DE19910012C1 - Verfahren zur Herstellung von Formkörpern - Google Patents

Verfahren zur Herstellung von Formkörpern

Info

Publication number
DE19910012C1
DE19910012C1 DE19910012A DE19910012A DE19910012C1 DE 19910012 C1 DE19910012 C1 DE 19910012C1 DE 19910012 A DE19910012 A DE 19910012A DE 19910012 A DE19910012 A DE 19910012A DE 19910012 C1 DE19910012 C1 DE 19910012C1
Authority
DE
Germany
Prior art keywords
polymer
polymer solutions
additives
solution
extruded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE19910012A
Other languages
English (en)
Inventor
Thomas Schulze
Eberhard Taeger
Dieter Vorbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSTTHUERINGISCHE MATERIALPRUEF
Original Assignee
OSTTHUERINGISCHE MATERIALPRUEF
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSTTHUERINGISCHE MATERIALPRUEF filed Critical OSTTHUERINGISCHE MATERIALPRUEF
Priority to DE19910012A priority Critical patent/DE19910012C1/de
Priority to US09/936,086 priority patent/US6881361B1/en
Priority to PCT/DE2000/000552 priority patent/WO2000053833A1/de
Application granted granted Critical
Publication of DE19910012C1 publication Critical patent/DE19910012C1/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0067Inorganic membrane manufacture by carbonisation or pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0041Inorganic membrane manufacture by agglomeration of particles in the dry state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0041Inorganic membrane manufacture by agglomeration of particles in the dry state
    • B01D67/00411Inorganic membrane manufacture by agglomeration of particles in the dry state by sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/087Details relating to the spinning process
    • B01D69/088Co-extrusion; Co-spinning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1212Coextruded layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/1411Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing dispersed material in a continuous matrix
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/0215Silicon carbide; Silicon nitride; Silicon oxycarbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/10Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/24Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/09Addition of substances to the spinning solution or to the melt for making electroconductive or anti-static filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/02Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from cellulose, cellulose derivatives, or proteins
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/022Asymmetric membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/022Asymmetric membranes
    • B01D2325/0233Asymmetric membranes with clearly distinguishable layers

Abstract

Verfahren zur Herstellung von Formkörpern, insbesondere Fäden oder Folien, aus wenigstens einem Polymeren aus der aus Polysaccharid, Polysaccharidderivat und Polyvinylalkohol bestehenden Gruppe durch Bildung einer einen Zusatzstoff enthaltenden Lösung des Polymeren in einem Amin-N-oxid enthaltenden Lösungsmittel, Extrudieren der Lösung und Ausfällen des Extrudats durch Berührung mit einem Koagulationsmittel, dadurch gekennzeichnet, daß man wenigstens zwei Polymerlösungen bildet, von denen wenigstens eine einen oder mehrere Zusatzstoffe in feiner Verteilung enthält, und die wenigstens zwei Polymerlösungen unter Bildung eines vereinigten Extrudats gleichzeitig extrudiert.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung von Formkörpern, wie Fäden oder Folien, aus wenigsten einem Polymeren aus der aus Polysaccharid, Polysaccharidderivat und Polyvinylalkohol bestehenden Gruppe durch Bildung einer Lösung des Polymeren in einem Amin-N-oxid enthaltenden Lösungsmittel, Extrudieren der Lösung und Ausfällen des Extrudats durch Berührung mit einem Koagulationsbad. Die Erfindung betrifft insbesondere ein Verfahren zur Herstellung von mehrschichtigen massiven oder hohlen Filamenten, Fasern oder Folien.
Es ist bekannt, daß mittels pulverförmiger und flüssiger Zusätze die Eigenschaften von Polymeren gezielt verändert werden können. Durch das Zumischen funktionalisierender Stoffe zu Polymerschmelzen oder -lösungen wird eine Vielzahl polymerer Spezialprodukte erhalten. Es ist dabei zu beachten, daß pulverförmige oder flüssige Zusätze das Fließverhalten von Polymerschmelzen oder -lösungen derart beeinflussen können, so daß sich größere Probleme im Verarbeitungsprozeß ergeben. Die Eignung eines potentiellen Zusatzstoffes als funktionalisierendes Agenz wird außerdem bestimmt durch seine Löslichkeit und Reaktivität gegenüber den im Herstellungsprozeß verwendeten Polymeren, Lösungsmitteln und Hilfsstoffen, sowie gegenüber der Temperatur und den Ver- und Aufarbeitungsbedingungen während der Lösungsherstellung und Nachbehandlung der Produkte. Im Falle der Verarbeitung mehrerer Polymere oder deren Lösungen tritt zusätzlich das Problem der Anpassung von reinen mit modifizierten Polymerphasen, bzw. von mehreren unterschiedlich modifizierten Polymerphasen auf.
Bei den üblichen Polymernaßspinnverfahren werden diese Probleme stets dann deutlich, wenn große Mengen an Zusatzstoffen feinverteilt eingemischt und die erhaltenen Lösungen durch Verspinnung verarbeitet werden sollen. Insbesondere grenzen stark saure und basische Arbeitsbedingungen, wie sie im Viskose-Prozeß zur Auflösung und Regenerierung der Cellulose erforderlich sind, die Anzahl der möglichen Zusatzstoffe stark ein. Weiterhin ist bekannt, daß sowohl in Schmelzspinnprozessen, als auch bei herkömmlichen Naßspinnverfahren größere Mengen an Zusatzstoffen, z. B. durch Viskositätsänderungen, zum Verlust der Verspinnbarkeit führen.
Diese Nachteile werden durch die Anwendung des Lyocell-Verfahrens umgangen (DE 44 26 966 A1), das in der beschriebenen Form allerdings nicht die Herstellung von mehrschichtigen funktionellen Fäden ermöglicht.
Aufgabe der Erfindung ist die Schaffung eines Verfahrens, durch das massive oder hohle Mehrkomponenten- Formkörper, wie Fasern, Filamente, Folien, mit sehr unterschiedlichen Beladungen gleicher oder verschiedener Zusatzstoffe hergestellt werden können. Insbesondere soll ein Verfahren zur Herstellung von Formkörpern mit symmetrischen Kern-Mantel-Strukturen oder asymmetrischen Strukturen geschaffen werden. Bevorzugt soll ein Extrusionsverfahren zur Herstellung von Mehrkomponenten- Formkörpern geschaffen werden, die vielseitig einsetzbar sind und insbesondere Werkstoffe mit speziellen Eigenschaften und Anwendungseigenschaften liefern. Weitere Vorteile ergeben sich aus der folgenden Beschreibung.
Diese Aufgabe wird bei dem eingangs genannten Verfahren erfindungsgemäß dadurch gelöst, daß man wenigstens zwei Polymerlösungen bildet, von denen wenigstens eine einen oder mehrere feste oder flüssige Zusatzstoffe in feiner Verteilung enthält, und daß man die wenigstens zwei Polymerlösungen unter Bildung eines vereinigten Extrudats simultan extrudiert. Überraschenderweise wurde gefunden, daß sich erfindungsgemäß ein Extrudat bildet, in dem die zwei oder mehr Polymerlösungen so gegenseitig integriert und verbunden sind, daß weder bei der Ausfällung noch bei der folgenden Trocknung und ggf. thermischen Behandlung eine Trennung der durch die verschiedenen Polymerlösungen gebildeten Schichten eintritt. Dies gilt auch dann, wenn die Zusatzstoffe in den Polymerlösungen in ihrer Korngröße, stofflichen Zusammensetzung und in ihrem Gehalt sehr unterschiedlich sind. Der nach der Ausfällung vorliegende Formkörper kann je nach den eingesetzten Zusatzstoffen sehr unterschiedliche Eigenschaften haben und den verschiedensten Anwendungen zugeführt werden. Das Verfahren kann von verschiedenen Polymerlösungen ausgehen, z. B. von zwei Polymerlösungen, von denen nur eine einen festen oder flüssigen Zusatzstoff enthält, von zwei Polymerlösungen, die beide verschiedene feste oder flüssige Zusatzstoffe enthalten, von drei Polymerlösungen, deren Zusatzstoffe sich nach Art, Korngröße und/oder Gehalt unterscheiden, usw.. Die eingesetzten Lösungen können 1 bis 20 Gew.-%, vorzugsweise 4 bis 16 Gew.-% des Polymeren enthalten. Als Polymere können insbesondere Polyole, wie Cellulose, Stärke oder Polyvinylalkohol, sowie deren Derivate eingesetzt werden. Die Zusatzstoffe werden 1. entweder zu Beginn der Lösungsherstellung in das Gemisch Polymer- Lösungsmittel-Wasser, 2. nach vorheriger vollständiger Auflösung des Polymeren oder 3. in das Gemisch Polymer- Lösungsmittel eingemischt und durch starkes Rühren oder Kneten fein darin verteilt. In allen Fällen erfolgt die Auflösung des Polymeren im Zuge des Verdampfens eines herstellungsbedingten Wasserüberschusses im Vakuum bei erhöhten Temperaturen. Die erfindungsgemäß hergestellten massiven oder hohlen Mehrkomponenten-Formkörper können durch die eingebrachten Zusatzstoffe spezielle funktionelle Eigenschaften haben, z. B. Elektronen- oder Ionenleitfähigkeit, sowie magnetische oder katalytische Wirksamkeit.
Nach der bevorzugten Ausführungsform des Verfahrens unterscheiden sich die wenigstens zwei Polymerlösungen durch die Korngröße und/oder die stoffliche Zusammensetzung und/oder den Gehalt der Zusatzstoffe. Das Verfahren eröffnet den Weg, die Dicke und Funktion der Schichten durch die Beladung der Polymerlösung(en) mit Zusatzstoff zu steuern. Verschieden hohe Beladungen der Polymerlösung(en) führen zu unterschiedlichen Schrumpfungen und damit zu einstellbaren Schichtdicken; unterschiedliche Zusatzstoffe in den Polymerlösungen können den Formkörpern unterschiedliche Funktionen verleihen.
Vorzugsweise setzt man die festen Zusatzstoffe mit einer Korngröße in dem Bereich von 0,01 bis 1000 µm, insbesondere von 0,05 bis 100 µm ein. Die Zusatzstoffe können anorganischer oder organischer Natur oder Mischungen aus beiden Stoffen sein.
Nach der bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens setzt man Zusatzstoffe aus der aus Oxiden, Carbiden, Boriden, Nitriden, Oxynitriden, Sialonen und Aluminosilikaten bestehenden Gruppe ein. Darüber hinaus können z. B. kohlenstoffhaltige Materialien, Metallpulver, Metallsalze, Polymerfasern, Partikelsuspensionen, keramikbildende niedrig- oder hochmolekulare Verbindungen, sinterfähige anorganische Verbindungen, Bleizirkontitanante oder Glimmer in feinverteilter Suspension eingesetzt werden.
Bei dem erfindungsgemäßen Verfahren können Polymerlösungen mit einem Gehalt des Zusatzstoffes in dem Bereich von 10 bis 1000 Gew.-%, bezogen auf ihren Polymeranteil eingesetzt werden. Vorzugsweise liegt der Zusatzstoffgehalt in dem Bereich von 100 bis 700 Gew.-%, bezogen auf den Polymeranteil der Lösung.
Vorzugsweise extrudiert man die Polymerlösung mit unterschiedlichen Volumengeschwindigkeiten (z. B. durch Einstellung der Förderleistungen der Förderpumpen). Auf diese Weise kann man die Schichtbildung der Formkörper so steuern, daß sowohl dicke, vorzugsweise 100 bis 200 µm starke Schichten als auch dünne Schichten einer Stärke von 0,1 bis 20 µm gebildet werden können. Wird nur eine gering mit Zusatzstoffen beladene Polymerlösung (Gewichtsverhältnis Zusatzstoff/Polymer = 0,5 bis 2,0) zusammen mit einer höher beladenen Lösung (Gewichtsverhältnis Zusatzstoff/Polymer = 5 bis 8) in etwa gleichen Volumenanteilen pro Zeiteinheit extrudiert, resultiert nach der Aufarbeitung und Trocknung eine dünne Deckschicht auf einem dickeren Hohlgebilde, was für die Herstellung von keramischen Hohlmembranen oder Trägern funktioneller Komponenten von Bedeutung ist.
Vorzugsweise extrudiert man zwei oder mehrere Polymerlösungen konzentrisch und koaguliert man sie zur Bildung massiver Zwei- oder Mehrkomponentenfäden von außen. In diesem Falle werden Lösungen aus unterschiedlichen Lösungsreservoirs durch runde profilierte oder flache Düsenkonstruktionen ohne eine zusätzliche Vorrichtung für Flüssigkeits- oder Gaszuführung zum Inneren des Extrudats verformt.
Bei einer anderen Ausführungsform werden zwei oder mehr Polymerlösungen zentrisch extrudiert und zur Bildung massiver Mehrkomponentenfäden eine stark angereicherte Zusatzstoffdispersion zentral zugeführt und die Polymerlösungen auch von außen koaguliert. In diesem Falle ist die Vorrichtung für eine gesonderte Flüssigkeitszuführung eingerichtet, so daß beim Austritt der Polymerlösungen aus den Düsenöffnungen deren sofortige innige Verbindung gewährleistet ist. Durch den Einsatz einer stark angereicherten Zusatzstoffteilchen- Dispersion im Inneren der Formkörper können Dreikomponentenfasern oder -filamente mit gefülltem Kern erhalten werden.
Bei einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens wählt man das Volumenverhältnis der zwei oder mehr konzentrisch extrudierten Polymerlösungen und eines zentral zugeführten Koagulationsmittels oder Gases so, daß der Polymerlösungsschlauch bzw. -verbundschlauch aufgeweitet wird. Durch die Einstellung der Menge des zentral zugeführten Koagulationsmittels, raumerfüllenden Flüssigkeit oder Gases ergibt sich das gewünschte Aufweitungsmaß. Die flüssigen Polymerlösungen werden durch die Berührung mit dem Koagulationsmittel im Inneren bereits vorstabilisiert. Die auf diese Weise hergestellten Hohlfilamente können im frisch ersponnenen Zustand einen Durchmesser in dem Bereich von 0,1 bis 5 mm haben. Die Koagulation kann mit Luft, Wasser, organischen Lösungsmitteln oder Partikeldispersionen erfolgen. Die Anwendung von solchen Lösungsmitteln zur Hohlraumbildung, die nicht augenblicklich zur Koagulation der Cellulose führen, eröffnet die Möglichkeit, Hohlfilamente mit geringen Durchmessern herzustellen (vergl. Beispiel 10). Wird auf eine Innenkoagulation durch Zugabe von raumerfüllenden Flüssigkeiten verzichtet, können sich die flüssigen Spinnstrahlen unterhalb der Düse sofort ohne die Ausbildung kontinuierlicher oder blasenartiger Hohlräume vereinigen und somit eine massive Kern-Mantel-Struktur ausbilden. Zweckmäßigerweise extrudiert man zwei oder mehr Lösungen konzentrisch und koaguliert zur Bildung von Zwei- bzw. Mehrkomponenten-Hohlfäden von innen und außen oder nur von außen.
Zur Einstellung der Dimensionen des Kerns und der Mantelschicht(en) kann das Extrudat vor dem Ausfällen in einem Luftspalt verstreckt werden. In diesem Falle können die extrudierten Lösungen über einen Luftspalt von vorzugsweise 1 bis 500 mm Breite geführt werden, wobei aufgrund der hohen Spinnsicherheit entweder ein Verzug durch die Schwerkraft der frei fallenden Polymerlösung einsetzt oder der noch flüssige Lösungsstrahl durch definierten Abzug verstreckt wird. Es kann auch durch direkte Einführung in das Fällbad zur sofortigen Koagulation gebracht werden. Die so verformten Polymerlösungen können durch Einführen in ein Koagulationsbad, das ein Fällungsmittel, vorzugsweise Wasser enthält, durch die momentan erfolgende Ausfällung des Polymeren an der Außenschicht des Fadens endgültig stabilisiert werden, bevor das vor allem im Inneren noch anhaftende Lösungsmittel durch kontinuierliche oder portionsweise Behandlung mit kaltem oder warmem Wasser entfernt, dabei unter Beibehaltung des Quellungszustandes vollständig durch Wasser ausgetauscht und die tragende Polymermatrix restlos ausgefällt wird.
Nach der bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird das koagulierte Extrudat getrocknet und einer Verwendung zugeführt oder sein Polymergehalt durch eine thermische Behandlung entfernt. Durch diese thermische Behandlung ergeben sich durch die Beseitigung der Polymermatrix Spezialwerkstoffe auf Basis der gewählten Zusatzstoffe, wie z. B. anorganische, poröse, mehrschichtige Hohlmembranen, Mehrschicht-Membranreaktoren, Keramik-Matrix-Komposite, leitfähige Mehrkomponentenfasern, Katalysatorträger und Ionenleiter. Es hat sich gezeigt, daß der mehrschichtige Formkörper die thermische Behandlung ohne Beeinträchtigung, insbesondere ohne Ablösung, Trennung oder Rißbildung der Schichten übersteht, obgleich sehr unterschiedliche Zusatzstoffe Verwendung finden oder große Beladungsunterschiede zwischen den Polymerschichten des Formkörpers bestehen. Das erfindungsgemäße Verfahren erlaubt es ferner, durch die Wahl der Zusatzstoffe die Größe und Dichte der Poren in dem thermisch behandelten Körper einzustellen. So kann bei porösen Hohlmembranen die Porosität und Porengröße der Schichten durch die Parameter des Extrusionsverfahrens bzw. die Eigenschaften der Polymerlösungen gesteuert werden. Durch die thermische Behandlung über die Stabilitätsgrenze des Polymeren, vorzugsweise der Cellulose hinaus können die Mehrkomponenten-Extrudate in rein anorganische poröse oder mikrokristallin dichte Gebilde umgewandelt werden. Die thermische Behandlung kann auch so geleitet werden, daß der Polymergehalt nur in Kohlenstoff umgewandelt wird.
Vorzugsweise führt man die thermische Behandlung im Temperaturbereich von 250 bis 3500°C in Gegenwart von Sauerstoff, Inertgas oder unter Vakuum durch. Dabei entsteht durch vollständige oder teilweise Pyrolyse/Verbrennung des Matrixpolymeren eine rein keramische, metallische oder kohlenstoffhaltige Faser oder ein Verbundkörper mit Kohlenstoffschichten.
Zweckmäßigerweise erfolgt die thermische Behandlung in einer ersten Stufe bei tieferer Temperatur und einer zweiten Stufe bei höherer Temperatur und herrschen nur in einer der beiden Stufen oxidierende Bedingungen.
Vorzugsweise wird als Lösungsmittel für das Polymere das Monohydrat des N-Methylmorpholin-N-oxids eingesetzt. Als Polymeres wird bevorzugt Cellulose eingesetzt, wenngleich auch andere Polyole oder Polysaccharide alleine oder im Gemisch Verwendung finden können. Es hat sich gezeigt, daß auch bei sehr unterschiedlicher Korngröße und/oder Beladung der Polymerlösungen mit Zusatzstoff und/oder ausgeprägten chemischen Unterschieden der Zusatzstoffe eine feste Haftung der Schichten aneinander in dem gefällten oder getrockneten oder thermisch behandelten Extrudat erreicht wird.
Die einzige Figur zeigt den schematischen Axialschnitt einer Dreikomponenten-Runddüse, die bei dem erfindungsgemäßen Verfahren zum Einsatz kommen kann und einen zentralen zylindrischen Kanal 1 und zwei Ringkanäle 2, 3 umfaßt.
Zur weiteren Verdeutlichung des erfindungsgemäßen Verfahrens wird die Herstellung verschiedener mehrschichtiger Strukturen durch die folgenden Beispiele erläutert.
Beispiel 1
Einer 7,5 Gew.-%igen Polysaccharidlösung (8 Teile Cellulose, 2 Teile Amylose) in N-Methylmorpholin-N-oxid- Monohydrat wird Aluminiumoxid mit einer mittleren Körnung von 0,7 µm in einem Gewichtsanteil von 500 Gew.-% bezogen auf den Celluloseanteil zugesetzt. In gleicher Weise wird eine Lösung bereitet, welche Aluminiumoxid mit einer mittleren Körnung von 3,6 µm in gleichen Proportionen besitzt. Beide Lösungen werden bei einer Temperatur von ca. 100°C durch eine Doppelschlitz-Hohlkerndüse im Verhältnis 1 : 1 extrudiert, wobei der gleiche Volumenanteil Wasser durch das Innere der Düse zur Erzielung von Hohlstrukturen eingepumpt wird. Die Düse hatte einen Abstand zum wäßrigen Fällbad von 10 cm. Die derart ohne weiteren Abzug ersponnenen Bikomponent- Hohlfilamente wurden mehrfach mit warmen Wasser extrahiert und anschließend unter konstanter Belastung bei Raumtemperatur getrocknet. Die resultierenden Materialien hatten einen Außendurchmesser von ca. 1 mm. Nach der Trocknung erfolgte die Sinterung bei 1500°C. Die dabei gebildeten Schichten zeigten Porengrößen von 950 und 150 nm.
Beispiel 2
Einer 7,5 Gew.-%igen Celluloselösung in N- Methylmorpholin-N-oxid-Monohydrat wird Aluminiumoxid mit einer mittleren Körnung von 0,7 µm in einem Gewichtsanteil von 250 Gew.-% bezogen auf den Celluloseanteil zugesetzt. In gleicher Weise wird eine Lösung bereitet, welche Aluminiumoxid mit einer mittleren Körnung von 1,2 µm im Verhältnis zum Celluloseanteil von 500 Gew.-% besitzt. Beide Lösungen werden bei ca. 90°C im Verhältnis Kern : Mantel = 3 : 1 koextrudiert und über ein 15 cm lange Luftstrecke senkrecht in ein Wasserbad geführt. Während der Extrusion wird eine dem Volumendurchsatz beider Pumpen entsprechende Menge an Wasser in das Innere der Düse gepumpt. Die so ersponnenen Rohfilamente werden durch wiederholte Extraktion mit warmen Wasser vom Lösungsmittel befreit und mehrere Stunden bei Raumtemperatur getrocknet. Nach der Sinterung bei 1450°C ergeben sich für Kern- und Mantelschicht Porengrößen von 450 bzw. 200 nm.
Beispiel 3
Einer 9 Gew.-%igen Celluloselösung in N- Methylmorpholin-N-oxid-Monohydrat wird Aluminiumoxid mit einer mittleren Körnung von 0,7 µm in einem Gewichtsanteil von 700 Gew.-% bezogen auf den Celluloseanteil zugesetzt. Diese Lösung wird zusammen mit einer 9 Gew.-%igen reinen Polysaccharidlösung (Amylose : Cellulose = 1 : 1) in N-Methylmorpholin-N-oxid-Monohydrat bei 105°C im Verhältnis von Kern : Mantel = 1 : 1 durch eine Doppelspaltdüse zu einem monofilen Faden extrudiert, wobei die unbeladene Lösung durch die zentrale Bohrung geführt wird. Die Abzugsgeschwindigkeit betrug 25 m/min. Die Düse hatte zum wässrigen Fällbad einen Abstand von 3 cm. Der austretende Faden wurde durch ein Fällbad von 2 m Länge geführt und anschließend aufgewickelt. Nach Trocknung des Fadens bei Raumtemperatur wird bei 1450°C gesintert und durch die vollständige Pyrolyse der Cellulose im Inneren des Bikomponentenfilaments eine Hohlstruktur gebildet, wobei die zurückbleibende Mantelschicht eine mittleren Porengröße von 150 nm aufweist.
Beispiel 4
Eine 6,5 Gew.-%ige Lösung von 5 Teilen Cellulose und 1 Teil Carboxymethylstärke in N-Methylmorpholin-N-oxid- Monohydrat, welche mit 600 Gew.-% an Aluminiumoxid einer mittleren Körnung von 4,6 µm bezogen auf den Celluloseanteil beladen ist, wird zusammen mit einer unbeladenen 12 Gew.-%igen Cellulose-Lösung im Verhältnis 1 : 2 extrudiert, wobei die beladene Lösung durch die Zentralzuführung dosiert wird und der Abstand zwischen Düse und Fällbad 15 cm beträgt. Zur Erzeugung einer Hohlstruktur wird Wasser in das Innere der Düse gepumpt.
Nach der Extraktion mit Wasser wird bei Raumtemperatur getrocknet. Die Sinterung erfolgt unter Inert-Atmosphäre bei 1900°C unter Ausbildung einer porösen Kohlenstoffschicht auf einer tragenden keramischen Schicht.
Beispiel 5
Einer 7,5 Gew.-%igen Celluloselösung in N- Methylmorpholin-N-oxid-Monohydrat wird Aluminiumoxid mit einer mittleren Körnung von 0,7 µm in einem Gewichtsanteil von 500 Gew.-% bezogen auf den Celluloseanteil zugesetzt. In gleicher Weise wird eine 7,5 Gew.-%igen Celluloselösung bereitet, welche Siliciumcarbid einer mittleren Körnung von 0,8 µm in einem Gewichtsanteil von 500 Gew.-% bezogen auf den Celluloseanteil enthält. Beide Lösungen werden im Verhältnis von Kern : Mantel = 1 : 1 durch eine Doppelspaltdüse zu einem monofilen Faden extrudiert, wobei die Aluminiumoxid enthaltende Lösung durch die zentrale Bohrung geführt wird. Die Abzugsgeschwindigkeit betrug 20 m/min. Die Düse hatte zum wässrigen Fällbad einen Abstand von 5 cm. Der austretende Faden wurde durch ein Fällbad von 2 m Länge geführt, aufgewickelt und bei Raumtemperatur getrocknet. Nach der Sinterung bei 1800°C in Luft ergeben sich mikrokristalline Fasern mit Aluminium-Kern und Siliziumcarbid-Mantel.
Beispiel 6
Einer 6 Gew.-%igen Lösung von Cellulose in N- Methylmorpholin-N-oxid-Monohydrat wird Aluminiumoxid mit einer mittleren Körnung von 0,7 µm in einem Gewichtsanteil von 100 Gew.-% bezogen auf den Celluloseanteil und 1% Nickelpulver zugesetzt. Diese Lösung wird gemeinsam mit einer 7,5 Gew.-%igen von Cellulose in N-Methylmorpholin-N-oxid-Monohydrat, welche mit 500 Gew.-% Aluminiumoxid der mittleren Körnung von 4,5 µm, bezogen auf den Celluloseanteil, versetzt ist, bei 85°C durch eine Doppelhohlkammerdüse im Verhältnis 3 : 1 extrudiert, wobei Wasser in das Innere der Düse gepumpt wird und der Abstand zum Fällbad 15 cm betrug. Die ohne Abzug ersponnenen Filamente werden mit Wasser extrahiert und bei Raumtemperatur getrocknet. Die Sinterung erfolgt bei 1600°C in Inertatmosphäre mit nachfolgender Behandlung bei 500°C in Luft.
Beispiel 7
Eine 9 Gew.-%ige Lösung von Cellulose in N- Methylmorpholin-N-oxid-Monohydrat wird gemeinsam mit einer 7,5 Gew.-%igen Lösung von Cellulose in N- Methylmorpholin-N-oxid-Monohydrat, welche 100 Gew.-% Ruß bezogen auf den Celluloseanteil enthält, bei 90°C im Verhältnis 1 : 1 durch eine Doppelspaltdüse zu einem monofilen Faden extrudiert, wobei die reine Celluloselösung durch den Innenkanal zugeführt wird. Die Abzugsgeschwindigkeit betrug 30 m/min, bei einem Abstand der Düse zum Fällbad von 2 cm. Nach Passieren eines wässrigen Fällbades wurde aufgewickelt, mit Wasser extrahiert und bei Raumtemperatur getrocknet.
Beispiel 8
Eine 6,5 Gew.-%ige Lösung von Cellulose in N- Methylmorpholin-N-oxid-Monohydrat wird mit 25 Gew.-% Melamin und 75 Gew.-% Borsäure bezogen auf Cellulose versetzt. Diese Lösung wird zusammen mit einer 9 Gew.- %igen Lösung von Cellulose in N-Methylmorpholin-N-oxid- Monohydrat bei 100°C durch eine Doppelspaltdüse extrudiert, wobei die reine Celluloselösung durch den äußeren Spalt zudosiert wird. Der Abstand zum Fällbad betrug 1 cm, der Abzug 12 m/min. Nach Extraktion mit kaltem Wasser wird bei Raumtemperatur getrocknet. Die thermische Behandlung, welche bei 1600°C erfolgte, ergibt durch Pyrolyse des Polymeren und Umwandlung des Füllstoffes Bornitrid-Fäden.
Beispiel 9
Eine 7 Gew.-%ige Lösung von Cellulose in N- Methylmorpholin-N-oxid-Monohydrat welche, bezogen auf den Celluloseanteil, 300 Gew.-% Zirkonoxid enthält, wird zusammen mit einer 9 Gew.-%igen Lösung von Cellulose in N-Methylmorpholin-N-oxid-Monohydrat, die mit 100 Gew.-% an Nickelpulver beladen ist, bei 90°C durch eine Doppelspalthohldüse extrudiert, wobei durch die zentrale Zuführung eine durch Stärke angedickte wässrige Metallsuspension gepumpt wird, deren Zusammensetzung auf ein Verhältnis von Wasser : Stärke : Metallpulver = 30 : 30 : 40 eingestellt wird. Dabei wird die mit Zirkonoxid beladene Lösung durch den inneren, die mit Nickel beladene Lösung durch den äußeren Spalt der Düse geführt. Bei einem Düsenabstand zum Fällbad von 1 cm werden 3- Komponenten-Fäden erhalten, welche bei Raumtemperatur einem Trockenprozeß unterworfen werden. Nach der Pyrolyse der Polymeren werden reine 3-Komponentenfäden erhalten, welche eine Schichtfolge Leiter-Isolator-Leiter aufweisen.
Beispiel 10
Eine 9 Gew.-%ige Lösung von Cellulose in N- Methylmorpholin-N-oxid-Monohydrat wird mit Aluminiumoxid einer mittleren Körnung von 0,7 µm versetzt, so daß das Verhältnis Cellulose : Aluminiumoxid 1 : 3 beträgt. Diese Lösung wird bei 90°C durch eine Hohlspaltdüse extrudiert, wobei durch den inneren Kanal Ethylenglykol so zudosiert wird, daß eine ausreichende Hohlraumbildung erfolgt. Die Spinnstrahlen werden über einen Luftspalt von 5 cm in ein Koagulationsbad geführt und dabei mit einer Geschwindigkeit von 60 m/min abgezogen. Nach dem Aufwickeln wird das anhaftende Lösungsmittel mit Wasser entfernt und getrocknet. Durch thermische Behandlung bei 1600°C werden Hohlfasern mit einem Durchmesser von 150 µm erhalten.
Beispiel 11
Eine 12 Gew.-%ige Lösung von Cellulose in N- Methylmorpholin-N-oxid-Monohydrat wird gemeinsam mit einer 8 Gew.-%igen Lösung von Cellulose in N- Methylmorpholin-N-oxid-Monohydrat, welche mit 700 Gew.-% Eisenpulver bezogen auf den Celluloseanteil versetzt ist, gemeinsam bei 100°C im Verhältnis 1 : 1 durch eine Hohlspaltdüse extrudiert, wobei die reine Lösung durch den Außenspalt zugeführt wird. Bei einem Abstand von 1 cm zum wäßrigen Fällbad betrug die Abzugsgeschwindigkeit 50 m/min. Nach wäßriger Extraktion und Trocknung werden mit Eisenpulver gefüllte Cellulosefilamente erhalten, wie sie z. B. für Abschirmzwecke Verwendung finden können.

Claims (17)

1. Verfahren zur Herstellung von Formkörpern, insbesondere Fäden oder Folien, aus wenigstens einem Polymeren aus der aus Polysaccharid, Polysaccharidderivat und Polyvinylalkohol bestehenden Gruppe durch Bildung einer einen Zusatzstoff enthaltenden Lösung des Polymeren in einem Amin-N-oxid enthaltenden Lösungsmittel, Extrudieren der Lösung und Ausfällen des Extrudats durch Berührung mit einem Koagulationsmittel, dadurch gekennzeichnet, daß man wenigstens zwei Polymerlösungen bildet, von denen wenigstens eine einen oder mehrere Zusatzstoffe in feiner Verteilung enthält, und die wenigstens zwei Polymerlösungen unter Bildung eines vereinigten Extrudats gleichzeitig extrudiert.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß sich die wenigstens zwei Polymerenlösungen durch die Korngröße und/oder die stoffliche Zusammensetzung und/oder den Gehalt der Zusatzstoffe unterscheiden.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß man Zusatzstoffe mit einer Korngröße in dem Bereich von 0,01 bis 1000 µm, vorzugsweise von 0,05 bis 100 µm einsetzt.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß man Zusatzstoffe aus der aus Oxiden, Carbiden, Boriden, Nitriden, Oxynitriden, Sialonen, Aluminosilikaten, kohlenstoffhaltigen Materialien, Metallpulvern, Metallsalzen, Polymerfasern, Partikeldispersionen, anorganischen oder organischen, keramikbildenden niedrig- oder hochmolekularen Verbindungen bestehenden Gruppen einsetzt.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß man Polymerenlösungen mit einem Gehalt des Zusatzstoffes in dem Bereich von 10 bis 1000 Gew.-%, bezogen auf ihren Polymeranteil einsetzt.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß man die Polymerlösungen mit unterschiedlichen Volumengeschwindigkeiten extrudiert.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß man zwei oder mehr Polymerlösungen konzentrisch extrudiert und zur Bildung massiver Zwei- bzw. Mehrkomponentenfäden nur von außen koaguliert.
8. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß man zwei oder mehr Polymerlösungen konzentrisch extrudiert und zur Bildung massiver Dreikomponentenfäden zentral eine Zusatzstoffdispersion zuführt und von außen koaguliert.
9. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß man das Volumenverhältnis der zwei oder mehr extrudierten Polymerlösungen und einer zentral zugeführten raumfüllenden Flüssigkeit oder eines Gases so wählt, daß der Polymerlösungsschlauch aufgeweitet wird.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß man zwei oder mehr Polymerlösungen konzentrisch extrudiert und zur Bildung von Zwei- bzw. Mehrkomponentenfäden von innen und außen koaguliert.
11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß man das Extrudat vor dem Ausfällen zur Einstellung der Dimensionen des Kerns und der Mantelschichten in einem Luftspalt verstreckt.
12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß die Zusatzstoffe katalytisch aktiv, elektronen- oder ionenleitfähig, piezoelektrisch, isolierend, porenbildend, mechanisch verstärkend, absorbierend oder oberflächenaktiv sein können.
13. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß man das koagulierte Extrudat trocknet und seinen Polymergehalt durch eine thermische Behandlung entfernt und/oder carbonisiert.
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, daß man die thermische Behandlung im Temperaturbereich von 250 bis 3500°C in Gegenwart von Sauerstoff, Inertgas oder unter Vakuum durchführt.
15. Verfahren nach Anspruch 13 oder 14, dadurch gekennzeichnet, daß die thermische Behandlung in einer ersten Stufe bei tieferer Temperatur und einer zweiten Stufe bei höherer Temperatur erfolgt und nur in einer der beiden Stufen oxidierende Bedingungen herrschen.
16. Verfahren nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß das Monohydrat des N- Methylmorpholins-N-oxids als Lösungsmittel eingesetzt wird.
17. Verfahren nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, daß man als Polymer Cellulose einsetzt.
DE19910012A 1999-03-08 1999-03-08 Verfahren zur Herstellung von Formkörpern Expired - Fee Related DE19910012C1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE19910012A DE19910012C1 (de) 1999-03-08 1999-03-08 Verfahren zur Herstellung von Formkörpern
US09/936,086 US6881361B1 (en) 1999-03-08 2000-02-24 Method for producing shaped bodies
PCT/DE2000/000552 WO2000053833A1 (de) 1999-03-08 2000-02-24 Verfahren zur herstellung von formkörpern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19910012A DE19910012C1 (de) 1999-03-08 1999-03-08 Verfahren zur Herstellung von Formkörpern

Publications (1)

Publication Number Publication Date
DE19910012C1 true DE19910012C1 (de) 2001-01-18

Family

ID=7900020

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19910012A Expired - Fee Related DE19910012C1 (de) 1999-03-08 1999-03-08 Verfahren zur Herstellung von Formkörpern

Country Status (3)

Country Link
US (1) US6881361B1 (de)
DE (1) DE19910012C1 (de)
WO (1) WO2000053833A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10148768A1 (de) * 2001-10-02 2003-04-10 Mann & Hummel Filter Hohlfaser aus einem anorganischen, sinterbaren Material und Verfahren zu deren Herstellung
WO2003042127A1 (de) 2001-11-14 2003-05-22 Filterwerk Mann+Hummel Gmbh Verfahren zur erzeugung von einer beschichtung auf einer hohlfaser
WO2014207140A1 (en) 2013-06-27 2014-12-31 Mann+Hummel Gmbh Ceramic whole blood hollow fiber membrane filter medium and use thereof for separating blood plasma / serum from whole blood
WO2014207150A1 (en) 2013-06-27 2014-12-31 Mann+Hummel Gmbh Polymeric whole blood hollow fiber membrane filter medium and use thereof for separating blood plasma / serum from whole blood
WO2021175498A1 (de) * 2020-03-02 2021-09-10 Robert Bosch Gmbh Verteilungsstruktur für eine brennstoffzelle mit anisotropem gasdiffusionskoeffizienten

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10102334C2 (de) * 2001-01-19 2003-12-04 Thueringisches Inst Textil Verfahren zur Herstellung von regulären, monodispersen Celluloseperlen und ihre Verwendung
AT410319B (de) * 2001-07-25 2003-03-25 Chemiefaser Lenzing Ag Celluloseschwamm und verfahren zu dessen herstellung
DE10137171A1 (de) * 2001-07-31 2003-02-13 Stockhausen Chem Fab Gmbh Verfahren zur Herstellung von cellulosischen Formkörpern mit superabsorbierenden Eigenschaften
DE10145640A1 (de) * 2001-09-15 2003-04-10 Thueringisches Inst Textil Verfahren und Vorrichtung zur Herstellung gerader keramischer Fasern
DE10211052A1 (de) * 2002-03-13 2003-10-23 Fresenius Medical Care De Gmbh Hohlfaser-Spinndüse
DE10221537A1 (de) * 2002-05-15 2003-11-27 Thueringisches Inst Textil Verfahren zur Herstellung sphärischer, hybridischer Formkörper aus löslichen Polymeren
DE102004053402B3 (de) 2004-11-05 2006-06-01 Gkss-Forschungszentrum Geesthacht Gmbh Membran zur Trennung von Stoffgemischen und Verfahren zu ihrer Herstellung
AT502743B1 (de) 2005-08-26 2008-06-15 Chemiefaser Lenzing Ag Cellulosischer formkörper, verfahren zu seiner herstellung und dessen verwendung
US7938876B2 (en) * 2005-11-16 2011-05-10 GE02 Technologies, Inc. Low coefficient of thermal expansion materials including nonstoichiometric cordierite fibers and methods of manufacture
US7938877B2 (en) * 2005-11-16 2011-05-10 Geo2 Technologies, Inc. Low coefficient of thermal expansion materials including modified aluminosilicate fibers and methods of manufacture
US20100048374A1 (en) * 2005-11-16 2010-02-25 James Jenq Liu System and Method for Fabricating Ceramic Substrates
US20090166910A1 (en) * 2005-11-16 2009-07-02 Geo2 Technologies, Inc. System and Method for Twin Screw Extrusion of a Fibrous Porous Substrate
US7640732B2 (en) * 2005-11-16 2010-01-05 Geo2 Technologies, Inc. Method and apparatus for filtration of a two-stroke engine exhaust
US8038759B2 (en) * 2005-11-16 2011-10-18 Geoz Technologies, Inc. Fibrous cordierite materials
US20070111878A1 (en) * 2005-11-16 2007-05-17 Bilal Zuberi Extrudable mixture for forming a porous block
CN100430535C (zh) * 2005-12-21 2008-11-05 青岛大学 一种海藻酸盐/聚乙烯醇复合纤维及其制备方法
US8039050B2 (en) * 2005-12-21 2011-10-18 Geo2 Technologies, Inc. Method and apparatus for strengthening a porous substrate
AU2007327536B2 (en) * 2006-11-29 2012-09-27 Steri-Flow Filtration Systems (Aust) Pty Ltd An apparatus and method of producing porous membranes
US7781372B2 (en) * 2007-07-31 2010-08-24 GE02 Technologies, Inc. Fiber-based ceramic substrate and method of fabricating the same
FR2946177B1 (fr) * 2009-05-27 2011-05-27 Arkema France Procede de fabrication de fibres composites conductrices a haute teneur en nanotubes.
DE102010045279A1 (de) * 2009-09-30 2011-04-07 Smartfiber Ag Vorrichtung zur Herstellung von beschichteten Formkörpern
CN102895886B (zh) * 2012-10-22 2015-03-04 天津工业大学 一种双复合非对称结构中空纤维陶瓷透氧膜及其制备方法
US20150114641A1 (en) * 2013-10-30 2015-04-30 Baker Hughes Incorporated Proppants with improved flow back capacity
CN103668502A (zh) * 2013-12-19 2014-03-26 吴江明敏制衣有限公司松陵分公司 超细皮芯丝导线
CN106999861B (zh) * 2014-09-22 2021-01-05 乔治亚技术研究公司 具有提高的渗透率的复合纳米颗粒稳定化的芯碳分子筛中空纤维膜
WO2016172707A1 (en) * 2015-04-24 2016-10-27 The Board Of Trustees Of The University Of Illinois Methods of extruding multilayer fibers
PT108896A (pt) * 2015-10-19 2017-04-19 Univ Do Porto Uma membrana de peneiro molecular de carbono, métodos de preparação e seus usos
CN109304098B (zh) * 2018-10-22 2022-02-25 南京工业大学 一种聚合物-陶瓷复合内膜的制备方法
JPWO2021193956A1 (de) * 2020-03-26 2021-09-30
DE202022101351U1 (de) 2022-03-14 2022-04-14 Thüringisches Institut für Textil- und Kunststoff-Forschung Rudolstadt e.V. Hochgefüllte prekeramische Fasern als Basismaterial für die Herstellung von Knochenersatzkörpern

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4426966A1 (de) * 1994-07-29 1996-02-01 Thueringisches Inst Textil Verfahren zur Herstellung von Cellulosefäden und Folien mit sehr hohen Anteilen von Zusatzstoffen

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2902545C2 (de) * 1979-01-24 1985-04-04 Akzo Gmbh, 5600 Wuppertal Faden mit Leitschichten
JPS58163724A (ja) * 1982-03-24 1983-09-28 Nok Corp 潜熱蓄熱材充「あ」中空糸およびその製造法
JPH0653164B2 (ja) * 1986-06-10 1994-07-20 東洋紡績株式会社 セルロ−スエステル系中空糸状血漿分離膜
JP2521977B2 (ja) * 1987-09-09 1996-08-07 エヌオーケー株式会社 多孔質セラミックス多層中空糸の製造法
DE19542533C2 (de) * 1995-11-15 2002-11-07 Thueringisches Inst Textil Verfahren zur Herstellung von Sensormaterial und seine Verwendung

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4426966A1 (de) * 1994-07-29 1996-02-01 Thueringisches Inst Textil Verfahren zur Herstellung von Cellulosefäden und Folien mit sehr hohen Anteilen von Zusatzstoffen

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10148768A1 (de) * 2001-10-02 2003-04-10 Mann & Hummel Filter Hohlfaser aus einem anorganischen, sinterbaren Material und Verfahren zu deren Herstellung
WO2003042127A1 (de) 2001-11-14 2003-05-22 Filterwerk Mann+Hummel Gmbh Verfahren zur erzeugung von einer beschichtung auf einer hohlfaser
WO2014207140A1 (en) 2013-06-27 2014-12-31 Mann+Hummel Gmbh Ceramic whole blood hollow fiber membrane filter medium and use thereof for separating blood plasma / serum from whole blood
WO2014207150A1 (en) 2013-06-27 2014-12-31 Mann+Hummel Gmbh Polymeric whole blood hollow fiber membrane filter medium and use thereof for separating blood plasma / serum from whole blood
DE102013010724A1 (de) 2013-06-27 2014-12-31 Mann+Hummel Gmbh Polymeres Vollbluthohlfasermembranfiltermedium und Verwendung davon zum Abtrennen von Blutplasma/-serum von Vollblut
DE102013010735A1 (de) 2013-06-27 2015-01-15 Mann + Hummel Gmbh Keramisches Vollbluthohlfasermembranfiltermedium und Verwendung davon zum Abtrennen von Blutplasma/-serum von Vollblut
WO2021175498A1 (de) * 2020-03-02 2021-09-10 Robert Bosch Gmbh Verteilungsstruktur für eine brennstoffzelle mit anisotropem gasdiffusionskoeffizienten

Also Published As

Publication number Publication date
US6881361B1 (en) 2005-04-19
WO2000053833A1 (de) 2000-09-14

Similar Documents

Publication Publication Date Title
DE19910012C1 (de) Verfahren zur Herstellung von Formkörpern
EP1018495B1 (de) Verfahren zur Herstellung von Mikrohohlfasern aus keramischem Material
DE10226969B4 (de) Aktivierte Kohlenstofffasern und Verfahren zu ihrer Herstellung
DE2920762C2 (de) Mikroporöse Polyvinylalkoholmembran
DE2919560C2 (de)
DE2935097A1 (de) Aethylen/vinylalkohol-copolymermembran
DE2833493C2 (de) Hohlfäden
CH641501A5 (de) Verfahren zur herstellung von anorganischen hohlfasern.
DE3016542A1 (de) Aethylen/vinylalkohol-copolymerhohlfasermembran und verfahren zu ihrer herstellung
DE4426966C2 (de) Verfahren zur Herstellung von Cellulosefäden und Folien mit sehr hohen Anteilen von Zusatzstoffen
EP2412426A1 (de) Poröse Hohlfaser
DE102013110453A1 (de) Verfahren zur Herstellung eines porösen Kohlenstofferzeugnisses
DE102005056491B4 (de) Verfahren zur Herstellung von Elementen, insbesondere mit mindestens einer Dimension im Mikro- oder Nanobereich, und entsprechend hergestelltes Element, insbesondere Mikro- oder Nanohohlfaser
DE1529840A1 (de) Verfahren zur Herstellung geformter Polymerprodukte
WO2014029748A1 (de) Direktgesponnene cellulosefasern, deren herstellung und verwendung
EP2519481B1 (de) VERFAHREN ZUR HERSTELLUNG VON KERAMIKFASERN MIT EINER ZUSAMMENSETZUNG IM BEREICH SiC UND SiC-FASERN
EP0442405B1 (de) Verfahren und Vorrichtung zur Herstellung von Formkörpern
DE19701751B4 (de) Mikrohohlfaser aus keramischen Material, ein Verfahren zu deren Herstellung sowie deren Verwendung
DE2334704B2 (de) Verfahren zur Herstellung gebrannter polykristalliner Aluminiumoxidfasern
DE19758431B4 (de) Verfahren zur Herstellung von Mikrohohlfasern und deren Weiterverarbeitung zu Formkörpern
DE102012005489B4 (de) Herstellung von Mikro- bzw. Supermikrofasern auf Cellulosebasis
EP3173392A1 (de) Verfahren und vorrichtung zur herstellung von keramikteilen
DE202022101351U1 (de) Hochgefüllte prekeramische Fasern als Basismaterial für die Herstellung von Knochenersatzkörpern
WO2003097558A1 (de) Verfahren zur herstellung sphärischer, hybridischer formkörper aus löslichen polymeren
CN113463225A (zh) 一种银微纳线的制备方法

Legal Events

Date Code Title Description
8100 Publication of patent without earlier publication of application
D1 Grant (no unexamined application published) patent law 81
8364 No opposition during term of opposition
R082 Change of representative
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee