DE10307725B4 - Korrosions-und Gashydratinhibitoren mit verbesserter Wasserlöslichkeit und erhöhter biologischer Abbaubarkeit - Google Patents

Korrosions-und Gashydratinhibitoren mit verbesserter Wasserlöslichkeit und erhöhter biologischer Abbaubarkeit Download PDF

Info

Publication number
DE10307725B4
DE10307725B4 DE10307725A DE10307725A DE10307725B4 DE 10307725 B4 DE10307725 B4 DE 10307725B4 DE 10307725 A DE10307725 A DE 10307725A DE 10307725 A DE10307725 A DE 10307725A DE 10307725 B4 DE10307725 B4 DE 10307725B4
Authority
DE
Germany
Prior art keywords
alkyl
alkenyl
compounds
inhibitors
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE10307725A
Other languages
English (en)
Other versions
DE10307725A1 (de
Inventor
Uwe Dr. Dahlmann
Michael Dr. Feustel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clariant Produkte Deutschland GmbH
Original Assignee
Clariant Produkte Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clariant Produkte Deutschland GmbH filed Critical Clariant Produkte Deutschland GmbH
Priority to DE10307725A priority Critical patent/DE10307725B4/de
Priority to DE502004011227T priority patent/DE502004011227D1/de
Priority to EP04002385A priority patent/EP1466903B1/de
Priority to NO20040588A priority patent/NO325713B1/no
Priority to US10/783,724 priority patent/US7253138B2/en
Priority to MXPA04001680A priority patent/MXPA04001680A/es
Publication of DE10307725A1 publication Critical patent/DE10307725A1/de
Application granted granted Critical
Publication of DE10307725B4 publication Critical patent/DE10307725B4/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/30Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members
    • C07D207/34Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/36Oxygen or sulfur atoms
    • C07D207/402,5-Pyrrolidine-diones
    • C07D207/4042,5-Pyrrolidine-diones with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms, e.g. succinimide
    • C07D207/408Radicals containing only hydrogen and carbon atoms attached to ring carbon atoms
    • C07D207/412Acyclic radicals containing more than six carbon atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/52Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/54Compositions for in situ inhibition of corrosion in boreholes or wells
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G75/00Inhibiting corrosion or fouling in apparatus for treatment or conversion of hydrocarbon oils, in general
    • C10G75/02Inhibiting corrosion or fouling in apparatus for treatment or conversion of hydrocarbon oils, in general by addition of corrosion inhibitors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/14Nitrogen-containing compounds
    • C23F11/145Amides; N-substituted amides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/14Nitrogen-containing compounds
    • C23F11/149Heterocyclic compounds containing nitrogen as hetero atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/22Hydrates inhibition by using well treatment fluids containing inhibitors of hydrate formers

Abstract

Verbindungen der Formel (1)
Figure 00000001
worin
R1 C1- bis C22-Alkyl, C2- bis C22-Alkenyl, C6- bis C30-Aryl- oder C7- bis C30-Alkylaryl, -CHR5-COO oder -O,
R2 Wasserstoff, -CH3 oder -OH,
R3, R4 unabhängig voneinander C1- bis C22-Alkyl, C2- bis C22-Alkenyl, C6- bis C30-Aryl- oder C7- bis C30-Alkylaryl,
R5 Wasserstoff, C1- bis C22-Alkyl oder C2- bis C22-Alkenyl,
A eine C2- bis C4-Alkylengruppe,
D eine C2- bis C5-Alkylengruppe, die ein oder zwei Heteroatome enthalten und an jeder Position einen Substituenten R6 tragen kann,
R6 ein organischer Rest, der 1 bis 300 C-Atome enthält, und der Heteroatome enthalten kann,
m eine Zahl von 0 bis 30,
n eine Zahl von 1 bis 18 bedeuten.

Description

  • Die vorliegende Erfindung betrifft ein Additiv und ein Verfahren zur Korrosionsinhibierung und Gashydratinhibierung an und in Einrichtungen zur Förderung und Transport von Kohlenwasserstoffen in der Erdölförderung und -verarbeitung.
  • In technischen Prozessen, bei denen Metalle mit Wasser oder auch mit Öl-Wasser-Zweiphasensystemen in Kontakt kommen, besteht die Gefahr der Korrosion. Die ist besonders ausgeprägt, wenn die wässrige Phase wie bei Erdölgewinnungs- und Verarbeitungsprozessen stark salzhaltig oder durch gelöste Sauergase, wie Kohlendioxid bzw. Schwefelwasserstoff, azid ist. Daher ist die Ausbeutung einer Lagerstätte und die Verarbeitung von Erdöl ohne spezielle Additive zum Schutz der eingesetzten Ausrüstungen nicht möglich.
  • Geeignete Korrosionsschutzmittel für die Erdölförderung und -verarbeitung sind zwar schon seit langem bekannt, jedoch aus Gründen des Umweltschutzes für Offshore-Anwendungen zukünftig inakzeptabel.
  • Als typische Korrosionsinhibitoren des Standes der Technik besitzen Amide, Amidoamine bzw. Imidazoline von Fettsäuren und Polyaminen eine äußerst gute Öllöslichkeit und sind somit in der korrosiven Wasserphase aufgrund schlechter Verteilungsgleichgewichte (Partitioning) nur in geringer Konzentration vorhanden. Demgemäss müssen diese Produkte trotz ihrer schlechten biologischen Abbaubarkeit in hoher Dosierung eingesetzt werden.
  • DE-A-199 30 683 beschreibt entsprechende Amidoamine/Imidazoline, die durch Umsetzung von Alkylpolyglykolethercarbonsäuren mit Polyaminen erhalten werden, und die aufgrund eines besseren Partitioning in geringeren Konzentrationen eingesetzt werden können.
  • Quartäre Alkylammoniumverbindungen (Quats) stellen alternative Korrosionsschutzmittel des Standes der Technik dar, die neben den korrosionsinhibierenden auch biostatische Eigenschaften besitzen können. Trotz einer verbesserten Wasserlöslichkeit zeigen die Quats, zum Beispiel im Vergleich zu den Imidazolinen, eine deutlich reduzierte Filmpersistenz und führen daher ebenfalls nur in höherer Dosierung zu einem effektiven Korrosionsschutz. Die starke Algentoxizität und die mäßige biologische Abbaubarkeit beschränken den Einsatz von Quats immer mehr auf ökologisch unsensible Anwendungsgebiete, z.B. Onshore.
  • EP-B-0 946 788 beschreibt ein Verfahren zum Schutz von Metalloberflächen gegenüber Korrosion unter Verwendungen von Esterquats, von denen eine gute biologische Abbaubarkeit und eine geringe Aquatoxizität offenbart wird.
  • EP-A-0 320 769 offenbart gegebenenfalls quaternierte Fettsäureester von oxalkylierten Alkylamino-alkylenaminen und deren Verwendung als Korrosionsinhibitor.
  • EP-B-0 212 265 beschreibt quartäre Polykondensate aus alkoxylierten Alkylaminen und Dicarbonsäuren und deren Verwendung als Korrosionsinhibitor und Spalter in Rohölen.
  • EP-B-0 446 616 beschreibt Ampholyte und Betaine auf Basis Fettsäure-Amidoalkylaminen, die unter den gegebenen Testbedingungen einen sehr guten Korrosionsschutz und eine wesentlich reduzierte Algentoxizität aufweisen.
  • EP-B-0 584 711 offenbart Ester, Amide bzw. Imide von Alkenylbernsteinsäuren mit Alkoxyalkylaminen und deren Metall- bzw. Ammoniumsalze als Emulgatoren und Korrosionsinhibitoren für Metallbearbeitungshilfsmittel. Die Verwendung von Alkenylbernsteinsäure-ester- bzw. amidoaminquats oder entsprechenden Betainen ist nicht beschrieben.
  • Gashydrate sind kristalline Einschlussverbindungen von Gasmolekülen in Wasser, die sich unter bestimmten Temperatur- und Druckverhältnissen (niedrige Temperatur und hoher Druck) bilden. Hierbei bilden die Wassermoleküle Käfigstrukturen um die entsprechenden Gasmoleküle aus. Das aus den Wassermolekülen gebildete Gittergerüst ist thermodynamisch instabil und wird erst durch die Einbindung von Gastmolekülen stabilisiert. Diese eisähnlichen Verbindungen können in Abhängigkeit von Druck und Gaszusammensetzung auch über den Gefrierpunkt von Wasser (bis über 25°C) hinaus existieren.
  • In der Erdöl- und Erdgasindustrie sind insbesondere die Gashydrate von großer Bedeutung, die sich aus Wasser und den Erdgasbestandteilen Methan, Ethan, Propan, Isobutan, n-Butan, Stickstoff, Kohlendioxid und Schwefelwasserstoff bilden. Insbesondere in der heutigen Erdgasförderung stellt die Existenz dieser Gashydrate ein großes Problem dar, besonders dann, wenn Nassgas oder Mehrphasengemische aus Wasser, Gas und Alkangemischen unter hohem Druck niedrigen Temperaturen ausgesetzt werden. Hier führt die Bildung der Gashydrate aufgrund ihrer Unlöslichkeit und kristallinen Struktur zur Blockierung verschiedenster Fördereinrichtungen, wie Pipelines, Ventilen oder Produktionseinrichtungen, in denen über längere Strecken bei niedrigeren Temperaturen Nassgas oder Mehrphasengemische transportiert werden, wie dies speziell in kälteren Regionen der Erde oder auf dem Meeresboden vorkommt.
  • Außerdem kann die Gashydratbildung auch beim Bohrvorgang zur Erschließung neuer Gas- oder Erdöllagerstätten bei entsprechenden Druck- und Temperaturverhältnissen zu Problemen führen, indem sich in den Bohrspülflüssigkeiten Gashydrate bilden.
  • Um solche Probleme zu vermeiden, kann die Gashydratbildung in Gaspipelines, beim Transport von Mehrphasengemischen oder in Bohrspülflüssigkeiten durch Einsatz von größeren Mengen (mehr als 10 Gew.-% bezüglich des Gewichts der Wasserphase) niederen Alkoholen, wie Methanol, Glykol, oder Diethylenglykol unterdrückt werden. Der Zusatz dieser Additive bewirkt, dass die thermodynamische Grenze der Gashydratbildung zu niedrigeren Temperaturen und höheren Drücken hin verlagert wird (thermodynamische Inhibierung). Durch den Zusatz dieser thermodynamischen Inhibitoren werden allerdings größere Sicherheitsprobleme (Flammpunkt und Toxizität der Alkohole), logistische Probleme (große Lagertanks, Recycling dieser Lösungsmittel) und dementsprechend hohe Kosten, speziell in der Offshore-Förderung, verursacht.
  • Heute versucht man deshalb, thermodynamische Inhibitoren zu ersetzen, indem man bei Temperatur- und Druckbereichen, in denen sich Gashydrate bilden können, Additive in Mengen < 2 % zusetzt, die die Gashydratbildung entweder zeitlich hinauszögern (kinetische Inhibitoren) oder die Gashydratagglomerate klein und damit pumpbar halten, so dass diese durch die Pipeline transportiert werden können (sog. Agglomerat-Inhibitoren oder Anti-Agglomerates). Die dabei eingesetzten Inhibitoren behindern entweder die Keimbildung und/oder das Wachstum der Gashydratpartikel, oder modifizieren das Hydratwachstum derart, dass kleinere Hydratpartikel resultieren.
  • Als Gashydratinhibitoren wurden in der Patentliteratur neben den bekannten thermodynamischen Inhibitoren eine Vielzahl monomerer als auch polymerer Substanzklassen beschrieben, die kinetische Inhibitoren oder Agglomeratinhibitoren darstellen. Von besonderer Bedeutung sind hierbei Polymere mit Kohlenstoff-Backbone, die in den Seitengruppen sowohl cyclische (Pyrrolidon- oder Caprolactamreste) als auch acyclische Amidstrukturen enthalten.
  • EP-B-0 736 130 offenbart ein Verfahren zur Inhibierung von Gashydraten, welches die Zuführung einer Substanz der Formel
    Figure 00040001
    mit X = S, N – R4 oder P – R4, R1, R2 und R3 = Alkyl mit mindestens 4 Kohlenstoffatomen, R4 = N oder ein organischer Rest, und Y = Anion erfordert. Umfasst werden also Verbindungen der Formel
    Figure 00050001
    worin R4 ein beliebiger Rest sein kann, die Reste R1 bis R3 aber Alkylreste mit mindestens 4 Kohlenstoffatomen darstellen müssen.
  • EP-B-0 824 631 offenbart ein Verfahren zur Inhibierung von Gashydraten, welches die Zuführung einer Substanz der Formel
    Figure 00050002
    mit R1, R2 = gerade/verzweigte Alkylreste mit 4 oder 5 Kohlenstoffatomen, R3, R4 = organische Reste mit mindestens 8 Kohlenstoffatomen und A = Stickstoff oder Phosphor erfordert. Y ist ein Anion. Es müssen zwei der Reste R1 bis R4 gerade oder verzweigte Alkylreste mit 4 oder 5 Kohlenstoffatomen sein.
  • US-5 648 575 offenbart ein Verfahren zur Inhibierung von Gashydraten. Das Verfahren umfasst die Verwendung einer Verbindung der Formel
    Figure 00060001
    worin R1, R2 gerade oder verzweigte Alkylgruppen mit mindestens 4 Kohlenstoffatomen, R3 ein organischer Rest mit mindestens 4 Atomen, X Schwefel, NR4 oder PR4, R4 Wasserstoff oder ein organischer Rest, und Y ein Anion sind. Das Dokument offenbart nur solche Verbindungen, die mindestens zwei Alkylreste mit mindestens 4 Kohlenstoffatomen aufweisen.
  • US-6 025 302 offenbart Polyetheramin-ammoniumverbindungen als Gashydratinhibitoren, deren Ammoniumstickstoffatom neben der Polyetheraminkette 3 Alkylsubstituenten trägt.
  • WO-99/13197 offenbart Ammoniumverbindungen als Gashydratinhibitoren, die wenigstens eine mit Alkylcarbonsäuren veresterte Alkoxygruppe besitzen. Die Vorteile einer Verwendung von Alkenylbersteinsäurederivaten ist nicht offenbart.
  • WO-01/09082 offenbart ein Verfahren zur Herstellung von quartären Aminen, die jedoch keine Alkoxygruppen tragen, und deren Verwendung als Gashydratinhibitoren.
  • WO-00/078 706 offenbart quartäre Ammoniumverbindungen als Gashydratinhibitoren, die jedoch keine Carbonylreste tragen.
  • EP-B-914407 offenbart die Verwendung von trisubstituierten Aminoxiden als Gashydratinhibitoren.
  • US-5 254 138 offenbart Detergent-Additive für Dieselkraftstoff, die Succinimid-Polyaminderivate umfassen.
  • Aufgabe der vorliegenden Erfindung war es, neue Korrosionsinhibitoren zu finden, die bei konstant gutem oder verbessertem Korrosionsschutz neben einer optimierten Wasserlöslichkeit, einer schnelleren Filmbildung und somit verbesserten Filmpersistenz auch eine verbesserte biologische Abbaubarkeit im Vergleich zu den Korrosionsinhibitoren des Standes der Technik bieten.
  • Aufgabe der vorliegenden Erfindung war es ferner, verbesserte Additive zu finden, die sowohl die Bildung von Gashydraten verlangsamen (kinetische Inhibitoren) als auch Gashydratagglomerate klein und pumpbar halten (Anti-Agglomerates), um so ein breites Anwendungsspektrum mit hohem Wirkpotential zu gewährleisten. Des weiteren sollten die derzeit verwendeten thermodynamischen Inhibitoren (Methanol und Glykole), die beträchtliche Sicherheitsprobleme und Logistikprobleme verursachen, ersetzt werden können.
  • Gashydratinhibitoren des Standes der Technik werden gewöhnlich mit Korrosionsinhibitoren co-additiviert, um Korrosion der Transport- und Fördereinrichtungen vorzubeugen. Aufgrund der häufig nicht unmittelbar gegebenen Verträglichkeit von Gashydratinhibitor und Korrosionsschutzmittel bei der Formulierung ergibt sich daraus für den Anwender ein zusätzlichen Aufwand. Ein wesentlicher Vorteil gegenüber dem Stand der Technik bestände, wenn eine Co-Additivierung mit Korrosionsinhibitoren nicht mehr zwingend erforderlich ist.
  • Es wurde nun überraschenderweise gefunden, dass quartäre Alkylaminoalkyl/alkoxy-imide von Dicarbonsäuren eine ausgezeichnete Wirkung als Korrosionsinhibitoren und Gashydratinhibitoren aufweisen, sowie eine verbesserte Filmpersistenz und gute biologische Abbaubarkeit zeigen.
  • Gegenstand der Erfindung sind Verbindungen der Formel (1)
    Figure 00070001
    worin
    R1 C1- bis C22-Alkyl, C2- bis C22-Alkenyl, C6- bis C30-Aryl- oder C7- bis C30-Alkylaryl, -CHR5-COO- oder -O,
    R2 Wasserstoff, -CH3 oder -OH,
    R3, R4 unabhängig voneinander C1- bis C22-Alkyl, C2- bis C22-Alkenyl, C6- bis C30-Aryl- oder C7- bis C30-Alkylaryl,
    R5 Wasserstoff, C1- bis C22-Alkyl oder C2- bis C22-Alkenyl,
    A eine C2- bis C4-Alkylengruppe,
    D eine C2- bis C5-Alkylengruppe, die ein oder zwei Heteroatome enthalten und an jeder Position einen Substituenten R6 tragen kann,
    R6 ein organischer Rest, der 1 bis 300 C-Atome enthält, und der Heteroatome enthalten kann,
    m eine Zahl von 0 bis 30,
    n eine Zahl von 1 bis 18 bedeuten.
  • Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Inhibierung von Korrosion an Metalloberflächen, insbesondere von eisenhaltigen Metallen, indem einem korrosiven System, welches mit den Metalloberflächen in Kontakt steht, mindestens eine Verbindung der Formel (1) zugesetzt wird.
  • Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Inhibierung von Gashydraten, indem einem zur Bildung von Gashydraten neigenden System aus Wasser und Kohlenwasserstoffen mindestens eine Verbindung der Formel (1) zugesetzt wird.
  • Ein weiterer Gegenstand der Erfindung ist die Verwendung von Verbindungen der Formel 1 als Korrosionsinhibitoren und Gashydratinhibitoren.
  • Korrosive Systeme im Sinne dieser Erfindung sind bevorzugt flüssig/flüssig- bzw. flüssig/gasförmig-Mehrphasensysteme, enthaltend Wasser und Kohlenwasserstoffe, die in freier und/oder gelöster Form korrosive Bestandteile, wie Salze und Säuren, enthalten. Die korrosiven Bestandteile können auch gasförmig sein, wie etwa Schwefelwasserstoff und Kohlendioxid.
  • Kohlenwasserstoffe im Sinne dieser Erfindung sind organische Verbindungen, die Bestandteile des Erdöls/Erdgases sind, und deren Folgeprodukte. Kohlenwasserstoffe im Sinne dieser Erfindung sind auch leichtflüchtige Kohlenwasserstoffe, wie beispielsweise Methan, Ethan, Propan, Butan. Für die Zwecke dieser Erfindung zählen dazu auch die weiteren gasförmigen Bestandteile des Erdöls/Erdgases, wie etwa Schwefelwasserstoff und Kohlendioxid.
  • R1, R3 und R4 stehen vorzugsweise unabhängig voneinander für eine Alkyl- oder Alkenylgruppe von 1 bis 14 Kohlenstoffatomen, insbesondere für solche Gruppen mit 1 bis 6 Kohlenstoffatomen und speziell für Methyl- oder Butyl-Gruppen.
  • Steht R1 für C1- bis C22-Alkyl, C2- bis C22-Alkenyl, C6- bis C30-Aryl- oder C7- bis C30-Alkylaryl, so sind als Gegenionen für die Verbindungen gemäß Formel (1) alle Anionen geeignet, die die Löslichkeit der Verbindungen der Formel (1) in den organisch-wässrigen Mischphasen nicht beeinträchtigen. Solche Gegenionen sind beispielsweise Methylsulfationen (Methosulfat) oder Halogenidionen.
  • Steht R1 für Reste -CHR5-COO bzw. -O, so sind die Verbindungen der Formel (1) Betaine bzw. Aminoxide und besitzen als innere Salze (Ampholyte) ein intramolekulares Gegenion.
  • R2 und R5 stehen vorzugsweise für Wasserstoff.
  • m steht vorzugsweise für eine Zahl zwischen 1 und 30, insbesondere zwischen 2 und 12, speziell 3 und 6.
  • n steht vorzugsweise für eine Zahl zwischen 2 und 12, insbesondere für 3 bis 6.
  • A kann geradkettig oder verzweigt sein und steht vorzugsweise für eine Ethylen- oder Propylengruppe, insbesondere eine Ethylengruppe. Bei den durch (O-A)m bezeichneten Alkoxygruppen kann es sich auch um gemischte Alkoxygruppen handeln.
  • D erzeugt einen Ringschluss zwischen den Carbonylgruppen gemäß Formel 1. Die Ringgröße beträgt unter Einschluss der Carbonyl-Kohlenstoffatome und des Stickstoffatoms zwischen 5 und 8 Ringatomen. D ist somit eine Alkylengruppe mit 2 bis 5 Kohlenstoffatomen, die ein oder zwei Heteroatome enthalten kann.
  • D kann an jeder Position einen Substituenten R6 tragen.
  • R6 kann ein beliebiger organischer Rest sein, der 1 bis 300 C-Atome enthält, und der Heteroatome enthalten kann. Enthält R6 keine Heteroatome, so handelt es sich vorzugsweise um C1- bis C100-Alkyl- oder C2- bis C100-Alkenyl-Reste, die als Oligomere von C2- bis C8-Alkylenbausteinen abgeleitet sind, insbesondere von Ethylen, Propylen und Butylen.
  • Steht R6 für Alkyl- oder Alkenyl-Reste, können diese geradkettig oder verzweigt sein, vorzugsweise verzweigt. In einer besonderen Ausführungsform sind die verzweigten Alkyl- oder Alkenyl-Reste Polypropylen oder Polyisobutylen mit mehr als 12 Kohlenstoffatomen.
  • Enthält R6 Heteroatome, so handelt es sich vorzugsweise um Stickstoff- oder Sauerstoffatome oder beides, vorzugsweise um beides. Die Stickstoffatome können in quaternierter Form vorliegen.
  • R6 steht vorzugsweise für einen Rest der Formel (2)
    Figure 00100001
    worin
    B für einen C1- bis C100-Alkylen- oder C2- bis C100-Alkenylen-Rest steht, der als Oligomer von C2- bis C8-Alkylenbausteinen, insbesondere von Ethylen, Propylen und Butylen, abgeleitet ist und die Bindung an D in Formel (1) über eine freie Valenz einer Alkyl-Gruppe an beliebiger Stelle von B erfolgt.
  • R1, R2, R3, R4, m und n haben die bereits oben angegebenen Bedeutungen mit den jeweils weiter oben für R1, R2, R3, R4, m und n angegebenen Vorzugsbereichen.
  • Die erfindungsgemäßen Verbindungen können alleine oder in Kombination mit anderen bekannten Korrosionsinhibitoren und/oder Gashydratinhibitoren eingesetzt werden. Im allgemeinen wird man soviel des erfindungsgemäßen Korrosionsinhibitors und/oder Gashydratinhibitoren einsetzen, dass man unter den gegebenen Bedingungen einen ausreichenden Korrosionsschutz und Schutz vor Gashydratbildung erhält.
  • Bevorzugte Einsatzkonzentrationen der Korrosionsinhibitoren bezogen auf die reinen erfindungsgemäßen Verbindungen sind 5 bis 5000 ppm, bevorzugt 10 bis 1000, insbesondere 15 bis 150 ppm.
  • Die Gashydratinhibitoren werden im allgemeinen in Mengen zwischen 0,01 und 5 Gew.-% der reinen erfindungsgemäßen Verbindungen bezogen auf die wässrige Phase, vorzugsweise zwischen 0,05 und 2 Gew.-% verwendet.
  • Besonders geeignet als Korrosionsinhibitoren und/oder Gashydratinhibitoren sind auch Mischungen der erfindungsgemäßen Produkte mit anderen literaturbekannten Korrosionsinhibitoren und/oder Gashydratinhibitoren.
  • Besonders geeignet als Korrosionsinhibitoren und somit eine bevorzugte Ausführungsform dieser Erfindung sind Mischungen der Verbindungen gemäß Formel (1), wie mit Amidoaminen und/oder Imidazolinen aus Fettsäuren und Polyaminen und deren Salzen, quartären Ammoniumsalzen, Alkylpyridinen oxethylierten/oxpropylierten Aminen, Amphoglycinaten und -propionaten, Betainen oder Verbindungen beschrieben in DE-A-199 30 683.
  • Besonders geeignet als Gashydratinhibitoren und somit eine bevorzugte Ausführungsform dieser Erfindung sind Mischungen der Verbindungen gemäß Formel (1) mit einem oder mehreren Polymeren mit einem durch Polymerisation erhaltenen Kohlenstoff-Backbone und Amidbindungen in den Seitenketten. Hierzu zählen besonders Homopolymere und/oder Copolymere des Vinylpyrrolidons, Vinylcaprolactams, iso-Propylacrylamids, Acryloylpyrrolidins, N-Methyl-N-Vinylacetamid sowie weiterer anionischer, kationischer und neutraler Comonomere mit vinylischer Doppelbindung.
  • Werden Mischungen verwendet, so betragen die Konzentrationsverhältnisse zwischen den erfindungsgemäßen Gashydratinhibitoren und den zugemischten Komponenten von 90:10 bis 10:90 Gewichtsprozente, vorzugsweise werden Mischungen in den Verhältnissen 75:25 bis 25:75, und insbesondere von 60:40 bis 40:60 verwendet.
  • Die erfindungsgemäßen Verbindungen können dadurch hergestellt werden, dass Dicarbonsäurederivate, w.z.B. Alkenylbernsteinsäureanhydride, mit tertiären Alkylamino-alkyl/alkoxy-aminen zu den entsprechenden Dicarbonsäureimiden kondensiert werden. Anschließend wird mit geeigneten Alkylierungsmitteln quaterniert.
  • Die Herstellung von Alkenylbernsteinsäureanhydriden durch thermische oder katalysierte "En"-Reaktion ist im Stand der Technik beschrieben. Dabei werden Olefine, bevorzugt Olefine mit terminaler Doppelbindung, mit Maleinsäureanhydrid unter erhöhten Temperaturen umgesetzt. In Abhängigkeit von der Reaktionsführung, von der Art des verwendeten Olefins und vom verwendeten Molverhältnis werden Mono- und/oder Bisaddukte, gegebenenfalls Polyaddukte erhalten.
  • Die Herstellung der Alkylamino-alkyl/alkoxy-amine, wie Alkylendiamine oder auch Alkylaminoalkyletheramine ist im Stand der Technik beschrieben.
  • Basis der verwendeten tertiären Alkylamino-alkyl/alkoxy-amine sind vorzugsweise Alkylendiamine mit C1- bis C22-Alkylresten oder C2- bis C22-Alkenylresten, bevorzugt C1- bis C8-Dialkylamino-alkylenamine. Besonders geeignete Dialkylaminoalkylenamine sind beispielsweise N,N-Dibutylaminopropylamin, N,N-Diethylaminopropylamin, N,N-Dimethylamino-propylamin, N,N-Dimethylaminobutylamin, N,N-Dimethylaminohexylamin, N,N-Dimethylaminodecylamin, N,N-Dibutylaminoethylamin und N,N-Dimethylamino-2-hydroxypropylamin.
  • Die Alkenylbernsteinsäureanhydride werden im allgemeinen mit den Alkylendiaminen derart umgesetzt, dass unter Eliminierung von Reaktionswasser eine vollständige Kondensation zum Alkenylsuccinimid erfolgt. Der Umsetzungsgrad kann durch die Bestimmung der Säurezahl und/oder durch die Bestimmung des Basenstickstoffs verfolgt werden. Die Reaktion erfolgt bei 60–200°C, bevorzugt bei 120–160°C, um einen möglichst vollständigen Umsatz zu gewährleisten. Die verfahrensbedingte Bildung von entsprechenden Amiden als zwangsanfallende Nebenprodukte und die daraus resultierenden Folgeprodukte sind umfasst.
  • Die Umsetzung erfolgt in Substanz, kann aber auch bevorzugt in Lösung durchgeführt werden. Insbesondere wenn hohe Umsätze und niedrigere Säurezahlen von den resultierenden Alkenylsuccinimiden angestrebt werden, ist die Verwendung von Lösemitteln erforderlich. Geeignete Lösemittel für die Herstellung sind organische Verbindungen, durch die das Reaktionswasser azeotrop entfernt wird. Insbesondere können aromatische Lösemittel oder Lösemittelgemische, oder Alkohole verwendet werden. Besonders bevorzugt ist 2-Ethylhexanol. Die Reaktionsführung erfolgt dann beim Siedepunkt des Azeotrops.
  • Für die Herstellung der erfindungsgemäßen Quats werden in einem anschließenden Reaktionsschritt die Alkenylsuccinimidoalkylamine quaterniert. Die Quaternierung kann durch entsprechende Alkylierungsmittel bei 50 bis 150°C erfolgen. Geeignete Alkylierungsmittel stellen Alkylhalogenide und Alkylsulfate dar, bevorzugt Methylchlorid, Methyljodid, Butylbromid und Dimethylsulfat.
  • Für die Herstellung der erfindungsgemäßen Betaine werden in einem anschließenden Reaktionsschritt die Alkenylsuccinimidoalkylamine mit einer Halogencarbonsäure und einer Base, bevorzugt Chloressigsäure und Natriumhydroxid umgesetzt. Dies kann geschehen, indem man die Alkenylsuccinimidoalkylamine mit 50 bis 125 Mol-% Halogencarbonsäure bei 40°C vorlegt und bei 40 bis 100°C durch einmalige oder portionierte Zugabe der Base und der zu 125 Mol-% verbleibenden Restmenge Halogencarbonsäure umsetzt.
  • Als basische Verbindungen können Erdalkali-/Alkalimetallhydroxide oder -alkoholate (Natriummethylat, Natriumethylat, Kalium-tert.-butylat) verwendet werden, bevorzugt sind aber Alkalimetallhydroxide, besonders Natriumhydroxid oder Kaliumhydroxid, insbesondere deren wässrigen Lösungen.
  • Die Herstellung der erfindungsgemäßen Aminoxide erfolgt nach bekannten Verfahren des Standes der Technik, vorzugsweise durch Oxidation der entsprechenden tertiären Amingruppe mit Peroxiden oder Persäuren, bevorzugt mit Wasserstoffperoxid.
  • Die Umsetzung zu den erfindungsgemäßen Verbindungen erfolgt bevorzugt in Lösung, kann aber auch in Substanz durchgeführt werden. Geeignete Lösemittel für die Herstellung der Quats, Betaine bzw. Aminoxide sind inerte Alkohole wie Isopropanol oder inerte Ether wie Tetrahydrofuran, Glyme, Diglyme und MPEGs.
  • In Abhängigkeit von den gegebenen Anforderungen kann das verwendete Lösemittel im erfindungsgemäßen Produkt verbleiben oder muss destillativ entfernt werden.
  • Beispiele:
  • a) Allgemeine Vorschrift für die Herstellung der Alkenylsuccinimido-alkylamine
  • In einer Rührapparatur mit Destillationsbrücke wurden 2,5 mol des entsprechenden Alkenylbernsteinsäureanhydrids (gemäß Verseifungszahl) unter Stickstoffspülung vorgelegt und auf 60°C erwärmt. Dann wurden 2,5 mol des entsprechenden Alkylendiamins über 2 Stunde zugetropft, wobei sich die Reaktionsmischung auf ca. 100°C erwärmte. Die Reaktionsmischung wurde 1 h bei 100°C nachgerührt und dann die Reaktionstemperatur über eine Periode von 8 Stunden kontinuierlich von 100°C auf 160°C gesteigert, wobei Reaktionswasser abdestillierte. Abschließend wurde 4 Stunden bei 160°C nachreagiert.
  • Beispiel 1 (Dodecenyl-/Tetradecenylsuccinimido-N,N-dimethyl-propylamin)
  • Aus 671 g Dodecenyl-/Tetradecenyl-bernsteinsäureanhydrid (VZ = 418,1 mg KOH/g) und 255,5 g Dimethylaminopropylamin (DMAPA) wurden 875 g Dodecenyl-/Tetradecenylsuccinimido-N,N-dimethyl-propylamin mit SZ = 3,2 mg KOH/g und bas.-N = 4,03 % erhalten.
  • Beispiel 2 (Tetrapropylensuccinimido-N,N-dimethyl-propylamin)
  • Aus 732,0 g Tetrapropylen-bernsteinsäureanhydrid (VZ = 383,3 mg KOH/g) und 255,5 g Dimethylaminopropylamin (DMAPA) wurden 945 g Tetrapropylensuccinimido-N,N-dimethyl-propylamin mit SZ = 10,3 mg KOH/g und bas.-N = 3,73 % erhalten.
  • Beispiel 3 (Pentapropylensuccinimido-N,N-dimethyl-propylamin)
  • Aus 978,5 g Pentapropylen-bernsteinsäureanhydrid (VZ = 286,7 mg KOH/g) und 255,5 g Dimethylaminopropylamin (DMAPA) wurden 1181 g Pentapropylensuccinimido-N,N-dimethyl-propylamin mit SZ = 15,1 mg KOH/g und bas.-N = 2,87 % erhalten.
  • Beispiel 4 (Polyisobutenylsuccinimido-N,N-dimethyl-propylamin)
  • Aus 978,3 g Polyisobutenyl-bernsteinsäureanhydrid (auf Basis PIB 300; VZ = 286,8 mg KOH/g) und 255,5 g Dimethylaminopropylamin (DMAPA) wurden 1180 g Polyisobutenylsuccinimido-N,N-dimethyl-propylamin mit SZ = 9,7 mg KOH/g und bas.-N = 2,96 % erhalten.
  • Beispiel 5 (Polyisobutenylsuccinimido-N,N-dimethyl-propylamin)
  • Aus 1310 g (2 mol) Polyisobutenyl-bernsteinsäureanhydrid (auf Basis PIB 550; VZ = 171,3 mg KOH/g) und 204,0 g (2 mol) Dimethylaminopropylamin (DMAPA) wurden 1468 g Polyisobutenylsuccinimido-N,N-dimethyl-propylamin mit SZ = 6,7 mg KOH/g und bas.-N = 1,89 % erhalten.
  • Beispiel 6 (Polyisobutenyl-succinimido-N,N-dimethyl-propylamin)
  • Aus 870,3 g (2 mol) Polyisobutenyl-bernsteinsäureanhydrid (auf Basis PIB 550; VZ = 257,9 mg KOH/g) und 204,0 g (2 mol) Dimethylaminopropylamin (DMAPA) wurden 1468 g Polyisobutenylsuccinimido-N,N-dimethyl-propylamin mit SZ = 15,4 mg KOH/g und bas.-N = 2,69 % erhalten.
  • b) Allgemeine Vorschrift für die Herstellung der Succinimidoammonium-betaine
  • In einer Rührapparatur wurden 2 mol (gemäß bas.-N) des entsprechenden Alkenylsuccinimido-alkylamins unter Stickstoffspülung vorgelegt und in 40 Gew.-% Isopropanol (bezogen auf die Gesamtmenge) bei 40°C unter kontinuierlichem Rühren gelöst. Dann wurde 2,5 mol Monochloressigsäure in einer Portion zugegeben und homogen verrührt. Anschließend wurden zu dieser Reaktionsmischung in 4 Portionen 2,7 mol einer wässrigen NaOH-Lösung (216 g einer 50 %igen Lösung) zulaufen lassen. Die Zugabe erfolgte so, dass die Innentemperatur 60°C nicht überstieg (ggf. war Kühlung erforderlich). Nach jeder Zugabe wurde jeweils 30 Minuten, zum Abschluß 4 Stunden bei 80°C nachreagiert. Abschließend wurde der ausgefallene NaCl Rückstand über Seitz T 5500 mittels einer Druckfilterpresse abgetrennt.
  • Beispiel 7 (Dodecenyl-/Tetradecenylsuccinimido-N,N-dimethyl-propylammonium-N-methylcarboxy-betain)
  • Aus 695,3 g Dodecenyl-/Tetradecenylsuccinimido-N,N-dimethyl-propylamin (bas.-N = 4,03 %) und 236,3 g Monochloressigsäure (MCAA) wurden 1600 g Dodecenyl-/Tetradecenylsuccinimido-N,N-dimethyl-propylammonium-N-methylcarboxy-betain (WS-Gehalt ca. 54 %, ca. 6 % Wasser, ca. 40 % Isopropanol) erhalten.
  • Beispiel 8 (Tetrapropylensuccinimido-N,N-dimethyl-propylammonium-N-methylcarboxy-betain)
  • Aus 751,2 g Tetrapropylensuccinimido-N,N-dimethyl-propylamin (bas.-N = 3,73 %) und 236,3 g Monochloressigsäure (MCAA) wurden 1710 g Tetrapropylensuccinimido-N,N-dimethyl-propylammonium-N-methylcarboxy-betain (WS-Gehalt ca. 54 %, ca. 6 % Wasser, ca. 40 % Isopropanol) erhalten.
  • Beispiel 9 (Pentapropylensuccinimido-N,N-dimethyl-propylammonium-N-methylcarboxy-betain)
  • Aus 976,3 g Pentapropylensuccinimido-N,N-dimethyl-propylamin (bas.-N = 2,87 %) und 236,3 g Monochloressigsäure (MCAA) wurden 2080 g Pentapropylensuccinimido-N,N-dimethyl-propylammonium-N-methylcarboxy-betain (WS-Gehalt ca. 54 %, ca. 6 % Wasser, ca. 40 % Isopropanol) erhalten.
  • Beispiel 10 (Polyisobutenylsuccinimido-N,N-dimethyl-propylammonium-N-methylcarboxy-betain)
  • Aus 946,0 g Polyisobutenylsuccinimido-N,N-dimethyl-propylamin (auf Basis PIB 300; bas.-N = 2,96 %) 236,3 g Monochloressigsäure (MCAA) wurden 2035 g Polyisobutenylsuccinimido-N,N-dimethyl-propylammonium-N-methylcarboxy-betain (WS-Gehalt ca. 54 %, ca. 6 % Wasser, ca. 40 % Isopropanol) erhalten.
  • Beispiel 11 (Polyisobutenylsuccinimido-N,N-dimethyl-propylammonium-N-methylcarboxy-betain)
  • Aus 741 g (1 mol) Polyisobutenylsuccinimido-N,N-dimethyl-propylamin (auf Basis PIB 550; bas.-N = 1,89 %) und 118,2 g (1,25 mol Monochloressigsäure (MCAA) wurden 1415 g Polyisobutenylsuccinimido-N,N-dimethyl-propylammonium-N-methylcarboxy-betain (WS-Gehalt ca. 54 %, ca. 6 % Wasser, ca. 40 % Isopropanol) erhalten.
  • Beispiel 12 (Polyisobutenyl-succinimido-N,N-dimethyl-propylammonium-N-methylcarboxy-betain)
  • Aus 520,8 g (1 mol)) Polyisobutenylsuccinimido-N,N-dimethyl-propylamin (auf Basis PIB 550; bas.-N = 2,69 %) und 118,2 g (1,25 mol Monochloressigsäure (MCAA) wurden 1090 g Polyisobutenylsuccinimido-N,N-dimethyl-propylammonium-N-methylcarboxy-betain (WS-Gehalt ca. 54 %, ca. 6 % Wasser, ca. 40 % Isopropanol) erhalten.
  • Wirksamkeit der erfindungsgemäßen Verbindungen als Korrosionsinhibitoren
  • Die erfindungsgemäßen Verbindungen wurden als Korrosionsinhibitoren im Shell-Wheel-Test geprüft. Coupons aus C-Stahl (DIN 1.1203 mit 15 cm2 Oberfläche) wurden in eine Salzwasser/Petroleum-Mischung (9:1,5 %ige NaCl-Lösung mit Essigsäure auf pH 3,5 gestellt) eingetaucht und bei einer Umlaufgeschwindigkeit von 40 rpm bei 70°C 24 Stunden diesem Medium ausgesetzt. Die Dosierung des Inhibitors betrug 50 ppm einer 40 % Lösung des Inhibitors. Die Schutzwerte wurden aus der Massenabnahme der Coupons, bezogen auf einen Blindwert, berechnet.
  • In den folgenden Tabellen bezeichnet „Vergleich" ein handelsübliches Sojafettsäureamidopropyl-N,N-dimethylammonium-carboxymethyl-betain beschrieben durch EP-B-0 446 616 (Korrosionsinhibitor des Standes der Technik).
  • Tabelle 1: (SHELL-Wheel-Test)
    Figure 00190001
  • Die Produkte wurden außerdem im LPR-Test (Testbedingungen analog ASTM D 2776) geprüft.
  • Tabelle 2: (LPR-Test)
    Figure 00190002
  • Wie aus den obigen Testresultaten zu erkennen ist, weisen die erfindungsgemäßen Produkte sehr gute Korrosionsschutzeigenschaften bei niedriger Dosierung auf und übertreffen die Performance der Inhibitoren des Standes der Technik.
  • Die Schaumeigenschaften wurden mit der Schüttelschaum-Methode überprüft. Dazu wurden 50 ml einer 3 %igen wässrigen Lösung des entsprechenden Korrosionsinhibitors in VE-Wasser in einem verschlossenen 100 ml – Messzylinder innerhalb von 10 sec. 20ig mal geschüttelt. Für die Beurteilung des Schaumverhaltens wurden nach Beendigung des Schüttelns das Gesamtvolumen der Lösung (Schaumhöhe) und die Schaumzerfallzeit (Zeit bis Erreichen des Ausgangsvolumens von 50 ml) herangezogen. Im allgemeinen ist dieses Prüfverfahren mäßig reproduzierbar, eignet sich jedoch hervorragend für eine tendenzielle Abschätzung des Schaumverhaltens in schwach schäumend, schäumend oder stark schäumend.
  • Tabelle 3: (Schüttelschaum)
    Figure 00200001
  • Die Verbindungen sind biologisch abbaubar und besitzen ein besseres Schaumverhalten als die Korrosionsinhibitoren des Standes der Technik.

Claims (9)

  1. Verbindungen der Formel (1)
    Figure 00210001
    worin R1 C1- bis C22-Alkyl, C2- bis C22-Alkenyl, C6- bis C30-Aryl- oder C7- bis C30-Alkylaryl, -CHR5-COO oder -O, R2 Wasserstoff, -CH3 oder -OH, R3, R4 unabhängig voneinander C1- bis C22-Alkyl, C2- bis C22-Alkenyl, C6- bis C30-Aryl- oder C7- bis C30-Alkylaryl, R5 Wasserstoff, C1- bis C22-Alkyl oder C2- bis C22-Alkenyl, A eine C2- bis C4-Alkylengruppe, D eine C2- bis C5-Alkylengruppe, die ein oder zwei Heteroatome enthalten und an jeder Position einen Substituenten R6 tragen kann, R6 ein organischer Rest, der 1 bis 300 C-Atome enthält, und der Heteroatome enthalten kann, m eine Zahl von 0 bis 30, n eine Zahl von 1 bis 18 bedeuten.
  2. Verbindungen nach Anspruch 1, worin R3 und R4 für eine Alkyl- oder Alkenylgruppe von 1 bis 14 Kohlenstoffatomen stehen.
  3. Verbindungen nach Anspruch 1 und/oder 2, worin R2 für Wasserstoff steht.
  4. Verbindungen nach einem oder mehreren der Ansprüche 1 bis 3, worin n für eine Zahl zwischen 2 und 12 steht.
  5. Verbindungen nach einem oder mehreren der Ansprüche 1 bis 4, worin m für
  6. Verbindungen nach einem oder mehreren der Ansprüche 1 bis 5, worin D einen Rest R6 umfasst, welcher ein C1- bis C100-Alkyl- oder C2- bis C100-Alkenyl-Rest ist, der ein Oligomer von C2- bis C8-Alkylenen ist.
  7. Verbindungen nach einem oder mehreren der Ansprüche 1 bis 5, worin D einen Rest R6 umfasst, welcher Stickstoff- oder Sauerstoffatome oder beides umfasst.
  8. Verbindungen nach einem oder mehreren der Ansprüche 1 bis 5, worin D einen Rest R6 umfasst, welcher ein Rest der Formel 2 ist
    Figure 00220001
    worin B für einen C1- bis C100-Alkylen- oder C2- bis C100-Alkenylen-Rest steht, der als Oligomer von C2- bis C8-Alkylenbausteinen abgeleitet ist und die Bindung an D in Formel 1 über eine freie Valenz einer Alkylgruppe an beliebiger Stelle von B erfolgt.
  9. Verwendung von Verbindungen der Formel 1 in Mengen von 5 bis 5000 ppm als Korrosionsinhibitoren und Gashydratinhibitoren.
DE10307725A 2003-02-24 2003-02-24 Korrosions-und Gashydratinhibitoren mit verbesserter Wasserlöslichkeit und erhöhter biologischer Abbaubarkeit Expired - Fee Related DE10307725B4 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE10307725A DE10307725B4 (de) 2003-02-24 2003-02-24 Korrosions-und Gashydratinhibitoren mit verbesserter Wasserlöslichkeit und erhöhter biologischer Abbaubarkeit
DE502004011227T DE502004011227D1 (de) 2003-02-24 2004-02-04 Korrosions- und Gashydratinhibitoren mit verbesserter Wasserlöslichkeit und erhöhter biologischer Abbaubarkeit
EP04002385A EP1466903B1 (de) 2003-02-24 2004-02-04 Korrosions- und Gashydratinhibitoren mit verbesserter Wasserlöslichkeit und erhöhter biologischer Abbaubarkeit
NO20040588A NO325713B1 (no) 2003-02-24 2004-02-09 Korrosjons- og gasshydratinhibitorer med forbedret vannopploselighet og forhoyet biologisk nedbrytbarhet
US10/783,724 US7253138B2 (en) 2003-02-24 2004-02-20 Corrosion and gas hydrate inhibitors having improved water solubility and increased biodegradability
MXPA04001680A MXPA04001680A (es) 2003-02-24 2004-02-23 Inhibidores de corrosion y de hidrato de gas que tienen una solubilidad en agua mejorada y un mayor biodegradabilidad.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10307725A DE10307725B4 (de) 2003-02-24 2003-02-24 Korrosions-und Gashydratinhibitoren mit verbesserter Wasserlöslichkeit und erhöhter biologischer Abbaubarkeit

Publications (2)

Publication Number Publication Date
DE10307725A1 DE10307725A1 (de) 2004-09-09
DE10307725B4 true DE10307725B4 (de) 2007-04-19

Family

ID=32841820

Family Applications (2)

Application Number Title Priority Date Filing Date
DE10307725A Expired - Fee Related DE10307725B4 (de) 2003-02-24 2003-02-24 Korrosions-und Gashydratinhibitoren mit verbesserter Wasserlöslichkeit und erhöhter biologischer Abbaubarkeit
DE502004011227T Expired - Lifetime DE502004011227D1 (de) 2003-02-24 2004-02-04 Korrosions- und Gashydratinhibitoren mit verbesserter Wasserlöslichkeit und erhöhter biologischer Abbaubarkeit

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE502004011227T Expired - Lifetime DE502004011227D1 (de) 2003-02-24 2004-02-04 Korrosions- und Gashydratinhibitoren mit verbesserter Wasserlöslichkeit und erhöhter biologischer Abbaubarkeit

Country Status (5)

Country Link
US (1) US7253138B2 (de)
EP (1) EP1466903B1 (de)
DE (2) DE10307725B4 (de)
MX (1) MXPA04001680A (de)
NO (1) NO325713B1 (de)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10134224B4 (de) 2001-07-13 2012-12-20 Clariant Produkte (Deutschland) Gmbh Additive zur Inhibierung der Gashydratbildung
DE10307728B4 (de) * 2003-02-24 2005-09-22 Clariant Gmbh Korrosions-und Gashydratinhibitoren mit verbesserter Wasserlöslichkeit und erhöhter biologischer Abbaubarkeit und derartige Verbindungen
US20050085675A1 (en) * 2003-10-21 2005-04-21 Vaithilingam Panchalingam Methods for inhibiting hydrate blockage in oil and gas pipelines using ester compounds
ES2694856T3 (es) 2005-06-16 2018-12-27 The Lubrizol Corporation Composición de combustible diésel que comprende detergentes de sal de amonio cuaternario
US8436219B2 (en) * 2006-03-15 2013-05-07 Exxonmobil Upstream Research Company Method of generating a non-plugging hydrate slurry
US7481276B2 (en) * 2006-05-12 2009-01-27 Bj Services Company Method of inhibiting and/or preventing corrosion in oilfield treatment applications
BRPI0817188A2 (pt) 2007-09-25 2015-03-17 Exxonmobil Upstream Res Co Método para controlar hidratos em um sistema de produção submarino
US8153570B2 (en) 2008-06-09 2012-04-10 The Lubrizol Corporation Quaternary ammonium salt detergents for use in lubricating compositions
US7989403B2 (en) * 2009-03-02 2011-08-02 Nalco Company Corrosion inhibitors containing amide surfactants for a fluid
US8288323B2 (en) * 2009-03-02 2012-10-16 Nalco Company Compositions containing amide surfactants and methods for inhibiting the formation of hydrate agglomerates
US20120322693A1 (en) 2010-03-05 2012-12-20 Lachance Jason W System and method for creating flowable hydrate slurries in production fluids
WO2011146595A2 (en) * 2010-05-21 2011-11-24 Siemens Healthcare Diagnostics Inc. Zwitterionic reagents
US8618025B2 (en) 2010-12-16 2013-12-31 Nalco Company Composition and method for reducing hydrate agglomeration
US8404895B2 (en) * 2011-01-24 2013-03-26 Baker Hughes Incorporated Tertiary amine salt additives for hydrate control
US9574149B2 (en) 2011-11-11 2017-02-21 Afton Chemical Corporation Fuel additive for improved performance of direct fuel injected engines
US8894726B2 (en) 2012-06-13 2014-11-25 Afton Chemical Corporation Fuel additive for improved performance in fuel injected engines
US9017431B2 (en) * 2013-01-16 2015-04-28 Afton Chemical Corporation Gasoline fuel composition for improved performance in fuel injected engines
US8927471B1 (en) * 2013-07-18 2015-01-06 Afton Chemical Corporation Friction modifiers for engine oils
US9988568B2 (en) 2015-01-30 2018-06-05 Ecolab Usa Inc. Use of anti-agglomerants in high gas to oil ratio formations
US9340742B1 (en) 2015-05-05 2016-05-17 Afton Chemical Corporation Fuel additive for improved injector performance
CN104910887B (zh) * 2015-06-08 2018-05-29 刘尚军 一种天然气水合物防控剂
MX2018016384A (es) * 2016-06-22 2019-09-18 Lubrizol Corp Inhibidores de hidrato de gas.
MX2019005017A (es) 2017-02-28 2019-06-20 Huntsman Petrochemical Llc Inhibidores de hidrato cinetico de hidroxialquiluretano.
US11421174B2 (en) * 2017-11-30 2022-08-23 The Lubrizol Corporation Hindered amine terminated succinimide dispersants and lubricating compositions containing same
ES2920701T3 (es) * 2018-10-09 2022-08-08 Clariant Int Ltd Sales diamidoamónicas de ácidos dicarboxílicos asimétricamente sustituidas y su uso para la antiaglomeración de hidratos gaseosos
US11161804B2 (en) 2018-10-09 2021-11-02 Clariant International Ltd. Unsymmetrically substituted dicarboxylic acid diamido ammonium salts and their use for gas hydrate anti-agglomeration
CA3118096A1 (en) * 2018-10-29 2020-05-07 Championx Usa Inc. Alkenyl succinimides and use as natural gas hydrate inhibitors
US11390821B2 (en) 2019-01-31 2022-07-19 Afton Chemical Corporation Fuel additive mixture providing rapid injector clean-up in high pressure gasoline engines
FR3092331A1 (fr) 2019-02-06 2020-08-07 Arkema France Composition pour prévenir l'agglomération d'hydrates de gaz
US20210179922A1 (en) * 2019-12-11 2021-06-17 Clariant International, Ltd. Synergistic Blends Of Anti-Agglomerant Gas Hydrate Inhibitors With N-Alkanoyl-Polyhydroxyalkylamines
US11873461B1 (en) 2022-09-22 2024-01-16 Afton Chemical Corporation Extreme pressure additives with improved copper corrosion
US11795412B1 (en) 2023-03-03 2023-10-24 Afton Chemical Corporation Lubricating composition for industrial gear fluids

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5254138A (en) * 1991-05-03 1993-10-19 Uop Fuel composition containing a quaternary ammonium salt
EP0584711B1 (de) * 1992-08-22 1998-02-04 Clariant GmbH Alkenylbernsteinsäurederivate als Metallbearbeitungshilfsmittel

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3113026A (en) * 1959-01-19 1963-12-03 Gen Aniline & Film Corp Polyvinyl alcohol photographic silver halide emulsions
NL255251A (de) * 1959-08-28
US3818876A (en) * 1971-08-16 1974-06-25 M Voogd Smog control system and method
CH628247A5 (en) * 1975-01-03 1982-02-26 Ciba Geigy Ag Aqueous, film-forming concentrates for extinguishing or preventing fire with a content of non-anionic compounds containing perfluoroalkylalkylenethio groups
US4069244A (en) 1975-01-03 1978-01-17 Ciba-Geigy Corporation Fluorinated amphoteric and cationic surfactants
US4171959A (en) * 1977-12-14 1979-10-23 Texaco Inc. Fuel composition containing quaternary ammonium salts of succinimides
US4329239A (en) * 1980-05-12 1982-05-11 Texaco Inc. Hydrocarbyl dihydrouracil, its method of preparation and lubricating oil composition containing same
US4493883A (en) * 1984-02-21 1985-01-15 Xerox Corporation Electrophotographic toner compositions containing novel imide charge control _additives
DE3526600A1 (de) 1985-07-25 1987-01-29 Hoechst Ag Quaternaere oxalkylierte polykondensate, verfahren zu deren herstellung und deren verwendung
DE3742935A1 (de) 1987-12-18 1989-06-29 Hoechst Ag Gegebenenfalls quaternierte fettsaeureester von oxalkylierten alkyl-alkylendiaminen
DE4003893A1 (de) * 1990-02-09 1991-08-14 Norol Hoechst Oil Chemicals As Verfahren zur verhinderung von korrosion in fluessigkeiten bei der rohoelfoerderung
GB9007335D0 (en) * 1990-03-31 1990-05-30 Bp Chemicals Additives Lubricating oil additives,their preparation and use
GB9018749D0 (en) * 1990-08-28 1990-10-10 Unilever Plc Bleaching and detergent compositions
JP3077847B2 (ja) * 1992-01-22 2000-08-21 東レ株式会社 熱可塑性樹脂積層フィルム
US5460728A (en) 1993-12-21 1995-10-24 Shell Oil Company Method for inhibiting the plugging of conduits by gas hydrates
US5648575A (en) 1995-01-10 1997-07-15 Shell Oil Company Method for inhibiting the plugging of conduits by gas hydrates
AR001674A1 (es) 1995-04-25 1997-11-26 Shell Int Research Método para inhibir la obstrucción de conductos por hidrato de gas
DE19629662A1 (de) 1996-07-23 1998-01-29 Clariant Gmbh Verfahren zur Inhibierung der Gashydratbildung
BR9713405A (pt) 1996-11-22 2000-01-25 Clariant Gmbh Aditivos para inibir a formação de hidratos gasosos.
DE19649285A1 (de) 1996-11-28 1998-06-04 Henkel Kgaa Verfahren zum Schutz von Metalloberflächen gegenüber Korrosion in flüssigen oder gasförmigen Medien
TW589341B (en) * 1997-05-27 2004-06-01 Ciba Sc Holding Ag Block oligomers containing 1-hydrocarbyloxy-2,2,6,6-tetramethyl-4-piperidyl groups as stabilizers for organic materials
CA2301771C (en) 1997-09-09 2006-07-04 Shell Canada Limited Method and compound for inhibiting the plugging of conduits by gas hydrates
DE19803384C1 (de) 1998-01-29 1999-04-15 Clariant Gmbh Additive zur Inhibierung der Gashydratbildung und Verfahren zur Inhibierung der Bildung von Gashydraten
US6025302A (en) 1998-05-18 2000-02-15 Bj Services Company Quaternized polyether amines as gas hydrate inhibitors
US6444852B1 (en) 1999-06-24 2002-09-03 Goldschmidt Chemical Corporation Amines useful in inhibiting gas hydrate formation
DE19930683B4 (de) 1999-07-02 2005-02-10 Clariant Gmbh Korrosionsinhibitoren mit verbesserter Wasserlöslichkeit
BR0012771A (pt) 1999-07-29 2002-04-02 Akzo Nobel Nv Processo para preparar uma composição de esterquat
DE10059816C1 (de) 2000-12-01 2002-04-18 Clariant Gmbh Verwendung von Additiven zur Inhibierung der Gashydratbildung
DE10114638C1 (de) 2001-03-24 2002-05-23 Clariant Gmbh Additive zur Inhibierung der Gashydratbildung und deren Verwendung

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5254138A (en) * 1991-05-03 1993-10-19 Uop Fuel composition containing a quaternary ammonium salt
EP0584711B1 (de) * 1992-08-22 1998-02-04 Clariant GmbH Alkenylbernsteinsäurederivate als Metallbearbeitungshilfsmittel

Also Published As

Publication number Publication date
MXPA04001680A (es) 2004-08-27
DE502004011227D1 (de) 2010-07-15
US7253138B2 (en) 2007-08-07
EP1466903A1 (de) 2004-10-13
EP1466903B1 (de) 2010-06-02
NO20040588L (no) 2004-08-25
US20040167040A1 (en) 2004-08-26
NO325713B1 (no) 2008-07-07
DE10307725A1 (de) 2004-09-09

Similar Documents

Publication Publication Date Title
DE10307725B4 (de) Korrosions-und Gashydratinhibitoren mit verbesserter Wasserlöslichkeit und erhöhter biologischer Abbaubarkeit
DE10307728B4 (de) Korrosions-und Gashydratinhibitoren mit verbesserter Wasserlöslichkeit und erhöhter biologischer Abbaubarkeit und derartige Verbindungen
EP1799790B1 (de) Korrosions- und gashydratinhibitoren mit erhöhter biologischer abbaubarkeit und verminderter toxizität
DE10307729B3 (de) Additive zur Inhibierung der Gashydtratbildung
EP1412613B1 (de) Additive zur inhibierung der gashydratbildung
DE10307727B3 (de) Verwendung von Verbindungen als Korrosions- und Gashydratinhibitoren mit verbesserter Wasserlöslichkeit und erhöhter biologischer Abbaubarkeit und diese Verbindungen
EP2031092A2 (de) Amphotere Tenside enthaltende Korrosionsinhibitoren
EP0946788B1 (de) Verfahren zum schutz von metalloberflächen gegenüber korrosion in flüssigen oder gasförmigen medien
DE10307730B3 (de) Verwendung von Verbindungen als Korrosions- und Gashydratinhibitoren mit verbesserter Wasserlöslichkeit und erhöhter biologischer Abbaubarkeit und diese Verbindungen
GB2351285A (en) Corrosion inhibiting compositions
CA2289408C (en) Corrosion inhibitor compositions
CA2291417C (en) Corrosion inhibitor compositions
US4238349A (en) Method and a composition for inhibiting corrosion
DE10155665A1 (de) Verfahren zum Schutz von Metalloberflächen gegenüber Korrosion in flüssigen oder gasförmigen Medien II
US4238348A (en) Method and a composition for inhibiting corrosion
DE102008003828B3 (de) Verwendung von Salzen als Korrosionsinhibitoren mit erhöhter biologischer Abbaubarkeit und verminderter Toxizität und diese Salze

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8127 New person/name/address of the applicant

Owner name: CLARIANT PRODUKTE (DEUTSCHLAND) GMBH, 65929 FRANKF

8364 No opposition during term of opposition
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee