DE19541783C1 - Verfahren zum Betreiben einer Blutbehandlungsvorrichtung zur Ermittlung hämodynamischer Parameter während einer extrakorporalen Blutbehandlung und Vorrichtung zur Ermittlung hämodynamischer Parameter während einer extrakorporalen Blutbehandlung - Google Patents

Verfahren zum Betreiben einer Blutbehandlungsvorrichtung zur Ermittlung hämodynamischer Parameter während einer extrakorporalen Blutbehandlung und Vorrichtung zur Ermittlung hämodynamischer Parameter während einer extrakorporalen Blutbehandlung

Info

Publication number
DE19541783C1
DE19541783C1 DE19541783A DE19541783A DE19541783C1 DE 19541783 C1 DE19541783 C1 DE 19541783C1 DE 19541783 A DE19541783 A DE 19541783A DE 19541783 A DE19541783 A DE 19541783A DE 19541783 C1 DE19541783 C1 DE 19541783C1
Authority
DE
Germany
Prior art keywords
blood
fistula
physical
flow
extracorporeal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE19541783A
Other languages
English (en)
Inventor
Matthias Dr Kraemer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fresenius SE and Co KGaA
Original Assignee
Fresenius SE and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7777022&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=DE19541783(C1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Fresenius SE and Co KGaA filed Critical Fresenius SE and Co KGaA
Priority to DE19541783A priority Critical patent/DE19541783C1/de
Priority to DE59610147T priority patent/DE59610147D1/de
Priority to ES96117473T priority patent/ES2192593T5/es
Priority to EP96117473A priority patent/EP0773035B2/de
Priority to US08/743,778 priority patent/US5866015A/en
Priority to JP29663596A priority patent/JP3812978B2/ja
Application granted granted Critical
Publication of DE19541783C1 publication Critical patent/DE19541783C1/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/367Circuit parts not covered by the preceding subgroups of group A61M1/3621
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/34Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/34Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
    • A61M1/3403Regulation parameters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3607Regulation parameters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3607Regulation parameters
    • A61M1/3609Physical characteristics of the blood, e.g. haematocrit, urea
    • A61M1/361Physical characteristics of the blood, e.g. haematocrit, urea before treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3607Regulation parameters
    • A61M1/3609Physical characteristics of the blood, e.g. haematocrit, urea
    • A61M1/3612Physical characteristics of the blood, e.g. haematocrit, urea after treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3653Interfaces between patient blood circulation and extra-corporal blood circuit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3653Interfaces between patient blood circulation and extra-corporal blood circuit
    • A61M1/3655Arterio-venous shunts or fistulae
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3653Interfaces between patient blood circulation and extra-corporal blood circuit
    • A61M1/3656Monitoring patency or flow at connection sites; Detecting disconnections
    • A61M1/3658Indicating the amount of purified blood recirculating in the fistula or shunt
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3663Flow rate transducers; Flow integrators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3368Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/20Blood composition characteristics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S210/00Liquid purification or separation
    • Y10S210/929Hemoultrafiltrate volume measurement or control processes

Description

Die Erfindung hat ein Verfahren zum Betreiben einer Blutbehandlungsvorrichtung zur Ermittlung hämodynamischer Parameter während einer extrakorporalen Blutbehandlung zum Gegenstand sowie eine Vorrichtung zur Ermittlung hämodynamischer Parameter während einer extrakorporalen Blutbehandlung und eine Verwendung hierfür.
Bei Verfahren der chronischen Blutreinigungstherapie wie Hämodialyse, Hämofiltration und Hämodiafiltration wird Blut über einen extrakorporalen Kreislauf geleitet. Als Zugang zum Blutgefäßsystem wird häufig operativ eine arteriovenöse Fistel angelegt. Ebenso ist der Einsatz eines Implantats möglich. Wenn nachfolgend von dem Begriff "Fistel" die Rede ist, wird darunter jede Art der Verbindung zwischen einer Vene und einer Arterie des Patienten verstanden.
Der Gefäßzugang sollte einen Blutfluß liefern, der mindestens so groß ist, wie der extrakorporale Blutfluß, der durch die im extrakorporalen Kreislauf vorhandene Pumpe vorgegeben ist. Ist dies nicht der Fall, z. B. infolge von Verengungen (Stenosen) der Gefäße, kann sich die arterielle Nadel an der Gefäßwand ansaugen, was eine Unterbrechung des extrakorporalen Kreislaufs bewirkt. In den meisten Fällen wird aber ein Teil des extrakorporalen Blutflusses, nämlich die Differenz aus dem extrakorporalen Blutfluß und dem Blutfluß des in die Fistel strömenden Blutes, im extrakorporalen Kreislauf rezirkulieren. Diese Erscheinung wird als Rezirkulation bezeichnet.
Die Fistelrezirkulation hat zur Folge, daß die dem Körper pro Zeiteinheit entzogene Menge an dialysepflichtigen Substanzen verringert wird. Der rezirkulierende Anteil passiert nicht das Kapillarsystem des Körpers und wird folglich nicht erneut mit toxischen Substanzen beladen. Dieser Anteil trägt daher nur vermindert zur Blutreinigung bei. Wird eine durch die Rezirkulation bedingte erhebliche Verminderung der Dialyseeffektivität nicht erkannt und kompensiert, wird langfristig ein Anstieg der Morbidität solcher Patienten erfolgen. Die Messung der Qualität des Gefäßzugangs ist damit ein wichtiges Mittel zur Qualitätssicherung bei der Dialysebehandlung.
Es sind verschiedene Verfahren zur Messung der Fistelrezirkulation bekannt. Allen gemeinsam ist die Messung einer physikalischen oder chemischen Kenngröße des Blutes, die im venösen Blut veränderbar sein muß. Die Kenngröße kann durch direkte Aktion des Anwenders oder mittelbar über die Dialysataufbereitungseinheit geändert werden. Das Auftreten von Fistelrezirkulation kann anschließend festgestellt bzw. quantifiziert werden, indem eine Änderung dieser Kenngröße auch im arteriellen Blut nachgewiesen wird.
US 5,312,550 und EP 0 590 810 A1 beschreiben ein derartiges Verfahren, bei dem eine Indikatorlösung in die venöse Leitung injiziert und deren Konzentration im arteriellen Blut überwacht wird. Die Injektion einer Indikatorlösung kann auch dadurch umgangen werden, daß ein kurzzeitiger Temperaturabfall im Dialysierflüssigkeitskreislauf erzeugt wird, der sich auf den venösen Zweig des extrakorporalen Kreislaufs überträgt und zu einem nachweisbaren Temperatursprung im arteriellen Zweig des extrakorporalen Kreislaufs dann führt, wenn Fistelrezirkulation vorliegt (M. Krämer und H.D. Polaschegg, EDTNA-ERCA J. 19, Nr. 2 (1993), Seite 8-15).
Die Interpretation der gemessenen Rezirkulation ist jedoch nicht immer ganz einfach, da dieser technische Parameter mit dem eigentlich interessierenden physiologischen Parameter, nämlich dem Blutfluß zur Fistel QF, nicht in einfacher Weise korreliert ist. So variiert z. B. die Rezirkulation trotz konstantem Fistelfluß QF mit dem Blutfluß QB. Außerdem erfassen viele Meßverfahren nicht nur die Fistelrezirkulation, sondern die Summe aus Fistel- und kardiopulmonärer Rezirkulation (M. Krämer und H.D. Polaschegg, Q.Q.O.). Die kardiopulmonäre Rezirkulation, die als fraktioneller Anteil des Fistelflusses am Herzminutenvolumen definiert ist, betrifft bereits dialysiertes Blut, das über den Herz-/Lungenkreislauf direkt in den arteriellen Zweig des extrakorporalen Kreislaufs gelangt, ohne das Kapillarsystem zu durchlaufen. Auf die kardiopulmonäre Rezirkulation ist die Änderung der Bluttemperatur in der arteriellen Blutleitung vor Einsetzen der Fistelrezirkulation zurückzuführen. Die Überlagerung der Fistelrezirkulation und der kardiopulmonären Rezirkulation erschwert zusätzlich die Interpretation der Meßergebnisse.
Wünschenswert ist daher eine direkte Messung des Fistelflusses QF. Erste Ansätze dazu sind in einer Veröffentlichung von Aldridge et al. Journal of Medical Engineering and Technology 8, Nr. 3 (1984), Seite 118-124 beschrieben. Es werden einzelne Rezirkulationsmessungen mit der Thermodilutionsmethode nach Injektion eines Bolus kalter Kochsalzlösung durchgeführt. Die Messungen werden bei schrittweise erhöhtem Blutfluß solange wiederholt, bis eine merkliche Rezirkulation festgestellt wird. Bei diesem Blutfluß ist dann der Fistelfluß Q überschritten. Problem dieses Verfahrens ist, daß der Fistelfluß nur auf das Meßintervall eingegrenzt und damit nicht genau bestimmt wird und daß die Messung wegen der fortwährenden Bolusinjektionen aufwendig ist. Vor allem aber wird in dieser Arbeit nicht berücksichtigt, daß in vivo bei jedem Blutfluß eine Rezirkulation vorhanden ist, nämlich die kardiopulmonäre Rezirkulation, die sich der Fistelrezirkulation überlagert. Aldridge et al. geben noch eine zweite Methode an, die zur Detektion des Fistelflusses geeigneter erscheint. Wenn bei Variation des extrakorporalen Blutflusses QB dieser sehr nahe am Fistelfluß QF liegt, wird eine Oszillation der arteriellen Temperatur TA beobachtet. Diese resultiert aus den periodisch schwankenden Druckverhältnissen in der Fistel durch die Aktion der Blutpumpe, die üblicherweise als Rollenpumpe ausgebildet ist. Nachteil dieses Verfahrens ist, daß der "richtige" Blutfluß QB = QF nur langwierig durch Variation von QB und Prüfen von TA auf das Vorliegen von Oszillationen gefunden werden kann. Vor allem aber muß die Temperatursensorik im arteriellen System eine sehr niedrige Ansprechzeit aufweisen, da die Periode der Oszillationen im Bereich einiger Zehntel Sekunden bis etwa einer Sekunde liegt. Diese Anforderung kann i.A. nur durch direktes Plazieren der Sensoren im Blutstrom erreicht werden, was für die Routinebehandlung nicht tragbar ist.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Betreiben einer Blutbehandlungsvorrichtung anzugeben, das es erlaubt, hämodynamische Parameter während einer extrakorporalen Blutbehandlung mit großer Zuverlässigkeit zu ermitteln und eine Vorrichtung zu schaffen, mit der sich hämodynamische Parameter mit großer Zuverlässigkeit ermitteln lassen, sowie eine Verwendung für diese Vorrichtung anzugeben.
Die Lösung dieser Aufgabe erfolgt mit dem Verfahren des Patentanspruchs 1, bzw. mit der Vorrichtung des Patentanspruchs 7, bzw. mit der Verwendung nach dem Patentanspruch 10.
Bei dem beanspruchten Verfahren zur Ermittlung hämodynamischer Parameter wie Fistelfluß, Herzminutenvolumen und für den Fall der Temperaturmessung die Körpertemperatur wird eine physikalische oder chemische Kenngröße des Blutes im arteriellen Zweig des extrakorporalen Kreislaufs gemessen. Es kann jede beliebige physikalische oder chemische Größe gemessen werden, die folgende Bedingungen erfüllt. Sie muß im venösen, d. h. in dem aus dem extrakorporalen Kreislauf in den venösen Teil der Fistel des Patienten zurückfließenden Blut einen anderen Wert als in dem zur Fistel fließenden Blut haben. Der Wert der physikalischen oder chemischen Kenngröße in einer Mischung aus zwei Teilvolumina Blut (V₁ und V₂) muß sich in analoger Weise wie für die Temperatur T mit hinreichender Genauigkeit nach der folgenden Mischungsgleichung ergeben:
V₁·T₁+ V₂·T₂ = (V₁ + V₂)·TM,
wobei V1/2 die Teilvolumina und T1/2 die Werte der zu messenden physikalischen oder chemischen Kenngröße in den beiden Teilvolumina sind und TM der Wert nach der Mischung ist.
Als physikalische oder chemische Kenngröße können neben der Temperatur auch die Konzentration eines Blutbestandteils, der Hämatokrit, die Dichte, die Ausbreitungsgeschwindigkeit des Schalls, die optische Dichte, die Leitfähigkeit oder die Viskosität gemessen werden. Diese Größen lassen sich mit bekannten Meßfühlern ermitteln.
Vorteilhaft ist, wenn als physikalische oder chemische Kenngröße die Bluttemperatur gemessen wird. Wenn die Bluttemperatur gemessen wird, lassen sich mit dem beanspruchten Verfahren neben dem Fistelfluß und dem Herzminutenvolumen auch die Körpertemperatur bestimmen, worunter die mittlere Temperatur des Bluts nach Durchfließen aller Kapillarsysteme verstanden wird. Eine Injektion einer Indikatorlösung ist dann nicht erforderlich.
Das beanspruchte Verfahren setzt voraus, daß die physikalische oder chemische Kenngröße, vorzugsweise die Bluttemperatur, im venösen Zweig des extrakorporalen Kreislaufs während der Aufnahme der Meßwerte konstant gehalten ist. Ferner setzt das Verfahren voraus, daß die physikalische oder chemische Kenngröße im venösen Zweig ihrem Wert nach bekannt ist. Für den Fall, daß die physikalische oder chemische Kenngröße weder konstant noch ihrem Wert nach bekannt sein sollte, muß dieser gemessen und während der Aufnahme der Meßwerte konstant gehalten werden.
Das beanspruchte Verfahren beruht darauf, daß sich die in diskreten Meßwerten vorliegende Meßkurve durch zwei Teilfunktionen darstellen läßt, wobei die erste Teilfunktion die physikalische oder chemische Kenngröße in Abhängigkeit vom extrakorporalen Blutfluß für Blutflußwerte kleiner als der Fistelfluß oder gleich dem Fistelfluß angibt und die zweite Teilfunktion die physikalische oder chemische Kenngröße in Abhängigkeit vom Blutfluß für Blutflußwerte größer oder gleich dem Fistelfluß angibt. Der Schnittpunkt beider Teilfunktionen gibt den Punkt an, an dem der extrakorporale Blutfluß gleich dem Fistelfluß ist. Aus dem "Knickpunkt" des Funktionsverlaufs, d. h. der Diskontinuität der Kurvensteigung läßt sich also der Punkt bestimmen, an dem die Fistelrezirkulation einsetzt, d. h. der Blutfluß gleich dem Fistelfluß ist.
Zur Bestimmung des Fistelflusses wird aus der abgespeicherten Folge von Wertepaaren der physikalischen oder chemischen Kenngröße des Blutes im arteriellen Zweig des extrakorporalen Kreislaufs derjenige Wert des Blutflusses bestimmt, nach dessen Überschreiten der Betrag der Änderung der physikalischen oder chemischen Kenngröße in einem bestimmten Blutflußintervall, d. h. der Betrag der Steigung der die Meßwertpaare darstellenden Funktion größer als ein vorgegebener Grenzwert ist. Die Steigungen in den einzelnen Meßintervallen können z. B. durch Berechnung der Differenzenquotienten der Meßwertpaare bestimmt werden. Der ermittelte Blutflußwert stellt einen Schätzwert für den Fistelfuß dar.
Die Unteransprüche geben Ausführungsarten der Erfindung an.
Für den Fall, daß der Fistelfluß mit sehr großer Genauigkeit bestimmt werden soll, wird der in der Folge der Wertepaare vorliegende Funktionsverlauf für Blutflußwerte kleiner als der Schätzwert für den Fistelfluß durch eine erste Teilfunktion dargestellt, während der in der Folge der Wertepaare vorliegende Funktionsverlauf für Blutflußwerte größer als der Schätzwert durch eine zweite Teilfunktion dargestellt wird.
Der exakte Wert des Fistelflusses wird dann aus dem Schnittpunkt der beiden Teilfunktionen ermittelt. Die Teilfunktion für Blutflußwerte kleiner oder gleich dem Fistelfluß kann näherungsweise durch eine lineare Gleichung dargestellt werden.
Der mittlere Wert der physikalischen oder chemischen Kenngröße im venösen Blut des Patienten ergibt sich durch Extrapolation des Funktionsverlaufes für Blutflußwerte kleiner oder gleich dem Fistelfluß auf einen Blutflußwert von Null. Im Falle einer Temperaturmessung läßt sich die Körpertemperatur bestimmen. Nachdem der Fistelfluß und der mittlere Wert der physikalischchemischen Eigenschaft ermittelt sind, kann das Herzminutenvolumen berechnet werden.
Die beanspruchte Vorrichtung zur Ermittlung der hämodynamischen Parameter weist eine arterielle Meßeinrichtung zum Messen der physikalisch­ chemischen Eigenschaft im arteriellen Zweig des extrakorporalen Kreislaufs, und eine Steuereinheit zum Verändern der Förderrate der Blutpumpe auf. Ferner ist eine Speichereinheit zum Abspeichern der Werte der physikalischchemischen Eigenschaft und des extrakorporalen Blutflusses und eine Recheneinheit zur Ermittlung der hämodynamischen Parameter aus den abgespeicherten Wertepaaren vorgesehen. Die Vorrichtung kann in die bekannten Blutreinigungsvorrichtungen integriert werden, wobei auf bereits vorhandene Komponenten, über die die bekannten Blutbehandlungsvorrichtungen bereits verfügen, zurückgegriffen werden kann.
Für den Fall, daß die physikalische oder chemische Kenngröße im venösen Zweig des extrakorporalen Kreislaufs nicht konstant sein sollte, weist die Vorrichtung vorteilhafterweise eine Regeleinrichtung auf, die die physikalische oder chemische Kenngröße im venösen Zweig konstant hält. Diese kann z. B. im Falle einer Temperaturmessung als Temperaturregeleinrichtung ausgebildet sein.
Nachfolgend wird unter Bezugnahme auf die Zeichnungen ein Ausführungsbeispiel der Erfindung näher erläutert.
Es zeigen:
Fig. 1 die Vorrichtung zur Ermittlung hämodynamischer Parameter zusammen mit einer Dialysevorrichtung in schematischer Darstellung einschließlich des intrakorporalen Kreislaufs,
Fig. 2 die Temperatur im arteriellen Zweig des extrakorporalen Kreislaufs als Funktion des extrakorporalen Blutflusses, und
Fig. 3 das Verhältnis der Steigungen der beiden Kurvenabschnitte der ersten und zweiten Teilfunktion zur Darstellung des Meßkurvenverlaufs für einen dem Fistelfluß entsprechenden extrakorporalen Blutfluß.
Die Vorrichtung zur Ermittlung hämodynamischer Parameter kann eine separate Baugruppe bilden. Sie kann aber auch Bestandteil einer Dialysevorrichtung sein, zumal einige ihrer Komponenten in den bekannten Dialysevorrichtungen bereits vorhanden sind. Nachfolgend wird die Vorrichtung zusammen mit den wesentlichen Komponenten der Dialysevorrichtung beschrieben. In dem Ausführungsbeispiel wird als physikalische oder chemische Kenngröße XA die Temperatur TA im arteriellen Zweig des extrakorporalen
Kreislaufs gemessen, so daß sich neben dem Fistelfluß QF, die Körpertemperatur TB, d. h. die mittlere Temperatur des Blutes nach Durchfließen aller Kapillarsysteme, und das Herzminutenvolumen CO ermitteln lassen.
Der intrakorporale Kreislauf 1 umfaßt das rechte Ventrikel 2 des Herzens, die Lunge 3, das linke Ventrikel 4 und sämtliche Kapillarsysteme des Körpers in inneren Organen, Muskulatur und Haut 5 etc. Um einen Zugang zu dem Blutgefäßsystem zu schaffen, ist eine arteriovenöse Fistel 6 angelegt.
Die Dialysevorrichtung 7 besteht im wesentlichen aus einem Dialysierflüssigkeitsteil 8 und einem extrakorporalen Blutkreislauf 9, zwischen denen sich ein Dialysator 10 mit einem Dialysierflüssigkeitskompartement 11 und einem Blutkompartement 12 befindet. Das Dialysierflüssigkeitskompartment 11 ist stromauf des Dialysators 10 über eine Dialysierflüssigkeitsleitung 13 mit einer Dialysierflüssigkeitsquelle 14 verbunden. In die Dialysierflüssigkeitsleitung 13 ist eine Temperiereinrichtung 15 geschaltet, die über eine Steuerleitung 16 mit einer Regeleinrichtung 17 in Verbindung steht. Stromab des Dialysators 10 ist an das Dialysierflüssigkeitskompartment 11 eine weitere Leitung 18 angeschlossen, die eine Dialysierflüssigkeitspumpe 19 aufweist.
Der extrakorporale Kreislauf 9 umfaßt einen arteriellen Zweig 20, der mit dem arteriellen Teil 21 der Fistel 6 in Verbindung steht, das Blutkompartement 12 des Dialysators 10 und einen venösen Zweig 22, der mit dem venösen Teil 23 der Fistel 6 in Verbindung steht. Im arteriellen Zweig 20 und im venösen Zweig 22 des extrakorporalen Kreislaufs ist jeweils eine Temperaturmeßeinrichtung 24, 25 zur Messung der arteriellen Fisteltemperatur, d. h. der Bluttemperatur nach Eintritt in den arteriellen Zweig 20 des extrakorporalen Kreislaufs 9 bzw. zur Messung der venösen Fisteltemperatur, d. h. der Bluttemperatur nach Eintritt in den venösen Zweig 22 des extrakorporalen Kreislaufs vorgesehen.
Ferner ist im arteriellen Zweig 20 des extrakorporalen Kreislaufs 9 eine Blutpumpe 26 angeordnet. Die venöse Temperaturmeßeinrichtung 25 ist über eine Leitung 27 an die Regeleinrichtung 17 angeschlossen. Die Regeleinrichtung 17 steuert die Temperiereinrichtung 15 im Dialysierflüssigkeitsteil 8 der Dialysevorrichtung 7 derart an, daß die Temperatur im venösen Zweig 22 des extrakorporalen Kreislaufs 9 konstant gehalten wird. Weitere bei einer Dialysevorrichtung gewöhnlich vorhandene Komponenten, wie Tropfkammern und Absperrklemmen sind in Fig. 1 nicht dargestellt.
Die Blutpumpe 26 im arteriellen Zweig 20 des extrakorporalen Kreislaufs ist über eine Steuerleitung 28 mit einer Steuereinheit 29 verbunden, mit der die Förderrate der Blutpumpe innerhalb bestimmter Bereiche verändert werden kann. Ferner ist eine Speichereinheit 30 vorgesehen, die über eine Datenleitung 31 die Meßwerte der arteriellen Temperaturmeßeinrichtung 24 empfängt und in zeitlicher Abfolge abspeichert. Ferner speichert die Speichereinheit 30 über eine Datenleitung 32 den konstanten Temperaturwert der venösen Temperaturmeßeinrichtung 25 ab. Die Speichereinheit 30 ist über eine Leitung 33 mit der Steuereinheit 29 verbunden. Über die Leitung 33 empfängt die Speichereinheit 30 den der eingestellten Förderrate der Blutpumpe 26 entsprechenden Wert des extrakorporalen Blutflusses und speichert diesen ab. Die Speichereinheit 30 steht über eine Datenleitung 34 mit einer Recheneinheit 35 in Verbindung, die ihrerseits über eine Datenleitung 36 mit einer Anzeigeeinheit 37 zur Anzeige der ermittelten hämodynamischen Parameter verbunden ist. Die Recheneinheit kann als bekannter Digitalrechner ausgebildet sein.
Nachfolgend wird das Prinzip der Messung im einzelnen erläutert.
Das vom linken Ventrikel 4 emittierte Blut fließt zum größten Teil in die Kapillarsysteme aller Organe, zu einem kleinen Teil in die Fistel. Für den Fall, daß der Blutfluß im extrakorporalen Kreislauf kleiner als der Blutfluß des in die Fistel bzw. aus der Fistel fließenden Blutes ist, fließt das Fistelblut zum einen Teil durch den extrakorporalen Kreislauf 9, zum anderen Teil durch die Fistel 6. Wenn der extrakorporale Blutfluß jedoch größer als der Fistelfluß ist, dann rezirkuliert Blut aus dem extrakorporalen Kreislauf 9, wobei die Fistel 6 vom venösen 23 zum arteriellen Anschluß 21 durchflossen wird. Das extrakorporale Blut, das durch die Fistel 6 fließende Blut und das aus den Kapillarsystemen stammende Blut vereinigt sich schließlich wieder im Rücklauf zum Herzen.
Die Temperaturen und Flüsse werden wie folgt bezeichnet:
QF Fistelfluß, d. h. der Fluß in die Fistel 6 bzw. aus der Fistel heraus,
QB Blutfluß im extrakorporalen Kreislauf 9,
QR Rezirkulationsfluß, d. h. der Fluß zwischen dem venösen Teil 23 und dem arteriellen Teil 21 der Fistel 6, falls Q QB ist,
CO Herzminutenvolumen,
TB Körpertemperatur, d. h. die mittlere Temperatur des Blutes nach Durchfließen der Kapillarsysteme,
TF Fisteltemperatur, d. h. die Temperatur des in die Fistel 6 fließenden Blutes,
TA arterielle Fisteltemperatur, d. h. Bluttemperatur nach Eintritt in den arteriellen Zweig 20 des extrakorporalen Kreislaufs,
TV venöse Fisteltemperatur, d. h. Bluttemperatur nach Eintritt in den venösen Zweig 22 des extrakorporalen Kreislaufs.
Das beanspruchte Verfahren beruht darauf, daß sich die gemessene Bluttemperatur TA im arteriellen Zweig des extrakorporalen Kreislaufs in Abhängigkeit von dem extrakorporalen Blutfluß QB durch zwei Teilfunktionen darstellen läßt, wobei die eine Teilfunktion die arterielle Bluttemperatur TA für einen extrakorporalen Blutfluß kleiner oder gleich dem Fistelfluß angibt und die andere Teilfunktion die arterielle Bluttemperatur TA bei einem extrakorporalen Blutfluß größer oder gleich dem Fistelfluß angibt. Die beiden Teilfunktionen lassen sich wie folgt herleiten, wobei davon ausgegangen wird, daß die Ultrafiltration während der Messung abgeschaltet ist.
Es sei zunächst angenommen, daß der Blutfluß QB im extrakorporalen Kreislauf 9 kleiner oder gleich dem Fistelfluß QF ist. Das ins rechte Herz fließende Blut setzt sich aus den drei folgenden Komponenten zusammen, nämlich aus dem aus dem Kapillarsystem zum Herz zurückfließenden Blut, aus dem aus dem extrakorporalen Kreislauf 9 stammenden Blut und aus dem durch die Fistel 6, jedoch nicht durch den extrakorporalen Kreislauf fließenden Blut. Daraus ergibt sich für die Temperaturen folgende Mischungsgleichung:
(CO-QF)·TB + QB·TV + (QF-QB)·TF = CO·TF
Da das arterielle Blut nur aus einer Komponente, nämlich dem zur Fistel 6 fließenden Blut besteht, ist die arterielle Fisteltemperatur TA gleich der Fisteltemperatur TF. Damit erhält man die folgende Teilfunktion:
Die obige Gleichung läßt sich auch wie folgt darstellen:
TA(QB) = (γ + δ QB)/(ε + QB)
mit γ = (CO-QF)TB, δ = TV, ε = CO-QF (1)
Nun sei angenommen, daß der Blutfluß QB im extrakorporalen Kreislauf 9 größer als der Fistelfluß QF ist. In diesem Fall setzt sich das in den arteriellen Zweig 20 des extrakorporalen Kreislaufs 9 einfließende Blut zusammen aus dem in die Fistel 6 strömenden Blut und dem über die Fistel rezirkulierenden, d. h. aus dem venösen Zweig 22 des extrakorporalen Kreislaufs stammenden Blut. Daraus ergibt sich für die Temperaturen folgende Mischungsgleichung:
QF·TF + QR·TV = QB·TA
Das Fistelblut setzt sich wie folgt zusammen aus dem Kapillarblut und dem aus dem extrakorporalen Kreislauf 9 stammenden Blut.
(CO-QF)·TB + QF·TV = CO·TF
Aus diesen beiden Gleichungen folgt mit QR = QB-QF die zweite Teilfunktion:
Die zweite Teilfunktion läßt sich auch wie folgt darstellen:
TA(QB) = α/QB + β
mit α = QFTB(1-QF/CO) + QF²TVCO-QFTV, β = TV (2)
Die Funktion TA(QB) besteht also aus den beiden Teilfunktionen (1) und (2), jeweils für die Bereiche QF QB und QF < QB.
Fig. 2 zeigt die Bluttemperatur TA im arteriellen Zweig 20 des extrakorporalen Kreislaufs 9 als Funktion des extrakorporalen Blutflusses QB, wobei auf der horizontalen Achse der gängige Blutflußbereich bei der Hämodialyse von 100 bis 600 ml/min angegeben ist. An dem Punkt, an dem die Steigung der Kurve eine Unstetigkeitsstelle aufweist, ist der extrakorporale Blutfluß gleich dem Fistelfluß. Der Funktionsverlauf ist nach Gleichung (1) und (2) berechnet, wobei CO = 5 l/min, QF = 200 ml/min, TB = 37°C und TV = 34°C gesetzt wurde.
Fig. 3 zeigt das Verhältnis der Steigungen der beiden Kurvenabschnitte der Funktion TA(QB) für den Schnittpunkt bei QB = QF. Abhängig vom Fistelfluß QF ergeben sich Werte zwischen 50 (QF; = 100 ml/min) und 8,3 (QF = 600 ml/min). Die Diskontinuität der Kurvensteigung kann also im gesamten Blutflußintervall von 100 bis 600 ml/min ausreichend scharf detektiert werden.
Zur Ermittlung des Fistelflusses wird die den extrakorporalen Blutfluß vorgebende Förderrate der Blutpumpe 26 ausgehend von einem vorgegebenen unteren Grenzwert von z. B. 100 ml/min bis zu einem oberen Grenzwert von z. B. 600 ml/min langsam erhöht, wobei der untere Grenzwert einem extrakorporalen Blutfluß QB entspricht, der auf jeden Fall kleiner als der zu erwartende Fistelfluß QF ist und der obere Grenzwert einem entsprechenden Blutfluß entspricht, der auf jeden Fall größer als der zu erwartende Fistelfluß ist. Die Temperatur TA des Bluts im arteriellen Zweig 20 des extrakorporalen Kreislaufs 9 wird während der Erhöhung des Blutflusses mit der arteriellen Meßeinrichtung 24 gemessen und die Werte des extrakorporalen Blutflusses und der Temperatur TA werden in der Speichereinheit 30 in zeitlicher Abfolge abgespeichert.
In der Recheneinheit 35 werden aus der abgespeicherten Folge von Wertepaaren die Differenzenquotienten berechnet. Die berechneten Differenzenquotienten der Wertepaare werden mit einem vorgegebenen Grenzwert verglichen. In der Recheneinheit 35 wird nun derjenige Wert des Blutflusses QB im extrakorporalen Kreislauf bestimmt, nach dessen Überschreiten die Beträge der ermittelten Differenzenquotienten größer als ein vorgegebener Grenzwert sind, d. h. es wird derjenige Punkt bestimmt, an dem die in Fig. 2 dargestellte Kurve plötzlich stark abfällt. Während die Steigung des in Fig. 2 dargestellten linken Kurvenabschnitts nämlich klein und nahezu konstant ist, tritt in dem Fall, daß der Blutfluß QB größer als der Fistelfluß QF ist, eine plötzlich starke Erhöhung des Betrages der Steigung auf. Bei der Messung wird angenommen, daß der ermittelte Wert des Blutflusses QB dem Fistelfluß QF entspricht. Dieser Wert wird als Schätzwert für den Fistelfluß in der Speichereinheit 30 abgespeichert.
Um den Wert des Fistelflusses exakt, d. h. unbeeinflußt von eventuellen Fluktuationen des Blutflusses im Bereich des Fistelflusses, bestimmen zu können, werden in der Recheneinheit 35 die abgespeicherten Meßwertpaare für Blutflußwerte QB kleiner als der Schätzwert für den Fistelfluß durch die erste Teilfunktion (1) angepaßt und die abgespeicherten Meßwertpaare für Blutflußwerte größer als der Schätzwert für den Fistelfluß werden durch die zweite Teilfunktion (2) angepaßt. Dabei ist es vorteilhaft, wenn Meßwertpaare aus einem kleinen Bereich (z. B. ± 30 ml/min) um den Schätzwert für den Fistelfluß ausgespart werden. Zur Berechnung der Parameter der beiden Gleichungen können die bekannten numerischen Verfahren herangezogen werden (z. B. Levenberg-Marquardt-Methode). Eine hinreichende Genauigkeit wird im allgemeinen auch dann erreicht, wenn anstelle von Gleichung (1) eine einfache lineare Funktion zur Darstellung des Kurvenverlaufs herangezogen wird. Anschließend berechnet die Recheneinheit 35 den Wert des extrakorporalen Blutflusses QB, der dem Fistelfluß QF entspricht durch Bestimmung des Schnittpunktes 40 der beiden Teilfunktionen 38 und 39. Dieser Wert wird in der Speichereinheit 30 abgespeichert und mit der Anzeigeeinheit 37 angezeigt.
Zur Ermittlung der Körpertemperatur TB wird in der Recheneinheit der in Fig. 2 durch Gleichung (1) dargestellte linke Kurvenabschnitt auf einen Blutflußwert von 0 extrapoliert (TB = TA(0)). Der Temperaturwert für einen Blutflußwert von 0, der sich durch eine Messung nicht ermitteln läßt, entspricht der Körpertemperatur TB. Diese wird in der Speichereinheit 30 abgespeichert und auf der Anzeigeeinheit 37 zur Anzeige gebracht.
Nachdem der Fistelfluß Q und die Körpertemperatur TB ermittelt und abgespeichert sind, wird in der Recheneinheit 35 das Herzminutenvolumen CO wie folgt berechnet:
Gleichung (3) folgt aus Gleichung (1) mit QB = QF.
Auch dieser hämodynamische Parameter wird auf der Anzeigeeinheit 37 angezeigt.
Die Steuereinheit 29 der erfindungsgemäßen Vorrichtung steuert die einzelnen Systemkomponenten nach einem vorgegebenen Programmablauf an, so daß der Blutfluß QB nach Betätigung einer in Fig. 1 nicht dargestellten Taste zum Starten der Messung automatisch in dem Intervall von 100 bis 600 ml/min verändert wird, die Meßwerte mittels der Temperaturmeßeinrichtungen 24, 25 in den entsprechenden Intervallen aufgenommen und in der Speichereinheit 30 abgespeichert werden und aus den Meßwerten die hämodynamischen Parameter in der Recheneinheit 35 berechnet und auf der Anzeigeeinheit 37 angezeigt werden.
Das Verfahren erfordert keine wesentlichen Änderungen am extrakorporalen Kreislauf und am Sicherheitskonzept der Dialysevorrichtung. Die Injektion einer Indikatorlösung ist nicht erforderlich. Zwar sind Fistelflüsse nur im Bereich des einstellbaren Blutflusses meßbar (ca. 100 bis 600 ml/min), dies bedeutet in der Praxis allerdings keine Einschränkung. Falls der Fistelfluß größer als der einstellbare Blutfluß ist, ergeben sich nämlich für die Therapie keine Probleme.

Claims (10)

1. Verfahren zum Betreiben einer Blutbehandlungsvorrichtung zur Ermittlung hämodynamischer Parameter während einer extrakorporalen Blutbehandlung, bei der Blut über den arteriellen Zweig (20) eines extrakorporalen Kreislaufs (9), der mit dem arteriellen Teil (21) einer Fistel (6) in Fluidverbindung steht, in den Dialysator (10) oder das Filter der Blutbehandlungsvorrichtung (7) gelangt und über einen venösen Zweig (22) des extrakorporalen Kreislaufs (9), der mit dem venösen Teil (23) der Fistel (6) in Fluidverbindung steht, zurückgeführt wird, wobei in den extrakorporalen Kreislauf (9) eine Blutpumpe (26) geschaltet ist, mit folgenden Verfahrensschritten:
  • - eine physikalische oder chemische Kenngröße XA des Blutes wird im arteriellen Zweig (20) des extrakorporalen Kreislaufs (9) gemessen, wobei die zu messende physikalische oder chemische Kenngröße in dem im venösen Zweig (22) des extrakorporalen Kreislaufs fließenden Blut einen anderen Wert als in dem zur Fistel (6) fließenden Blut hat,
  • - die Förderrate der Blutpumpe (26) im extrakorporalen Kreislauf (9) wird variiert,
  • - die Werte des durch die Förderrate der Blutpumpe (26) vorgegebenen extrakorporalen Blutflusses QB und die gemessenen Werte der physikalischen oder chemischen Kenngröße des Blutes im arteriellen Zweig (20) des extrakorporalen Kreislaufs (9) werden gespeichert,
  • - aus der abgespeicherten Folge von Wertepaaren der physikalischen oder chemischen Kenngröße XA des Blutes im arteriellen Zweig (20) des extrakorporalen Kreislaufs (9) und des extrakorporalen Blutflusses QB wird derjenige Wert des Blutflusses bestimmt, nach dessen Überschreiten der Betrag der Änderung der physikalischen oder chemischen Kenngröße XA in einem bestimmten Blutflußintervall größer als ein vorgegebener Grenzwert ist, wobei aus dem ermittelten Blutflußwert auf den Fistelfluß geschlossen wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der in Folge der Wertepaare vorliegende Funktionsverlauf für Wertepaare kleiner als der ermittelte Blutflußwert durch eine vorgegebene erste Teilfunktion XA (QB) dargestellt wird,
daß der in Folge der Wertepaare vorliegende Funktionsverlauf für Wertepaare größer als der ermittelte Blutflußwert durch eine vorgegebene zweite Teilfunktion XA (QB) dargestellt wird und
daß zur exakten Ermittlung des Fistelflusses Q der Schnittpunkt der ersten und zweiten Teilfunktion bestimmt wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die erste Teilfunktion XA (QB) zur Bestimmung des mittleren Wertes XB der physikalischen oder chemischen Kenngröße im venösen Blut des Patienten auf einen Blutflußwert von 0 extrapoliert wird.
4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß die erste Teilfunktion die folgende Form hat: XA(QB) = (γ + δ QB)/(ε + QB)
mit γ = (CO-QF)XB, δ = XV, ε = CO-QF (1)wobei XV die physikalische oder chemische Kenngröße im venösen Zweig (22) des extrakorporalen Kreislaufs (9) und CO das Herzminutenvolumen ist.
5. Verfahren nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß die zweite Teilfunktion die folgende Form hat: XA(QB) = α/QB + β
mit α = QFXB(1-QF/CO) + QF²XV/CO-QFXV, β = XV (2)wobei XV die physikalische oder chemische Kenngröße im venösen Zweig (22) des extrakorporalen Kreislaufs (9) ist und CO das Herzminutenvolumen ist.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die im arteriellen Zweig (20) des extrakorporalen Kreislaufs (9) gemessene physikalische oder chemische Kenngröße XA die Temperatur TA des Blutes ist.
7. Vorrichtung zur Ermittlung hämodynamischer Parameter während einer extrakorporalen Blutbehandlung, bei der Blut über den arteriellen Zweig (20) des extrakorporalen Kreislaufs (9), der mit dem arteriellen Teil (21) einer Fistel (6) in Fluidverbindung steht, in einen Dialysator (10) oder Filter der Blutbehandlungsvorrichtung (7) gelangt und über einen venösen Zweig (22) des extrakorporalen Kreislaufs (9), der mit dem venösen Teil (23) der Fistel (6) in Fluidverbindung steht, zurückgeführt wird, wobei in den extrakorporalen Kreislauf (9) eine Blutpumpe (26) geschaltet ist, mit
  • - einer arteriellen Meßeinrichtung (24) zum Messen einer physikalischen oder chemischen Kenngröße XA des Blutes im arteriellen Zweig (20) des extrakorporalen Kreislaufs (9), wobei die physikalische oder chemische Kenngröße in dem im venösen Zweig (22) des extrakorporalen Kreislaufs (9) fließenden Blut einen anderen Wert als in dem in die Fistel (6) fließenden Blut hat,
  • - einer Steuereinheit (29) zum Verändern der Förderrate der Blutpumpe (26),
  • - einer Speichereinheit (30), die derart ausgebildet ist, daß die Werte des durch die Förderrate der Blutpumpe (26) vorgegebenen Blutflusses QB und die Werte der mit der arteriellen Meßeinrichtung (24) gemessenen physikalischen oder chemischen Kenngröße XA im arteriellen Zweig (20) des extrakorporalen Kreislaufs (9) abspeicherbar sind, und
  • - einer Recheneinheit (35), die derart ausgebildet ist, daß aus der abgespeicherten Folge von Wertepaaren der physikalischen oder chemischen Kenngröße XA des Blutes im arteriellen Zweig (20) des extrakorporalen Kreislaufs (9) und des extrakorporalen Blutflusses QB derjenige Wert des Blutflusses bestimmbar ist, nach dessen Überschreiten der Betrag der Änderung der physikalischen oder chemischen Kenngröße in einem bestimmten Blutflußintervall größer als ein vorgegebener Grenzwert ist, wobei aus dem ermittelten Blutflußwert der Fistelfluß QF ermittelbar ist.
8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, daß die Recheneinheit (35) derart ausgebildet ist, daß aus dem ermittelten Fistelfluß QF der mittlere Wert XB der physikalischen oder chemischen Kenngröße im venösen Blut und/oder das Herzminutenvolumen CO ermittelbar sind.
9. Vorrichtung nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß die im arteriellen Zweig (20) des extrakorporalen Kreislaufs (9) zu messende physikalische oder chemische Kenngröße des Blutes die Bluttemperatur TA und die arterielle Meßeinrichtung (24) eine Temperaturmeßeinrichtung ist.
10. Verwendung einer Vorrichtung nach einem der Ansprüche 7 bis 9 in einer Hämodialysevorrichtung.
DE19541783A 1995-11-09 1995-11-09 Verfahren zum Betreiben einer Blutbehandlungsvorrichtung zur Ermittlung hämodynamischer Parameter während einer extrakorporalen Blutbehandlung und Vorrichtung zur Ermittlung hämodynamischer Parameter während einer extrakorporalen Blutbehandlung Expired - Fee Related DE19541783C1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE19541783A DE19541783C1 (de) 1995-11-09 1995-11-09 Verfahren zum Betreiben einer Blutbehandlungsvorrichtung zur Ermittlung hämodynamischer Parameter während einer extrakorporalen Blutbehandlung und Vorrichtung zur Ermittlung hämodynamischer Parameter während einer extrakorporalen Blutbehandlung
DE59610147T DE59610147D1 (de) 1995-11-09 1996-10-31 Verfahren und Vorrichtung zur Ermittlung hämodynamischer Parameter während einer extrakorporalen Blutbehandlung
ES96117473T ES2192593T5 (es) 1995-11-09 1996-10-31 Dispositivo para calcular parametros hemodinamicos durante un tratamiento extracorporal de la sangre.
EP96117473A EP0773035B2 (de) 1995-11-09 1996-10-31 Vorrichtung zur Ermittlung hämodynamischer Parameter während einer extrakorporalen Blutbehandlung
US08/743,778 US5866015A (en) 1995-11-09 1996-11-07 Method for determining hemodynamic parameters during an extracorporeal hemotherapy and related device
JP29663596A JP3812978B2 (ja) 1995-11-09 1996-11-08 体外血液療法中に血流力学的パラメーターを決定するための装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19541783A DE19541783C1 (de) 1995-11-09 1995-11-09 Verfahren zum Betreiben einer Blutbehandlungsvorrichtung zur Ermittlung hämodynamischer Parameter während einer extrakorporalen Blutbehandlung und Vorrichtung zur Ermittlung hämodynamischer Parameter während einer extrakorporalen Blutbehandlung

Publications (1)

Publication Number Publication Date
DE19541783C1 true DE19541783C1 (de) 1997-03-27

Family

ID=7777022

Family Applications (2)

Application Number Title Priority Date Filing Date
DE19541783A Expired - Fee Related DE19541783C1 (de) 1995-11-09 1995-11-09 Verfahren zum Betreiben einer Blutbehandlungsvorrichtung zur Ermittlung hämodynamischer Parameter während einer extrakorporalen Blutbehandlung und Vorrichtung zur Ermittlung hämodynamischer Parameter während einer extrakorporalen Blutbehandlung
DE59610147T Expired - Lifetime DE59610147D1 (de) 1995-11-09 1996-10-31 Verfahren und Vorrichtung zur Ermittlung hämodynamischer Parameter während einer extrakorporalen Blutbehandlung

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE59610147T Expired - Lifetime DE59610147D1 (de) 1995-11-09 1996-10-31 Verfahren und Vorrichtung zur Ermittlung hämodynamischer Parameter während einer extrakorporalen Blutbehandlung

Country Status (5)

Country Link
US (1) US5866015A (de)
EP (1) EP0773035B2 (de)
JP (1) JP3812978B2 (de)
DE (2) DE19541783C1 (de)
ES (1) ES2192593T5 (de)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0845273A1 (de) 1996-11-30 1998-06-03 Fresenius Medical Care Deutschland GmbH Verfahren zur in-vivo-Bestimmung von Parametern der Hämodialyse und Vorrichtung zur Durchführung des Verfahrens
DE19917197C1 (de) * 1999-04-16 2000-07-27 Fresenius Medical Care De Gmbh Verfahren und Vorrichtung zur Ermittlung des Blutflusses in einem Gefäßzugang
DE10259437B3 (de) * 2002-12-19 2004-09-16 Fresenius Medical Care Deutschland Gmbh Verfahren und Vorrichtung zur Bestimmung des Blutflusses in einer blutführenden Leitung
DE102005001051A1 (de) * 2005-01-07 2006-07-20 Fresenius Medical Care Deutschland Gmbh Vorrichtung und Verfahren zur Erkennung von Komplikationen während einer extrakorporalen Blutbehandlung
US7172570B2 (en) 2003-01-28 2007-02-06 Gambro Lundia Ab Apparatus and method for monitoring a vascular access of a patient subjected to an extracorporeal blood treatment
WO2009065611A1 (de) 2007-11-22 2009-05-28 Fresenius Medical Care Deutschland Gmbh Verfahren und vorrichtung zum bestimmen der rezirkulation in einer fistel oder der kardiopulmonalen rezirkulation sowie blutbehandlungsvorrichtung mit einer vorrichtung zur bestimmung der fistelrezirkulation oder des kardiopulmonalen rezirkulationsanteils
DE102008003714A1 (de) * 2008-01-09 2009-07-16 Fresenius Medical Care Deutschland Gmbh Verfahren zum Bestimmen des Anteils der Rezirkulation in einer Fistel und/oder der kardiopulmonalen Rezirkulation an der Summe von Fistelrezirkulation und kardiopulmonaler Rezirkulation
US7794419B2 (en) 2005-05-18 2010-09-14 Gambro Lundia Ab Apparatus for controlling blood flow in an extracorporeal circuit
US7815852B2 (en) 2003-11-20 2010-10-19 Gambro Lundia Ab Method, apparatus and software program for measurement of a parameter relating to a heart-lung system of a mammal
US7836914B2 (en) 2003-12-11 2010-11-23 Gambro Lundia Ab Switching device and apparatus for controlling flow of a fluid
EP2198900A3 (de) * 1998-10-23 2011-02-23 Gambro Ab Verfahren und Vorrichtung zum Erkennen einer Rezirkulation
US7896831B2 (en) 1998-10-23 2011-03-01 Gambro Lundia Ab Method and apparatus for calculating fluid flow rate
DE102010015664A1 (de) * 2010-04-20 2011-10-20 Up-Med Gmbh Verfahren und Vorrichtung zur Bestimmung des Fistelflusses einer Fistel für die Dialysebehandlung

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1288767B1 (it) * 1996-10-18 1998-09-24 Hospal Dasco Spa Metodo di determinazione del valore del ricircolo di una sospensione sottoposta a trattamento.
US6189388B1 (en) 1997-11-12 2001-02-20 Gambro, Inc. Access flow monitoring using reversal of normal blood flow
IT1308680B1 (it) * 1999-12-21 2002-01-09 Gambro Dasco Spa Metodo di determinazione del ricircolo di sangue in un accessovascolare.
AU2001274751A1 (en) * 2000-06-15 2001-12-24 Gambro Lundia A.B. Method and apparatus for calcium profiling in dialysis
ITMI20012829A1 (it) * 2001-12-28 2003-06-28 Gambro Dasco Spa Apparecchiatura e metodo di controllo in un circuito extracorporeo disangue
ITTO20011222A1 (it) 2001-12-27 2003-06-27 Gambro Lundia Ab Apparecchiatura per il controllo di flusso sanguigno in un circuito-extracorporeo di sangue.
FR2836831B1 (fr) * 2002-03-07 2004-06-25 Centre Nat Rech Scient Combinaison chimiotherapie et antisens de la dna demethylase
JP4925159B2 (ja) * 2005-10-12 2012-04-25 日機装株式会社 血液浄化装置
DE502006009203D1 (de) * 2006-01-30 2011-05-12 Pulsion Medical Sys Ag System zum Einrichten einer Dilutionsmessstelle
JP4573860B2 (ja) * 2007-08-22 2010-11-04 日機装株式会社 血液浄化装置
NZ583591A (en) * 2007-08-31 2012-11-30 Cytopherx Inc Selective cytopheresis devices and related methods thereof
WO2012051595A1 (en) 2010-10-15 2012-04-19 Cytopherx, Inc. Cytopheresic cartridge and use thereof
AU2012364760B2 (en) 2012-01-09 2018-05-31 Seastar Medical Inc. Cartridge and method for increasing myocardial function
EP3297703A4 (de) * 2015-05-18 2019-01-16 The General Hospital Corporation System und verfahren zur phototherapie zur vorbeugung oder behandlung von kohlenstoffmonoxidvergiftung
WO2017062923A1 (en) 2015-10-09 2017-04-13 Nxstage Medical, Inc. Body temperature measurement devices, methods, and systems
DE102016001710B4 (de) 2016-02-15 2022-08-25 Fresenius Medical Care Deutschland Gmbh Gerät zur extrakorporalen Blutbehandlung mit einer Auswerte- und Steuereinheit
DE102016010722A1 (de) * 2016-09-05 2018-03-08 Fresenius Medical Care Deutschland Gmbh Verfahren und Vorrichtung zur Bestimmung der Körpertemperatur eines Patienten
CN111182929B (zh) 2017-09-17 2023-08-15 S·P·凯勒 用于体外去除二氧化碳的系统、装置和方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0590810A1 (de) * 1992-09-30 1994-04-06 Cobe Laboratories, Inc. Differentialleitungsfähigkeitsrückströmungsmonitor
US5312550A (en) * 1992-04-27 1994-05-17 Hester Robert L Method for detecting undesired dialysis recirculation

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3817603A1 (de) * 1988-05-24 1989-11-30 Michael Stieglitz Extrakorporale-hyperthermie-geraet
DE3827553C1 (en) * 1988-08-13 1989-10-26 Fresenius Ag, 6380 Bad Homburg, De Device for measuring the change in the intravasal blood volume during haemofiltration in a blood purification apparatus
DE3909967A1 (de) * 1989-03-25 1990-09-27 Fresenius Ag Haemodialysegeraet mit automatischer einstellung des dialysierfluessigkeitsflusses
JPH06149B2 (ja) * 1989-12-22 1994-01-05 株式会社医療工学研究所 動静脈シャント部の血圧及び、血液粘度の連続測定装置
US5588959A (en) * 1994-08-09 1996-12-31 University Of Washington Hemodialysis recirculation measuring method
US5685989A (en) * 1994-09-16 1997-11-11 Transonic Systems, Inc. Method and apparatus to measure blood flow and recirculation in hemodialysis shunts
US5453576A (en) * 1994-10-24 1995-09-26 Transonic Systems Inc. Cardiovascular measurements by sound velocity dilution

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5312550A (en) * 1992-04-27 1994-05-17 Hester Robert L Method for detecting undesired dialysis recirculation
US5312550B1 (en) * 1992-04-27 1996-04-23 Robert L Hester Method for detecting undesired dialysis recirculation
EP0590810A1 (de) * 1992-09-30 1994-04-06 Cobe Laboratories, Inc. Differentialleitungsfähigkeitsrückströmungsmonitor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DE-Z.: M. KRÄMER u.a. "Automatische Messung der Rezirkulation" in: EDTNA-ERCA Journal, Vol. XIX, Nr.2, April 1993, S.8-15 *
GB-Z.: C. ALDRIDGE u.a. "The assessment of arteriovenous fistulae...." in: Journal of Medical Engineering and Technology, Vol.8, Nr.3 (1984), S.118-124 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0845273A1 (de) 1996-11-30 1998-06-03 Fresenius Medical Care Deutschland GmbH Verfahren zur in-vivo-Bestimmung von Parametern der Hämodialyse und Vorrichtung zur Durchführung des Verfahrens
DE19746367C2 (de) * 1996-11-30 1999-08-26 Fresenius Medical Care De Gmbh Verfahren zur in-vivo-Bestimmung von Parametern der Hämodialyse und Vorrichtung zur Durchführung des Verfahrens
US7955291B2 (en) 1998-10-23 2011-06-07 Gambro Lundia Ab Method and apparatus for detecting access recirculation
US7896831B2 (en) 1998-10-23 2011-03-01 Gambro Lundia Ab Method and apparatus for calculating fluid flow rate
EP2198900A3 (de) * 1998-10-23 2011-02-23 Gambro Ab Verfahren und Vorrichtung zum Erkennen einer Rezirkulation
EP1044695A2 (de) 1999-04-16 2000-10-18 Fresenius Medical Care Deutschland GmbH Verfahren und Vorrichtung zur Ermittlung des Blutflusses in einem Gefässzugang
EP1044695A3 (de) * 1999-04-16 2001-08-08 Fresenius Medical Care Deutschland GmbH Verfahren und Vorrichtung zur Ermittlung des Blutflusses in einem Gefässzugang
DE19917197C1 (de) * 1999-04-16 2000-07-27 Fresenius Medical Care De Gmbh Verfahren und Vorrichtung zur Ermittlung des Blutflusses in einem Gefäßzugang
US7172569B2 (en) 1999-04-16 2007-02-06 Fresenius Medical Care Deutschland Gmbh Method and device for determining blood flow in a vascular access
DE10259437B3 (de) * 2002-12-19 2004-09-16 Fresenius Medical Care Deutschland Gmbh Verfahren und Vorrichtung zur Bestimmung des Blutflusses in einer blutführenden Leitung
US7172570B2 (en) 2003-01-28 2007-02-06 Gambro Lundia Ab Apparatus and method for monitoring a vascular access of a patient subjected to an extracorporeal blood treatment
US7749184B2 (en) 2003-01-28 2010-07-06 Gambro Lundia Ab Apparatus and method of monitoring a vascular access of a patient subjected to an extracorporeal blood treatment
US7815852B2 (en) 2003-11-20 2010-10-19 Gambro Lundia Ab Method, apparatus and software program for measurement of a parameter relating to a heart-lung system of a mammal
US7836914B2 (en) 2003-12-11 2010-11-23 Gambro Lundia Ab Switching device and apparatus for controlling flow of a fluid
DE102005001051A1 (de) * 2005-01-07 2006-07-20 Fresenius Medical Care Deutschland Gmbh Vorrichtung und Verfahren zur Erkennung von Komplikationen während einer extrakorporalen Blutbehandlung
US7674236B2 (en) 2005-01-07 2010-03-09 Fresenius Medical Care Deutschland Gmbh Device and method for detecting complications during an extracorporeal blood treatment
DE102005001051B4 (de) * 2005-01-07 2007-10-31 Fresenius Medical Care Deutschland Gmbh Vorrichtung und Verfahren zur Erkennung von Komplikationen während einer extrakorporalen Blutbehandlung
US7794419B2 (en) 2005-05-18 2010-09-14 Gambro Lundia Ab Apparatus for controlling blood flow in an extracorporeal circuit
WO2009065611A1 (de) 2007-11-22 2009-05-28 Fresenius Medical Care Deutschland Gmbh Verfahren und vorrichtung zum bestimmen der rezirkulation in einer fistel oder der kardiopulmonalen rezirkulation sowie blutbehandlungsvorrichtung mit einer vorrichtung zur bestimmung der fistelrezirkulation oder des kardiopulmonalen rezirkulationsanteils
US8858486B2 (en) 2007-11-22 2014-10-14 Fresenius Medical Care Deutschland Gmbh Method and arrangement for determining the recirculation in a fistula or the cardiopulmonary recirculation, and a blood treatment device comprising a device for determining the fistula recirculation or the cardiopulmonary recirculation part
DE102008003714A1 (de) * 2008-01-09 2009-07-16 Fresenius Medical Care Deutschland Gmbh Verfahren zum Bestimmen des Anteils der Rezirkulation in einer Fistel und/oder der kardiopulmonalen Rezirkulation an der Summe von Fistelrezirkulation und kardiopulmonaler Rezirkulation
US8529767B2 (en) 2008-01-09 2013-09-10 Fresenius Medical Care Deutschland Gmbh Method for determining the percentage of recirculation in a fistula and/or cardiopulmonary recirculation relative to the total fistula recirculation and cardiopulmonary recirculation
DE102010015664A1 (de) * 2010-04-20 2011-10-20 Up-Med Gmbh Verfahren und Vorrichtung zur Bestimmung des Fistelflusses einer Fistel für die Dialysebehandlung
WO2011131358A3 (de) * 2010-04-20 2011-12-22 Up-Med Gmbh Verfahren und vorrichtung zur bestimmung des fistelflusses einer fistel für die dialysebehandlung

Also Published As

Publication number Publication date
EP0773035B1 (de) 2003-02-19
ES2192593T3 (es) 2003-10-16
EP0773035B2 (de) 2006-09-27
JP3812978B2 (ja) 2006-08-23
EP0773035A2 (de) 1997-05-14
JPH09173444A (ja) 1997-07-08
US5866015A (en) 1999-02-02
EP0773035A3 (de) 1997-11-12
DE59610147D1 (de) 2003-03-27
ES2192593T5 (es) 2007-03-16

Similar Documents

Publication Publication Date Title
DE19541783C1 (de) Verfahren zum Betreiben einer Blutbehandlungsvorrichtung zur Ermittlung hämodynamischer Parameter während einer extrakorporalen Blutbehandlung und Vorrichtung zur Ermittlung hämodynamischer Parameter während einer extrakorporalen Blutbehandlung
DE19528907C1 (de) Vorrichtung zur Ermittlung hämodynamischer Parameter während einer extrakorporalen Blutbehandlung
DE19702441C1 (de) Verfahren zur Bestimmung der Rezirkulation während einer extrakorporalen Blutbehandlung und Vorrichtung zur Durchführung des Verfahrens
DE102005001051B4 (de) Vorrichtung und Verfahren zur Erkennung von Komplikationen während einer extrakorporalen Blutbehandlung
EP0911043B1 (de) Vorrichtung zur Messung von Leistungsparametern von Stoff- und Energieaustauschmodulen
EP1217379B1 (de) Dialysegerät zur Ermittlung der Ionenkonzentration des Blutes
DE19901078C1 (de) Verfahren und Vorrichtung zur Erkennung von Stenosen bei der extrakorporalen Blutbehandlung
DE19746377C1 (de) Blutbehandlungsvorrichtung mit einer Einrichtung zur kontinuierlichen Überwachung des Blutdrucks des Patienten
EP1197236B1 (de) Verfahren zur Bestimmung des Intraperitonealvolumens und Vorrichtung zur Peritonealdialyse
EP1813188B1 (de) System zum Einrichten einer Dilutionsmessstelle
EP2714128B1 (de) Vorrichtung und verfahren zur erkennung eines betriebszustandes einer extrakorporalen blutbehandlung
EP2217303B1 (de) Vorrichtung zum bestimmen der rezirkulation in einer fistel oder der kardiopulmonalen rezirkulation sowie blutbehandlungsvorrichtung mit einer vorrichtung zur bestimmung der fistelrezirkulation oder des kardiopulmonalen rezirkulationsanteils
EP2533827B1 (de) Vorrichtung und verfahren zur überwachung eines gefässzugangs für eine extrakorporale blutbehandlung
DE60225596T2 (de) Gerät und die dazu gehörende Software zur Bestimmung der Blutströmung bei Dialyse
EP1044695A2 (de) Verfahren und Vorrichtung zur Ermittlung des Blutflusses in einem Gefässzugang
WO2014044365A1 (de) Vorrichtung und verfahren zur erkennung der rezirkulation während einer extrakorporalen blutbehandlung
DE10210009B3 (de) Verfahren zur Bestimmung des Hämatokrit und/oder Blutvolumens und Vorrichtung zur extrakorporalen Blutbehandlung mit einer Einrichtung zur Bestimmung des Hämatokrit und/oder Blutvolumens
EP1576341B1 (de) Vorrichtung zur bestimmung des blutflusses in einem gefäss eines patienten
DE60029754T2 (de) Vorrichtung zur bestimmung des blutwiederumlaufes in einer vaskulären zugangseinrichtung
DE102020111358A1 (de) Dialysevorrichtung mit einer Vorrichtung zur Bestimmung von mindestens zwei Hämodialyseparametern und Verfahren zur Bestimmung von mindestens zwei Hämodialyseparametern

Legal Events

Date Code Title Description
8100 Publication of patent without earlier publication of application
D1 Grant (no unexamined application published) patent law 81
8364 No opposition during term of opposition
R082 Change of representative

Representative=s name: OPPERMANN, FRANK, DIPL.-ING., DE

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee

Effective date: 20140603