DE19913260C2 - Doppelmetallcyanid-Katalysatoren für die Herstellung von Polyetherpolyolen - Google Patents

Doppelmetallcyanid-Katalysatoren für die Herstellung von Polyetherpolyolen

Info

Publication number
DE19913260C2
DE19913260C2 DE19913260A DE19913260A DE19913260C2 DE 19913260 C2 DE19913260 C2 DE 19913260C2 DE 19913260 A DE19913260 A DE 19913260A DE 19913260 A DE19913260 A DE 19913260A DE 19913260 C2 DE19913260 C2 DE 19913260C2
Authority
DE
Germany
Prior art keywords
catalyst
organic
ester
phosphite
metal cyanide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE19913260A
Other languages
English (en)
Other versions
DE19913260A1 (de
Inventor
Pieter Ooms
Joerg Hofmann
Pramod Gupta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covestro Deutschland AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE19913260A priority Critical patent/DE19913260C2/de
Application filed by Bayer AG filed Critical Bayer AG
Priority to KR1020017010105A priority patent/KR100599354B1/ko
Priority to DE50014345T priority patent/DE50014345D1/de
Priority to ES00901608T priority patent/ES2286005T3/es
Priority to AT00901608T priority patent/ATE362951T1/de
Priority to PCT/EP2000/000728 priority patent/WO2000047650A1/de
Priority to CA002362504A priority patent/CA2362504A1/en
Priority to HU0200087A priority patent/HUP0200087A3/hu
Priority to JP2000598564A priority patent/JP2002536178A/ja
Priority to AU22944/00A priority patent/AU2294400A/en
Priority to CZ20012880A priority patent/CZ20012880A3/cs
Priority to IDW00200101785A priority patent/ID30172A/id
Priority to BR0008108-6A priority patent/BR0008108A/pt
Priority to CNB008035695A priority patent/CN1142964C/zh
Priority to US09/890,995 priority patent/US6586566B1/en
Priority to EP00901608A priority patent/EP1165658B1/de
Priority to PL00349854A priority patent/PL349854A1/xx
Priority to DE50007036T priority patent/DE50007036D1/de
Priority to EP00104564A priority patent/EP1038900B1/de
Priority to AT00104564T priority patent/ATE271085T1/de
Priority to ES00104564T priority patent/ES2224936T3/es
Priority to US09/525,882 priority patent/US6468939B1/en
Priority to CA002302984A priority patent/CA2302984A1/en
Priority to JP2000080060A priority patent/JP2000281772A/ja
Priority to KR1020000014720A priority patent/KR100812509B1/ko
Priority to BR0001405-2A priority patent/BR0001405A/pt
Priority to MXPA00002936A priority patent/MXPA00002936A/es
Publication of DE19913260A1 publication Critical patent/DE19913260A1/de
Publication of DE19913260C2 publication Critical patent/DE19913260C2/de
Application granted granted Critical
Priority to HK02106253.7A priority patent/HK1044552B/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2642Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the catalyst used
    • C08G65/2645Metals or compounds thereof, e.g. salts
    • C08G65/2663Metal cyanide catalysts, i.e. DMC's
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds
    • B01J31/0211Oxygen-containing compounds with a metal-oxygen link
    • B01J31/0212Alkoxylates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0255Phosphorus containing compounds
    • B01J31/0257Phosphorus acids or phosphorus acid esters
    • B01J31/0259Phosphorus acids or phosphorus acid esters comprising phosphorous acid (-ester) groups ((RO)P(OR')2) or the isomeric phosphonic acid (-ester) groups (R(R'O)2P=O), i.e. R= C, R'= C, H
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0255Phosphorus containing compounds
    • B01J31/0257Phosphorus acids or phosphorus acid esters
    • B01J31/0261Phosphorus acids or phosphorus acid esters comprising phosphonous acid (-ester) groups (RP(OR')2) or the isomeric phosphinic acid (-ester) groups (R2(R'O)P=O), i.e. R= C, R'= C, H
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1845Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing phosphorus
    • B01J31/185Phosphites ((RO)3P), their isomeric phosphonates (R(RO)2P=O) and RO-substitution derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1845Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing phosphorus
    • B01J31/1865Phosphonites (RP(OR)2), their isomeric phosphinates (R2(RO)P=O) and RO-substitution derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1845Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing phosphorus
    • B01J31/1875Phosphinites (R2P(OR), their isomeric phosphine oxides (R3P=O) and RO-substitution derivatives thereof)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/30Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
    • B01J2231/34Other additions, e.g. Monsanto-type carbonylations, addition to 1,2-C=X or 1,2-C-X triplebonds, additions to 1,4-C=C-C=X or 1,4-C=-C-X triple bonds with X, e.g. O, S, NH/N
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/20Complexes comprising metals of Group II (IIA or IIB) as the central metal
    • B01J2531/26Zinc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/845Cobalt

Description

Die Erfindung betrifft neue Doppelmetallcyanid (DMC)-Katalysatoren für die Her­ stellung von Polyetherpolyolen durch Polyaddition von Alkylenoxiden an aktive Wasserstoffatome aufweisende Starterverbindungen.
Doppelmetallcyanid (DMC)-Katalysatoren für die Polyaddition von Alkylenoxiden an aktive Wasserstoffatome aufweisende Starterverbindungen sind bekannt (siehe z. B. US-A 3 404 109, US-A 3 829 505, US-A 3 941 849 und US-A 5 158 922). Der Einsatz dieser DMC-Katalysatoren für die Herstellung von Polyetherpolyolen be­ wirkt insbesondere eine Reduzierung des Anteils an monofunktionellen Polyethern mit endständigen Doppelbindungen, sogenannten Monoolen, im Vergleich zu der konventionellen Herstellung von Polyetherpolyolen mittels Alkali-Katalysatoren, wie Alkalihydroxiden. Die so erhaltenen Polyetherpolyole können zu hochwertigen Poly­ urethanen (z. B. Elastomere, Schäume, Beschichtungen) verarbeitet werden. DMC- Katalysatoren werden gewöhnlich erhalten, indem man eine wäßrige Lösung eines Metallsalzes mit der wäßrigen Lösung eines Metallcyanidsalzes in Gegenwart eines organischen Komplexliganden, z. B. eines Ethers, umsetzt. In einer typischen Kataly­ satorpräparation werden beispielsweise wäßrige Lösungen von Zinkchlorid (im Überschuß) und Kaliumhexacyanocobaltat gemischt und anschließend Dimethoxy­ ethan (Glyme) zur gebildeten Suspension gegeben. Nach Filtration und Waschen des Katalysators mit wäßriger Glyme-Lösung wird ein aktiver Katalysator der allgemei­ nen Formel
Zn3[Co(CN)6]2 . xZnCl2 . yH2O . zGlyme
erhalten (siehe z. B. EP-A 700 949).
Aus JP-A 4 145 123, US-A 5 470 813, EP-A 700 949, EP-A 743 093, EP-A 761 708 und WO 97/40086 sind DMC-Katalysatoren bekannt, die durch Einsatz von tert.- Butanol als organischem Komplexliganden (allein oder in Kombination mit einem Polyether (EP-A 700 949, EP-A 761 708, WO 97/40086)) den Anteil an monofunk­ tionellen Polyethern mit endständigen Doppelbindungen bei der Herstellung von Polyetherpolyolen weiter reduzieren. Darüber hinaus wird durch den Einsatz dieser DMC-Katalysatoren die Induktionszeit bei der Polyadditionsreaktion der Alkylen­ oxide mit entsprechenden Starterverbindungen reduziert und die Katalysatoraktivität erhöht.
Aufgabe der vorliegenden Erfindung war es, weiter verbesserte DMC-Katalysatoren für die Polyaddition von Alkylenoxiden an entsprechende Starterverbindungen zur Verfügung zu stellen, die eine im Hinblick auf die bislang bekannten Katalysator­ typen erhöhte Katalysatoraktivität aufweisen. Dies führt durch Verkürzung der Alkoxylierungszeiten zu einer verbesserten Wirtschaftlichkeit des Herstellprozesses von Polyetherpolyolen. Idealerweise kann durch die erhöhte Aktivität der Katalysator dann in so geringen Konzentrationen (25 ppm oder weniger) eingesetzt werden, daß die sehr aufwendige Katalysatorabtrennung aus dem Produkt nicht mehr notwendig ist, und das Produkt direkt zur Polyurethan-Herstellung verwendet werden kann.
Überraschend wurde jetzt gefunden, daß DMC-Katalysatoren, die einen Ester von Phosphorsäure, Phosphorigsäure, Phosphonsäure, Phosphonigsäure, Phosphinsäure oder Phosphinigsäure als Komplexliganden enthalten, bei der Polyetherpolyol-Her­ stellung stark erhöhte Aktivität besitzen.
Gegenstand der vorliegenden Erfindung ist daher ein Doppelmetallcyanid (DMC)- Katalysator, enthaltend
  • a) eine oder mehrere, vorzugsweise eine Doppelmetallcyanid-Verbindung,
  • b) einen oder mehrere, vorzugsweise einen Alkohol(e), Aldehyd(e), Keton(e), Ester, Ether, Amid(e), Harnstoff(e), Nitril(e) oder Sulfid(e) als organischen Komplexliganden, und
  • c) ein oder mehrere, vorzugsweise ein organische(s) Phosphat(e), Phosphit(e), Phosphonat(e), Phosphonit(e), Phosphinat(e) oder Phosphinit(e)
In dem erfindungsgemäßen Katalysator können gegebenenfalls d) Wasser, vorzugs­ weise 1 bis 10 Gew.-% und/oder e) eines oder mehrere wasserlösliche Metallsalze, vorzugsweise 5 bis 25 Gew.-%, der Formel (I) M(X)n aus der Herstellung der Dop­ pelmetallcyanidverbindungen a) enthalten sein. In Formel (I) wird M ausgewählt aus den Metallen Zn(II), Fe(II), Ni(II), Mn(II), Co(II), Sn(II), Pb(II), Fe(III), Mo (IV), Mo(VI), Al(III), V(V), V(IV), Sr(II), W(IV), W(VI), Cu(II) und Cr(III). Besonders bevorzugt sind Zn(II), Fe(II), Co(II) und Ni(II). Die Anionen X sind gleich oder verschieden, vorzugsweise gleich und bevorzugt ausgewählt aus der Gruppe der Halogenide, Hydroxide, Sulfate, Carbonate, Cyanate, Thiocyanate, Iso­ cyanate, Isothiocyanate, Carboxylate, Oxalate oder Nitrate. Der Wert für n ist 1, 2 oder 3.
Die in den erfindungsgemäßen Katalysatoren enthaltenen Doppelmetallcyanid-Ver­ bindungen a) sind die Reaktionsprodukte wasserlöslicher Metallsalze und wasser­ löslicher Metallcyanidsalze.
Zur Herstellung von Doppelmetallcyanid-Verbindungen a) geeignete wasserlösliche Metallsalze besitzen bevorzugt die allgemeine Formel (I) M(X)n, wobei M ausge­ wählt wird aus den Metallen Zn(II), Fe(II), Ni(II), Mn(II), Co(II), Sn(II), Pb(II), Fe(III), Mo(IV), Mo(VI), Al(III), V(V), V(IV), Sr(II), W(IV), W(VI), Cu(III) und Cr(III). Besonders bevorzugt sind Zn(II), Fe(II), Co(II) und Ni(II). Die Anionen X sind gleich oder verschieden, vorzugsweise gleich und werden bevorzugt ausgewählt aus der Gruppe der Halogenide, Hydroxide, Sulfate, Carbonate, Cyanate, Thiocyanate, Isocyanate, Isothiocyanate, Carboxylate, Oxalate oder Nitrate. Der Wert für n ist 1, 2 oder 3.
Beispiele geeigneter wasserlöslicher Metallsalze sind Zinkchlorid, Zinkbromid, Zinkacetat, Zinkacetylacetonat, Zinkbenzoat, Zinknitrat, Eisen(II)sulfat, Eisen(II)- bromid, Eisen(II)chlorid, Cobalt(II)chlorid, Cobalt(II)thiocyanat, Nickel(II)chlorid und Nickel(II)nitrat. Es können auch Mischungen verschiedener wasserlöslicher Me­ tallsalze eingesetzt werden.
Zur Herstellung von Doppelmetallcyanid-Verbindungen a) geeignete wasserlösliche Metallcyanidsalze besitzen bevorzugt die allgemeine Formel (II) (Y)a M'(CN)b (A)c, wobei M' ausgewählt wird aus den Metallen Fe(II), Fe(III), Co(II), Co(III), Cr(II), Cr(III), Mn(II), Mn(III), Ir(III), Ni(II), Rh(III), Ru(II), V(IV) und V(V). Besonders bevorzugt wird M' ausgewählt aus den Metallen Co(II), Co(III), Fe(II), Fe(III), Cr(III), Ir(III) und Ni(II). Das wasserlösliche Metallcyanidsalz kann eines oder meh­ rere dieser Metalle enthalten. Die Kationen Y sind gleich oder verschieden, vorzugs­ weise gleich, und werden ausgewählt aus der Alkalimetallionen und Erdalkalimetall­ ionen umfassenden Gruppe. Die Anionen A sind gleich oder verschieden, vorzugs­ weise gleich, und werden ausgewählt aus der Gruppe der Halogenide, Hydroxide, Sulfate, Carbonate, Cyanate, Thiocyanate, Isocyanate, Isothiocyanate, Carboxylate, Oxalate oder Nitrate. Sowohl a als auch b und c sind ganzzahlig, wobei die Werte für a, b und c so gewählt sind, daß die Elektroneutralität des Metallcyanidsalzes gegeben ist; a ist vorzugsweise 1, 2, 3 oder 4; b ist vorzugsweise 4, 5 oder 6; c besitzt be­ vorzugt den Wert 0. Beispiele geeigneter wasserlöslicher Metallcyanidsalze sind Kaliumhexacyanocobaltat(III), Kaliumhexacyanoferrat(II), Kaliumhexacyano­ ferrat(III), Calciumhexacyanocobaltat(III) und Lithiumhexacyanocobaltat(III).
Bevorzugte Doppelmetallcyanid-Verbindungen a), die in den erfindungsgemäßen Katalysatoren enthalten sind, sind Verbindungen der allgemeinen Formel (III)
Mx[M'x,(CN)y]z,
worin M wie in Formel (I) und
M' wie in Formel (II) definiert ist, und
x, x', y und z ganzzahlig und so gewählt sind, daß die Elektroneutralität der Doppel­ metallcyanidverbindung gegeben ist.
Vorzugsweise ist
x = 3, x' = 1, y = 6 und z = 2,
M = Zn(II), Fe(II), Co(II) oder Ni(II) und
M' = Co(III), Fe(III), Cr(III) oder Ir(III).
Beispiele geeigneter Doppelmetallcyanidverbindungen a) sind Zinkhexacyanocobal­ tat(III), Zinkhexacyanoiridat(III), Zinkhexacyanoferrat(III) und Cobalt(II)hexacyano­ cobaltat(III). Weitere Beispiele geeigneter Doppelmetallcyanid-Verbindungen sind z. B. US-A 5 158 922 zu entnehmen. Besonders bevorzugt verwendet wird Zinkhexa­ cyanocobaltat(III).
Die in den erfindungsgemäßen DMC-Katalysatoren enthaltenen organischen Kom­ plexliganden b) sind im Prinzip bekannt und ausführlich im Stand der Technik be­ schrieben (beispielsweise in US-A 5 158 922, US-A 3 404 109, US-A 3 829 505, US-A 3 941 849, EP-A 700 949, EP-A 761 708, JP-A 4 145 123, US-A 5 470 813, EP-A 743 093 und WO 97/40086). Geeignete organische Komplexliganden sind Alkohole, Aldehyde, Ketone, Ether, Ester, Amide, Harnstoffe, Nitrile, Sulfide und deren Mischungen. Bevorzugte organische Komplexliganden sind wasserlösliche aliphatische Alkohole, wie Ethanol, Isopropanol, n-Butanol, iso-Butanol, sek.-Buta­ nol und tert.-Butanol. Besonders bevorzugt ist tert.-Butanol.
Der organische Komplexligand wird entweder während der Katalysatorpräparation zugegeben oder unmittelbar nach der Ausfällung der Doppelmetallcyanidverbindung a). Gewöhnlich wird der organische Komplexligand im Überschuß eingesetzt.
Die erfindungsgemäßen DMC-Katalysatoren enthalten die Doppelmetallcyanid-Ver­ bindungen a) in Mengen von 20 bis 90 Gew.-%, bevorzugt 25 bis 80 Gew.-%, bezo­ gen auf die Menge des fertigen Katalysators, und die organischen Komplexliganden b) in Mengen von 0,5 bis 30, bevorzugt 1 bis 25 Gew.-%, bezogen auf die Menge des fertigen Katalysators. Die erfindungsgemäßen DMC-Katalysatoren enthalten übli­ cherweise 1 bis 80 Gew.-%, bevorzugt 1 bis 40 Gew.-%, bezogen auf die Menge des fertigen Katalysators, eines oder mehrerer organischer (organischen) Phosphate(s), Phosphite(s), Phosphonate(s), Phosphonite(s), Phosphinate(s) oder Phosphinite(s) c).
Für die Herstellung der erfindungsgemäßen Katalysatoren geeignete. organische Phosphate sind beispielsweise Mono-, Di- oder Triester von Phosphorsäure, Mono-, Di-, Tri- oder Tetraester von Pyrophosphorsäure und Mono-, Di-, Tri-, Tetra- oder Polyester von Polyphosphorsäure und Alkoholen mit 1 bis 30 C-Atomen.
Für die Herstellung der erfindungsgemäßen Katalysatoren geeignete organische Phosphite sind Mono-, Di- oder Triester von Phosphorigsäure und Alkoholen mit 1 bis 30 C-Atomen.
Für die Herstellung der erfindungsgemäßen Katalysatoren geeignete organische Phosphonate sind z. B. Mono- oder Diester von Phosphonsäure, Alkylphosphon­ säuren, Arylphosphonsäuren, Alkoxycarbonylalkylphosphonsäuren, Alkoxycarbonyl­ phosphonsäuren, Cyanalkylphosphonsäuren und Cyanphosphonsäuren oder Mono-, Di-, Tri- oder Tetraester von Alkyldiphosphonsäuren und Alkoholen mit 1 bis 30 C- Atomen.
Für die Herstellung der erfindungsgemäßen Katalysatoren geeignete Phosphonite sind Diester von Phosphonigsäure oder Arylphosphonigsäure und Alkoholen mit 1 bis 30 C-Atomen.
Für die Herstellung der erfindungsgemäßen Katalysatoren geeignete Phosphinate sind Ester von Phosphinsäure, Alkylphosphinsäuren, Dialkylphosphinsäuren oder Arylphosphinsäuren und Alkoholen mit 1 bis 30 C-Atomen.
Für die Herstellung der erfindungsgemäßen Katalysatoren geeignete Phosphinite sind Ester von Alkylphosphinigsäure, Dialkylphosphinigsäure oder Arylphosphinigsäure und Alkoholen mit 1 bis 30 C-Atomen.
Als Alkoholkomponente geeignet sind ein- oder mehrwertige Aryl-, Aralkyl-, Alkoxyalkyl- und Alkylalkohole mit 1 bis 30 C-Atomen, bevorzugt 1 bis 24 C- Atomen, besonders bevorzugt 1 bis 20 C-Atomen, bevorzugt Aralkyl-, Alkoxyalkyl- und Alkylalkohole, besonders bevorzugt Alkoxyalkyl- und Alkylalkohole.
Die zur Herstellung der erfindungsgemäßen Katalysatoren eingesetzten organischen Phosphate, Phosphite, Phosphonate, Phosphonite, Phosphinate oder Phosphinite c) werden in der Regel durch Umsetzung von Phosphorsäure, Pyrophosphorsäure, Poly­ phosphorsäuren, Phosphonsäure, Alkylphosphonsäuren, Arylphosphonsäuren, Alkoxycarbonylalkylphosphonsäuren, Alkoxycarbonylphosphonsäuren, Cyanalkyl­ phosphonsäuren, Cyanphosphonsäure, Alkyldiphosphonsäuren, Phosphonigsäure, Phosphorigsäure, Phosphinsäure, Phosphinigsäure oder deren Halogenderivaten oder Phosphoroxiden mit Hydroxyverbindungen mit 1 bis 30 C-Atomen wie Methanol, Ethanol, Propanol, Butanol, Pentanol, Hexanol, Heptanol, Octanol, Nonanol, Dekanol, Dodekanol, Tridekanol, Tetradekanol, Pentadekanol, Hexadekanol, Heptadekanol, Octadekanol, Nonadekanol, Methoxymethanol, Ethoxymethanol, Propoxymethanol, Butoxymethanol, 2-Ethoxyethanol, 2-Propoxyethanol, 2-Butoxy­ ethanol, Phenol, Hydroxyessigsäureethylester, Hydroxyessigsäurepropylester, Hydroxypropionsäureethylester, Hydroxypropionsäurepropylester, 1,2-Ethandiol, 1,2-Propandiol, 1,2,3-Trihydroxypropan, 1,1,1-Trimethylolpropan oder Pentaerythrit erhalten werden.
Bevorzugt sind Phosphorsäuretriethylester, Phosphorsäuretributylester, Phosphor­ säuretrioctylester, Phosphorsäuretris(2-ethylhexyl)ester, Phosphorsäuretris-(2- butoxyethyl)ester, Butylphosphonsäuredibutylester, Phenylphosphonsäuredioctyl­ ester, Phosphonoameisensäuretriethylester, Phosphonoessigsäuretrimethylester, Phosphonoessigsäuretriethylester, 2-Phosphonopropionsäuretrimethylester, 2-Phos­ phonopropionsäuretriethylester, 2-Phosphonopropionsäuretripropylester, 2-Phos­ phonopropionsäuretributylester, 3-Phosphonopropionsäuretriethylester, Tributyl­ phosphit, Trilaurylphosphit, Tris-(3-ethyloxethanyl-3-methyl)phosphit und Hepta­ kis(dipropylenglykol)phosphit.
Methoden zur Herstellung von Phosphorsäure-, Phosphorigsäure-, Phosphonsäure-, Phosphonigsäure-, Phosphinsäure- und Phosphinigsäureestern sind bekannt und ausführlich beschrieben in Kirk-Othmer: "Encyclopedia of Chemical Technology", Band 18, 4. Auflage, 1996, S. 737 ff.; "Römpp's Lexikon Chemie", Band 4, 10. Auf­ lage, Stuttgart/New York, 1998, S. 3280 ff.; "Ullmann's Encyclopedia of Industrial Chemistry", Band A19, 5. Auflage, 1991, S. 545 ff., "Houben-Weyl: Methoden der organischen Chemie", Band XII/1 und XII/2, Stuttgart 1963/1964.
Es können auch beliebige Mischungen der vorgenannten Verbindungen als Kompo­ nente c) eingesetzt werden.
Die Analyse der Katalysatorzusammensetzung erfolgt üblicherweise mittels Elemen­ taranalyse, Thermogravimetrie oder extraktiver Entfernung des organischen Phos­ phats, Phosphits, Phosphonats, Phosphonits, Phosphinats oder Phosphinits mit an­ schliessender gravimetrischer Bestimmung.
Die erfindungsgemäßen Katalysatoren können kristallin, teilkristallin oder amorph sein. Die Analyse der Kristallinität erfolgt üblicherweise durch Pulverröntgen­ diffraktometrie.
Bevorzugt sind erfindungsgemäße Katalysatoren enthaltend
  • a) Zinkhexacyanocobaltat (III),
  • b) tert.-Butanol und
  • c) organisches Phosphat, Phosphit, Phosphonat, Phosphonit, Phosphinat oder Phosphinit
Die Herstellung der erfindungsgemäßen DMC-Katalysatoren erfolgt üblicherweise in wäßriger Lösung durch Umsetzung von α) Metallsalzen, insbesondere der Formel (I) mit Metallcyanidsalzen insbesondere der Formel (II) β) von den vorstehend aufgeführten organischen Komplex­ liganden b), die weder organisches Phosphat, Phosphit, Phosphonat, Phosphonit, Phosphinat noch Phosphinit sind und γ) organischen Phosphaten, Phosphiten, Phos­ phonaten, Phosphoniten, Phosphinaten oder Phosphiniten c).
Bevorzugt werden dabei zunächst die wäßrigen Lösungen des Metallsalzes (z. B. Zinkchlorid, eingesetzt im stöchiometrischen Überschuß (mindestens 50 Mol-% be­ zogen auf das Metallcyanidsalz)) und des Metallcyanidsalzes (z. B. Kaliumhexa­ cyanocobaltat) in Gegenwart des organischen Komplexliganden b) (z. B. tert.-Buta­ nol) umgesetzt, wobei sich eine Suspension bildet, die die Doppelmetallcyanid-Ver­ bindung a) (z. B. Zinkhexacyanocobaltat), Wasser d), überschüssiges Metallsalz e), und den organischen Komplexliganden b) enthält.
Der organische Komplexligand b) kann dabei in der wäßrigen Lösung des Metall­ salzes und/oder des Metallcyanidsalzes vorhanden sein, oder er wird der nach Aus­ fällung der Doppelmetallcyanid-Verbindung a) erhaltenen Suspension unmittelbar zugegeben. Es hat sich als vorteilhaft erwiesen, die wäßrigen Lösungen und den organischen Komplexliganden b) unter starkem Rühren zu vermischen. Die gebildete Suspension wird üblicherweise anschließend mit dem organischen Phosphat, Phosphit, Phosphonat, Phosphonit, Phosphinat oder Phosphinit c) behandelt. Das organische Phosphat, Phosphit, Phosphonat, Phosphonit, Phosphinat oder Phosphinit c) wird dabei bevorzugt in einer Mischung mit Wasser und organischem Komplexli­ ganden b) eingesetzt.
Anschließend erfolgt die Isolierung des Katalysators aus der Suspension durch be­ kannte Techniken, wie Zentrifugation oder Filtration. In einer bevorzugten Ausfüh­ rungsvariante wird der isolierte Katalysator anschließend mit einer wäßrigen Lösung des organischen Komplexliganden b) gewaschen (z. B. durch Resuspendieren und an­ schließende erneute Isolierung durch Filtration oder Zentrifugation). Auf diese Weise können zum Beispiel wasserlösliche Nebenprodukte, wie Kaliumchlorid, aus dem er­ findungsgemäßen Katalysator entfernt werden.
Bevorzugt liegt die Menge des organischen Komplexliganden b) in der wäßrigen Waschlösung zwischen 40 und 80 Gew.-%, bezogen auf die Gesamtlösung. Weiter­ hin ist es vorteilhaft, der wäßrigen Waschlösung eine kleine Menge des als Kom­ ponente γ) eingesetzten organischen Phosphats, Phosphits, Phosphonats, Phos­ phonits, Phosphinats oder Phosphinits c) zuzufügen, bevorzugt 0,5 bis 5 Gew.-%, bezogen auf die Gesamtlösung.
Außerdem ist es vorteilhaft, den Katalysator mehr als einmal zu waschen. Hierzu kann z. B. der erste Waschvorgang wiederholt werden. Bevorzugt ist es aber, für weitere Waschvorgänge nichtwäßrige Lösungen zu verwenden, z. B. eine Mischung aus organischem Komplexliganden und dem als Komponente γ) eingesetzten orga­ nischen Phosphats, Phosphits, Phosphonats, Phosphonits, Phosphinats oder Phos­ phinits c).
Der gewaschene Katalysator wird anschließend, gegebenenfalls nach Pulverisierung, bei Temperaturen von im allgemeinen 20-100°C und bei Drücken von im allgemei­ nen 0,1 mbar bis Normaldruck (1013 mbar) getrocknet.
Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung der erfin­ dungsgemäßen DMC-Katalysatoren in einem Verfahren zur Herstellung von Poly­ etherpolyolen durch Polyaddition von Alkylenoxiden an aktive Wasserstoffatome aufweisende Starterverbindungen.
Als Alkylenoxide kommen bevorzugt Ethylenoxid, Propylenoxid, Butylenoxid sowie deren Mischungen zum Einsatz. Der Aufbau der Polyetherketten durch Alkoxylie­ rung kann z. B. nur mit einem monomeren Epoxid durchgeführt werden oder auch statistisch oder blockweise mit 2 oder 3 unterschiedlichen monomeren Epoxiden er­ folgen. Näheres ist "Ullmanns Encyclopädie der industriellen Chemie", Band A21, 1992, S. 670f zu entnehmen.
Als aktive Wasserstoffatome aufweisende Starterverbindungen werden vorzugsweise Verbindungen mit (zahlenmittleren) Molekulargewichten von 18 bis 2.000 und 1 bis 8 Hydroxylgruppen eingesetzt. Beispielsweise werden genannt: Ethylenglykol, Di­ ethylenglykol, Triethylenglykol, 1,2-Propylenglykol, 1,4-Butandiol, Hexamethylen­ glykol, Bisphenol A, Trimethylolpropan, Glycerin, Pentaerythrit, Sorbit, Rohrzucker, abgebaute Stärke oder Wasser.
Vorteilhafterweise werden solche aktive Wasserstoffatome aufweisende Starterver­ bindungen eingesetzt, die z. B. durch konventionelle Alkalikatalyse aus den zuvor ge­ nannten niedermolekularen Startern hergestellt wurden und oligomere Alkoxylie­ rungsprodukte darstellen mit (zahlenmittleren) Molekulargewichten von 200 bis 2000.
Die durch die erfindungsgemäßen Katalysatoren katalysierte Polyaddition von Alkylenoxiden an aktive Wasserstoffatome aufweisende Starterverbindungen erfolgt im allgemeinen bei Temperaturen von 20 bis 200°C, bevorzugt im Bereich von 40 bis 180°C, besonders bevorzugt bei Temperaturen von 50 bis 150°C. Die Reaktion kann bei Gesamtdrücken von 0,0001 bis 20 bar durchgeführt werden. Die Poly­ addition kann in Substanz oder einem inerten, organischen Lösungsmittel, wie Toluol und/oder THF, durchgeführt werden. Die Menge an Lösungsmittel beträgt üblicher­ weise 10 bis 30 Gew.-%, bezogen auf die Menge des herzustellenden Polyether­ polyols.
Die Katalysatorkonzentration wird so gewählt, daß unter den gegebenen Reaktions­ bedingungen eine gute Beherrschung der Polyadditionsreaktion möglich ist. Die Katalysatorkonzentration liegt im allgemeinen im Bereich von 0,0005 Gew.-% bis 1 Gew.-%, bevorzugt im Bereich von 0,001 Gew.-% bis 0,1 Gew.-%, besonders be­ vorzugt im Bereich von 0,001 bis 0,0025 Gew.-%, bezogen auf die Menge des herzu­ stellenden Polyetherpolyols.
Die (zahlenmittleren) Molekulargewichte der nach dem erfindungsgemäßen Verfah­ ren hergestellten Polyetherpolyole liegen im Bereich von 500 bis 100.000 g/mol, bevorzugt im Bereich von 1.000 bis 50.000 g/mol, besonders bevorzugt im Bereich von 2.000 bis 20.000 g/mol.
Die Polyaddition kann kontinuierlich oder diskontinuierlich, z. B. in einem Batch- oder im Semibatchverfahren durchgeführt werden.
Die erfindungsgemäßen Katalysatoren können wegen ihrer deutlich erhöhten Aktivi­ tät in sehr niedrigen Konzentrationen eingesetzt werden (25 ppm und weniger, bezogen auf die Menge des herzustellenden Polyetherpolyols). Werden die in Gegen­ wart der erfindungsgemäßen Katalysatoren hergestellten Polyetherpolyole zur Her­ stellung von Polyurethanen verwendet (Kunststoffhandbuch, Bd. 7, Polyurethane, 3. Aufl. 1993, S. 25-32 und 57-67), kann auf eine Entfernung des Katalysators aus dem Polyetherpolyol verzichtet werden, ohne daß die Produktqualitäten des erhalte­ nen Polyurethans nachteilig beeinflußt werden.
Beispiele Katalysatorpräparation Beispiel A Herstellung eines DMC-Katalysators mit Phosphorsäuretris-(2- butoxyethyl)ester (Katalysator A)
Zu einer Lösung aus 4 g (12 mmol) Kaliumhexacyanocobaltat in 70 ml destilliertem Wasser gibt man unter starkem Rühren (24.000 U/min) eine Lösung aus 12,5 g (91,5 mmol) Zinkchlorid in 20 ml destilliertem Wasser. Unmittelbar danach wird eine Mischung aus 50 g tert.-Butanol und 50 g destilliertem Wasser zur gebildeten Suspension gegeben und anschließend 10 min stark gerührt (24.000 U/min). Dann wird eine Mischung aus 1 g Phosphorsäuretris-(2-butoxyethyl)ester, 1 g tert.-Butanol und 100 g destilliertem Wasser zugegeben und 3 min gerührt (1.000 U/min). Der Feststoff wird durch eine Filtration isoliert, dann 10 min mit einer Mischung aus 70 g tert.-Butanol, 30 g destilliertem Wasser und 1 g des obigen Phosphorsäuretris-(2- butoxyethyl)esters gerührt (10.000 U/min) und erneut filtriert. Abschließend wird noch einmal 10 min mit einer Mischung aus 100 g tert.-Butanol und 0,5 g des obigen Phosphorsäuretris-(2-butoxyethyl)esters gerührt (10.000 U/min). Nach Filtration wird der Katalysator bei 50°C und Normaldruck bis zur Gewichtskonstanz ge­ trocknet.
Ausbeute an getrocknetem, pulverförmigem Katalysator: 4,3 g
Elementaranalyse, Thermogravimetrische Analyse und Extraktion:
Cobalt = 11,9 Gew.-%, Zink = 25,3 Gew.-%, tert.-Butanol = 10,6 Gew.-%, Tris-(2- butoxyethyl)phosphat = 7,0 Gew.-%
Beispiel B Herstellung eines DMC-Katalysators mit 2-Phosphonopropionsäure­ triethylester (Katalysator B)
Es wurde verfahren wie in Beispiel A, jedoch wurde 2-Phosphonopropionsäuretri­ ethylester anstelle von Tris-(2-butoxyethyl)phosphat eingesetzt.
Ausbeute an getrocknetem, pulverförmigem Katalysator: 5,9 g
Elementaranalyse, Thermogravimetrische Analyse und Extraktion:
Cobalt = 10,2 Gew.-%, Zink = 23,5 Gew.-%, tert.-Butanol = 2,3 Gew.-%, 2-Phosphonopropionsäuretriethylester = 26,1 Gew.-%
Beispiel C Herstellung eines DMC-Katalysators mit Phosphorsäuretributylester (Katalysator C)
Es wurde verfahren wie in Beispiel A, jedoch wurde Phosphorsäuretributylester anstelle von Phosphorsäuretris-(2-butoxyethyl)ester eingesetzt.
Ausbeute an getrocknetem, pulverförmigem Katalysator: 5,5 g
Elementaranalyse, Thermogravimetrische Analyse und Extraktion:
Cobalt = 11,1 Gew.-%, Zink = 24,9 Gew.-%, tert.-Butanol = 3,4 Gew.-%, Phosphorsäuretributylester = 16,3 Gew.-%
Beispiel D Herstellung eines DMC-Katalysators mit Phosphonoessigsäure­ triethylester (Katalysator D)
Es wurde verfahren wie in Beispiel A, jedoch wurde Phosphonoessigsäuretriethyl­ ester anstelle von Phosphorsäuretris-(2-butoxyethyl)ester eingesetzt.
Ausbeute an getrocknetem, pulverförmigem Katalysator: 5,9 g
Elementaranalyse, Thermogravimetrische Analyse und Extraktion: Cobalt = 10,7 Gew.-%, Zink = 25,5 Gew.-%, tert.-Butanol = 1,2 Gew.-%, Phosphonoessigsäuretriethylester = 27,5 Gew.-%
Beispiel E Herstellung eines DMC-Katalysators mit Tris-(3-ethyloxethanyl-3- methyl)phosphit (Katalysator E)
Es wurde verfahren wie in Beispiel A, jedoch wurde Tris-(3-ethyloxethanyl-3- methyl)phosphit anstelle von Phosphorsäuretris-(2-butoxyethyl)ester eingesetzt.
Ausbeute an getrocknetem, pulverförmigem Katalysator: 5,4 g
Elementaranalyse, Thermogravimetrische Analyse und Extraktion:
Cobalt = 11,0 Gew.-%, Zink = 24,7 Gew.-%, tert.-Butanol = 5,6 Gew.-%, Tris- (3-ethyloxethanyl-3-methyl)phosphit = 17,3 Gew.-%
Beispiel F (Vergleich) Herstellung eines DMC-Katalysators mit tert.-Butanol ohne Phosphat, Phosphit, Phosphonat, Phosphonit, Phosphinat oder Phosphinit (Katalysator F, Synthese gemäß JP-A 4 145 123)
Zu einer Lösung aus 4 g (12 mmol) Kaliumhexacyanocobaltat in 75 ml destilliertem Wasser gibt man unter starkem Rühren (24.000 U/min) eine Lösung aus 10 g (73,3 mmol) Zinkchlorid in 15 ml destilliertem Wasser. Unmittelbar danach wird eine Mischung aus 50 g tert.-Butanol und 50 g destilliertem Wasser zur gebildeten Suspension gegeben und anschließend 10 min stark gerührt (24.000 U/min). Der Feststoff wird durch eine Filtration isoliert, dann 10 min mit 125 g einer Mischung aus tert.-Butanol und destilliertem Wasser (im Gewichtsverhältnis 70/30) gerührt (10.000 U/min) und erneut filtriert. Abschließend wird noch einmal 10 min mit 125 g tert.-Butanol gerührt (10.000 U/min). Nach Filtration wird der Katalysator bei 50°C und Normaldruck bis zur Gewichtskonstanz getrocknet.
Ausbeute an getrocknetem, pulverförmigem Katalysator: 3,08 g
Elementaranalyse:
Cobalt = 13,6 Gew.-%, Zink = 27,4 Gew.-%, tert.-Butanol = 14,2 Gew.-%,
Herstellung von Polyetherpolyolen Allgemeine Durchführung
In einem 500 ml Druckreaktor werden 50 g Polypropylenglykol-Starter (zahlen­ mittleres Molekulargewicht = 1.000 g/mol) und 4-5 mg Katalysator (20-25 ppm, bezogen auf die Menge des herzustellenden Polyetherpolyols) unter Schutzgas (Argon) vorgelegt und unter Rühren auf 105°C aufgeheizt. Anschließend wird Propylenoxid (ca. 5 g) auf einmal zudosiert, bis der Gesamtdruck auf 2,5 bar ange­ stiegen ist. Weiteres Propylenoxid wird erst dann wieder zudosiert, wenn ein be­ schleunigter Druckabfall im Reaktor beobachtet wird. Dieser beschleunigte Druck­ abfall zeigt an, daß der Katalysator aktiviert ist. Anschließend wird das restliche Propylenoxid (145 g) kontinuierlich bei einem konstanten Gesamtdruck von 2,5 bar zudosiert. Nach vollständiger Propylenoxid-Dosierung und 2 Stunden Nachreak­ tionszeit bei 105°C werden flüchtige Anteile bei 90°C (1 mbar) abdestilliert und anschließend auf Raumtemperatur abgekühlt.
Die erhaltenen Polyetherpolyole wurden durch Ermittlung der OH-Zahlen, der Dop­ pelbindungsgehalte und der Viskositäten charakterisiert.
Der Reaktionsverlauf wurde anhand von Zeit-Umsatz-Kurven (Propylenoxid-Ver­ brauch [g] vs. Reaktionszeit [min]) verfolgt. Aus dem Schnittpunkt der Tangente an den steilsten Punkt der Zeit-Umsatz-Kurve mit der verlängerten Basislinie der Kurve wurde die Induktionszeit bestimmt. Die für die Katalysatoraktivität maßgeblichen Propoxylierungszeiten entsprechen dem Zeitraum zwischen Katalysatoraktivierung (Ende der Induktionsperiode) und dem Ende der Propylenoxid-Dosierung. Die Gesamtreaktionszeit ist die Summe aus Induktions- und Propoxylierungszeit.
Beispiel 1 Herstellung von Polyetherpolyol mit Katalysator A (25 ppm)
Induktionszeit: 233 min
Propoxylierungszeit: 316 min
Gesamtreaktionszeit: 549 min
Polyetherpolyol:
OH-Zahl (mg KOH/g): 30,4
Doppelbindungsgehalt (mMol/kg): 8
Viskosität 25°C (mPas): 914
Beispiel 2 Herstellung von Polyetherpolyol mit Katalysator B (20 ppm)
Induktionszeit: 148 min
Propoxylierungszeit: 149 min
Gesamtreaktionszeit: 297 min
Polyetherpolyol:
OH-Zahl (mg KOH/g): 29,6
Doppelbindungsgehalt (mMol/kg): 8
Viskosität 25°C (mPas): 931
Ohne Entfernung des Katalysators beträgt der Metallgehalt im Polyol: Zn = 5 ppm, Co = 2 ppm.
Beispiel 3 Herstellung von Polyetherpolyol mit Katalysator C (25 ppm)
Induktionszeit: 185 min
Propoxylierungszeit: 381 min
Gesamtreaktionszeit: 566 min
Polyetherpolyol:
OH-Zahl (mg KOH/g): 31,2
Doppelbindungsgehalt (mMol/kg): 10
Viskosität 25°C (mPas): 874
Beispiel 4 Herstellung von Polyetherpolyol mit Katalysator D (25 ppm)
Induktionszeit: 188 min
Propoxylierungszeit: 168 min
Gesamtreaktionszeit: 356 min
Polyetherpolyol:
OH-Zahl (mg KOH/g): 30,3
Doppelbindungsgehalt (mMol/kg): 9
Viskosität 25°C (mPas): 850
Beispiel 5 Herstellung von Polyetherpolyol mit Katalysator E (25 ppm)
Induktionszeit: 397 min
Propoxylierungszeit: 123 min
Gesamtreaktionszeit: 520 min
Polyetherpolyol:
OH-Zahl (mg KOH/g): 31,9
Doppelbindungsgehalt (mMol/kg): 7
Viskosität 25°C (mPas): 848
Beispiel 6 (Vergleich)
Katalysator F (25 ppm) zeigt unter den oben beschriebenen Reaktionsbedingungen auch nach 10 h Induktionszeit noch keine Aktivität.
Beispiele 1-5 zeigen, daß die neuen, erfindungsgemäßen DMC-Katalysatoren auf­ grund ihrer deutlich erhöhten Aktivität bei der Polyetherpolyol-Herstellung in so geringen Konzentrationen eingesetzt werden können, daß auf eine Abtrennung des Katalysators aus dem Polyol verzichtet werden kann.

Claims (8)

1. Doppelmetallcyanid (DMC)-Katalysator enthaltend
  • a) eine oder mehrere Doppelmetallcyanid-Verbindungen,
  • b) ein(en) oder mehrere Alkohol(e), Aldehyd(e), Keton(e), Ether, Ester, Amid(e), Harnstoff(e), Nitril(e) oder Sulfid(e) als organische Komplexliganden, und
  • c) ein oder mehrere organische(s) Phosphat(e), Phosphit(e), Phos­ phonat(e), Phosphinit(e), Phosphinat(e) oder Phosphinit(e).
2. DMC-Katalysator nach Anspruch 1, zusätzlich enthaltend d) Wasser und/oder e) wasserlösliches Metallsalz.
3. DMC-Katalysator nach Anspruch 1 oder 2, worin die Doppelmetallcyanid- Verbindung Zinkhexacyanocobaltat(III) ist.
4. DMC-Katalysator nach einem der Ansprüche 1 bis 3, worin der organische Komplexligand tert.-Butanol ist.
5. DMC-Katalysator nach einem der Ansprüche 1 bis 4, worin der Katalysator 1 bis 80 Gew.-% eines oder mehrerer organischer (organischen) Phosphate(s), Phosphite(s), Phosphonate(s), Phosphonite(s), Phosphinate(s) oder Phosphinite(s) enthält.
6. DMC-Katalysator nach einem der Ansprüche 1 bis 5, worin das organische Phosphat, Phosphit, Phosphonat, Phosphonit, Phosphinat oder Phosphinit, Phosphorsäuretriethylester, Phosphorsäuretris(2-ethylhexyl)ester, Phosphor­ säure-tris(2-butoxyethyl)ester, Butylphosphonsäuredibutylester, Phenylphosphonsäuredioctylester, Phosphonoameisensäuretriethylester, Phosphon­ essigsäuretrimethylester, Phosphonoessigsäuretriethylester, 2-Phosphono­ propionsäuretrimethylester, 2-Phosphonopropionsäuretriethylester, 2-Phos­ phonopropionsäuretripropylester, 3-Phosphonopropionsäuretriethylester, Tri­ butylphosphit, Trilaurylphosphit, Tris-(3-ethyloxyethanyl-3-methyl)phosphit oder Heptakis(dipropylenglykol)phosphit ist.
7. Verfahren zur Herstellung eines DMC-Katalysator gemäß Anspruch 1 enthaltend die Schritte
  • a) Umsetzung in wässriger Lösung von
    • 1. α) Metallsalzen mit Metallcyanidsalzen
    • 2. β) organischen Komplexliganden gemäß Anspruch 1, die weder organische Phosphate, Phosphite, Phosphonate, Phosphonite, Phosphinate noch Phosphinite sind, und
    • 3. γ) einem oder mehreren organischen Phosphat(en), Phosphit(en), Phosphonat(en), Phosphonit(en), Phosphinat(en) oder Phosphinit(en) und,
  • b) Isolieren, Waschen und Trocknen des in Schritt i) erhaltenen Katalysators.
8. Verwendung eines oder mehrerer DMC-Katalysatoren nach einem der Ansprüche 1 bis 6, zur Herstellung von Polyetherpolyolen durch Polyaddition von Alkylenoxiden an aktive Wasserstoffatome aufweisende Starter­ verbindungen.
DE19913260A 1999-02-11 1999-03-24 Doppelmetallcyanid-Katalysatoren für die Herstellung von Polyetherpolyolen Expired - Fee Related DE19913260C2 (de)

Priority Applications (28)

Application Number Priority Date Filing Date Title
DE19913260A DE19913260C2 (de) 1999-03-24 1999-03-24 Doppelmetallcyanid-Katalysatoren für die Herstellung von Polyetherpolyolen
PL00349854A PL349854A1 (en) 1999-02-11 2000-01-31 Double metal cyanide catalysts for producing polyether polyols
ES00901608T ES2286005T3 (es) 1999-02-11 2000-01-31 Catalizadores de cianuro bimetalico para la preparacion de polioleteres.
AT00901608T ATE362951T1 (de) 1999-02-11 2000-01-31 Doppelmetallcyanid-katalysatoren für die herstellung von polyetherpolyolen
PCT/EP2000/000728 WO2000047650A1 (de) 1999-02-11 2000-01-31 Doppelmetallcyanid-katalysatoren für die herstellung von polyetherpolyolen
CA002362504A CA2362504A1 (en) 1999-02-11 2000-01-31 Double metal cyanide catalysts for producing polyether polyols
BR0008108-6A BR0008108A (pt) 1999-02-11 2000-01-31 Catalisadores de cianeto de duplo metal paraprodução de polióis poliéter
JP2000598564A JP2002536178A (ja) 1999-02-11 2000-01-31 ポリエーテルポリオールを製造するための複金属シアン化物触媒
AU22944/00A AU2294400A (en) 1999-02-11 2000-01-31 Double metal cyanide catalysts for producing polyether polyols
CZ20012880A CZ20012880A3 (cs) 1999-02-11 2000-01-31 Bimetalické kyanidové katalyzátory pro výrobu polyetherpolyolů, způsob jejich výroby a jejich pouľití
IDW00200101785A ID30172A (id) 1999-02-11 2000-01-31 Katalisator logam sianida ganda untuk memproduksi poliol polieter
DE50014345T DE50014345D1 (de) 1999-02-11 2000-01-31 Doppelmetallcyanid-katalysatoren für die herstellung von polyetherpolyolen
CNB008035695A CN1142964C (zh) 1999-02-11 2000-01-31 制备聚醚多元醇的双金属氰化物催化剂
US09/890,995 US6586566B1 (en) 1999-02-11 2000-01-31 Double metal cyanide catalysts for producing polyether polyols
KR1020017010105A KR100599354B1 (ko) 1999-02-11 2000-01-31 폴리에테르 폴리올 제조용의 이중 금속 시아나이드 촉매
EP00901608A EP1165658B1 (de) 1999-02-11 2000-01-31 Doppelmetallcyanid-katalysatoren für die herstellung von polyetherpolyolen
HU0200087A HUP0200087A3 (en) 1999-02-11 2000-01-31 Double metal cyanide catalysts for producing polyether polyols
DE50007036T DE50007036D1 (de) 1999-03-24 2000-03-13 Doppelmetallcyanid-Katalysatoren für die Herstellung von Polyetherpolyolen
EP00104564A EP1038900B1 (de) 1999-03-24 2000-03-13 Doppelmetallcyanid-Katalysatoren für die Herstellung von Polyetherpolyolen
AT00104564T ATE271085T1 (de) 1999-03-24 2000-03-13 Doppelmetallcyanid-katalysatoren für die herstellung von polyetherpolyolen
ES00104564T ES2224936T3 (es) 1999-03-24 2000-03-13 Catalizadores de cianuro bimetalico para la fabricacion de polioleteres.
US09/525,882 US6468939B1 (en) 1999-03-24 2000-03-15 Double metal cyanide catalysts for the preparation of polyether polyols
CA002302984A CA2302984A1 (en) 1999-03-24 2000-03-22 Double metal cyanide catalysts for the preparation of polyether polyols
JP2000080060A JP2000281772A (ja) 1999-03-24 2000-03-22 ポリエーテルポリオールを製造するための複金属シアン化物触媒
KR1020000014720A KR100812509B1 (ko) 1999-03-24 2000-03-23 폴리에테르 폴리올 제조를 위한 이중 금속 시안화물 촉매
BR0001405-2A BR0001405A (pt) 1999-03-24 2000-03-23 Catalisadores de cianeto de metal duplo para a preparação de poliéter-polióis
MXPA00002936A MXPA00002936A (es) 1999-03-24 2000-03-24 Catalizadores de cianuro bimetalico para la produccion de polioleteres.
HK02106253.7A HK1044552B (zh) 1999-02-11 2002-08-23 製備聚醚多元醇的雙金屬氰化物催化劑

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19913260A DE19913260C2 (de) 1999-03-24 1999-03-24 Doppelmetallcyanid-Katalysatoren für die Herstellung von Polyetherpolyolen

Publications (2)

Publication Number Publication Date
DE19913260A1 DE19913260A1 (de) 2000-09-28
DE19913260C2 true DE19913260C2 (de) 2001-07-05

Family

ID=7902193

Family Applications (2)

Application Number Title Priority Date Filing Date
DE19913260A Expired - Fee Related DE19913260C2 (de) 1999-02-11 1999-03-24 Doppelmetallcyanid-Katalysatoren für die Herstellung von Polyetherpolyolen
DE50007036T Expired - Lifetime DE50007036D1 (de) 1999-03-24 2000-03-13 Doppelmetallcyanid-Katalysatoren für die Herstellung von Polyetherpolyolen

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE50007036T Expired - Lifetime DE50007036D1 (de) 1999-03-24 2000-03-13 Doppelmetallcyanid-Katalysatoren für die Herstellung von Polyetherpolyolen

Country Status (10)

Country Link
US (1) US6468939B1 (de)
EP (1) EP1038900B1 (de)
JP (1) JP2000281772A (de)
KR (1) KR100812509B1 (de)
AT (1) ATE271085T1 (de)
BR (1) BR0001405A (de)
CA (1) CA2302984A1 (de)
DE (2) DE19913260C2 (de)
ES (1) ES2224936T3 (de)
MX (1) MXPA00002936A (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19953546A1 (de) * 1999-11-08 2001-05-10 Bayer Ag Doppelmetallcyanid-Katalysatoren für die Herstellung von Polyetherpolyolen
DE19958355A1 (de) 1999-12-03 2001-06-07 Bayer Ag Verfahren zur Herstellung von DMC-Katalysatoren
DE10108484A1 (de) 2001-02-22 2002-09-05 Bayer Ag Verbessertes Verfahren zur Herstelung von Polyetherpolyolen
DE10108485A1 (de) 2001-02-22 2002-09-05 Bayer Ag Verbessertes Verfahren zur Herstellung von Polyetherpolyolen
DK1565563T3 (da) * 2002-11-22 2013-01-21 Basf Se Enzymatisk syntese af polyolacrylater
WO2004067633A1 (ja) * 2003-01-28 2004-08-12 Asahi Glass Company, Limited ポリエーテルポリオール組成物およびその用途
US7300993B2 (en) * 2004-06-03 2007-11-27 Shell Oil Company Process for the preparation of polyether polyols
US20060058182A1 (en) * 2004-09-13 2006-03-16 Combs George G Processes for the preparation of double metal cyanide (DMC) catalysts
US7282181B2 (en) * 2004-09-16 2007-10-16 Varian Inc. Fluid collection and testing device
KR101780833B1 (ko) * 2009-09-07 2017-09-21 쉘 인터내셔날 리써취 마트샤피지 비.브이. 폴리우레탄 발포체의 제조 방법
WO2013092501A1 (de) 2011-12-20 2013-06-27 Bayer Intellectual Property Gmbh Hydroxy-aminopolymere und verfahren zu deren herstellung
SG11201509857PA (en) 2013-06-13 2015-12-30 Covestro Deutschland Ag Polyethercarbonate-polyoxymethylene block copolymers
JP2016525619A (ja) 2013-08-02 2016-08-25 コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag ポリエーテルカーボネートポリオールの製造方法
WO2018069348A1 (de) 2016-10-12 2018-04-19 Covestro Deutschland Ag Verfahren zur herstellung von elastomeren
PL3898768T3 (pl) * 2018-12-21 2023-04-11 Dow Global Technologies Llc Proces polimeryzacji polieterowej
CN115785435B (zh) * 2022-12-29 2023-08-11 杭州普力材料科技有限公司 一种一步法制备聚醚多元醇的方法
CN116217913A (zh) * 2022-12-29 2023-06-06 杭州普力材料科技有限公司 一种三配体双金属络合物催化剂及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0743093A1 (de) * 1995-05-15 1996-11-20 ARCO Chemical Technology, L.P. Hochwirksamer Katalysator aus ein Doppellmetallcyanidkomplex
EP0761708A2 (de) * 1995-08-22 1997-03-12 ARCO Chemical Technology, L.P. Doppelmetallcyanidkatalysatorzusammensetzung enthaltend Polyetherpolyole
WO1997040086A1 (en) * 1996-04-19 1997-10-30 Arco Chemical Technology, L.P. Highly active double metal cyanide catalysts

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1063525A (en) 1963-02-14 1967-03-30 Gen Tire & Rubber Co Organic cyclic oxide polymers, their preparation and tires prepared therefrom
US3829505A (en) 1970-02-24 1974-08-13 Gen Tire & Rubber Co Polyethers and method for making the same
US3941849A (en) 1972-07-07 1976-03-02 The General Tire & Rubber Company Polyethers and method for making the same
AU552988B2 (en) * 1982-03-31 1986-06-26 Shell Internationale Research Maatschappij B.V. Polymerizing epoxides and catalyst suspensions for this
US4877906A (en) * 1988-11-25 1989-10-31 Arco Chemical Technology, Inc. Purification of polyols prepared using double metal cyanide complex catalysts
JP2653236B2 (ja) 1990-10-05 1997-09-17 旭硝子株式会社 ポリエーテル化合物の製造方法
US5158922A (en) 1992-02-04 1992-10-27 Arco Chemical Technology, L.P. Process for preparing metal cyanide complex catalyst
US5470813A (en) 1993-11-23 1995-11-28 Arco Chemical Technology, L.P. Double metal cyanide complex catalysts
US5482908A (en) 1994-09-08 1996-01-09 Arco Chemical Technology, L.P. Highly active double metal cyanide catalysts
US5811829A (en) * 1995-08-10 1998-09-22 Arco Chemical Technology, L.P. Viscosity stable isocyanate-terminated prepolymers and polyoxyalkylene polyether polyols having improved storage stability
US5693584A (en) * 1996-08-09 1997-12-02 Arco Chemical Technology, L.P. Highly active double metal cyanide catalysts
US5714428A (en) * 1996-10-16 1998-02-03 Arco Chemical Technology, L.P. Double metal cyanide catalysts containing functionalized polymers
CN1273217C (zh) * 1997-10-13 2006-09-06 拜尔公司 用于生产聚醚多元醇的晶态双金属氰化物催化剂
US6063897A (en) * 1998-05-05 2000-05-16 Arco Chemical Technology, L.P. Acid-treated double metal cyanide complex catalysts
ATE259843T1 (de) * 1998-10-07 2004-03-15 Bayer Ag Verfahren zur herstellung von polyetherpolyolen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0743093A1 (de) * 1995-05-15 1996-11-20 ARCO Chemical Technology, L.P. Hochwirksamer Katalysator aus ein Doppellmetallcyanidkomplex
EP0761708A2 (de) * 1995-08-22 1997-03-12 ARCO Chemical Technology, L.P. Doppelmetallcyanidkatalysatorzusammensetzung enthaltend Polyetherpolyole
WO1997040086A1 (en) * 1996-04-19 1997-10-30 Arco Chemical Technology, L.P. Highly active double metal cyanide catalysts

Also Published As

Publication number Publication date
KR20010014614A (ko) 2001-02-26
EP1038900A3 (de) 2001-04-04
BR0001405A (pt) 2000-11-28
CA2302984A1 (en) 2000-09-24
KR100812509B1 (ko) 2008-03-11
JP2000281772A (ja) 2000-10-10
EP1038900A2 (de) 2000-09-27
DE19913260A1 (de) 2000-09-28
DE50007036D1 (de) 2004-08-19
EP1038900B1 (de) 2004-07-14
MXPA00002936A (es) 2004-03-09
ATE271085T1 (de) 2004-07-15
ES2224936T3 (es) 2005-03-16
US6468939B1 (en) 2002-10-22

Similar Documents

Publication Publication Date Title
DE19913260C2 (de) Doppelmetallcyanid-Katalysatoren für die Herstellung von Polyetherpolyolen
EP1165657B1 (de) Doppelmetallcyanid-katalysatoren für die herstellung von polyetherpolyolen
EP1021453B1 (de) Multimetallcyanidkomplexe als katalysatoren
EP1115490B1 (de) Doppelmetallcyanid-katalysatoren für die herstellung von polyetherpolyolen
EP1165658B1 (de) Doppelmetallcyanid-katalysatoren für die herstellung von polyetherpolyolen
EP1256596A1 (de) Doppelmetallcyanid-Katalysatoren für die Herstellung von Polyetherpolyolen
EP1239957A2 (de) Doppelmetallcyanid-katalysatoren für die herstellung von polyetherpolyolen
DE19906985A1 (de) Doppelmetallcyanid-Katalysatoren für die Herstellung von Polyetherpolyolen
EP1386662A1 (de) Doppelmetallcyanid-Katalysatoren für die Herstellung von Polyetherpolyolen
WO2001053381A1 (de) Verfahren zur herstellung von polyetheralkoholen
EP1177239B1 (de) Doppelmetallcyanid-katalysatoren für die herstellung von polyetherpolyolen
EP1034036B1 (de) Kristalline polyester enthaltende doppelmetallcyanid-katalysatoren für die herstellung von polyetherpolyolen
EP1115489B1 (de) Doppelmetallcyanid-katalysatoren für die herstellung von polyetherpolyolen
WO1999033562A1 (de) Verbesserte doppelmetallcyanid-katalysatoren für die herstellung von polyetherpolyolen
EP1425098A1 (de) Doppelmetallcyanid-katalysatoren für die herstellung von polyetherpolyolen
EP1254714B1 (de) Doppelmetallcyanid-Katalysatoren für die Herstellung von Polyetherpolyolen
DE19924672A1 (de) Doppelmetallcyanic-Katalysatoren für die Herstellung von Polyetherpolyolen
DE19920937A1 (de) Doppelmetallcyanid-Katalysatoren für die Herstellung von Polyetherpolyolen
DE19920552A1 (de) Doppelmetallcyanid-Katalysatoren für die Herstellung von Polyetherpolyolen

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
D2 Grant after examination
8364 No opposition during term of opposition
8327 Change in the person/name/address of the patent owner

Owner name: BAYER MATERIALSCIENCE AG, 51373 LEVERKUSEN, DE

8339 Ceased/non-payment of the annual fee