DE19741878A1 - Mehrschichtige, biaxial orientierte Polyesterfolie, Verfahren zu ihrer Herstellung und ihre Verwendung - Google Patents

Mehrschichtige, biaxial orientierte Polyesterfolie, Verfahren zu ihrer Herstellung und ihre Verwendung

Info

Publication number
DE19741878A1
DE19741878A1 DE19741878A DE19741878A DE19741878A1 DE 19741878 A1 DE19741878 A1 DE 19741878A1 DE 19741878 A DE19741878 A DE 19741878A DE 19741878 A DE19741878 A DE 19741878A DE 19741878 A1 DE19741878 A1 DE 19741878A1
Authority
DE
Germany
Prior art keywords
layer
film
layers
polyester
film according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19741878A
Other languages
English (en)
Inventor
Herbert Pfeiffer
Guenther Cras
Richard Lee Davis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Polyester Film GmbH
Original Assignee
Mitsubishi Polyester Film GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Polyester Film GmbH filed Critical Mitsubishi Polyester Film GmbH
Priority to DE19741878A priority Critical patent/DE19741878A1/de
Priority to JP30469298A priority patent/JP4389280B2/ja
Priority to EP19980117903 priority patent/EP0903222B1/de
Priority to DE59814324T priority patent/DE59814324D1/de
Priority to US09/158,519 priority patent/US6291053B1/en
Priority to KR1019980040091A priority patent/KR100597819B1/ko
Publication of DE19741878A1 publication Critical patent/DE19741878A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/15Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state
    • B32B37/153Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state at least one layer is extruded and immediately laminated while in semi-molten state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0072Roughness, e.g. anti-slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7244Oxygen barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2367/00Polyesters, e.g. PET, i.e. polyethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/91Product with molecular orientation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/269Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension including synthetic resin or polymer layer or component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31681Next to polyester, polyamide or polyimide [e.g., alkyd, glue, or nylon, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]

Description

Die Erfindung betrifft eine zumindest dreischichtige, biaxial orientierte Polyesterfolie, die bei sehr gutem Verarbeitungsverhalten gegenüber Folien aus dem Stand der Technik verbesserte optische Eigenschaften aufweist und die nach ihrer Metallisie­ rung oder nach ihrer Beschichtung mit oxidischen Materialien eine gute Sauerstoff­ barriere besitzt, und die aufgebaut ist aus mindestens einer Basisschicht B und beidseitig auf dieser Basisschicht aufgebrachten Deckschichten A und C, wobei diese Deckschichten eine definierte Anzahl von Erhebungen mit einer definierten Höhe und einem definierten Durchmesser aufweisen. Die Erfindung betrifft weiterhin ein Verfah­ ren zur Herstellung der Folie und ihre Verwendung.
Biaxial orientierte Polyesterfolien werden im Verpackungs- oder im industriellen Sektor hauptsächlich dort verwendet, wo ihre vorteilhaften Eigenschaften, d. h. eine gute Optik, hohe mechanische Festigkeiten, eine gute Sperrwirkung, insbesondere gegen­ über Gasen, eine gute Dimensionsstabilität in der Wärme und eine ausgezeichnete Planlage benötigt werden.
Für die meisten Anwendungszecke ist es z. B. aus werbewirksamen Gründen wün­ schenswert, die optischen Eigenschaften der Polyesterfolien, insbesondere den Glanz und die Folientrübung, zu verbessern. Die anderen Gebrauchseigenschaften von Polyesterfolien, insbesondere die gute Verarbeitbarkeit und die guten Barriereeigen­ schaften sollen dabei zumindest erhalten bleiben bzw. ebenfalls verbessert werden. Im Stand der Technik wird dargestellt, wie die optischen Eigenschaften, insbesondere der Glanz und die Trübung, biaxial orientierter Polyesterfolien verbessert werden können.
In der EP 0 514 129 wird eine transparente Mehrschichtfolie beschrieben, die ein Primärschicht-Substrat aus Polymermaterial umfaßt, welches mindestens auf einer seiner Oberflächen eine Sekundärschicht aus Polymermaterial besitzt, die Glasperlen und Siliciumdioxidpartikel in bestimmten Konzentrationen und in bestimmten Größen­ verteilungen aufweist. Die Sekundärschicht kann auf einer bzw. auf beiden Seiten des Primärschicht-Substrates angeordnet sein. Mit der Folie werden die Trübung und die Verarbeitungseigenschaften verbessert, eine Lehre zur Verbesserung des Glanzes und der Barriereeigenschaften der Folie vermittelt die Schrift jedoch nicht. Auch finden sich in der Schrift keinerlei Hinweise darauf, wie die Topographie einer solchen Folie für die gleichzeitige Verbesserung von Glanz und Sauerstoffbarriere eingestellt werden soll.
In der EP 0 604 057 wird eine transparente Mehrschichtfolie beschrieben, die ein Primärschicht-Substrat aus Polymermaterial umfaßt, die im wesentlichen frei ist von Füllern, welches mindestens auf einer seiner Oberflächen eine Sekundärschicht aus Polymermaterial besitzt, die als Füller Silikon-Harz in einer Konzentration von 100 bis 1000 ppm enthält und einen mittleren Partikeldurchmesser von 1,5 bis 12,5 µm aufweist. Nachteilig an den Silikon Partikeln ist, daß diese vergleichsweise teuer sind und für den Verpackungsmarkt keine akzeptable Lösung darstellen. Außerdem neigen Folien, die mit solchen Pigmenten ausgerüstet sind, beim Wickeln leichter zum Teleskopieren. Ebenfalls finden sich auch in dieser Schrift keinerlei Hinweise darauf wie die Topographie einer solchen Folie für die gleichzeitige Verbesserung von Glanz und Sauerstoffbarriere eingestellt werden soll.
In vielen Fällen wird bei Lebensmittelverpackungen eine hohe Sperrwirkung gegen­ über Gasen, Wasserdampf und Aromastoffen verlangt (gleichbedeutend mit einer geringen Durchlässigkeit oder geringen Permeation). Ein gängiges Verfahren, solche Verpackungen herzustellen, besteht darin, die dafür verwendeten Kunststoffolien mit Aluminium im Hochvakuum zu bedampfen bzw. zu metallisieren. Weitere gängige Verfahren bestehen darin, die Folien mit oxidischen Materialien (z. B. SiOx, oder AlxOy) oder mit Wasserglas zu beschichten. Hierbei handelt es sich im wesentlichen um transparente Beschichtungen.
Die Sperrwirkung gegenüber den oben genannten Stoffen hängt im wesentlichen von der Art der Polymeren in der Folie und der Güte der aufgebrachten Sperrschichten ab. So wird mit metallisierten, biaxial orientierten Polyesterfolien eine sehr hohe Sperr­ wirkung gegenüber Gasen, wie Sauerstoff und Aromastoffen, erzielt. Gegenüber Wasserdampf erreicht man sie mit metallisierten, biaxial orientierten Polypropylenfo­ lien.
Aufgrund ihrer guten Sperreigenschaften werden mit metallisierten oder oxidisch beschichteten Folien insbesondere Lebens- und Genußmittel verpackt, bei denen durch lange Lager- oder Transportzeiten die Gefahr besteht, daß im Falle einer nicht ausreichenden Barriere die verpackten Lebensmittel verderben, ranzig werden oder an Geschmack verlieren, beispielsweise bei Kaffee, fetthaltigen Snacks (Nüssen, Chips u. a.) oder kohlensäurehaltigen Getränken (in Standbeuteln; engl.: pouches).
Sollen Polyesterfolien mit einer aufgedampften Aluminiumschicht oder mit aufgebrach­ ten oxidischen Schichten als Verpackungsmaterial verwendet werden, dann sind sie in der Regel Bestandteil eines mehrschichtigen Folienverbunds (Laminat). Daraus hergestellte Beutel lassen sich z. B. auf einer vertikalen Schlauchbeutel-, Form-, Füll- und Verschließmaschine (vffs) füllen. Die Beutel werden auf ihrer Innenseite (d. h. auf der dem Füllgut zugewandten Seite) gesiegelt, wobei die Siegelschicht in der Regel aus Polyethylen oder Polypropylen besteht. Der Folienverbund weist dabei den folgenden typischen Aufbau auf: Polyesterschicht/Aluminium- oder Oxid­ schicht/Kleberschicht/Siegelschicht. Bei einer Dicke des Laminats von etwa 50 bis 150 µm ist die Metall- oder Oxidschicht nur 10 bis 80 nm dick. Diese sehr dünne Funktions­ schicht genügt bereits, um einen ausreichenden Lichtschutz und sehr gute Barriereei­ genschaften zu erreichen.
Die Sauerstoffbarriere bzw. die Sauerstoffdurchlässigkeit wird in der Regel nicht an dem Laminat oder der Verpackung selbst, sondern an der metallisierten Polyesterfolie gemessen. Um die Qualität der Lebens- oder Genußmittel auch bei längeren Lager­ zeiten zu gewährleisten, darf die Sauerstoffdurchlässigkeit (gleich Permeation) der metallisierten Folie nicht mehr als 2 cm3/m2 bar d, insbesondere aber nicht mehr als 1,5 cm3/m2 bar d betragen. Zukünftig geht die Forderung der Verpackungsindustrie in Richtung einer noch weiter erhöhten Barriere, wobei Permeationswerte der metallisier­ ten oder oxidisch beschichteten Folien von deutlich weniger als 1,0 cm3/m2 bar d angestrebt werden.
Nach dem Stand der Technik ist es weder hinreichend bekannt, worauf die Barriere­ wirkung von metallisierten oder oxidisch beschichteten Polyesterfolien im einzelnen beruht noch wie diese entscheidend zu verbessern ist. Wichtige Einflußgrößen sind offensichtlich die Substratoberfläche, die Art des Substratpolymers sowie dessen Morphologie. Allgemein wird davon ausgegangen, daß glatte Substratoberflächen bessere Barriereeigenschaften ergeben.
In "Thin Solids Films" 204 (1991), S. 203-216, wurde hierzu von Weiss u. a. der Einfluß der Rauhigkeit einer Substratschicht auf die Permeation untersucht. Dazu wurden Polyesterfolien mit Lack beschichtet, der in unterschiedlichen Konzentrationen Titandioxidpartikel enthielt. In den beschriebenen Experimenten wurde die Konzen­ tration an Titandioxidpartikel im Lack zwischen 2 und 20 Gew.-% variiert. Die Rauhig­ keit Ra der gecoateten Substratoberfläche konnte mit dieser Methode von 43 nm (unlackierte und lackierte Folie, ohne Titandioxid) bis 124 nm variiert werden. In seinen Experimenten ergaben sich mit steigender Rauhigkeit (steigendem TiO2- Anteil) der lackierten Oberfläche eindeutig höhere Sauerstoffdurchlässigkeiten nach dem Aluminiumbedampfen. Der allerdings größte Sprung in der Sauerstoffdurchlässig­ keit wurde für die lackierte Folie (0 Gew.-%) gegenüber der unlackierten Folie fest­ gestellt. In beiden Fällen war die Rauhigkeit der Substratoberfläche jedoch gleich groß. Allein durch das Lackieren der Folie verschlechterte sich die Barriere von ca. 0,43 cm3/m2 d bar (plain film) auf ca. 19 cm3/m2 d bar (lackierte Folie). Eine weitere Unsicherheit hinsichtlich der Übertragbarkeit dieser Lehre auf kommerzielle Produkte entsteht dadurch, daß die Aluminiumschicht mittels Laborverdampfer aufgebracht wurde. Hierbei werden im Vergleich zum Industriemetallisierer wesentlich niedrige Permeationswerte erreicht, und der Einfluß der Substratoberfläche auf die Barriereei­ genschaften wird verschmiert.
Weitere detaillierte Untersuchungsergebnisse über den Einfluß der Substratober­ fläche von Polyesterfolien auf die Barriereeigenschaften sind in der Dissertation von H. Utz (Technische Universität München 1995: "Barriereeigenschaften aluminiumbe­ dampfter Kunststoffolien") zu finden.
Nach den Untersuchungen von Utz (S. 66, ff) besteht zwischen der Oberflächenrau­ higkeit (Mittenrauhigkeit Ra) der PET-Folie und der Sauerstoffbarriere kein unmittelba­ rer Zusammenhang. Die als besonders glatt hervorgehobene Videofolie mit einem Mittenrauhigkeitswert von Ra = 22 nm hat z. B. mit 1,3 cm3/m2 bar d eine mit der viel rauheren PET II-Folie (Ra = 220 nm) vergleichbare Sauerstoffdurchlässigkeit von 1,2 cm3/m2 bar d.
Die EP-A 0 124 291 beschreibt eine einschichtige, biaxial orientierte Polyesterfolie für magnetische Aufzeichnungsbärider, die durch folgende Oberflächeneigenschaften gekennzeichnet ist
  • a) die mittlere Rauhigkeit Ra beträgt 1 nm bis 16 nm,
  • b) der Reibungskoeffizient µk liegt zwischen 0,01 bis 0,20 und
  • c) zwischen Ra und µk besteht folgende Beziehung
    0,1 < 10 * Ra + µk < 0,31.
Diese Eigenschaften werden durch Einsatz von TiO2-Partikeln (Anatas) oder TiO2- und CaCO3-Partikeln in einem Gewichtsanteil von 0,1 bis 0,5% bzw. 0,1 bis 0,3% er­ zeugt. Der Durchmesser der TiO2-Partikeln liegt zwischen 0,1 und 0,5 µm. Die Ober­ fläche dieser Folie wird durch eine Vielzahl von Erhebungen/Vorsprünge gebildet, die einer Verteilung derart gehorchen, daß der Graph, der durch die folgende Beziehung beschrieben werden
log y = -8,0x + 4,34,
y < 10
nicht gekreuzt werden. In dieser Gleichung bedeutet x (µm) ein Abstand in Höhen­ richtung von einem Standard Level und y die Anzahl an Erhebungen (Anzahl/mm2), wenn die Erhebungen bei einer Höhe von x geschnitten werden. Die Verteilung der Erhebungen wird mit einem Standard-Rauhigkeitsmeßgerät bestimmt. Mit der Lehre dieser Schrift werden zwar die Verarbeitungseigenschaften der Folie verbessert, eine Lehre zur Verbesserung des Glanzes, der Trübung und der Barriereeigenschaften der Folie vermittelt die Schrift jedoch nicht. Auch finden sich in der Schrift keinerlei Hin­ weise darauf, wie die Topographie einer solchen Folie für die gleichzeitige Verbesse­ rung von Glanz und Sauerstoffbarriere eingestellt werden soll.
Die EP-A-0 490 665 A1 beschreibt eine einschichtige, biaxial orientierte Polyesterfolie für magnetische Aufzeichnungsbänder, die
  • a) 0,05 bis 1,0 Gew.-% ω-Aluminiumoxid mit einem durchschnittlichen Teilchen­ durchmesser im Bereich von 0,02 bis 0,3 µm, und
  • b) 0,01 bis 1,5 Gew.-% inerte Partikel anderen Typs als ω-Aluminiumoxid mit einem durchschnittlichen Teilchendurchmesser im Bereich von 0,1 bis 1,5 µm enthält, wobei diese Partikel größer sind als die ω-Aluminiumoxidteilchen.
Die Oberfläche dieser Folie wird durch eine Vielzahl von Erhebungen/Vorsprünge gebildet, die durch die Beziehung
-11,4x + 4 < log y < -10,0x + 5
y < 30, x < 0,05µm
beschrieben werden. In dieser Gleichung bedeutet x (µm) ein Abstand in Höhenrich­ tung von einem Standard Level und y die Anzahl an Erhebungen (Anzahl/mm2), wenn die Erhebungen bei einer Höhe von x geschnitten werden. Die Verteilung der Erhe­ bungen wird wie bei der EP-A-0 124 291 gegessen. Bezüglich Verbesserung des Glanzes, der Trübung und der Barriereeigenschaften vermittelt diese Schrift wie die vorhergenannte keine Lehre. Auch finden sich darin keinerlei Hinweise, wie die Topographie einer solchen Folie für die gleichzeitige Verbesserung von Glanz und Sauerstoffbarriere eingestellt werden soll.
Nach dem Stand der Technik sind weiterhin Folien bekannt, die sich dadurch aus­ zeichnen, daß ihre beiden Oberflächen unterschiedlich rauh sind (dual surface). Diese Folien sind insbesondere für magnetische Aufzeichnungsmedien geeignet und zeich­ nen sich im wesentlichen durch unterschiedliche Topographien aus (z. B. Oberfläche A glatt, Oberfläche B rauh). Im allgemeinen werden mit der Lehre dieser Schriften die Verarbeitungseigenschaften der Folie verbessert, nicht aber die optischen Eigen­ schaften. Insbesondere aber vermitteln diese Schriften keine Lehre zur Verbesserung der Barriereeigenschaften der Folie.
Die DE-A-16 94 404 beschreibt einen Schichtstoff mit einer Mehrzahl von Schichten eines orientierten kristallisierbaren thermoplastischen Filmes, worin mindestens eine der äußeren Schichten einen Zusatz enthält. Die Zusätze sind übliche inerte an­ organische oder organische Partikel, die im Falle von inerten Partikeln wie SiO2 in einer Konzentration von 1 bis 25 Gew.-% den äußeren Schichten zugegeben werden. Die Teilchengröße beträgt dabei 2 bis 20 µm. Die Schichtstoffe können z. B. für deko­ rative Zwecke mit Aluminium metallisiert oder für Magnetbänder verwendet werden. Mit der Lehre dieser Schrift können zwar die Verarbeitungseigenschaften und die Trübung der Folie verbessert werden, eine Lehre zur Verbesserung des Glanzes und der Barriereeigenschaften der Folie vermittelt die Schrift jedoch nicht. Auch finden sich in der Schrift keinerlei Hinweise darauf, wie die Topographie einer solchen Folie für die gleichzeitige Verbesserung von Glanz und Sauerstoffbarriere eingestellt werden soll.
Die DE-A-22 30 970 beschreibt ein magnetisches Aufzeichnungsmedium, das,aus einer biaxial orientierten Polyesterfolie und einer dünnen magnetischen metallischen Schicht auf der Oberfläche A der Polyesterfolie zusammengesetzt ist. Die Folie ist dadurch gekennzeichnet, daß sie
  • a) eine beschichtete Oberfläche A enthält, die teilchenfrei ist und
    • i) mindestens 4 µm dick ist oder
    • ii) mindestens 50% der Dicke der gesamten Folienlage ausmacht; und
  • b) eine teilchenhaltige zweite Schicht mit verhältnismäßig rauher Oberfläche enthält, die
    • i) mindestens 1% einzelne Teilchen eines bestimmten Polymerisates A und
    • ii) mindestens 1% einzelne Teilchen eines bestimmten Polymerisates B enthält.
Nachteilig an der Folie ist, daß die Oberfläche A zum Verb locken neigt, so daß eine gute Verarbeitung der Folie nicht gegeben ist. Eine Lehre zur Verbesserung des Glanzes, der Trübung und der Barriereeigenschaften der Folie wird in der Schrift nicht aufgezeigt. Auch finden sich in der Schrift wiederum keinerlei Hinweise darauf, wie die Topographie einer solchen Folie für die gleichzeitige Verbesserung von Glanz und Sauerstoffbarriere eingestellt werden soll.
Die EP-B-0 061 769 beschreibt ein magnetisches Aufzeichnungsmedium, das aus einer biaxial orientierten Polyesterfolie und einer dünnen magnetischen metallischen Schicht auf der Oberfläche A der Polyesterfolie zusammengesetzt ist. Gegebenenfalls ist auf der anderen Oberfläche B der Polyesterfolie noch eine Schmiermittelschicht vorhanden. Die Folie ist dadurch gekennzeichnet, daß die beschichtete Oberfläche A
  • a) eine mittlere Rauhigkeit Ra (Gipfel-Tal-Wert) von nicht mehr als 5 nm (60 nm) hat,
  • b) die Zahl der Vorsprünge mit einer Höhe von 0,27 bis 0,54 µm 0 bis 0,21 mm2 ist und
  • c) frei ist von Vorsprüngen mit einer Höhe von größer als 0,54 µm.
Nachteilig an der Folie ist, daß die Oberfläche A zum Verb locken neigt, so daß eine gute Verarbeitung der Folie nicht gegeben ist. Eine Lehre zur Verbesserung des Glanzes, der Trübung und der Barriereeigenschaften der Folie wird in der Schrift nicht aufgezeigt. In der Schrift finden sich wiederum keinerlei Hinweise darauf, wie die Topographie einer solchen Folie für die gleichzeitige Verbesserung von Glanz und Sauerstoffbarriere eingestellt werden soll.
Die EP-B-0 088 635 beschreibt eine coextrudierte biaxial orientierte Polyesterfolie mit wenigstens zwei Schichten, von denen eine Schicht A aus thermoplastischem Harz besteht, und einer Schicht B, die thermoplastisches Harz und feine Teilchen enthält. Die Folie ist dadurch gekennzeichnet, daß die Oberflächenrauhigkeit Ra der äußeren Oberfläche der Schicht A kleiner als 5 nm ist und die äußere Oberfläche der Schicht B entweder
  • i) eine Oberfläche mit einer Oberflächenrauhigkeit Ra von 5 bis 40 nm ist und eine Vielzahl von Vertiefungen und eine Vielzahl von Vorsprüngen aufweist die in einer bestimmten Anordnung angeordnet sind oder
  • ii) eine Oberfläche ist, die auf einer ebenen Fläche gebildete Vorsprünge aufweist und deren Oberfläche mit einer Schicht C bedeckt ist, die aus einem Schmier­ mittel besteht und eine Oberflächenrauhigkeit Ra von 5 bis 40 nm aufweist.
Nachteilig an der Folienoberfläche A ist, daß sie gegen sich selbst und gegenüber bestimmte andere Oberflächen (z. B. Gummiwalzen) blockt. Die Folie läßt sich nicht wirtschaftlich verarbeiten, insbesondere beim Metallisieren im Vakuum neigt die Folie infolge der hohen Blockneigung zu Abrissen, was mit großem wirtschaftlichen Scha­ den verbunden sein kann. Die Folie ist im Sinne der zu lösenden Aufgabe nicht geeignet. Außerdem ist die Trübung der Folie verbesserungsbedürftig.
Die EP-B-0 502 745 beschreibt eine coextrudierte biaxial orientierte Polyesterfolie mit wenigstens drei Schichten, von denen eine äußere Schicht A
  • a) anorganische Teilchen mit einer mittleren Primärteilchengröße D im Bereich von 1 bis 100 nm enthält, die der Gleichung D<T<200D genügt, worin T die Dicke der Schicht A ist,
  • b) Teilchen B mit einer mittleren Primärteilchengröße D1 im Bereich von 0,3 bis 2 µm enthält, wobei die Primärteilchen-Größenverteilung eine relative Standard­ abweichung von höchstens 0,6 besitzt, und
  • c) die mittlere Primärteilchengröße D der Teilchen A geringer ist als die mittlere Primärteilchengröße D1 der Teilchen B.
Durch Anwendung der Lehre dieser Schrift wird insbesondere das Verarbeitungs­ verhalten der Folie verbessert. Eine Lehre zur Verbesserung des Glanzes, der Trü­ bung und der Barriereeigenschaften der Folie wird in der Schrift nicht aufgezeigt. Auch finden sich in der Schrift keinerlei Hinweise darauf, wie die Topographie einer solchen Folie für die gleichzeitige Verbesserung von Glanz und Sauerstoffbarriere eingestellt werden soll.
Aufgabe der vorliegenden Erfindung war es nun, eine coextrudierte, biaxial orientierte Polyesterfolie zur Verfügung zu stellen, die sich durch sehr gute optische Eigen­ schaften auszeichnet und insbesondere einen sehr hohen Glanz und eine sehr niedrige Trübung aufweist. Weiterhin soll die Folie nach Metallisierung oder nach Beschichtung mit oxidischen Materialien eine gute Sauerstoffbarriere aufweisen, und sich durch eine sehr gute Herstellbarkeit und Verarbeitbarkeit auszeichnen. Zu­ sammengefaßt bestand die Aufgabe darin, eine Folie mit folgender Merkmalkombina­ tion zur Verfügung zu stellen:
  • - hoher Glanz
  • - geringe Trübung
  • - geringe Sauerstoffpermeation der Folie nach Metallisierung oder nach Be­ schichtung mit oxidischen Materialien
  • - geringe Reibungskoeffizienten.
Der Glanz der Folie soll größer als 170 und die Trübung niedriger als 1,6% sein. Durch die Folie sollen weniger als 1,0 cm3 Sauerstoff pro Quadratmeter und pro Tag diffundieren, wenn Luft mit einem Druck von 1 bar darauf lastet. Die Folie soll den bekannten Verpackungsfolien dieser Art in den übrigen Eigenschaften mindestens gleichwertig sein. Sie soll sich zudem einfach und preiswert herstellen lassen, sowie auf den herkömmlichen Maschinen sehr gut verarbeiten lassen. Der Reibungskoeffi­ zient auf beiden Oberflächen soll kleiner als 0,5 sein.
Gelöst wird die Aufgabe durch eine coextrudierte, zumindest dreischichtige, biaxial orientierte Polyesterfolie mit mindestens einer Basisschicht B, die zu mindestens 80 Gew.-% aus einem thermoplastischem Polyester besteht, und auf dieser Basisschicht aufgebrachten Deckschichten A und C, die interne und/oder inerte Partikel enthalten wobei die Deckschichten A und C eine Anzahl von Erhebungen/Vorsprüngen N pro mm2 Folienoberfläche aufweisen, die mit ihren jeweiligen Höhen h und Durchmesser d über folgende Gleichungen korreliert sind
Ah1 - Bh1 * log h/µm < N/mm2 <Ah2 - Bh2 * log h/µm (1)
0,01 µm < h < 10 µm
Ah1 = -1,000; Bh1 = 3,70
Ah2 = 2,477; Bh2 = 2,22
Ad1 - Bd1 * log d/µm < N/mm2 < Ad2 - Bd2 * log d/µm (2)
0,4 µm < d < 10 µm
Ad1 = 1,700; Bd1 = 3,86
Ad2 = 4,700; Bd2 = 2,70.
Unter Erhebungen/Vorsprünge im Sinne der vorliegenden Erfindung werden kegelige Erhebungen/Vorsprünge verstanden, die aus der planaren Folienoberfläche her­ vorragen.
Unter internen Partikeln werden Katalysatorrückstände verstanden, die bei der Polye­ sterrohstoffherstellung im Rohstoff verbleiben.
Unter inerten Partikeln werden Partikel verstanden, die dem Rohstoff additiv, z. B. bei dessen Herstellung dazugegeben werden.
Zur Erzielung der gewünschten Sauerstoffpermeation metallisierter oder oxidisch beschichteter Folien (kleiner als 1,0 cm3 m-2 d-1 bar-1) muß entsprechend den Glei­ chungen (1) und (2) die Anzahl an Erhebungen/Vorsprüngen N pro mm2 Folienober­ fläche unterhalb einem bestimmten Zahlenwert liegen. Dieser Zahlenwert ist durch die rechten Seiten der Gleichungen (1) und (2) in Abhängigkeit der Höhe h und dem Durchmesser d der Erhebungen/Vorsprünge festgelegt.
Für die Erzielung von guten Sauerstoffbarrieren metallisierter oder oxidisch beschich­ teter Folien ist eine geringe Dichte an Erhebungen/Vorsprüngen N/mm2 auf der zu metallisierenden oder oxidisch zu beschichteten Folienoberfläche erforderlich. Ist die Dichte der Erhebungen/Vorsprünge N/mm2 klein (Fig. 1a), so ist die Barriere im vorliegendem Sinne gut, ist die Dichte der Erhebungen/Vorsprünge dagegen groß (Fig. 1b), so ist die Barriere im vorliegendem Sinne schlecht.
Aus der Graphik geht weiterhin hervor, daß der Ra-Wert prinzipiell ohne Einfluß auf die Barriereeigenschaften ist. Eine glatte Folie (z. B. Ra < 10 nm) kann dabei eine sehr schlechte Barriere aufweisen, sofern die Anzahl der Erhebungen/Vorsprünge N/mm2 größer ist als nach den rechten Seiten der Gleichungen (1) und (2) berechnet. In diesem Fall enthält die Oberfläche/Oberflächenschicht sehr viele feine Partikel, die zum Betrag vom Ra-Wert jedoch keinen nennenswerten Beitrag liefern. Eine solche Oberfläche ist für die Erzielung hoher Barrierewerte denkbar ungeeignet. Für die Erzielung hoher Barrierewerte sehr gut geeignet sind dagegen Folienoberflächen, die vergleichsweise wenige Erhebungen/Vorsprünge N pro Flächeneinheit aufweisen. Dabei ist es von untergeordneter Bedeutung, ob die Erhebungen/Vorsprünge von großen Partikeln/Teilchen oder von kleinen Partikeln/Teilchen hervorgerufen werden.
Ist die auf die Fläche normierte Anzahl an Erhebungen N auf der zu metallisierenden oder oxidisch zu beschichtenden Oberfläche der Folie größer als es den Zahlenwerten der rechten Seiten der Gleichungen (1) oder (2) entspricht, so ist die Sauerstoff­ permeation größer als 1,0 cm3/m2 bar d, was gemäß der vorliegenden Aufgaben­ stellung unerwünscht ist. Weiterhin ist der Glanz solcher Folienoberflächen (im unmetallisierten bzw. nicht beschichteten Zustand) dann nicht mehr so hoch, wie es gemäß der vorliegenden Aufgabenstellung ebenfalls gewünscht wird.
In einer bevorzugten Ausführungsform der erfindungsgemäßen Folie besitzen die Konstanten Ah1 bis Bh2 der Gleichung (1) die Werte Ah1 = -0,523, Bh1 = 3,523, Ah2 = 2,300 und Bh2 = 2,3, in einer besonders bevorzugten Ausführungsform die Werte Ah1 = 0,00, Bh1 = 3,300, Ah2 = 2,000 und Bh2 = 2,400 und in einer ganz besonders bevor­ zugten Ausführungsform die Werte Ah1 = 1,420, Bh1 = 2,500, Ah2 = 2,000 und Bh2 = 3,000.
In einer bevorzugten Ausführungsform der erfindungsgemäßen Folie besitzen die Konstanten Ad1 bis Bd2der Gleichung (2) die Werte Ad1 = 2,00, Bd1 = 3,630, Ad2 = 4,40 und Bd2 = 2,70, in einer besonders bevorzugten Ausführungsform die Werte Ad1 = 2,400, Bd1 = 3,720, Ad2 = 4,000 und Bd2 = 2,600 und in einer ganz besonders bevor­ zugten Ausführungsform die Werte Ad2 = 3,400, Bd2 = 2,400, Ad3 = 4,000 und Bd3 = 3,300.
In den bevorzugten und den besonders bevorzugten Ausführungsformen zeichnet sich die erfindungsgemäße Folie durch einen besonders hohen Glanz, durch eine be­ sonders niedrige Trübung und durch einen besonders niedrigen Reibungskoeffizien­ ten aus. Die metallisierte oder oxidisch beschichtete Folie hat eine besonders gute Sauerstoffbarriere. Die Permeationswerte der metallisierten oder oxidisch beschichte­ ten Folie sind kleiner als 0,8 cm3/m2 bar d.
In Fig. 2 sind die Gleichungen (1) und (2) graphisch dargestellt. In doppelt logarith­ mischer Darstellung sind beide Beziehungen Geraden, die durch die angegebenen numerischen Werte beschrieben werden.
Zu den Gleichungen (1) und (2) ähnliche Beziehungen werden nach dem Stand der Technik in den vorgenannten Schriften EP-A-0 124 291 und EP-A-0 490 665 angege­ ben. In diesen Schriften werden jedoch - wie bereits erwähnt - Folien beansprucht mit ausgezeichneten Gleiteigenschaften, hervorgerufen durch viele sehr kleine Erhebun­ gen (". . . excellent slipperness of the polyester film of this invention is simultaneously achieved by the presence of the many very minute protusions" (page 7)), die viele inerte feine Partikel enthält- ("contains many inert solid fine particles" (page 9)), was bei den erfindungsgemäßen Folien jedoch nicht der Fall ist.
Außerdem unterscheidet sich das nach dem Stand der Technik angewandte Meß­ verfahren deutlich von dem in dieser Anmeldung benutzten Meßverfahren (vgl. Be­ schreibung des Meßverfahrens auf Seiten 26/27). Dementsprechend können auch die Topographien der Folienoberflächen unterschiedlich sein, wie aus dem Vergleich der Graphen (Fig. 3) und aus den Vergleichsbeispielen hervorgeht. Zur weiteren Ver­ anschaulichung der Unterschiede zwischen den Meßverfahren und den daraus resultierenden Unterschieden in der Topographie der Folien ist in Fig. 4 eine licht­ mikroskopische Aufnahme (DIC, Differentiell Interference Contrast) an einer Polyest­ erfolie dargestellt. Dabei handelt es sich um eine Auflichtaufnahme einer mit Pigmen­ ten gefüllten Polyesterfolie. Bei der hier (erfindungsgemäß) verwendeten Methode werden, wie auf Seiten 26/27 beschrieben, sämtliche Erhebungen/Vorsprünge mittels Rasterelektronenmikroskop aufgenommen und mit einem Bildanalyseverfahren ausgewertet. Demgegenüber wird bei dem Meßverfahren nach dem Stand der Technik eine Nadel benutzt, mit der die Oberfläche in einem bestimmten Abstand abgetastet wird. Die Nadel hinterläßt geradlinige Spuren, wie im Bild zu erkennen sind. Weiterhin zeigt das Bild deutlich, daß bei dieser Methode
  • - nur wenige Pigmente erfaßt werden und
  • - die Pigmente nur zufällig getroffen werden.
Das Verfahren nach dem Stand der Technik ist damit nicht reproduzierbar und führt zu falschen Aussagen.
Anhand der Vergleichsbeispiele wird quantitativ aufgezeigt, daß die vorliegenden erfindungsgemäßen Folien im Vergleich zum Stand der Technik deutlich verschiedene Oberflächentopographien aufweisen.
Die Unteransprüche geben bevorzugte Ausführungsformen der Erfindung an, welche nachstehend zusätzlich erläutert werden.
Erfindungsgemäß ist die Folie zumindest dreischichtig aufgebaut und weist auf der einen Seite der Schicht B (=Basisschicht) die Deckschicht A und auf der anderen Seite der Schicht B eine weitere Deckschicht C aus Polyethylenterephthalat auf. Beide Deckschichten enthalten die für die Herstellung und Verarbeitung der Folie förderli­ chen Pigmente.
Für die Materialien der verschiedenen Schichten können prinzipiell verschiedene Rohstoffe verwendet werden. Es ist jedoch bevorzugt, die einzelnen Schichten auf Basis von Polyesterrohstoffen herzustellen.
Die Basisschicht B der Folie besteht bevorzugt zu mindestens 90 Gew.-% aus einem thermoplastischen Polyester. Dafür geeignet sind Polyester aus Ethylenglykol und Terephthalsäure (= Polyethylenterephthalat, PET), aus Ethylenglykol und Naphthalin- 2,6-dicarbonsäure (= Polyethylen-2,6-naphthalat, PEN), aus 1,4-Bis-hydroximethyl­ cyclohexan und Terephthalsäure [= Poly(1,4-cyclohexandimethylenterephthalat, PCDT) sowie aus Ethylenglykol, Naphthalin-2,6-dicarbonsäure und Biphenyl-,4'- dicarbonsäure (= Polyethylen-2,6-naphthalatbibenzoat, PEN BB). Besonders bevorzugt sind Polyester, die zu mindestens 90 mol-%, bevorzugt mindestens 95 mol-%, aus Ethylenglykol- und Terephthalsäure-Einheiten oder aus Ethylenglykol- und Naphthalin-2,6-dicarbonsäure-Einheiten bestehen. Die restlichen Monomereinheiten stammen aus anderen aliphatischen, cycloaliphatischen oder aromatischen Diolen bzw. Dicarbonsäuren, wie sie auch in der Schicht A (oder der Schicht C) vorkommen können.
Geeignete andere aliphatische Diole sind beispielsweise Diethylenglykol, Triethylen­ glykol, aliphatische Glykole der allgemeinen Formel HO-(CH2)n-OH, wobei n eine ganze Zahl von 3 bis 6 darstellt (insbesondere Propan-1,3-diol, Butan-1,4-diol, Pentan-1,5-diol und Hexan-1,6-diol) oder verzweigte aliphatische Glykole mit bis zu 6 Kohlenstoff-Atomen. Von den cycloaliphatischen Diolen sind Cyclohexandiole (ins­ besondere Cyclohexan-1,4-diol) zu nennen. Geeignete andere aromatische Diole entsprechen beispielsweise der Formel HO-C6H4-X-C6H4-OH, wobei X für -CH2-, -C(CH3)2-, -C(CF3)2-, -O-, -S- oder -SO2- steht. Daneben sind auch Bisphenole der Formel HO-C6H4-C6H4-OH gut geeignet.
Andere aromatische Dicarbonsäuren sind bevorzugt Benzoldicarbonsäuren, Naph­ thalindicarbonsäuren (beispielsweise Naphthalin-1,4- oder 1,6-dicarbonsäure), Biphenyl-x,x'-dicarbonsäuren (insbesondere Biphenyl-4,4'-dicarbonsäure), Diphenyl­ acetylen-x,x'-dicarbonsäuren (insbesondere Diphenylacetylen-4,4'-dicarbonsäure) oder Stilben-x,x'-dicarbonsäuren. Von den cycloaliphatischen Dicarbonsäuren sind Cyclohexandicarbonsäuren (insbesondere Cyclohexan-1,4-dicarbonsäure) zu nennen. Von den aliphatischen Dicarbonsäuren sind die (C3-C19) Alkandisäuren besonders ge­ eignet, wobei der Alkanteil geradkettig oder verzweigt sein kann.
Die Herstellung der Polyester kann nach dem Umesterungsverfahren erfolgen. Dabei geht man von Dicarbonsäureestern und Diolen aus, die mit den üblichen Umeste­ rungskatalysatoren, wie Zink-, Calcium-, Lithium-, Magnesium- und Mangan-Salzen, umgesetzt werden. Die Zwischenprodukte werden dann in Gegenwart allgemein üblicher Polykondensationskatalysatoren, wie Antimontrioxid oder Titan-Salzen, polykondensiert. Die Herstellung kann ebenso gut nach dem Direktveresterungs­ verfahren in Gegenwart von Polykondensationskatalysatoren erfolgen. Dabei geht man direkt von den Dicarbonsäuren und den Diolen aus.
Als vorteilhaft haben sich solche Verfahren erwiesen, bei denen Umesterungskataly­ satoren eingesetzt werden, bei denen nur wenige und/oder nur kleine Erhebun­ gen/Vorsprünge auf der Oberfläche der Folie erzeugt werden. Bevorzugt sind hierbei insbesondere Magnesium- und Mangan-Salze. Diese Umesterungskatalysatoren werden vorteilhaft bei der Herstellung des Basisrohstoffes, besonders vorteilhaft aber bei der Herstellung des Rohstoffes für die Deckschichten verwendet.
Für die Deckschichten können prinzipiell die gleichen Polymere verwendet werden, wie für die Basisschicht. Daneben können in den Deckschichten auch andere Materia­ lien enthalten sein, wobei dann die Deckschichten bevorzugt aus einem Gemisch von Polymeren, einem Copolymeren oder einem Homopolymeren besteht, welches Ethylen-2,6-naphthalat-Einheiten und Ethylen-terephthalat-Einheiten enthalten. Bis zu 10 Mol-% der Polymere können aus weitere Comonomeren (s. o.) bestehen.
Für eventuell vorhandene Zwischenschichten können prinzipiell die gleichen Polymere verwendet werden, wie zuvor für die Basisschicht und die Deckschichten beschrieben.
Für die Verarbeitung der Polymere hat es sich als günstig erwiesen, die Polymere für die Basisschicht und die anderen Schichten so zu wählen, daß sich die Viskositäten der jeweiligen Polymerschmelzen nicht zu sehr unterscheiden. Im anderen Fall ist mit zusätzlichen Erhebungen/Vorsprüngen, mit Fließstörungen oder mit Streifenbildung auf der fertigen Folie zu rechnen. Für die Beschreibung der Viskositätsbereiche der beiden Schmelzen wird eine modifizierte Lösungsmittelviskosität (SV-Wert oder "solution viscosity") verwendet. Für handelsübliche Polyethylenterephthalate, die sich zur Herstellung von biaxial orientierten Folien eignen, liegen die SV-Werte im Bereich von 600 bis 1000. Um eine einwandfreie Qualität der Folie im Sinne der vorliegenden Erfindung zu gewährleisten, sollte der SV-Wert der Polymeren für die Schichten A oder C im Bereich von 500 bis 1200, bevorzugt im Bereich von 550 bis 1150, ins­ besondere bevorzugt im Bereich von 600 bis 1000 liegen. Falls notwendig, kann an den jeweiligen Granulaten eine Festphasenkondensation durchgeführt werden, um die benötigten SV-Werte der Materialien einzustellen. Die SV-Werte der Polymerschmel­ zen für Basis- und die anderen Schichten sollten sich um nicht mehr als 200, vorzugs­ weise nicht mehr als 150, insbesondere aber nicht mehr als 100 Einheiten unter­ scheiden.
Die Basisschicht und die anderen Schichten können zusätzlich übliche Additive, wie bspw. Stabilisatoren und/oder Antiblockmittel, enthalten. Sie werden zweckmäßig dem Polymer bzw. der Polymermischung bereits vor dem Aufschmelzen zugesetzt. Als Stabilisatoren werden beispielsweise Phosphorverbindungen, wie Phosphorsäure oder Phosphorsäureester, eingesetzt.
Typische Antiblockmittel (in diesem Zusammenhang auch als Pigmente bezeichnet) sind anorganische und/oder organische Partikel, beispielsweise Calciumcarbonat amorphe Kieselsäure, Talk, Magnesiumcarbonat, Bariumcarbonat, Calciumsulfat, Ba­ riumsulfat, Lithiumphosphat, Calciumphosphat, Magnesiumphosphat, Aluminiumoxid LiF, Calcium-, Barium-, Zink- oder Mangan-Salze der eingesetzten Dicarbonsäuren Ruß, Titandioxid, Kaolin oder vernetzte Polystyrol- oder Arcrylat-Partikel.
Als Additive können auch Mischungen von zwei und mehr verschiedenen Antiblock­ mitteln oder Mischungen von Antiblockmitteln gleicher Zusammensetzung, aber unterschiedlicher Partikelgröße gewählt werden. Die Partikel können den einzelnen Schichten in den jeweils vorteilhaften Konzentrationen, z. B. als glykolische Dispersion während der Polykondensation oder über Masterbatche bei der Extrusion zugegeben werden. Als besonders geeignet haben sich Pigmentkonzentrationen von 0 bis 5 Gew.-% erwiesen. Eine detaillierte Beschreibung der einsetzbaren Antiblockmittel findet sich beispielsweise in der EP-A-0 602 964.
Die erfindungsgemäße Folie wird zur Erzielung eines hohen Glanzes, einer niedrigen Trübung und zur Erfüllung der Gleichungen (1) bis (2) vergleichsweise nur wenig mit inerten Pigmenten gefüllt. Die Konzentration der inerten Partikeln in den Deckschich­ ten liegt zwischen 0,01 und 0,2 Gew.-%, bevorzugt zwischen 0,02 und 0,16 Gew.-%, besonders bevorzugt zwischen 0,025 und 0,14 Gew.-% und ganz besonders bevor­ zugt zwischen 0,030 und 0,12 Gew.-% und richtet sich im wesentlichen nach der Größe der eingesetzten Partikeln.
Als zweckmäßig hat es sich für die Lösung der Aufgabe erwiesen, die Konzentration der Pigmente innerhalb der Folie so zu wählen, daß der Aschegehalt der Folie kleiner als 0,12% ist. Besonders zweckmäßig ist es, die Konzentration der Pigmente in­ nerhalb der Folie so zu wählen, daß der Aschegehalt der Folie kleiner als 0,10% ist.
Bevorzugte Partikel sind SiO2 in kolloidaler und in kettenartiger Form. Diese Partikel werden sehr gut in die Polymermatrix eingebunden und erzeugen nur geringfügig Vakuolen. Vakuolen verursachen im allgemeinen Trübung und sind daher zweck­ mäßiger Weise zu vermeiden. Die Partikeldurchmesser der eingesetzten Teilchen sind prinzipiell nicht eingeschränkt. Für die Lösung der Aufgabe hat es sich jedoch als zweckmäßig erwiesen, Teilchen mit einem mittleren Primärpartikeldurchmesser von kleiner als 100 nm, bevorzugt kleiner als 60 nm und besonders bevorzugt kleiner als 50 nm und/oder Teilchen mit einem mittleren Primärpartikeldurchmesser von größer als 1 µm, bevorzugt größer als 1,5 µm und besonders bevorzugt größer als 2 µm zu verwenden.
Die Pigmentierung der einzelnen, die Deckschichten nicht betreffende Schichten, kann danach sehr verschieden sein und richtet sich im wesentlichen nach dem Folien­ aufbau (Schichtaufbau) und den Anforderungen der Folie hinsichtlich Erzielung der weiteren optischen Eigenschaften (Trübung) und dem Herstellungs- und Verarbei­ tungsverhalten.
Handelt es sich um die bevorzugte dreischichtige Folie mit der Basisschicht B und den beiden Deckschichten A und C, so ist in der Basisschicht B die Partikelkonzentration vorzugsweise niedriger als die in den Deckschichten. Die Pigmentierung in der Basis­ schicht B sollte so gewählt werden, daß sie sich nicht negativ auf die Anzahl der Erhebungen/Vorsprünge N in den erfindungsgemäßen Deckschichten auswirkt. Bei einer dreischichtigen Folie vom genannten Typ wird in der Basisschicht B die Partikel­ konzentration zwischen 0 und 0,06 Gew.-%, vorzugsweise zwischen 0 und 0,04 Gew.-%, insbesondere zwischen 0 und 0,03 Gew.-% und idealerweise zwischen 0 und 0,02 Gew.-% liegen. Der Partikeldurchmesser der eingesetzten Teilchen ist prinzipiell nicht eingeschränkt, jedoch sind Teilchen mit einem mittleren Durchmesser von größer 1 µm besonders bevorzugt.
Die erfindungsgemäße Polyesterfolie ist dreischichtig aufgebaut und enthält die beiden Deckschichten A und C. Dicke und Zusammensetzung der zweiten Deck­ schicht C können unabhängig von der Deckschicht A gewählt werden, wobei die zweite Deckschicht ebenfalls die bereits genannten Polymere oder Polymermischun­ gen enthalten kann, welche aber nicht mit der ersten Deckschicht identisch sein müssen. Die zweite Deckschicht kann auch andere gängige Deckschichtpolymere enthalten.
Zwischen der Basisschicht und den Deckschichten kann sich gegebenenfalls noch eine Zwischenschicht befinden. Diese kann wiederum aus den für die Basisschichten beschriebenen Polymeren bestehen. In einer besonders bevorzugten Ausführungs­ form besteht sie aus dem für die Basisschicht verwendeten Polyester. Sie kann auch die beschriebenen üblichen Additive enthalten. Die Dicke der Zwischenschicht ist im allgemeinen größer als 0,3 µm und liegt bevorzugt im Bereich von 0,5 bis 15 µm, besonders bevorzugt im Bereich von 1,0 bis 10 µm und ganz besonders bevorzugt im Bereich von 1,0 bis 5 µm.
Bei der dreischichtigen Ausführungsform der erfindungsgemäßen Folie sind die Dicken der Deckschichten A und C im allgemeinen größer als 0,1 µm und liegen im Bereich von 0,2 bis 2,0 µm, bevorzugt im Bereich von 0,2 bis 1,8 µm, besonders bevorzugt im Bereich von 0,3 bis 1,6 µm und ganz besonders bevorzugt im Bereich von 0,3 bis 1,4 µm, wobei die Deckschichten A und C gleich oder verschieden dick sein können.
Die Gesamtdicke der erfindungsgemäßen Polyesterfolie kann innerhalb weiter Gren­ zen variieren und richtet sich nach dem beabsichtigten Verwendungszweck. Sie beträgt 4 bis 50 µm, insbesondere 5 bis 45 µm, vorzugsweise 6 bis 40 µm, wobei die Schicht B einen Anteil von vorzugsweise etwa 10 bis 90% an der Gesamtdicke hat.
Zur Herstellung der Schichten A und C (Deckschicht/en A und C) werden zweckmäßig Granulate aus Polyethylenterephthalat einem bzw. zwei Extrudern zugeführt. Die Materialien werden bei etwa 300°C aufgeschmolzen und extrudiert.
Die Polymere für die Basisschicht werden zweckmäßig über einen weiteren Extruder zugeführt. Etwa vorhandene Fremdkörper oder Verunreinigungen lassen sich aus der Polymerschmelze vor der Extrusion abfiltrieren. Die Schmelzen werden dann in einer Mehrschichtdüse zu flachen Schmelzefilmen ausgeformt und übereinander geschich­ tet. Anschließend wird der Mehrschichtfilm mit Hilfe einer Kühlwalze und gegebenen­ falls weiteren Walzen abgezogen und verfestigt.
Die biaxiale Verstreckung wird im allgemeinen sequentiell durchgeführt. Dabei wird vorzugsweise erst in Längsrichtung (d. h. in Maschinenrichtung) und anschließend in Querrichtung (d. h. senkrecht zur Maschinenrichtung) verstreckt. Dies führt zu einer Orientierung der Molekülketten. Das Verstrecken in Längsrichtung läßt sich mit Hilfe zweier entsprechend dem angestrebten Streckverhältnis verschieden schnell laufen­ der Walzen durchführen. Zum Querverstrecken benutzt man allgemein einen ent­ sprechenden Kluppenrahmen.
Die Temperatur, bei der die Verstreckung durchgeführt wird, kann in einem relativ großen Bereich variieren und richtet sich nach den gewünschten Eigenschaften der Folie. Im allgemeinen wird die Längsstreckung bei 80 bis 130°C und die Querstrec­ kung bei 90 bis 150 °C durchgeführt. Das Längsstreckverhältnis liegt allgemein im Bereich von 2,5 : 1 bis 6 : 1, bevorzugt von 3 : 1 bis 5,5 : 1. Das Querstreckverhältnis liegt allgemein im Bereich von 3,0 : 1 bis 5,0 : 1, bevorzugt von 3,5 : 1 bis 4,5 : 1. Vor der Querstreckung kann man eine oder beide Oberfläche(n) der Folie nach den bekannten Verfahren in-line beschichten. Die In-Line-Beschichtung kann beispielsweise zu einer verbesserten Haftung der Metallschicht oder einer eventuell aufgebrachten Druckfar­ be, aber auch zur Verbesserung des antistatischen Verhaltens oder des Verarbei­ tungsverhaltens dienen.
Bei der nachfolgenden Thermofixierung wird die Folie etwa 0,1 bis 10 s lang bei einer Temperatur von 150 bis 250°C gehalten. Anschließend wird die Folie in üblicher Weise aufgewickelt.
Die biaxial verstreckte und thermofixierte Polyesterfolie kann vor der Bedruckung oder vor dem Aufbringen der metallischen oder oxidischen Schicht auf einer oder beiden Seite(n) corona- oder flammbehandelt werden. Die Behandlungsintensität ist so gewählt, daß die Oberflächenspannung der Folie im allgemeinen über 45 mN/m liegt.
Sofern erwünscht, erfolgt das Aufbringen von Metall- oder oxidischen Schichten auf üblichen industriellen Anlagen. Metallschichten aus Aluminium werden üblicherweise durch Bedampfen in herkömmlichen Metallisierern (Schiffchenmethode) hergestellt. Bei oxidischen Schichten haben sich daneben insbesondere Elektronenstrahlverfah­ ren oder Aufsputtern bewährt. Die Verfahrensparameter der Anlage beim Aufbringen der Metallschicht bzw. der oxidischen Schicht auf die Folien entsprechen den Stan­ dardbedingungen. Die Metallisierung der Folien wird vorzugsweise so durchgeführt, daß die optische Dichte der metallisierten Folien im üblichen Bereich von ca. 2,2 bis 2,8 liegt. Das Aufbringen der oxidischen Schicht auf die Folie wird so durchgeführt, daß die Schichtstärke der Oxidschicht vorzugsweise im Bereich von 30 bis 100 nm liegt. Die Bahngeschwindigkeit der zu beschichtenden Folie liegt bei allen Einstel­ lungen üblicherweise zwischen 5 und 20 m/s.
Zur Einstellung weiterer gewünschter Eigenschaften kann die Folie beschichtet oder corona- bzw. flammvorbehandelt sein. Typische Beschichtungen sind haftvermittelnde antistatisch, schlupfverbessernd oder dehäsiv wirkende Schichten. Es bietet sich an, diese zusätzlichen Schichten über in-line coating mittels wäßriger Dispersionen vor der Querverstreckung auf die Folie aufzubringen.
Bei einer Metallisierung der Folie besteht die Metallschicht bevorzugt aus Aluminium. Doch sind auch andere Materialien geeignet, die sich in Form einer dünnen, zu­ sammenhängenden Schicht aufbringen lassen. Insbesondere ist z. B. Silizium ge­ eignet, welches im Vergleich zu Aluminium eine transparente Barriereschicht ergibt. Die oxidische Schicht besteht bevorzugt aus Oxiden von Elementen der II., III. oder IV. Hauptgruppe des Periodensystems, insbesondere Oxiden des Magnesiums, Alumini­ ums oder Siliciums. Allgemein werden solche metallischen oder oxidischen Materialien verwendet, die bei vermindertem Druck bzw. im Vakuum aufgebracht werden können.
Ein Vorteil der Erfindung besteht darin, daß die Herstellungskosten der erfindungs­ gemäßen Folie vergleichbar sind mit denjenigen nach dem Stand der Technik. Die sonstigen verarbeitungs- und gebrauchsrelevanten Eigenschaften der erfindungs­ gemäßen Folie bleiben im wesentlichen unverändert oder sind sogar verbessert. Daneben ist bei der Herstellung der Folie gewährleistet, daß das Regenerat in einer Konzentration von 20 bis 50 Gew.-%, bezogen auf das Gesamtgewicht der Folie wieder verwendet werden kann, ohne daß dabei die physikalischen Eigenschaften der Folie nennenswert negativ beeinflußt werden.
Die Folie eignet sich hervorragend zur Verpackung von licht- und/oder luftempfindli­ chen Nahrungs- und Genußmitteln. Daneben ist sie auch hervorragend für den Ein­ satz im industriellen Bereich, z. B. bei der Herstellung von Prägefolien, geeignet. Speziell geeignet ist sie zur Herstellung von Vakuumverpackungen für Kaffee, ins­ besondere gemahlenem Kaffee.
Zusammengefaßt zeichnet sich die erfindungsgemäße Folie durch einen hohen Glanz und durch eine niedrige Trübung aus. Desweiteren hat die Folie eine sehr gute Sauerstoffbarriere, nachdem sie metallisiert oder mit oxidischen Materialien beschich­ tet worden ist. Außerdem besitzt sie das gewünschte gute Verarbeitungsverhalten insbesondere auf schnellaufenden Verarbeitungsmaschinen.
Der Glanz der Folie ist größer als 170. In einer bevorzugten Ausführungsform beträgt der Glanz der Folie mehr als 180 und in einer besonders bevorzugten Ausführungs­ form mehr als 190. Die Folie eignet sich daher insbesondere für die Bedruckung oder für die Metallisierung. Der hohe Glanz der Folie überträgt sich auf den Druck oder die aufgebrachte Metallschicht und verleiht somit der Folie das gewollte werbewirksame Aussehen.
Die Trübung der Folie ist kleiner als 1,6. In einer bevorzugten Ausführungsform beträgt die Trübung der Folie weniger als 1,5 und in einer besonders bevorzugten Ausführungsform weniger als 1,4. Durch die geringe Trübung der Folie eignet sich die Folie nicht nur für die Verpackung sondern auch z. B. für reprographische Anwendun­ gen oder für "glazing"-Anwendungen.
Das Verarbeitungs- und das Wickelverhalten der Folie, insbesondere auf schnel­ laufenden Maschinen (Wickler, Metallisierer, Druck- und Kaschiermaschinen) ist ausgesprochen gut. Ein Maß für das Verarbeitungsverhalten ist der Reibungskoeffi­ zient der Folie, der kleiner als 0,5 ist. In einer bevorzugten Ausführungsform beträgt er weniger als 0,4 und in einer besonders bevorzugten Ausführungsform weniger als 0,35. Das Wickelverhalten wird neben einem guten Dickenprofil, einer hervorragender Planlage und niedriger Reibungskoeffizienten entscheidend durch die Rauhigkeit der Folie beeinflußt. Es hat sich herausgestellt, daß die Wickelung der Folie insbesondere dann gut ist, wenn unter Einbehalt der anderen Eigenschaften die mittlere Rauhigkeit in einem Bereich von 20 bis 80 nm liegt. In einer bevorzugten Ausführungsform liegt die mittlere Rauhigkeit in einem Bereich von 30 bis 70 nm und in einer besonders bevorzugten Ausführungsform in einem Bereich von 35 bis 60 nm.
Die nachstehende Tabelle (Tabelle 1) faßt die wichtigsten erfindungsgemäßen Fo­ lieneigenschaften noch einmal zusammen.
Zur Charakterisierung der Rohstoffe und der Folien wurden die folgenden Methoden benutzt:
(1) Optische Dichte
Zur Messung der optischen Dichte wurde das Densitometer Macbeth TD-904 von Macbeth (Division of Kollmorgen Instruments Corp.) eingesetzt. Die optische Dichte ist definiert als OD = -lg l/l0, wobei l: die Intensität des eingestrahlten Lichtes, l0: die Intensität des ausgestrahlten Lichtes und l/l0: die Transmission bedeuten.
(2) Sauerstoffbarriere
Die Messung der Sauerstoffbarriere an den metallisierten Folien erfolgte mit einem OX-TRAN 2/20 von Mocon Modern Controls (USA) entsprechend DIN 53 380, Teil 3.
(3) SV-Wert
Zur Bestimmung des SV-Wertes (SV = solvent viscosity) wurde eine Polyester-Probe in einem Lösungsmittel (Dichloressigsäure) gelöst. Die Viskosität dieser Lösung sowie die Viskosität des reinen Lösungsmittels wurden in einem Ubbelohde-Viskosimeter gemessen. Aus den beiden Werten wurde der Quotient ermittelt, davon 1,000 abgezo­ gen und dieser Wert mit 1000 multipliziert. Das Resultat war der SV-Wert ("solution viscosity").
(4) Reibung
Die Reibung wurde nach DIN 53 375 bestimmt. Die Reibung wurde 14 Tage nach der Produktion gemessen.
(5) Oberflächenspannung
Die Oberflächenspannung wurde mittels der sogenannten Tintenmethode (DIN 53 364) bestimmt.
(6) Trübung
Die Trübung der Folie wurde nach ASTM-D 1003-52 gemessen. Die Trübungsmes­ sung nach Hölz wurde in Anlehnung an ASTM-D 1003-52 bestimmt, wobei jedoch zur Ausnutzung des optimalen Meßbereichs an vier übereinanderliegenden Folienlagen gemessen und anstelle einer 4E-Lochblende eine 1°-Spaltblende eingesetzt wurde.
(7) Glanz
Der Glanz wurde nach DIN 67 530 bestimmt. Gemessen wurde der Reflektorwert als optische Kenngröße für die Oberfläche einer Folie. Angelehnt an die Normen ASTM-D 523-78 und ISO 2813 wurde der Einstrahlwinkel mit 20° oder 60° eingestellt. Ein Lichtstrahl trifft unter dem eingestellten Einstrahlwinkel auf die ebene Prüffläche und werden von dieser reflektiert bzw. gestreut. Die auf den photoelektronischen Empfän­ ger auffallenden Lichtstrahlen werden als proportionale elektrische Größe angezeigt. Der Meßwert ist dimensionslos und muß mit dem Einstrahlwinkel angegeben werden.
(8) Bestimmung der Korngrößen auf Folienoberflächen
Die Bestimmung der Größenverteilung von Antiblockmittelteilchen (Korngrößenver­ teilung) auf Folienoberflächen erfolgt mit einem Rasterelektronenmikroskop (z. B. DSM 982 Gemini, Fa. Leo GmbH (Zeiss)) in Verbindung mit einem Bildanalysensystem. Die gewählten Vergrößerungen waren in allen Fällen 1700fach.
Für diese Messungen werden Folienproben flach auf einen Probenhalter aufgebracht. Anschließend werden diese unter einem Winkel α mit einer dünnen Metallschicht (z. B. aus Silber) schräg bedampft. Dabei ist α der Winkel zwischen Probenoberfläche und der Ausbreitungsrichtung des Metalldampfes. Durch diese Schrägbedampfung ent­ steht an den Antiblockmittelteilchen ein Schattenwurf. Da die Schatten noch nicht elektrisch leitfähig sind, kann die Probe anschließend noch mit einem zweiten Metall (z. B. Gold) bedampft werden, wobei der Metalldampf dabei senkrecht auf die Proben­ oberfläche auftrifft.
Die so präparierten Probenoberflächen werden in einem Rasterelektronenmikroskop (REM) abgebildet. Die Schatten der Antiblockmittelteilchen sind infolge des Material­ kontrastes sichtbar. Die Probe wird im REM so orientiert, daß die Schatten parallel zum unteren Bildrand (x-Richtung) verlaufen. In dieser Einstellung werden REM-Bilder angefertigt und in ein Bildanalysesystem übertragen. Mit diesem Bildanalysesystem werden nun die Längen der Schatten (in x-Richtung) und ihre maximale Ausdehnung in y-Richtung (parallel zum senkrechten Bildrand) vermessen.
Der Durchmesser D der Antiblockmittelteilchen in Höhe der Probenoberfläche ist gleich der maximalen Ausdehnung der Schatten d in y-Richtung. Die Höhe der Anti­ blockmittelteilchen, gemessen ab der Folienoberfläche errechnet sich aus dem Be­ dampfungswinkel α und der Schattenlänge L und unter Kenntnis der für die REM- Abbildung gewählten Vergrößerung V zu:
h = (tan (α) * L)/N.
Um eine genügend hohe statistische Sicherheit zu erreichen, werden einige tausend Antiblockmittelteilchen vermessen. Für die Durchmesser und Höhen der Teilchen werden dann mit Hilfe der bekannten statistischen Methoden Häufigkeitsverteilungen erstellt. Für den Teilchendurchmesser D wird dazu eine Klassenbreite von 0,2 µm und für die Teilchenhöhe h eine Klassenbreite von 0,05 µm gewählt.
(9) Aschegehalt
Die Bestimmung des Aschegehalts erfolgt in Anlehnung an die Prüfnormen DIN 53 568 und DIN 3451. Die Vorveraschung der Proben erfolgt nicht in offener Flamme, sondern ohne Rußentwicklung in einem elektrisch beheizten Schnellverascher. Nach Veraschung wird die Probe in einem Muffelofen bei 600°C bis zur Gewichtskonstanz geglüht und ausgewogen.
(10) Rauhigkeit
Die Rauhigkeit Ra der Folie wurde nach DIN 4768 bei einem Cut-off von 0,25 mm bestimmt.
Beispiel 1
Chips aus Polyethylenterephthalat (hergestellt über das Umesterungsverfahren mit Mn als Umesterungskatalysator, Mn-Konzentration: 100 ppm) wurden bei 160°C auf eine Restfeuchte von unterhalb 50 ppm getrocknet und dem Extruder für die Basisschicht B zugeführt.
Daneben wurden Chips aus Polyethylenterephthalat (hergestellt über das Umeste­ rungsverfahren mit Mn als Umesterungskatalysator, Mn-Konzentration: 100 ppm), die entsprechend Tabelle 2 pigmentiert sind, ebenfalls bei 160°C auf eine Restfeuchte von unterhalb 50 ppm getrocknet und den jeweiligen Extrudern für die Deckschichten A und C zugeführt.
Es wurde durch Coextrusion und anschließende stufenweise Orientierung in Längs- und Querrichtung eine transparente dreischichtige Folie mit symmetrischem (ABA-) Aufbau und einer Gesamtdicke von 12 µm hergestellt. Die Dicke der jeweiligen Schichten ist der Tabelle 2 zu entnehmen.
Deckschichten A, C (A = C), Mischung aus:@ 90,0 Gew.-% Polyethylenterephthalat mit einem SV-Wert von 800
10,0 Gew.-% Masterbatch aus 99,0 Gew.-% Polyethylenterephthalat (SV-Wert von 800) und 0,5 Gew.-% Sylobloc® 44 H (kolloidales SiO2 der Fa. Grace) und 0,5 Gew.-% Aerosil® TT 600 (kettenartiges SiO2 der Fa. Degussa)
Basisschicht B:@ 100,0 Gew.-% Polyethylenterephthalat mit einem SV-Wert von 800
Die Herstellungsbedingungen in den einzelnen Verfahrensschritten waren:
Die Folie zeichnet sich durch sehr gute optische Eigenschaften und durch ein gutes Verarbeitungsverhalten aus (vgl. Tabelle 3).
Nach Herstellung der Folie (nach diesem Beispiel 1 und allen folgenden Beispielen) wurde diese in einem industriellen Metallisierer mit Aluminium unter Vakuum be­ dampft. Die Beschichtungsgeschwindigkeit betrug 8 m/s und die optische Dichte 2,6.
Die Folie hatte die geforderte Sauerstoffbarriere. Der Folienaufbau und die erzielten Eigenschaften derart hergestellter Folien sind in den Tabellen 2 und 3 dargestellt.
Beispiel 2
In ähnlicher Weise wie in Beispiel 1 wurde durch Coextrusion und anschließende stufenweise Orientierung in Längs- und Querrichtung eine transparente dreischichtige Folie mit ABA-Aufbau und einer Gesamtdicke von 12 µm hergestellt. Im Vergleich zu Beispiel 1 wurden nur die Deckschichten geändert.
Deckschichten A, Mischung aus:@ 88,0 Gew.-% Polyethylenterephthalat mit einem SV-Wert von 800
12,0 Gew.-% Masterbatch aus 99,0 Gew.-% Polyethylenterephthalat (SV-Wert von 800) und 0,5 Gew.-% Sylobloc 44 H (Fa. Grace) und 0,5 Gew.-% Aerosil TT 600 (Fa. Degussa)
Die Verfahrensbedingungen waren für alle Schichten wie in Beispiel 1 gewählt.
Beispiel 3
In ähnlicher Weise wie in Beispiel 1 wurde durch Coextrusion und anschließende stufenweise Orientierung in Längs- und Querrichtung eine transparente dreischichtige Folie mit ABA-Aufbau und einer Gesamtdicke von 12 µm hergestellt. Im Vergleich zu Beispiel 1 wurden nur die Deckschichten geändert.
Deckschichten, Mischung aus:@ 84,0 Gew.-% Polyethylenterephthalat mit einem SV-Wert von 800
16,0 Gew.-% Masterbatch aus 99,0 Gew.-% Polyethylenterephthalat (SV-Wert von 800) und 0,5 Gew.-% Sylobloc 44 H (Fa. Grace) und 0,5 Gew.-% Aerosil TT 600 (Fa. Degussa)
Die Verfahrensbedingungen waren für alle Schichten wie in Beispiel 1 gewählt.
Beispiel 4
In ähnlicher Weise wie in Beispiel 1 wurde durch Coextrusion und anschließende stufenweise Orientierung in Längs- und Querrichtung eine transparente dreischichtige Folie mit ABA-Aufbau und einer Gesamtdicke von 12 µm hergestellt. Im Vergleich zu Beispiel 1 wurde nur die Deckschicht A geändert.
Deckschichten, Mischung aus:@ 80,0 Gew.-% Polyethylenterephthalat mit einem SV-Wert von 800
20,0 Gew.-% Masterbatch aus 99,0 Gew.-% Polyethylenterephthalat (SV-Wert von 800) und 0,5 Gew.-% Sylobloc 44 H (Fa. Grace) und 0,5 Gew.-% Aerosil TT 600 (Fa. Degussa)
Die Verfahrensbedingungen waren für alle Schichten wie in Beispiel 1 gewählt.
Beispiel 5
In ähnlicher Weise wie in Beispiel 3 wurde durch Coextrusion und anschließende stufenweise Orientierung in Längs- und Querrichtung eine transparente dreischichtige Folie mit ABA-Aufbau und einer Gesamtdicke von 12 µm hergestellt. Im Vergleich zu Beispiel 3 wurde die Dicke der Deckschichten von 1,5 auf 1,0 µm reduziert. Die Verfahrensbedingungen waren für alle Schichten wie in Beispiel 1 gewählt.
Beispiel 6
In ähnlicher Weise wie in Beispiel 5 wurde durch Coextrusion und anschließende stufenweise Orientierung in Längs- und Querrichtung eine transparente dreischichtige Folie mit ABA-Aufbau und einer Gesamtdicke von 12 µm hergestellt. Im Vergleich zu Beispiel 5 wurde die Dicke der Deckschichten von 1,5 auf 2,0 µm erhöht.
Beispiel 7
In ähnlicher Weise wie in Beispiel 4 wurde durch Coextrusion und anschließende stufenweise Orientierung in Längs- und Querrichtung eine transparente dreischichtige Folie mit ABA-Aufbau und einer Gesamtdicke von 12 µm hergestellt. Im Vergleich zu Beispiel 4 wurde das Aerosil TT 600 weggelassen.
Beispiel 8
In ähnlicher Weise wie in Beispiel 7 wurde durch Coextrusion und anschließende stufenweise Orientierung in Längs- und Querrichtung eine transparente dreischichtige Folie mit ABA-Aufbau und einer Gesamtdicke von 12 µm hergestellt. Im Vergleich zu Beispiel 7 wurde die Dicke der Deckschichten von 1,5 auf 1,0 µm erniedrigt.
Vergleichsbeispiel 1
Es wurde das Beispiel 1 aus der EP-A-0 514 129 nachgearbeitet. Der Glanz der Folie ist nicht zufriedenstellend. Die metallisierte Variante in 12 µm Dicke hat nicht die geforderten Barrierewerte.
Vergleichsbeispiel 2
Es wurde das Beispiel 1 aus der EP-A-0 604 057 nachgearbeitet. Der Glanz der Folie und die Wickelung der Folie ist nicht zufriedenstellend. Außerdem stellt die Folie hinsichtlich Verwendung im Verpackungsmarkt keine wirtschaftliche Lösung dar und weist außerdem Defizite bezüglich Wickelverhalten auf.
Vergleichsbeispiel 3
Es wurde das Beispiel 1 aus der EP-A-0 124 291 nachgearbeitet.
Vergleichsbeispiel 4
Es wurde das Beispiel 1 aus der EP-A-0 490 665 nachgearbeitet.
Vergleichsbeispiel 5
Es wurde das Beispiel 1 aus der DE-A-16 94 404 nachgearbeitet.
Vergleichsbeispiel 6
Es wurde das Beispiel 15 aus der EP-A-0 061 769 nachgearbeitet.
Vergleichsbeispiel 7
Es wurde das Beispiel 1 aus der EP-B-0 088 635 nachgearbeitet.

Claims (14)

1. Biaxial orientierte, coextruclierte, zumindestens dreischichtige Polyesterfolie mit mindestens einer Basisschicht B, die zu mindestens 80 Gew.-% aus einem thermoplastischem Polyester besteht, und auf dieser Basisschicht aufgebrach­ ten Deckschichten A und C, die interne und/oder inerte Partikel enthalten wobei die Deckschichten A und C eine Anzahl von Erhebungen/Vorsprüngen N pro mm2 Folienoberfläche aufweisen, die mit ihren jeweiligen Höhen h und Durchmesser d über folgende Gleichungen korreliert sind
Ah1 - Bh1 * log h/µm < N/mm2 <Ah2 - Bh2 * log h/µm (1)
0,01 µm < h < 10 µm
Ah1 = -1,000; Bh1 = 3,70
Ah2 = 2,477; Bh2 = 2,22
Ad1 - Bd1 * log d/µm < N/mm2 < Ad2 - Bd2 * log d/µm (2)
0,4 µm < d < 10 µm
Ad1 = 1,700; Bd1 = 3,86
Ad2 = 4,700; Bd2 = 2,70.
2. Polyesterfolie nach Anspruch 1, dadurch gekennzeichnet, daß die Deckschich­ ten weniger als 0,20 Gew.-%, eines inerten Füllmaterials enthält.
3. Polyesterfolie nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die metallisierte oder die oxidisch beschichtete Folie eine Sauerstoffbarriere von ≦ 1,0 cm3/m2 bar d aufweist.
4. Polyesterfolie nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die metallisierte oder die oxidisch beschichtete Folie eine Sauerstoffbarriere von ≦ 0,80 cm3/m2 bar d aufweist.
5. Polyesterfolie nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Schicht A eine höhere Glasübergangstemperatur aufweist als die Basisschicht B.
6. Polyesterfolie nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die äußeren Deckschichten eine Dicke von 0,1 bis 2,0 µm aufweist.
7. Polyesterfolie nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Folie dreischichtig aufgebaut ist und aus einer äuße­ ren Deckschicht A, der Basisschicht B und einer zweiten Deckschicht C be­ steht, welche auf der Deckschicht A gegenüberliegenden Seite der Basis­ schicht B aufgebracht ist.
8. Polyesterfolie nach Anspruch 7, dadurch gekennzeichnet, daß die Deckschich­ ten pigmentiert sind.
9. Polyesterfolie nach einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Deckschichten unterschiedlich pigmentiert sind.
10. Polyesterfolie nach einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß mindestens eine äußere Deckschicht in-line beschichtet ist.
11. Verfahren zur Herstellung einer biaxial orientierten, mehrschichtigen Polyest­ erfolie gemäß Anspruch 1, bei dem Polyesterschmelzen entsprechend den Zusammensetzungen der Deck- und Basisschichten einer Mehrschichtdüse zugeführt werden, aus dieser auf eine Abkühlwalze extrudiert werden und die so erhaltene Vorfolie anschließend biaxial verstreckt und hitzefixiert wird, wobei die äußeren Deckschichten eine Anzahl von Erhebungen/Vorsprünge N pro mm2 Folienoberfläche aufweisen, die mit ihren jeweiligen Höhen h und Durch­ messer d über folgende Gleichungen korreliert sind
Ah1 - Bh1 * log h/µm < N/mm2 < Ah2 - Bh2 * log h/µm (1)
0,01 µm < h < 10 µm
Ah1 = -1,000; Bh1 = 3,70
Ah2 = 2,477; Bh2 = 2,22
Ad1 - Bd1 * log d/µm < N/mm2 < Ad2 - Bd2 * log d/µm (2)
0,4 µm < d < 10 µm
Ad1 = 1,700; Bd1 = 3,86
Ad2 = 4,700; Bd2 = 2,70.
12. Verfahren zur Herstellung einer biaxial orientierten, mehrschichtigen Polyest­ erfolie nach Anspruch 11, bei dem Regenerat in einer Konzentration von 10 bis 50 Gew.-%, bezogen auf das Gesamtgewicht der Folie, der Extrusionsdüse zugeführt wird.
13. Verwendung der Folie nach einem oder mehreren Ansprüchen 1 bis 10 zum Verpacken von Lebens- und Genußmittel.
14. Verwendung der Folie nach einem oder mehreren Ansprüchen 1 bis 10 für die Herstellung von Prägefolien.
DE19741878A 1997-09-23 1997-09-23 Mehrschichtige, biaxial orientierte Polyesterfolie, Verfahren zu ihrer Herstellung und ihre Verwendung Withdrawn DE19741878A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE19741878A DE19741878A1 (de) 1997-09-23 1997-09-23 Mehrschichtige, biaxial orientierte Polyesterfolie, Verfahren zu ihrer Herstellung und ihre Verwendung
JP30469298A JP4389280B2 (ja) 1997-09-23 1998-09-21 二軸延伸積層ポリエステルフイルム及びその使用ならびにその製造方法
EP19980117903 EP0903222B1 (de) 1997-09-23 1998-09-22 Mehrschichtige, biaxial orientierte Polyesterfolie, Verfahren zu ihrer Herstellung und ihre Verwendung
DE59814324T DE59814324D1 (de) 1997-09-23 1998-09-22 Mehrschichtige, biaxial orientierte Polyesterfolie, Verfahren zu ihrer Herstellung und ihre Verwendung
US09/158,519 US6291053B1 (en) 1997-09-23 1998-09-22 Multilayer biaxially oriented polyester film, and the use thereof, and process for the production thereof
KR1019980040091A KR100597819B1 (ko) 1997-09-23 1998-09-23 이축배향된다층폴리에스테르필름및이의제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19741878A DE19741878A1 (de) 1997-09-23 1997-09-23 Mehrschichtige, biaxial orientierte Polyesterfolie, Verfahren zu ihrer Herstellung und ihre Verwendung

Publications (1)

Publication Number Publication Date
DE19741878A1 true DE19741878A1 (de) 1999-03-25

Family

ID=7843296

Family Applications (2)

Application Number Title Priority Date Filing Date
DE19741878A Withdrawn DE19741878A1 (de) 1997-09-23 1997-09-23 Mehrschichtige, biaxial orientierte Polyesterfolie, Verfahren zu ihrer Herstellung und ihre Verwendung
DE59814324T Expired - Lifetime DE59814324D1 (de) 1997-09-23 1998-09-22 Mehrschichtige, biaxial orientierte Polyesterfolie, Verfahren zu ihrer Herstellung und ihre Verwendung

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE59814324T Expired - Lifetime DE59814324D1 (de) 1997-09-23 1998-09-22 Mehrschichtige, biaxial orientierte Polyesterfolie, Verfahren zu ihrer Herstellung und ihre Verwendung

Country Status (5)

Country Link
US (1) US6291053B1 (de)
EP (1) EP0903222B1 (de)
JP (1) JP4389280B2 (de)
KR (1) KR100597819B1 (de)
DE (2) DE19741878A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19953707A1 (de) * 1999-11-08 2001-05-17 4 P Folie Forchheim Gmbh Kunststoff-Folie

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0999041A3 (de) * 1998-11-03 2001-01-31 Mitsubishi Polyester Film GmbH Folienlaminat, enthaltend eine biaxial orientierte Polyesterfolie mit hoher Sauerstoffbarriere, Verfahren zu seiner Herstellung und Verwendung
EP1052269B2 (de) * 1999-05-10 2008-11-05 Mitsubishi Polyester Film GmbH Weisse, UV-stabilisierte Folie aus einem kristallisierbaren Thermoplast
DE19930981A1 (de) * 1999-07-05 2001-01-11 Mitsubishi Polyester Film Gmbh Mehrschichtige, biaxial orientierte Polyesterfolie, Verfahren zu ihrer Herstellung und ihre Verwendung als Magnetbandfolie ohne Rückseitenbeschichtung
DE10007722A1 (de) 2000-02-19 2001-08-23 Mitsubishi Polyester Film Gmbh Einseitig matte, siegelfähige, UV stabilisierte, koextrudierte, biaxial orientierte Folie, Verfahren zu ihrer Herstellung und Verwendung
DE10007723A1 (de) 2000-02-19 2001-08-23 Mitsubishi Polyester Film Gmbh Einseitig matte, siegelfähige, flammenhemmend ausgerüstete, koextrudierte, biaxial orientierte Folie, Verfahren zu ihrer Herstellung und Verwendung
DE10015633A1 (de) * 2000-03-29 2001-10-04 Mitsubishi Polyester Film Gmbh Siegelfähige biaxial orientierte Polyesterfolie
DE10028113A1 (de) * 2000-06-07 2001-12-20 Beiersdorf Ag Datenspeicher
GB2368810A (en) * 2000-11-09 2002-05-15 Toppan Printing Co Ltd Treatment of a surface of a polymer
US7417752B2 (en) * 2001-07-02 2008-08-26 Pitney Bowes Inc. Method and system for customized mail piece production utilizing a data center
US6783645B2 (en) * 2001-12-18 2004-08-31 Dionex Corporation Disposable working electrode for an electrochemical cell
US6733719B2 (en) * 2002-01-14 2004-05-11 Sunoco Inc. (R&M) Polypropylene biaxially oriented film
DE10227440A1 (de) * 2002-06-20 2004-01-08 Mitsubishi Polyester Film Gmbh Mehrschichtige, transparente, Folie aus PET und PEN mit mindestens einer funktionellen Außenschicht zur Herstellung von Verbundverpackungen mit UV-Schutz
DE10227442A1 (de) * 2002-06-20 2004-01-08 Mitsubishi Polyester Film Gmbh Mehrschichtige, transparente, Folie aus Polyethylenterephthalat (PET) und Polyethylennaphthalat PEN) zur Herstellung von Verbundverpackungen mit UV-Schutz
DE10247893A1 (de) * 2002-10-14 2004-04-22 Mitsubishi Polyester Film Gmbh Mehrschichtige, biaxial orientierte Polyesterfolie, Verfahren zu ihrer Herstellung und ihre Verwendung
DE10247892A1 (de) * 2002-10-14 2004-04-22 Mitsubishi Polyester Film Gmbh Mehrschichtige, biaxial orientierte Polyesterfolie, Verfahren zu ihrer Herstellung und ihre Verwendung
DE10247894A1 (de) * 2002-10-14 2004-04-22 Mitsubishi Polyester Film Gmbh Mehrschichtige, biaxial orientierte Polyesterfolie, Verfahren zu ihrer Herstellung und ihre Verwendung
US20040253469A1 (en) * 2002-12-30 2004-12-16 Arent Wendy L. Static of COF differential poly film ream wrap
US7655291B2 (en) * 2003-10-14 2010-02-02 Toray Plastics (America), Inc. Smooth co-extruded polyester film including talc and method for preparing same
DE102004061389A1 (de) * 2004-12-21 2006-06-22 Mitsubishi Polyester Film Gmbh Biaxial orientierte Polyesterfolie, die Siliziumdioxid und Titandioxid enthält
US20070134470A1 (en) * 2005-12-09 2007-06-14 Martin Jesberger Multilayer, white, biaxially oriented polyester film
US7799399B2 (en) * 2006-06-07 2010-09-21 Toray Plastics (America), Inc. High barrier laminate and process
US8399080B2 (en) 2006-06-07 2013-03-19 Toray Plastics (America), Inc. Lighter than air balloon made from a biaxially oriented polyester film
US9186593B2 (en) 2006-06-07 2015-11-17 Toray Plastics (America), Inc. Stretchable and formable lighter than air balloons made from a biaxially oriented polyester film
EP2100727A1 (de) * 2008-03-13 2009-09-16 Alcan Technology &amp; Management Ltd. Mehrschichtige Folie zum Verpacken von Kaffe und Sofortgetränken
JP4524718B2 (ja) * 2008-08-08 2010-08-18 東洋紡績株式会社 熱収縮性ポリエステル系フィルム
US8292027B2 (en) 2009-04-21 2012-10-23 E I Du Pont De Nemours And Company Composite laminate for a thermal and acoustic insulation blanket
US8607927B2 (en) 2009-04-21 2013-12-17 E I Du Pont De Nemours And Company Composite flame barrier laminate for a thermal and acoustic insulation blanket
US8607928B2 (en) 2009-04-21 2013-12-17 E I Du Pont De Nemours And Company Composite flame barrier laminate for a thermal and acoustic insulation blanket
US8607926B2 (en) 2009-04-21 2013-12-17 E I Du Pont De Nemours And Company Composite flame barrier laminate for a thermal and acoustic insulation blanket
EP2640476B1 (de) 2010-11-19 2017-10-04 Unifrax I LLC Feuerhemmende schicht und feuerhemmendes filmlaminat
US9676168B2 (en) 2010-11-19 2017-06-13 Lamart Corporation Fire barrier layer and fire barrier film laminate
US9561676B2 (en) 2011-07-08 2017-02-07 Toray Plastics (America), Inc. Biaxially oriented bio-based polyester thin films and laminates for thermal transfer printing
US10137625B2 (en) 2011-07-08 2018-11-27 Toray Plastics (America), Inc. Biaxially oriented bio-based polyester films and laminates
EP2792701A4 (de) * 2012-03-26 2015-09-02 Mitsubishi Plastics Inc Beschichtete folie
JP2016049654A (ja) * 2014-08-29 2016-04-11 三菱樹脂株式会社 積層ポリエステルフィルム
CN104481161A (zh) * 2014-11-20 2015-04-01 东莞鑫浩自动化科技有限公司 密目式安全立网自动加工工艺及自动加工装置
JP6779755B2 (ja) * 2015-11-26 2020-11-04 東洋紡フイルムソリューション株式会社 金属板貼合せ成形加工用着色二軸延伸ポリエステルフィルム
US20170368807A1 (en) 2016-06-28 2017-12-28 Toray Plastics (America), Inc. Formable polyester films
EP3665214A4 (de) * 2017-08-07 2021-06-09 3M Innovative Properties Company Ausgerichtete wärmeleitende dielektrische schicht
JP7447799B2 (ja) * 2018-12-06 2024-03-12 Toppanホールディングス株式会社 ガスバリア性フィルム

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3515626A (en) 1965-02-22 1970-06-02 Ici Ltd Thermoplastic laminates having improved surface properties
US3958064A (en) 1971-06-21 1976-05-18 Minnesota Mining And Manufacturing Company Magnetic recording tape
US4042569A (en) 1974-08-05 1977-08-16 E. I. Du Pont De Nemours And Company Heat-setting process for polyester film
GB1589926A (en) 1977-03-25 1981-05-20 Bexford Ltd Coated films
JPS57123050A (en) 1980-12-01 1982-07-31 Toray Industries Polyester composite film
EP0035835B1 (de) 1980-03-12 1984-03-14 Imperial Chemical Industries Plc Verbundstoffe aus Polyesterfilmen
EP0061769B1 (de) 1981-03-30 1987-04-01 Teijin Limited Magnetisches Aufzeichnungsmedium
EP0088635B1 (de) 1982-03-10 1986-12-30 Toray Industries, Inc. Schichtstoffilm und damit hergestelltes magnetisches Aufzeichnungsmedium
US4539389A (en) 1983-03-30 1985-09-03 Teijin Limited Biaxially oriented polyester film
FR2548958B1 (fr) 1983-07-13 1986-03-21 Rhone Poulenc Films Films polyesters composites
US4493872A (en) 1983-12-05 1985-01-15 American Hoechst Corporation Polyester film coated with metal adhesion promoting copolyester
IT1229054B (it) 1984-06-22 1991-07-17 Esseci S R L Societa Costruzio Metodo fisico per trattare le superfici di laminati plastici poliolefinici, politetrafluorcetilenici, cartoni e fogli metallici come alluminio e banda stagnata, mediante una fiamma prodotta dalla combustione di una miscela di aria con idrocarburi gassosi arricchita con ossigeno, metalli alcalini, vapore di acqua e/o ionizzata
DE3751849T2 (de) 1986-03-07 1996-11-28 Nippon Catalytic Chem Ind Verfahren zur Verbesserung des Gleitvermögens von Polyesterfolie
US5236683A (en) 1987-01-20 1993-08-17 Mizusawa Industrial Chemicals, Ltd. Amorphous silica spherical particles
JPS63182212A (ja) 1987-01-20 1988-07-27 Mizusawa Ind Chem Ltd 非晶質シリカ乃至シリカアルミナ球状粒子及びその製法
US5236680A (en) 1987-01-20 1993-08-17 Mizusawa Industrial Chemicals, Ltd. Preparation of amorphous silica-alumina particles by acid-treating spherical P-type zeolite particles crystallized from a sodium aluminosilicate gel
EP0318484B1 (de) 1987-06-17 1994-09-07 E.I. Du Pont De Nemours And Company System zur verwendung synchroner sekundärkreise eines linearmotors zum biaxial-ziehen von kunststoff-folien
JP2517293B2 (ja) 1987-06-25 1996-07-24 メクト株式会社 細胞、組織修復剤
DE68925599T3 (de) 1988-06-08 2004-09-30 Toray Industries, Inc. Biaxial orientierte Verbundfolie
US5039780A (en) * 1988-11-08 1991-08-13 Mitsui Petrochemical Industries, Ltd. Copolyester having gas-barrier property
FR2640984B1 (de) 1988-12-28 1992-09-11 Rhone Poulenc Films
DE69023351T2 (de) 1989-01-11 1996-04-04 Toray Industries Biaxial orientierter Polyesterfilm.
US5093064A (en) 1989-06-13 1992-03-03 Diafoil Company, Ltd. Low-shrinkage polyester film and preparation thereof
JP2528215B2 (ja) 1990-12-13 1996-08-28 帝人株式会社 磁気記録媒体用二軸配向ポリエステルフイルム
US5336079A (en) 1991-03-06 1994-08-09 Toray Industries, Inc. Biaxially oriented laminated film comprising particles in a specific ratio of particle density
GB9110590D0 (en) * 1991-05-16 1991-07-03 Ici Plc Polymeric film
GB9110902D0 (en) 1991-05-21 1991-07-10 Ici Plc Polymeric film
DE69320565T2 (de) * 1992-02-25 1999-04-08 Toray Industries Bioxial orientierte und laminierte polyester film
DE69333210T2 (de) 1992-07-22 2004-07-01 Teijin Ltd. Biaxial orientierter mehrschichtiger Polyesterfilm, geeignet zum Kleben auf Metallblech
EP0674591A4 (de) 1992-12-09 1996-02-28 Hoechst Ag Mit vinylacatat-polymer vor beschichtete biaxial orientierte copolyesterfolie.
WO1994013476A1 (en) 1992-12-09 1994-06-23 Hoechst Aktiengesellschaft Copolyester film primed with acrylic polymers
JP2989080B2 (ja) 1992-12-17 1999-12-13 帝人株式会社 磁気記録媒体用積層ポリエステルフイルム
EP0604057A1 (de) 1992-12-23 1994-06-29 Imperial Chemical Industries Plc Polymerfilm
DE69402995T2 (de) 1993-01-27 1998-01-02 Teijin Ltd Biaxial orientierter Mehrschichtfilm aus Polyester und magnetischer Aufzeichnungsträger mit demselben Basisfilm
US5372879A (en) 1993-02-22 1994-12-13 Teijin Limited Biaxially oriented polyester film
DE4306155A1 (de) 1993-02-27 1994-09-01 Hoechst Ag Transparente, nicht siegelfähige orientierte Polyolefin-Mehrschichtfolie, Verfahren zu ihrer Herstellung und ihre Verwendung
US5626942A (en) * 1993-05-05 1997-05-06 Toray Industries, Inc. Polyester film and process for producing the same
JP3125272B2 (ja) 1993-09-24 2001-01-15 新東工業株式会社 鋳物砂再生装置
DE69329978T2 (de) 1993-12-10 2001-10-04 Teijin Ltd Durchsichtige folie zur beschichtung einer metalldose
US5618609A (en) 1993-12-22 1997-04-08 Teijin Limited Biaxially oriented film of polyethylene-2,6-naphthalenedicarboxylate
US5656356A (en) 1994-01-11 1997-08-12 Teijin Limited Biaxially oriented laminated polyester film
US5429785A (en) 1994-03-01 1995-07-04 E. I. Du Pont De Nemours And Company Method of making biaxially oriented thermoplastic films
US5464690A (en) * 1994-04-04 1995-11-07 Novavision, Inc. Holographic document and method for forming
JPH083679A (ja) 1994-06-14 1996-01-09 Nippon Steel Corp 成形性及び疲労特性に優れた耐熱軟化性を有する熱延高強度鋼板並びにその製造方法
JPH08104064A (ja) 1994-10-05 1996-04-23 Diafoil Co Ltd 昇華型感熱転写用ポリエステルフィルム
US5506014A (en) 1995-09-01 1996-04-09 Eastman Chemical Company Pet copolyesters containing succinic and naphthalenedicarboxylic acid moieties having improved barrier properties
JPH09141797A (ja) 1995-11-17 1997-06-03 Toray Ind Inc 二軸配向積層ポリエステルフィルム
JP3736695B2 (ja) * 1996-05-20 2006-01-18 富士写真フイルム株式会社 ポリエステル支持体の製造方法およびポリエステル支持体、それを用いた写真感光フイルム
EP0826478B2 (de) 1996-08-30 2006-10-04 Mitsubishi Polyester Film Corporation Verfahren zur Herstellung einer Polyesterzusammensetzung
US6268052B1 (en) 1996-09-24 2001-07-31 Mitsubishi Polyester Film Gmbh Biaxially-oriented pet foil for use for SMD foil capacitors, method for the production of said foil and its use as foil capacitors in SMD technology

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19953707A1 (de) * 1999-11-08 2001-05-17 4 P Folie Forchheim Gmbh Kunststoff-Folie
DE19953707B4 (de) * 1999-11-08 2007-12-27 4P Folie Forchheim Gmbh Verfahren zur Herstellung einer Kunststoff-Folie

Also Published As

Publication number Publication date
KR19990030173A (ko) 1999-04-26
DE59814324D1 (de) 2009-01-15
KR100597819B1 (ko) 2006-12-01
JPH11216829A (ja) 1999-08-10
EP0903222A2 (de) 1999-03-24
EP0903222B1 (de) 2008-12-03
JP4389280B2 (ja) 2009-12-24
EP0903222A3 (de) 2000-10-11
US6291053B1 (en) 2001-09-18

Similar Documents

Publication Publication Date Title
EP0903222B1 (de) Mehrschichtige, biaxial orientierte Polyesterfolie, Verfahren zu ihrer Herstellung und ihre Verwendung
EP0903221B1 (de) Biaxial orientierte Polyesterfolie, Verfahren zu ihrer Herstellung und ihre Verwendung zum Verpacken von Leben- und Genussmittel
EP0882577B1 (de) Biaxial orientierte Polyesterfolie mit hoher Sauerstoffbarriere, Verfahren zu ihrer Herstellung und ihre Verwendung
EP1197327B1 (de) Koextrudierte, zumindest einseitig matte, biaxial orientierte Polyesterfolie
EP1138480B1 (de) Siegelfähige biaxial orientierte Polyesterfolie
DE19720505A1 (de) Biaxial orientierte Polyesterfolie mit hoher Sauerstoffbarriere, Verfahren zu deren Herstellung und Verwendung
DE10051082A1 (de) Matte, koextrudierte, biaxial orientierte Polyesterfolie
EP0952176B1 (de) Mehrschichtige, biaxial orientierte Polyesterfolie, Verfahren zu ihrer Herstellung und ihre Verwendung
DE10051084A1 (de) Matte, biaxial orientierte Polyesterfolie
EP0997269A2 (de) Koextrudierte, biaxial orientierte Polyesterfolie für die Metallisierung, Verfahren zu ihrer Herstellung und ihre Verwendung
DE19813264A1 (de) Polyesterfolie mit an den Anwendungszweck angepaßter Oberflächentopographie, Verfahren zu ihrer Herstellung und ihre Verwendung
EP0952175B1 (de) Einschichtige, biaxial orientierte Polyesterfolie, Verfahren zu ihrer Herstellung und ihre Verwendung
DE10109217A1 (de) Transparente, biaxial orientierte Polyesterfolie
EP1380415A1 (de) Mehrschichtige, metallisierte oder keramisch beschichtete, siegelfähige, biaxial orientierte Polyesterfolie, Verfahren zu ihrer Herstellung und ihre Verwendung
EP1410903B1 (de) Mehrschichtige, biaxial orientierte Polyesterfolie, Verfahren zu ihrer Herstellung und ihre Verwendung
EP1236568B1 (de) Mehrschichtige transparente, biaxial orientierte polyesterfolie
EP0999041A2 (de) Folienlaminat, enthaltend eine biaxial orientierte Polyesterfolie mit hoher Sauerstoffbarriere, Verfahren zu seiner Herstellung und Verwendung
EP1055515B1 (de) Sammelpacksystem enthaltend eine siegelfähige Polyesterfolie
EP1219413B1 (de) Einseitig matte, siegelfähige, biaxial orientierte Polyesterfolie
EP1179419A2 (de) Biaxial orientierte Polyesterfolie mit hoher Sauerstoffbarriere, Verfahren zu ihrer Herstellung und ihre Verwendung
EP0945262A2 (de) Transparente Polyesterfolie mit hoher Sauerstoffbarriere und zusätzlicher Funktionalität, Verfahren zu ihrer Herstellung und ihre Verwendung
DE10152141A1 (de) Matte, biaxial orientiertge Polyesterfolie, Verfahren zu ihrer Herstellung und ihre Verwendung
DE19850882A1 (de) Folienlaminat, enthaltend eine biaxial orientierte Polyesterfolie mit hoher Sauerstoffbarriere, Verfahren zu seiner Herstellung und Verwendung

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee