DE3630370A1 - Process for the production of optical waveguide structures in a glass substrate - Google Patents

Process for the production of optical waveguide structures in a glass substrate

Info

Publication number
DE3630370A1
DE3630370A1 DE19863630370 DE3630370A DE3630370A1 DE 3630370 A1 DE3630370 A1 DE 3630370A1 DE 19863630370 DE19863630370 DE 19863630370 DE 3630370 A DE3630370 A DE 3630370A DE 3630370 A1 DE3630370 A1 DE 3630370A1
Authority
DE
Germany
Prior art keywords
glass substrate
optical waveguide
production
waveguide structures
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19863630370
Other languages
German (de)
Inventor
Christoph Dr Thoma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THOMA, CHRISTOPH, DR., 8011 VATERSTETTEN, DE
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to DE19863630370 priority Critical patent/DE3630370A1/en
Publication of DE3630370A1 publication Critical patent/DE3630370A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/134Integrated optical circuits characterised by the manufacturing method by substitution by dopant atoms
    • G02B6/1345Integrated optical circuits characterised by the manufacturing method by substitution by dopant atoms using ion exchange
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/06Surface treatment of glass, not in the form of fibres or filaments, by coating with metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • C03C21/003Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions under application of an electrical potential difference
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/009Poling glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/25Metals
    • C03C2217/251Al, Cu, Mg or noble metals
    • C03C2217/254Noble metals
    • C03C2217/256Ag
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/34Masking

Abstract

According to the invention, the glass substrate is coated in accordance with the desired optical waveguide structure with a monovalent cation-containing substance, and subsequently brought into contact with two melts which contain alkali metal ions and wet the substrate on both sides. <IMAGE>

Description

Die Erfindung betrifft ein Verfahren gemäß dem Ober­ begriff des Patentanspruchs.The invention relates to a method according to the Ober concept of claim.

In planaren Glassubstraten können Lichtwellenleiter da­ durch erzeugt werden, daß in den Lichtwellenleiterbe­ reichen die Brechzahl gegenüber dem Substratglas er­ höht wird.Optical fibers can be found in planar glass substrates are generated by that in the optical waveguide reach the refractive index compared to the substrate glass is increased.

Dies kann z. B. durch ein Verfahren erfolgen, das aus H. P. Nolting, R. Ulrich; Springer Series in Optical Sciences, Band 48: Integrated Optics, Beitrag "Buried Single - Mode Channel Wave - guides in BK 7 by Field Assisted Cs - Ion Exchange", von H. J. Lilienhoff, H. W. Hölscher, (Seite 71 bis 74). bekannt ist.This can e.g. B. done by a method that from HP Nolting, R. Ulrich; Springer Series in Optical Sciences, Volume 48: Integrated Optics, article "Buried Single - Mode Channel Wave - guides in BK 7 by Field Assisted Cs - Ion Exchange", by HJ Lilienhoff, HW Hölscher, (pages 71 to 74). is known.

In einem ersten Schritt wird dabei auf dem Glassubstrat eine inerte, metallische Maske aufgebracht. Dies ge­ schieht beispielsweise durch ein bei der IC-Herstellung übliches fotolithographisches Verfahren. Diese Maske läßt die Form der gewünschten Lichtwellenleiter-Struk­ tur auf dem Glassubstrat frei, und deckt die übrige Fläche ab.In a first step, this is done on the glass substrate an inert metallic mask is applied. This ge happens, for example, through an IC production usual photolithographic process. That mask leaves the shape of the desired fiber optic structure free on the glass substrate, and covers the rest Area from.

In einem zweiten Schritt wird dann die maskierte Seite des Glassubstrats mit einer Schmelze in Berührung ge­ bracht, die monovalente Kationen, beispielsweise Silber oder Cäsium, enthält. Dieser Ionenaustauschprozeß kann durch Anlegen einer Spannung zwischen der Schmelze und einer mit von der maskierten Seite abgewandten Seite des Substrats in Berührung stehenden weiteren Schmelze beschleunigt werden. Diese weitere Schmelze enthält beispielsweise Natrium- oder Kalium-Ionen.In a second step, the masked side of the glass substrate in contact with a melt brings the monovalent cations, such as silver or cesium. This ion exchange process can by applying a voltage between the melt and one with facing away from the masked side  Other side in contact with the substrate Melt will be accelerated. This further melt contains, for example, sodium or potassium ions.

In einem dritten Schritt wird anschließend die Maske von der Oberfläche des Glassubstrats, beispielsweise durch Ätzen, entfernt.In a third step, the mask of the surface of the glass substrate, for example by Etching, removed.

In einem vierten Schritt wird schließlich in einem zweiten Ionenaustauschprozeß die Lichtwellenleiter- Struktur unter die Oberfläche des Glassubstrats versenkt, d.h. vergraben. Hierzu wird das Glassubstrat beidseitig mit einer Alkali-Ionen, beispielsweise Natrium- oder Ka­ lium-Ionen enthaltenden Schmelze in Berührung gebracht. Auch dieser Ionenaustauschprozeß kann durch Anlegen einer Spannung beschleunigt werden.In a fourth step, finally, in one second ion exchange process the fiber optic Structure sunk under the surface of the glass substrate, i.e. buried. For this, the glass substrate is on both sides with an alkali ion, for example sodium or Ka brought into contact melt containing lium ion. This ion exchange process can also be carried out by applying a Tension can be accelerated.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art anzugeben, das mit weniger Verfahrensschritten auskommt.The invention has for its object a method of the type mentioned at the beginning, with less Procedural steps comes out.

Diese Aufgabe wird erfindungsgemäß durch die im Patent­ anspruch angegebenen Merkmale gelöst.This object is achieved by the in the patent claim specified features solved.

Ein besonderer Vorteil des erfindungsgemäßen Verfahrens besteht darin, daß nur ein einziger Ionenaustauschprozeß notwendig ist.A particular advantage of the method according to the invention is that only a single ion exchange process necessary is.

Im folgenden wird das erfindungsgemäße Verfahren anhand eines in der Zeichnung dargestellten Aus­ führungsbeispieles näher erläutert. Dabei zeigen die Fig. 1 bis 3 verschiedene Verfahrensschritte bzw. Zustände bei der Durchführung des erfindungsge­ mäßen Verfahrens.The method according to the invention is explained in more detail below with reference to an exemplary embodiment shown in the drawing. In this case, 1, Figs. 3 to various process steps and conditions for carrying out the method erfindungsge MAESSEN.

Das erfindungsgemäße Verfahren besteht im wesentlichen aus zwei Schritten.
The method according to the invention essentially consists of two steps.

In einem ersten Schritt (siehe Fig. 1) wird auf ein Glassubstrat 1 ein Maskenstreifen 2 beispielsweise in fotolithographischer Technik, die aus der Chip-Technolo­ gie gut bekannt ist, entsprechend der gewünschten Licht­ wellenleiter-Struktur in einer Dicke von ca. 80 Nano­ meter aufgebracht. Dieser Maskenstreifen 2 besteht beispielsweise entweder direkt aus einem einwertigen Metall (z.B. Silber), oder enthält monovalente Kationen, (z.B. Cäsium).In a first step (see Fig. 1) on a glass substrate 1, a mask strip 2, for example in photolithographic technology, which is well known from chip technology, corresponding to the desired light waveguide structure in a thickness of about 80 nanometers upset. This mask strip 2 consists, for example, either directly of a monovalent metal (eg silver) or contains monovalent cations (eg cesium).

In einem zweiten Schritt (siehe Fig. 2) wird beispielsweise eine Anordnung wie bei der in der Einleitung zitierten Druckschrift verwendet. Das Glassubstrat 1 wird dabei von einer Saugglocke 5 gehalten, und in eine erste Schmelze 3, die beispiels­ weise Natrium-Ionen enthält, eingetaucht. Auf der eingetauchten Seite des Glassubstrats 1 ist der Masken­ streifen 2 aufgebracht. In der Saugglocke 5 befindet sich eine zweite Schmelze 4, die ebenfalls Natrium-Ionen enthält.In a second step (see FIG. 2), an arrangement is used, for example, as in the publication cited in the introduction. The glass substrate 1 is held by a suction cup 5 , and immersed in a first melt 3 , which contains, for example, sodium ions. On the immersed side of the glass substrate 1 , the mask strip 2 is applied. In the suction cup 5 there is a second melt 4 , which also contains sodium ions.

Zur Durchführung eines sogenannten feldunterstützten Ionenaustauschprozesses wird die erste Schmelze 3 mit dem Pluspol, und die zweite Schmelze 4 mit dem Minuspol einer nicht näher dargestellten Spannungsquelle ver­ bunden.To carry out a so-called field-assisted ion exchange process, the first melt 3 with the positive pole and the second melt 4 with the negative pole of a voltage source, not shown, are connected.

In den Fig. 3a und 3b sind zwei Zustände während des Ionenaustauschprozesses dargestellt. Bei dem in Fig. 3a dargestellten Zustand sind die Silber-Ionen aus dem Maskenstreifen 2 in einer halb­ kreisförmigen Ionenwolke 2 a in das Glassubstrat 1 hineindiffundiert. Ein Teil des Silbers aus dem Mas­ kenstreifen 2 wird auch in der Schmelze in Lösung gehen, beziehungsweise passiviert chemisch an der Ober­ fläche. In FIGS. 3a and 3b, two states are shown during the ion exchange process. In the example shown in Fig. 3a condition, the silver ions from the masking strip 2 are in a semi-circular ion cloud 2 a diffused into the glass substrate 1. Part of the silver from the mask strip 2 will also dissolve in the melt, or passivate chemically on the surface.

Bei dem in Fig. 3b dargestellten Zustand ist die ge­ wünschte Lichtwellenleiter-Struktur im Glassubstrat 1 entstanden. Die nun praktisch runde Ionenwolke 2 b ist weiter in das Glassubstrat 1 hineingewandert und damit unter die Oberfläche des Glassubstrats 1 versenkt. Dieser Vorgang wurde durch die aus der ersten Schmelze 3 in das Glassubstrat 1 diffundierenden Natrium-Ionen unterstützt.In the state shown in Fig. 3b, the desired optical fiber structure in the glass substrate 1 is created. The now practically round ion cloud 2 b has migrated further into the glass substrate 1 and thus sunk under the surface of the glass substrate 1 . This process was supported by the sodium ions diffusing from the first melt 3 into the glass substrate 1 .

Claims (1)

Verfahren zur Erzeugung von Lichtwellenleiter- Strukturen in einem Glassubstrat (1), dadurch gekennzeichnet, daß das Glassubstrat (1) entsprechend der gewünschten Lichtwellenleiter-Struktur mit einer monovalente Kationen enthaltenden Substanz beschichtet wird, daß das Substrat (1) anschließend mit zwei beidseitig das Substrat (1) benetzenden, Alkali-Ionen enthaltenden Schmel­ zen (3, 4) in Berührung gebracht wird, und daß schließlich an die beiden Schmelzen (3, 4) eine elek­ trische Spannung angelegt wird.Method for producing optical waveguide structures in a glass substrate ( 1 ), characterized in that the glass substrate ( 1 ) is coated with a substance containing monovalent cations in accordance with the desired optical waveguide structure, that the substrate ( 1 ) is subsequently coated with two substrates on both sides (1) wetting, alkali-ion-containing Schmel zen (3, 4) is brought into contact, and that finally the two melts (3, 4) a elec tric voltage is applied.
DE19863630370 1986-09-05 1986-09-05 Process for the production of optical waveguide structures in a glass substrate Withdrawn DE3630370A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19863630370 DE3630370A1 (en) 1986-09-05 1986-09-05 Process for the production of optical waveguide structures in a glass substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19863630370 DE3630370A1 (en) 1986-09-05 1986-09-05 Process for the production of optical waveguide structures in a glass substrate

Publications (1)

Publication Number Publication Date
DE3630370A1 true DE3630370A1 (en) 1988-03-10

Family

ID=6309042

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19863630370 Withdrawn DE3630370A1 (en) 1986-09-05 1986-09-05 Process for the production of optical waveguide structures in a glass substrate

Country Status (1)

Country Link
DE (1) DE3630370A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3937529A1 (en) * 1989-11-08 1991-05-16 Siemens Ag METHOD FOR CONNECTING A SILICON PART TO A GLASS PART
DE4203368A1 (en) * 1992-02-06 1993-08-12 Bodenseewerk Geraetetech Integrated optical wave guide - comprises glass substrate with intermediate zone surrounding integrated zone

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2349839A1 (en) * 1972-10-10 1974-04-18 Rca Corp METHOD FOR CREATING AN ION DEPROVEMENT ZONE IN THE GLASS BODY
US3836348A (en) * 1973-02-22 1974-09-17 Nippon Selfoc Co Ltd Method for manufacturing optical integrated circuits utilizing an external electric field

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2349839A1 (en) * 1972-10-10 1974-04-18 Rca Corp METHOD FOR CREATING AN ION DEPROVEMENT ZONE IN THE GLASS BODY
US3836348A (en) * 1973-02-22 1974-09-17 Nippon Selfoc Co Ltd Method for manufacturing optical integrated circuits utilizing an external electric field

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Applied Optics, Vol. 19, Nr. 7, 1980, S. 1092-1095 *
Optics Communications, Vol. 52, No. 1, 1984, S. 17-23 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3937529A1 (en) * 1989-11-08 1991-05-16 Siemens Ag METHOD FOR CONNECTING A SILICON PART TO A GLASS PART
DE4203368A1 (en) * 1992-02-06 1993-08-12 Bodenseewerk Geraetetech Integrated optical wave guide - comprises glass substrate with intermediate zone surrounding integrated zone

Similar Documents

Publication Publication Date Title
DE3101378C2 (en) Optics for coupling a fiber optic light wave guide
DE10322350B4 (en) Optical device, and method for its production
DE2419030A1 (en) INTEGRATED OPTICAL DEVICE WITH FIBER WAVE GUIDE AND PHOTODETECTOR, AND METHOD OF MANUFACTURING IT
DE2704984A1 (en) SWITCH FOR FIBER OPERATING FIBERS
EP0559040B1 (en) Process of manufacturing optoelectronic components
DE4446509A1 (en) Method for producing conductor tracks on a substrate having depressions
EP0429877B1 (en) Device for positioning optical fibres in connector elements
DE69815368T2 (en) HYBRID CHIP PROCESS
EP0416478B1 (en) Integrated light waveguide manufacturing process
EP0267536A2 (en) Hermetically sealed connecting passage for glass fibre
DE2614871C3 (en) Process for the production of thin-film light guide structures
DE69738279T2 (en) Vertical positioning of an optoelectronic component on a carrier with respect to an optical conductor integrated on this carrier
EP0509342B1 (en) Manufacturing process for wedge shaped structures
DE2832408A1 (en) METHOD FOR PRODUCING PRECISION FLAT PARTS, ESPECIALLY WITH MICRO-OPENINGS
DE4240950C1 (en) Method for producing a cover for an integrated optical circuit and cover for an integrated optical circuit
DE3630370A1 (en) Process for the production of optical waveguide structures in a glass substrate
EP0551118A1 (en) Method for manufacturing of non-linear micro optical elements
DE19757560A1 (en) Process for producing a porous layer using an electrochemical etching process
DE3520812A1 (en) MANUFACTURING OF OPTICAL COMPONENTS
EP0731365B1 (en) Method of manufacturing an electrooptical device
DE19502684A1 (en) Process for the production of multi-segment ribbed waveguides
DE102010048003A1 (en) Method for the production of mechanical stops for self-adjustment and device with stops for self-adjustment
DD237384A1 (en) OPTICAL COUPLING ELEMENT FOR OPTICAL WAVEGUIDERS AND METHOD FOR THE PRODUCTION THEREOF
DE19931944B4 (en) Deflecting decoupling in a printed circuit board embedded light guide
EP0515784A2 (en) Apparatus for positioning of optical fibres

Legal Events

Date Code Title Description
8110 Request for examination paragraph 44
8127 New person/name/address of the applicant

Owner name: THOMA, CHRISTOPH, DR., 8011 VATERSTETTEN, DE

8130 Withdrawal