program creation by splicing server based video, audio, or graphical segments
US6873627B1 (en) * 1995-01-19 2005-03-29 The Fantastic Corporation System and method for sending packets over a computer network
US6075796A (en) 1997-03-17 2000-06-13 At&T Methods and apparatus for providing improved quality of packet transmission in applications such as internet telephony
US6076114A (en) 1997-04-18 2000-06-13 International Business Machines Corporation Methods, systems and computer program products for reliable data transmission over communications networks
US5872965A (en) * 1997-06-30 1999-02-16 Sun Microsystems, Inc. System and method for performing multiway branches using a visual instruction set
US6381250B1 (en) 1998-01-23 2002-04-30 Innovative Communications Technologies, Inc. Capacity allocation system using semi-autonomous network elements to implement and control a transmission schedule
US6415329B1 (en) * 1998-03-06 2002-07-02 Massachusetts Institute Of Technology Method and apparatus for improving efficiency of TCP/IP protocol over high delay-bandwidth network
US7025209B2 (en) 1998-05-29 2006-04-11 Palmsource, Inc. Method and apparatus for wireless internet access
WO2000046669A1 (en) * 1999-02-02 2000-08-10 Mentat, Inc. Internet over satellite
US6934255B1 (en) * 1999-02-02 2005-08-23 Packeteer, Inc. Internet over satellite apparatus
US6658463B1 (en) * 1999-06-10 2003-12-02 Hughes Electronics Corporation Satellite multicast performance enhancing multicast HTTP proxy system and method
FR2797543B1 (fr) 1999-08-12 2004-04-09 Cit Alcatel Procede pour faire communiquer un utilisateur avec au moins une base de donnees
US6775707B1 (en) * 1999-10-15 2004-08-10 Fisher-Rosemount Systems, Inc. Deferred acknowledgment communications and alarm management
US6687698B1 (en) * 1999-10-18 2004-02-03 Fisher Rosemount Systems, Inc. Accessing and updating a configuration database from distributed physical locations within a process control system
EP1109359A3 (de) 1999-12-18 2003-04-02 Roke Manor Research Limited Überlastregelung für Internetzugang
US6947440B2 (en) * 2000-02-15 2005-09-20 Gilat Satellite Networks, Ltd. System and method for internet page acceleration including multicast transmissions
US6831912B1 (en) 2000-03-09 2004-12-14 Raytheon Company Effective protocol for high-rate, long-latency, asymmetric, and bit-error prone data links
JP2001298479A (ja) 2000-04-12 2001-10-26 Nec Corp インターネット電話装置
US20010043573A1 (en) * 2000-04-14 2001-11-22 Frank Kelly System and method for providing control of a two-way satellite system
AU2001263118A1 (en) * 2000-05-15 2001-11-26 Innovative Communications Technologies, Inc. A system and method for an internet cache
US20020186683A1 (en) * 2001-04-02 2002-12-12 Alan Buck Firewall gateway for voice over internet telephony communications
US20030050015A1 (en) * 2001-09-10 2003-03-13 Frank Kelly Automated signal measurement in a satellite communication system
US20030058810A1 (en) * 2001-09-26 2003-03-27 Mark Petronic Hybrid satellite system for providing one-way and two-way communication services
US8615601B2 (en) * 2004-05-21 2013-12-24 Oracle International Corporation Liquid computing
US20070069896A1 (en) * 2005-09-27 2007-03-29 Bea Systems, Inc. RFID system using SOA

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10017631A1 (de) * 2000-04-05 2001-10-18 Teles Ag Verfahren und Gateway zum transparenten Übertragen von Außenband-Signalisierungsinformationen über ein Paketvermittlungsnetz

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHOTIKAPONG,Y,SUN,Z.: Evaluation of Application Performance for TCP/IP via Satellite Links. In: Satellite Services and the Internet (Ref.No. 2000/017),IEE Seminar on, 2000 *
CHRUNGOO,Abhay,et.al.: Smart Proxy: Reducing Latency for HTTP Based Web Transfers Across Satellite Links. In: Personal Wireless Communications, 2000,IEEE International Conference on 2000, S.572-576 *
CRISCUOLO,Ed,et.al.: Transport Protocols and Applications for Internet Use in Space. In: Aerospace Conference,2001,IEEE Proceedings, Vol.2,2001 *
Ein Chatprogramm mit UDP, Chatten mit UDP-Sockets zu finden im Internet am 25.April 2001 (Nachweis durch http://web.archive.org) unter: http://web.archive.org/web/*/www.fh-niederrhein.dejavakurs/wn7/udp.htm *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004088949A2 (de) * 2003-04-02 2004-10-14 Rock Technologies Limited Verfahren zur reduzierung der latenzzeit bei der interaktiven datenkommunikation zwischen einem terminal server und einem terminal-server client in einem geostationären satellitennetzwerk
WO2004088949A3 (de) * 2003-04-02 2005-01-27 Klaus Rock Verfahren zur reduzierung der latenzzeit bei der interaktiven datenkommunikation zwischen einem terminal server und einem terminal-server client in einem geostationären satellitennetzwerk
WO2006027367A1 (de) * 2004-09-10 2006-03-16 Kai Lauterjung Datenkommunikationssystem, sowie datenkommunikationsverfahren
WO2006037600A1 (de) * 2004-10-01 2006-04-13 Rock Technologies Inc. Verfahren zur reduzierung der latenzzeit bei der interaktiven datenkommunikation zwischen einem terminal server und einem terminal-server client in einem drahtlosen telekommunikationsnetzwerk
DE102004048343B4 (de) 2004-10-01 2022-09-22 Satcloud Ip Holding Llc Verfahren zur Reduzierung der Latenzzeit bei der interaktiven Datenkommunikation zwischen einem Terminal Server und einem Terminal-Server Client in einem Telekommunikationsnetzwerk, insbesondere einem GSM oder einem UMTS Netzwerk

Also Published As

Publication number Publication date
EP1466425B1 (de) 2011-06-08
ATE512509T1 (de) 2011-06-15
WO2003056718A1 (de) 2003-07-10
US20030236828A1 (en) 2003-12-25
AU2002360091A1 (en) 2003-07-15
EP1466425A1 (de) 2004-10-13
US8082357B2 (en) 2011-12-20

Similar Documents

Publication Publication Date Title
EP1466425B1 (de) Verfahren zur reduzierung der latenzzeit bei der interaktiven datenkommunikation über ein satellitennetzwerk
DE69931215T2 (de) Verfahren und Rechnerprogrammprodukt zum effizienten und sicheren Senden von kleinen Datennachrichten von einem Sender zu einer grossen Anzahl von Empfangssystemen
DE60123486T2 (de) System und Verfahren für die Bereitstellung von über das Internet gesendeten, auf einer hierarchischen Struktur basierenden Daten
DE4303643A1 (de) Röntgenanlage
WO1999003285A2 (de) Verfahren und vorrichtung zur gegenseitigen authentisierung von komponenten in einem netz mit dem challenge-response-verfahren
DE602004002603T2 (de) Empfangsbestätigung für einen Inhalt zu einer HTTP/TCP Vorrichtung
DE19822211B4 (de) Verfahren zur Reduktion des Datendurchsatzes bei der Übertragung von zumindest teilweise veränderlichen objektbezogenen Daten zwischen kommunizierenden Kommunikationsmodulen, sowie eine Einrichtung zur Durchführung des Verfahrens
EP2297967B1 (de) Vorrichtungen und verfahren zum verarbeiten von datenpaketen eines datenstroms, sowie eine verwendung der vorrichtungen
DE10231958A1 (de) Direkt adressiertes Multicast-Protokoll
EP1604494B1 (de) Verfahren und sender zur übertragung von datenpaketen
DE10338073A1 (de) Verfahren und Vorrichtung zum Vordringen zu Meßdaten von allgemein angezeigten heterogenen Meßquellen
DE19543892A1 (de) Verfahren und Vorrichtung zum Bestimmen, wann alle Pakete einer Nachricht angekommen sind
EP0835569B1 (de) Verfahren zur wiederholung fehlerhaft übertragener daten
WO2023036597A1 (de) Verfahren und system zur steuerung einer übertragung von daten in abhängigkeit wenigstens eines attributs einer datei
DE19619491C2 (de) Verfahren zur Übertragung und Installation und/oder Aktualisierung von Software und/oder Daten
DE102010023299B4 (de) Verfahren zum Übertragen von Daten
EP1623342A2 (de) Verfahren zur reduzierung der latenzzeit bei der interaktiven datenkommunikation zwischen einem terminal server und einem terminal-server client in einem geostationären satelitennetzwerk
EP2741453B1 (de) Verfahren zum betreiben eines busgeräts einer gebäudeautomatisierungseinrichtung, sowie entsprechendes konfigurationsgerät und entsprechendes computerprogrammprodukt
DE10044161B4 (de) Verfahren und System zur Kommunikation mit dem Internet
EP1359720B1 (de) Vorrichtung und Verfahren zur Übertragung von Datenpaketen
EP1473864B1 (de) Kollisionsfreie Übermittlung von Datentelegrammen mittels mindestens eines Repeaters
DE10039901A1 (de) Verfahren zum Übertragen strukturierter Datenmengen zwischen einer Client-Einrichtung und einer Server-Einrichtung
DE102004043868B4 (de) Datenkommunikationssystem, sowie Datenkommunikationsverfahren
DE102020214358A1 (de) Computerimplementiertes Verfahren zum Übertragen von einzelnen Nachrichten mittels eines MQTT-Protokolls
DE102004048343B4 (de) Verfahren zur Reduzierung der Latenzzeit bei der interaktiven Datenkommunikation zwischen einem Terminal Server und einem Terminal-Server Client in einem Telekommunikationsnetzwerk, insbesondere einem GSM oder einem UMTS Netzwerk

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
8127 New person/name/address of the applicant

Owner name: ROCK TECHNOLOGIES LTD.,, HAMILTON, BM

8181 Inventor (new situation)

Inventor name: ROCK, UTE, 73432 AALEN, DE

Inventor name: ROCK, KLAUS, 73432 AALEN, DE

8139 Disposal/non-payment of the annual fee