DE3640586A1 - Verfahren zur herstellung von hohlkugeln oder deren verbunden mit wandungen erhoehter festigkeit - Google Patents

Verfahren zur herstellung von hohlkugeln oder deren verbunden mit wandungen erhoehter festigkeit

Info

Publication number
DE3640586A1
DE3640586A1 DE19863640586 DE3640586A DE3640586A1 DE 3640586 A1 DE3640586 A1 DE 3640586A1 DE 19863640586 DE19863640586 DE 19863640586 DE 3640586 A DE3640586 A DE 3640586A DE 3640586 A1 DE3640586 A1 DE 3640586A1
Authority
DE
Germany
Prior art keywords
particles
metal
cells
sintered
spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19863640586
Other languages
English (en)
Inventor
Des Erfinders Auf Nennung Verzicht
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aurubis AG
Original Assignee
Norddeutsche Affinerie AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Norddeutsche Affinerie AG filed Critical Norddeutsche Affinerie AG
Priority to DE19863640586 priority Critical patent/DE3640586A1/de
Priority to US07/126,214 priority patent/US4775598A/en
Priority to EP87202343A priority patent/EP0271944A1/de
Priority to JP62299622A priority patent/JPS63149306A/ja
Publication of DE3640586A1 publication Critical patent/DE3640586A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0038Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by superficial sintering or bonding of particulate matter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • B22F1/0655Hollow particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1103Making porous workpieces or articles with particular physical characteristics
    • B22F3/1112Making porous workpieces or articles with particular physical characteristics comprising hollow spheres or hollow fibres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/009Porous or hollow ceramic granular materials, e.g. microballoons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/006Pressing and sintering powders, granules or fibres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12042Porous component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12049Nonmetal component
    • Y10T428/12056Entirely inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12181Composite powder [e.g., coated, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated

Description

Die Erfindung betrifft ein Verfahren zur Herstellung von Hohlkugeln oder deren Verbunden bzw. geformten Körpern, ausgehend von metallischen, im wesentlichen kugelförmigen Leichtkörperteilchen.
Aus DE-PS 32 10 770 ist ein Verfahren zur Herstellung von metallischen, im wesentlichen kugelförmigen Leichtkörperteilchen durch naßchemische Metallisierung von Kunststoffteilchen bekannt. Nach dem vorbekannten Verfahren werden Schaumstoffteilchen, wie marktgängige Schaumstoffgranulatteilchen, stromlos mit z.B. Kupfer oder Nickel metallisiert und die Kunststoffkerne pyrolytisch bei Temperaturen von etwa 400°C zersetzt. Des weiteren können die Teilchenwandungen elektrolytisch auf Dicken bis zu 0,05 mm verstärkt werden. Die metallischen, kugelförmigen Leichtkörperteilchen sind zur Herstellung von Formkörpern durch Sinterung vorgeschlagen. Des weiteren sind die vorbekannten Metallhohlkugeln vorgeschlagen zur Herstellung von Formkörpern, bei denen in einer Matrix aus gieß- oder schüttfähigen Stoffen oder einer Matrix aus plastischen oder erhärtenden Stoffen Metallhohlkugeln eingebaut sind. Dabei können die Metallhohlkugeln miteinander kommunizieren, indem die Kontaktstellen der einzelnen Kugeln geöffnet sind, oder die Metallhohlkugeln liegen separat oder mehr oder weniger dicht gepackt in der Matrix vor.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Herstellung von Metallhohlkugeln oder Strukturen aus Metallhohlkugelverbunden (Formkörper) mit Wandungen erhöhter Festigkeit und Stabilität bereitzustellen. Ein weiteres Ziel der Erfindung ist es, Metallhohlkugelverbunde bzw. Strukturen mit Wandungen erhöhter Festigkeit bereitzustellen, wobei diese Festigkeit sowohl bei dicht gesinterten als auch insbesondere bei porösen Wandungen gewährleistet ist und eine oberflächenreiche leichte Zellenstruktur großer Festigkeit mit im wesentlichen kugelförmigen Kernzellen geschaffen wird.
Zur Lösung der Aufgabe geht die Erfindung aus von einem Verfahren zur Herstellung von Hohlkugeln oder Hohlkugelverbunden mit Wandungen erhöhter Festigkeit, wobei auf metallisierte, im wesentlichen kugelförmige Leichtkörperteilchen mit einem Kern aus geschäumtem Polymer weitere Schichten aufgetragen werden.
Ausgehend von einem Verfahren der genannten Art besteht das Verfahren gemäß der vorliegenden Erfindung darin, daß metallisierte kugelförmige Leichtkörperteilchen mit einer Metallwanddicke von 5 bis 20 micron mit einer Dispersion von feinteiligem Metall oder dessen Oxid oder feinteiligem keramischem oder feuerfestem Material behandelt (beschichtet), die in einer Stärke von 15 bis 500 micron beschichteten kugelförmigen Leichtkörperteilchen getrocknet, die getrockneten Teilchen auf eine Temperatur von etwa 400°C zur Pyrolyse des Polymerkerns erhitzt und anschließend bei einer Temperatur von 900 bis 1400°C gesintert werden.
Mit dem Verfahren der Erfindung werden Leichtkörperteilchen erhöhter Eigenfestigkeit bzw. Druckfestigkeit erzielt, und es werden auch durch Auswahl der dispergierten Teilchen der Dispersion nach Art und Korngröße Leichtkörperwandungen poröser oder dicht gesinterter Beschaffenheit erzielt. Dabei bleibt die im wesentlichen kugelförmige Gestalt des Leichtkörperteilchens einzeln oder im Verbund erhalten. Je nach Auswahl können nicht nur poröse oder dicht gesinterte Wandungen erzeugt werden, sondern es kann gleichzeitig auch ein Kommunizieren der ursprünglichen, im wesentlichen kugelförmigen Kernzellen an ihren Kontaktstellen bewirkt werden, d.h. es liegt eine Struktur von kugelförmigen Zellen mit Makroporen und mit Mikroporen vor.
Nach dem Verfahren der Erfindung werden im allgemeinen Leichtkörperwandungen mit Mikroporen erzielt, wenn die Korngröße der dispergierten Teilchen etwa zwischen 0,04 und 0,3 mm liegt. Dichte gesinterte Wandungen werden erreicht, wenn die Korngröße der dispergierten Teilchen unter 0,04 mm und etwa zwischen 0,0001 und 0,01 mm liegt. Als Sinterhilfen eignen sich hierbei beispielsweise CaO, SiO2, MgO, Y2O3. Diese hochschmelzenden Oxide bilden mit vielen Keramikwerkstoffen wie Aluminiumoxid, Zirkonoxid niedrigschmelzende Mischkristalle und ermöglichen damit einen Sintervorgang mit flüssigen Phasen.
Zur Durchführung des erfindungsgemäßen Verfahrens wird zweckmäßig von einer Dispersion der Teilchen ausgegangen. Das Dispergiermittel ist vorzugsweise Wasser, kann aber auch ein organisches Lösungsmittel oder eine Mischung dieser Stoffe sein. Es ist von Vorteil, wenn die Dispersion ein organisches Bindemittel enthält, das rückstandsfrei verbrennbar ist. Hierdurch wird die Beschichtung der primären Metallhohlkugeln mit insbesondere gröberen Teilchen hinsichtlich Haftung erleichtert, wie aber auch ein mehrfacher Beschichtungsvorgang verbessert wird. Die Konzentration der Dispersion beträgt im allgemeinen 40 bis 50 Gew.-%, bezogen auf Beschichtungsteilchen. Bei spritzfähigen Dispersionen (Teilchengröße 0,1 bis 50 micron) wird die Beschichtung der Metallhohlkugeln zweckmäßig im Wirbelbett vorgenommen. Die Dauer des Eindüsens der Dispersion bestimmt dabei die Wanddicke. Selbstverständlich kann man auch mehrfach und unterschiedliche Schichten aufsprühen. Das organische Bindemittel kann auch separat auf die primären Metallhohlkugeln aufgetragen werden, wobei die Schichtstärke maximal 0,01 mm beträgt. Das Beschichten der Metallhohlkugeln mit gröberen Teilchen, beispielsweise zur Herstellung von Strukturen mit Filtereigenschaften, wird zweckmäßigerweise durch Einstäuben der zuvor mit Bindemittel versehenen Metallhohlkugeln vorgenommen. Beim Mischen derart vorbehandelter Hohlkugeln mit heißem Pulver gröberer Teilchen umhüllen sich die Hohlkugeln innerhalb weniger Sekunden mit einer Monoschicht aus Grobpulver. Dieser Beschichtungsvorgang kann mehrfach wiederholt und ein Mehrschichtenauftrag erzeugt werden. Geeignete Bindemittel sind beispielsweise Polyäthylen (LDPE), Acrylharze, Polyvinylbutyrale.
Als Beschichtungsmaterialien eignen sich metallische oder nichtmetallische Werkstoffe. Für metallische Werkstoffe werden üblicherweise Dispersionen eines oder mehrerer Metalle oder Oxide der Metalle aus der Gruppe Fe, Cu, Ni, Cr, W oder Ta, insbesondere Eisen, Kupfer oder Nickel, verwendet. Im Falle der Verwendung der Oxide dieser Metalle muß in der Sinterstufe des Verfahrens in reduzierender Atmosphäre gesintert werden. Während des Sintervorgangs legiert sich in jedem Falle das primäre Wandungsmetall der Metallhohlkugel mit dem Metall der Beschichtung. Als Endprodukt entsteht nach der Sinterung beispielsweise ein mit Kupfer legierter Stahl oder z.B. korrosionsbeständige Kupfer/Nickel-Legierungen, jeweils in Schwammstruktur niedrigen Raumgewichts bei hoher Festigkeit. Derartige Schwammstrukturen aus mit Kupfer legiertem Stahl oder mit Kupfer legiertem Nickel dienen beispielsweise der Herstellung plattenförmiger Körper für Filter, poröse Elektroden, Schallschluck- und Stoßverzehrelemente sowie zur Herstellung von Leichtbauplatten.
Zur Herstellung von mit nichtmetallischen Stoffen beschichteten Metallhohlkugeln werden zweckmäßig Dispersionen von keramischen bzw. feuerfesten Werkstoffen eingesetzt, gegebenenfalls wiederum unter Verwendung eines organischen Bindemittels. Geeignete Materialien sind beispielsweise Tonminerale, hochschmelzende Oxide, feuerfeste Silikate; beispielsweise Aluminiumoxid, Magnesiumoxid, Titandioxid, Kaolin, Zirkonsilikat; ferner Carbide, wie Siliciumcarbid, Titancarbid; Nitride, wie Aluminiumnitrid; Silicide, wie Molybdänsilicid; ferner Aluminiumphosphat und andere Materialien.
Die beschichteten metallisierten Leichtkörperteilchen werden sodann, gegebenenfalls nach mehrfach vorgenommener Beschichtung, getrocknet und die getrockneten Leichtkörperteilchen zur Pyrolyse des Zellkerns in an sich bekannter Weise auf etwa 400°C erhitzt und anschließend bei einer Temperatur von etwa 900 bis 1400°C gesintert. Hierbei entstehen je nach Teilchengröße, Art und Sintertemperatur des nichtmetallischen Werkstoffes dichte oder poröse Beschichtungen. Sofern die Sinterung der beschichteten metallisierten Leichtkörperteilchen in einer Form vorgenommen wird, entstehen Formkörper aus gesinterten und im wesentlichen kugelförmigen Zellen mit entweder porösen oder mehr oder weniger dicht gesinterten Zellwandungen. Das Metall der primären metallisierten Leichtkörperteilchen sammelt sich im Inneren der Zellen und kann, sofern es nicht mechanisch ausgeschleudert ist, durch Behandlung mit Mineralsäure entfernt werden.
Im Ergebnis liegen in den nach dem erfindungsgemäßen Verfahren hergestellten produkten Formkörper mit offenzelliger Schwammstruktur vor, wobei die Wandungen (Schalen) der Zellen eines Verbundes mehr oder weniger dicht gesinterte Schalen aus Metall oder keramischem Material, wie Al2O3, sind und wobei die Kernzellen an den Berührungsstellen miteinander kommunizieren; oder es liegt nach dem Sintern ein Kugelverband mit porösen Schalen aus gesintertem Metall oder keramischem Material vor, quasi eine dreidimensionale Siebstruktur, bestehend aus miteinander verbundenen sphärischen Siebkäfigen.
Ein nach dem erfindungsgemäßen Verfahren hergestellter Formkörper ist somit gekennzeichnet durch 15 bis 500 micron starke Zellwände erhöhter Festigkeit aus gesinterten partikeln aus keramischem oder feuerfestem Material oder aus Metallpartikeln, die durch das primäre Wandmetall legiert sind, wobei die Schwammstruktur aus einem Verbund von gegebenenfalls kommunizierenden, im wesentlichen kugelförmigen Kernzellen (konvexen Schalenzellen) und zwischen den Kernzellen liegenden konkav-sphärischen kommunizierenden Zellen (konkaven Schalenzellen) besteht, und wobei die Zellwände (Schalen) porös oder dicht gesintert sind.
Die nach dem erfindungsgemäßen Verfahren unter Verwendung von Metallhohlkugeln und einem Beschichtungsmaterial definierten Kornspektrums hergestellten Formkörper eignen sich in besonderer Weise zur Herstellung von stabilen, druckfesten Filtern für Gase und Flüssigkeiten, insbesondere für Hochtemperaturfiltration, zur Herstellung von porösen Elektroden, Schallschluck- und Stoßverzehrelementen sowie zur Herstellung von Leichtbauplatten.
Die Erfindung wird anhand schematischer Abbildungen in den Fig. 1 bis 10 und anhand von Ausführungsbeispielen näher und beispielhaft erläutert.
Fig. 1 zeigt in vorgrößerter Darstellung im Schnitt einen Verband von metallisierten Hohlkugeln vor dem Sinterprozeß, deren Metallschalen (1) aus z.B. Kupfer sich an den Kontaktpunkten (2) berühren und die mit Partikeln (3), z.B. Nickel, beschichtet sind.
Fig. 2 stellt den Verband metallisierter und mit partikeln beschichteter Metallhohlkugeln nach dem Sintervorgang dar. Beispielsweise ist aus einer mit Nickelpartikeln beschichteten Kupferhohlkugel eine poröse Zellwand (5) aus einer Kupfer/Nickel-Legierung entstanden, und die Zellen stehen untereinander über Kontaktöffnungen (4) in Verbindung.
Fig. 3 zeigt, nach dem Sintervorgang, einen Verband von mit z.B. Al2O3 beschichteten, z.B. Kupfer- oder Nickelhohlkugeln. Die Zellwände (6) aus Al2O3-Partikeln sind porös gesintert und die beim Sinterprozeß geschmolzenen Metallschalen aus z.B. Cu oder Ni sind zu Kügelchen (8) in den Zellen geschmolzen. Die Zellen stehen untereinander durch die Öffnungen (7) in Kontakt.
Fig. 4 zeigt einen Verband von Metallhohlkugeln (9) aus z.B. Kupfer, die mit einer Schicht aus Metallpulver (10), z.B. Nickel, überzogen sind, vor dem Sintervorgang.
Fig. 5 zeigt den Verband der Metallhohlkugeln der Fig. 4 nach dem Sinterprozeß, wobei sich poröse, feste Kugelschalen bzw. Zellwände (11) aus Partikeln einer Kupfer/Nickel-Legierung gebildet haben.
Fig. 6 zeigt ein einzelnes Leichtkörperteilchen, dessen kugelförmiger Kern (12) aus einem geschäumten Polymer, wie geschäumtes Polystyrol, mit einer Metallschicht (14) aus z.B. Kupfer oder Nickel in einer Schichtdicke von 5 bis 20 µ überzogen ist. Mit (13) ist eine etwa 50 bis 100 µ starke Beschichtung aus sinterfähigem Metall oder aus dessen Oxid bezeichnet.
Fig. 7 zeigt eine Schüttung der Leichtkörperteilchen der Fig. 6 vor der Pyrolyse und vor dem Dichtsintern. Die Beschichtungen (13) aus z.B. Nickel- oder Eisenpulver haben Berührungskontakt in den Bereichen (13 a).
Fig. 8 zeigt die Schüttung gemäß Fig. 7 nach der Pyrolyse und nach dem Sinterprozeß. Aus den Schichten (13, 14) sind dicht gesinterte Schalen (15) aus einem Legierungsmetall (Cu/Ni, Cu/Fe oder Ni/Fe) entstanden, die über Sinterbrücken (16) miteinander verbunden sind.
Fig. 9 zeigt vor dem Sinterprozeß eine Schüttung von Metallhohlkugeln (19), deren Wandungen (18) aus z.B. Nickel oder Kupfer mit einer Schicht (19) aus z.B. Al2O3-Pulver überzogen sind. Die Berührungskontakte der Metallhohlkugeln sind mit (20) bezeichnet.
Fig. 10 zeigt die Schüttung gemäß Fig. 9, jedoch nach dem Sinterprozeß. Mit (21) ist eine dicht gesinterte, kompakte Schicht bzw. Zellwand aus z.B. Aluminiumoxid bezeichnet, wobei die Berührungskontakte der Zellwände (21) zu Kontaktlöchern bzw. Zellendurchgängen (22) erweitert sind. Die während des Sinterns geschmolzenen Metallkügelchen (23) aus z.B. Nickel oder Kupfer der ursprünglichen Metallhohlkugel befinden sich im Innern der Zelle an der Zellwand (21).
Zur Herstellung von Leichtkörperteilchen gemäß Fig. 6 werden metallisierte Schaumpolymerkugeln eines Durchmessers von 1 bis 10 mm, wie mit Kupfer oder Nickel beschichtete Kugeln aus geschäumtem Polystyrol, in einem Wirbelbettaggregat mit einer organisches Bindesmittel enthaltenden, wäßrigen Dispersion eines sinterfähigen Metalls oder dessen Oxid behandelt und das beschichtete und getrocknete produkt abgezogen. In gleicher Weise kann auch ein pyrolysiertes Produkt, d.h. eine Metallhohlkugel eingesetzt werden.
Zur Herstellung von Formkörpern hoher Festigkeit gemäß Fig. 7 und 8 werden Leichtkörperteilchen der vorstehend beschriebenen Art in eine entsprechende Form eingebracht und durch Rütteln verdichtet, ggf. wird ein leichter Druck ausgeübt, damit die Kugeln in guten Berührungskontakt treten. Anschließend wird die gefüllte Form, sofern noch Schaumpolymer in der Metallhohlkugel enthalten ist, auf etwa 400 bis 600°C erhitzt und das Polymer pyrolysiert. Anschließend wird die Form auf eine Temperatur von 900 bis 1400°C erhitzt und der Formkörper gesintert. Hierbei werden an den Berührungspunkten der Kugeln Sinterbrücken geschaffen. Wird die Metallhohlkugel bzw. das Leichtkörperteilchen mit Metallpulver, wie Kupfer, beschichtet, erfolgt Beschichtung und Sinterung des Formkörpers unter Schutzgas. Bei einer Beschichtung mit dem Oxid des entsprechenden Metalls, wie Nickeloxid, kann die Beschichtung zunächst in Gegenwart von Luft erfolgen. Dabei bildet sich z.B. eine Schicht aus oxidischem Kupfer und oxidischem Nickel aus. Diese wird anschließend unter reduzierenden Bedingungen in eine Kupfer/Nickel-Legierungsschicht umgewandelt.
Zur Herstellung von Formkörpern hoher Festigkeit gemäß Fig. 9 und 10 in Gestalt einer offenzelligen keramischen Schwammstruktur werden metallisierte Schaumpolymerkugeln, z.B. mit Kupfer beschichtete Kugeln aus geschäumtem Polystyrol, in eine ggf. siebartige Form eingebracht und durch Rütteln verdichtet. Hierauf wird die Form mit einer Dispersion aus keramischem Material, wie Kaolin-Schlicker, gefüllt bzw. die Form in eine derartige Dispersion eingetaucht und anschließend die überschüssige Dispersion ablaufen gelassen. Hierbei bildet sich eine filmartige Beschichtung (19) aus, wie in Fig. 9 schematisch dargestellt. Anschließend wird die Form mit Inhalt bei 105°C getrocknet. Hierbei erreicht der Formkörper eine ausreichende Grünfestigkeit, so daß er der Form entnommen und der Pyrolyse sowie einer Dichtsinterung bei 900 bis 1400°C unterzogen werden kann. Das zu Kugeln oder zu kleinen Reguli geschmolzene Metall der ursprünglichen Kugelwand wird durch Behandlung des Körpers mit Mineralsäure entfernt.

Claims (8)

1. Verfahren zur Herstellung von Hohlkugeln oder Hohlkugelverbunden (Formkörpern) mit Wandungen erhöhter Festigkeit, wobei auf metallisierte kugelförmige Leichtkörperteilchen mit einem Kern aus geschäumtem Polymer weitere Schichten aufgetragen werden, dadurch gekennzeichnet, daß metallisierte kugelförmige Leichtkörperteilchen mit einer Metallwanddicke von 5 bis 20 micron mit einer Dispersion von feinteiligem Metall oder dessen Oxid oder feinteiligem keramischem oder feuerfestem Material behandelt (beschichtet), die in einer Stärke von 15 bis 500 micron beschichteten kugelförmigen Leichtkörperteilchen getrocknet, die getrockneten Teilchen auf eine Temperatur von etwa 400°C zur pyrolyse des Polymerkerns erhitzt und anschließend bei einer Temperatur von 900 bis 1400°C gesintert werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Dispersion ein rückstandsfrei verbrennbares organisches Bindemittel enthält.
3. Verfahren nach den Ansprüchen 1 bis 2, dadurch gekennzeichnet, daß die Dispersion eines oder mehrere Metalle oder Oxide der Metalle aus der Gruppe Fe, Cu, Ni, Cr, W oder Ta enthält.
4. Verfahren nach den Ansprüchen 1 bis 2, dadurch gekennzeichnet, daß die Dispersion eine Substanz aus der Gruppe der keramischen oder feuerfesten Werkstoffe enthält.
5. Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß die dispergierten Teilchen eine Korngröße von etwa 0,1 bis 500 micron aufweisen.
6. Verfahren nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß die beschichteten und getrockneten Leichtkörperteilchen in eine Form eingerüttelt, in der Form bei einer Temperatur von etwa 400°C pyrolysiert und anschließend durch Erhöhung der Temperatur auf 900 bis 1400°C gesintert werden.
7. Verfahren nach den Ansprüchen 1, 2 und 4 bis 7, dadurch gekennzeichnet, daß aus den Zellen der Sinterstruktur aus keramischem oder feuerfestem Material das geschmolzene primäre Metall der Metalhohlkugel durch Behandlung mit Saure entfernt wird.
8. Formkörper mit offenzelliger Schwammstruktur, hergestellt nach dem Verfahren der Ansprüche 1 bis 7, gekennzeichnet durch 15 bis 500 micron starke Zellwände erhöhter Festigkeit aus gesinterten Partikeln aus keramischem oder feuerfestem Material oder aus Metallpartikeln, die durch das primäre Wandmetall legiert sind, wobei die Schwammstruktur aus einem Verbund von gegebenenfalls kommunizierenden, im wesentlichen kugelförmigen Kernzellen (konvexen Schalenzellen) und zwischen den Kernzellen liegenden konkav-sphärischen kommunizierenden Zellen (konkaven Schalenzellen) besteht, und wobei die Zellwände (Schalen) porös oder dicht gesintert sind.
DE19863640586 1986-11-27 1986-11-27 Verfahren zur herstellung von hohlkugeln oder deren verbunden mit wandungen erhoehter festigkeit Withdrawn DE3640586A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE19863640586 DE3640586A1 (de) 1986-11-27 1986-11-27 Verfahren zur herstellung von hohlkugeln oder deren verbunden mit wandungen erhoehter festigkeit
US07/126,214 US4775598A (en) 1986-11-27 1987-11-25 Process for producing hollow spherical particles and sponge-like particles composed therefrom
EP87202343A EP0271944A1 (de) 1986-11-27 1987-11-26 Verfahren zur Herstellung von Hohlkugeln oder deren Verbunden mit Wandungen erhöhter Festigkeit
JP62299622A JPS63149306A (ja) 1986-11-27 1987-11-27 壁体の強度を高めた中空球又はその複合体を製造する方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19863640586 DE3640586A1 (de) 1986-11-27 1986-11-27 Verfahren zur herstellung von hohlkugeln oder deren verbunden mit wandungen erhoehter festigkeit

Publications (1)

Publication Number Publication Date
DE3640586A1 true DE3640586A1 (de) 1988-06-09

Family

ID=6314935

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19863640586 Withdrawn DE3640586A1 (de) 1986-11-27 1986-11-27 Verfahren zur herstellung von hohlkugeln oder deren verbunden mit wandungen erhoehter festigkeit

Country Status (4)

Country Link
US (1) US4775598A (de)
EP (1) EP0271944A1 (de)
JP (1) JPS63149306A (de)
DE (1) DE3640586A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4232969A1 (de) * 1992-10-01 1994-04-07 Abb Research Ltd Elektrisches Widerstandselement
DE19929760A1 (de) * 1999-06-29 2001-01-04 Fraunhofer Ges Forschung Verfahren und Einrichtung zur Herstellung metallischer, oxydischer oder keramischer Hohlkugeln
DE10018501C1 (de) * 2000-04-14 2001-04-05 Glatt Systemtechnik Dresden Metallische miniaturisierte hohle Formkörper und Verfahren zur Herstellung derartiger Formkörper

Families Citing this family (123)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01131083A (ja) * 1987-11-17 1989-05-23 Mino Ceramic Kk 中空セラミック焼結体の製造方法
DE3902032A1 (de) * 1989-01-25 1990-07-26 Mtu Muenchen Gmbh Gesintertes leichtbaumaterial mit herstellungsverfahren
JPH02212377A (ja) * 1989-02-10 1990-08-23 Aoki Corp 球状中空セラミック骨材コンクリート工法
EP0440093B1 (de) * 1990-01-26 1994-12-14 Isuzu Motors Limited Gusswerkstück mit keramischer Verstärkungseinlage und Verfahren zu dessen Herstellung
US5318797A (en) * 1990-06-20 1994-06-07 Clarkson University Coated particles, hollow particles, and process for manufacturing the same
US5366687A (en) * 1991-01-07 1994-11-22 United Technologies Corporation Electrophoresis process for preparation of ceramic fibers
JPH04136844U (ja) * 1991-06-14 1992-12-21 日新電機株式会社 圧縮空気操作形開閉装置
US5167885A (en) * 1992-01-07 1992-12-01 W. R. Grace & Co.-Conn. Method for making sintered bodies
US5282861A (en) * 1992-03-11 1994-02-01 Ultramet Open cell tantalum structures for cancellous bone implants and cell and tissue receptors
DE4403801A1 (de) * 1994-02-08 1995-08-10 Kww Thermotechnik Verfahren zum Herstellen gesinterter Bauteile sowie deren Verwendung
US5503795A (en) * 1995-04-25 1996-04-02 Pennsylvania Pressed Metals, Inc. Preform compaction powdered metal process
US6210625B1 (en) * 1996-02-20 2001-04-03 Mikuni Corporation Method for producing granulated material
WO1997030952A1 (fr) * 1996-02-21 1997-08-28 Mikuni Corporation Granules ceramiques
US6210612B1 (en) 1997-03-31 2001-04-03 Pouvair Corporation Method for the manufacture of porous ceramic articles
DE19804814A1 (de) * 1998-02-06 1999-08-19 Federal Mogul Burscheid Gmbh Dichtungssystem für exzentrisch rotierende Wellen
US6641907B1 (en) * 1999-12-20 2003-11-04 Siemens Westinghouse Power Corporation High temperature erosion resistant coating and material containing compacted hollow geometric shapes
US7067181B2 (en) * 2003-08-05 2006-06-27 Siemens Power Generation, Inc. Insulating ceramic based on partially filled shapes
US7563504B2 (en) * 1998-03-27 2009-07-21 Siemens Energy, Inc. Utilization of discontinuous fibers for improving properties of high temperature insulation of ceramic matrix composites
US6977060B1 (en) * 2000-03-28 2005-12-20 Siemens Westinghouse Power Corporation Method for making a high temperature erosion resistant coating and material containing compacted hollow geometric shapes
TW511105B (en) * 1999-03-11 2002-11-21 Murata Manufacturing Co Method of firing magnetic core
US7969092B1 (en) 2000-01-12 2011-06-28 Imaging Systems Technology, Inc. Gas discharge display
JP2003520905A (ja) * 2000-01-25 2003-07-08 グラット システムテクニク ドレスデン ゲーエムベーハー 中空ボール並びに中空ボールおよび中空ボールによる軽量構造部品の製造方法
JP2002274974A (ja) * 2001-03-16 2002-09-25 Sumitomo Chem Co Ltd セラミックス球状多孔体およびその製造方法
US6660224B2 (en) 2001-08-16 2003-12-09 National Research Council Of Canada Method of making open cell material
US7108828B2 (en) * 2001-08-27 2006-09-19 National Research Council Of Canada Method of making open cell material
US7458991B2 (en) * 2002-02-08 2008-12-02 Howmedica Osteonics Corp. Porous metallic scaffold for tissue ingrowth
US7405516B1 (en) 2004-04-26 2008-07-29 Imaging Systems Technology Plasma-shell PDP with organic luminescent substance
US7932674B1 (en) 2002-05-21 2011-04-26 Imaging Systems Technology Plasma-dome article of manufacture
US7727040B1 (en) 2002-05-21 2010-06-01 Imaging Systems Technology Process for manufacturing plasma-disc PDP
US8198812B1 (en) 2002-05-21 2012-06-12 Imaging Systems Technology Gas filled detector shell with dipole antenna
US9109429B2 (en) 2002-12-08 2015-08-18 Baker Hughes Incorporated Engineered powder compact composite material
US9101978B2 (en) 2002-12-08 2015-08-11 Baker Hughes Incorporated Nanomatrix powder metal compact
US9079246B2 (en) 2009-12-08 2015-07-14 Baker Hughes Incorporated Method of making a nanomatrix powder metal compact
US8403037B2 (en) 2009-12-08 2013-03-26 Baker Hughes Incorporated Dissolvable tool and method
US9682425B2 (en) 2009-12-08 2017-06-20 Baker Hughes Incorporated Coated metallic powder and method of making the same
WO2005021147A2 (en) * 2003-02-06 2005-03-10 William Marsh Rice University High strength polycrystalline ceramic spheres
US7579069B2 (en) * 2003-11-06 2009-08-25 International Business Machines Corporation Negative coefficient of thermal expansion particles and method of forming the same
JP3987022B2 (ja) * 2003-11-20 2007-10-03 本田技研工業株式会社 三次元網目構造を備えたセラミック成形体の製造方法
ATE431620T1 (de) * 2004-03-18 2009-05-15 Fiat Ricerche Leuchtelement, das eine dreidimensionale perkolationsschicht verwendet, und herstellungsverfahren dafür
US7368523B2 (en) 2004-11-12 2008-05-06 Eastman Chemical Company Polyester polymer and copolymer compositions containing titanium nitride particles
US8129906B1 (en) 2004-04-26 2012-03-06 Imaging Systems Technology, Inc. Lumino-shells
US8113898B1 (en) 2004-06-21 2012-02-14 Imaging Systems Technology, Inc. Gas discharge device with electrical conductive bonding material
US8368303B1 (en) 2004-06-21 2013-02-05 Imaging Systems Technology, Inc. Gas discharge device with electrical conductive bonding material
US20060110557A1 (en) * 2004-09-03 2006-05-25 Zhiyong Xia Polyester polymer and copolymer compositions containing metallic tungsten particles
US7662880B2 (en) 2004-09-03 2010-02-16 Eastman Chemical Company Polyester polymer and copolymer compositions containing metallic nickel particles
US7300967B2 (en) 2004-11-12 2007-11-27 Eastman Chemical Company Polyester polymer and copolymer compositions containing metallic titanium particles
US9208912B2 (en) 2004-11-29 2015-12-08 Afsaneh Rabiei Composite metal foam and methods of preparation thereof
US7641984B2 (en) * 2004-11-29 2010-01-05 North Carolina State University Composite metal foam and methods of preparation thereof
US8299696B1 (en) 2005-02-22 2012-10-30 Imaging Systems Technology Plasma-shell gas discharge device
KR101244396B1 (ko) * 2005-05-27 2013-03-25 가부시키가이샤 네오맥스 마테리아르 은피복 볼 및 그 제조 방법
US8557950B2 (en) 2005-06-16 2013-10-15 Grupo Petrotemex, S.A. De C.V. High intrinsic viscosity melt phase polyester polymers with acceptable acetaldehyde generation rates
FR2888145B1 (fr) * 2005-07-07 2008-08-29 Onera (Off Nat Aerospatiale) Procede de fabrication et d'assemblage par brasure de billes en superalliage et objets fabriques avec de tels assemblages
US7544322B2 (en) * 2005-07-07 2009-06-09 Onera (Office National D'etudes Et De Recherches Aerospatiales) Process for the pressureless sintering of metal alloys; and application to the manufacture of hollow spheres
US7730746B1 (en) 2005-07-14 2010-06-08 Imaging Systems Technology Apparatus to prepare discrete hollow microsphere droplets
DE102005040599B4 (de) * 2005-08-19 2007-07-05 Glatt Systemtechnik Gmbh Verfahren zur Herstellung von Hohlkörpern mit sphärischer gekrümmter Oberfläche, mit dem Verfahren hergestellte Hohlkörper und deren Verwendung
US7838596B2 (en) 2005-09-16 2010-11-23 Eastman Chemical Company Late addition to effect compositional modifications in condensation polymers
US7776942B2 (en) 2005-09-16 2010-08-17 Eastman Chemical Company Polyester polymer and copolymer compositions containing particles of titanium nitride and carbon-coated iron
US7745512B2 (en) 2005-09-16 2010-06-29 Eastman Chemical Company Polyester polymer and copolymer compositions containing carbon-coated iron particles
US7655746B2 (en) 2005-09-16 2010-02-02 Eastman Chemical Company Phosphorus containing compounds for reducing acetaldehyde in polyesters polymers
US7932345B2 (en) 2005-09-16 2011-04-26 Grupo Petrotemex, S.A. De C.V. Aluminum containing polyester polymers having low acetaldehyde generation rates
US8431202B2 (en) 2005-09-16 2013-04-30 Grupo Petrotemex, S.A. De C.V. Aluminum/alkaline or alkali/titanium containing polyesters having improved reheat, color and clarity
US9267007B2 (en) 2005-09-16 2016-02-23 Grupo Petrotemex, S.A. De C.V. Method for addition of additives into a polymer melt
US7863815B1 (en) 2006-01-26 2011-01-04 Imaging Systems Technology Electrode configurations for plasma-disc PDP
US8035303B1 (en) 2006-02-16 2011-10-11 Imaging Systems Technology Electrode configurations for gas discharge device
CN100368463C (zh) * 2006-04-07 2008-02-13 吉林大学 一步法合成双亲超顺磁亚微米无机物/聚合物复合空心球
EP2035651A4 (de) * 2006-06-07 2009-08-05 Exxonmobil Upstream Res Co Verfahren zur herstellung von komprimierbaren objekten für eine bohrspülung variabler dichte
JP4641010B2 (ja) * 2006-07-25 2011-03-02 Jfeテクノリサーチ株式会社 中空金属体
US7744673B2 (en) * 2006-10-27 2010-06-29 Stc.Unm Hollow sphere metal oxides
US8901272B2 (en) * 2007-02-02 2014-12-02 Grupo Petrotemex, S.A. De C.V. Polyester polymers with low acetaldehyde generation rates and high vinyl ends concentration
US7776255B1 (en) * 2007-04-16 2010-08-17 Imaging Systems Technology Hollow shell and method of manufacture
WO2008148642A1 (de) * 2007-06-04 2008-12-11 Basf Se Verfahren zur metallbeschichtung von thermoplastischen partikeln
US8105649B1 (en) 2007-08-09 2012-01-31 Imaging Systems Technology Fabrication of silicon carbide shell
KR101028969B1 (ko) 2008-12-08 2011-04-12 가야에이엠에이 주식회사 금속 중공구의 제조 방법, 금속 중공구, 경량 구조체의 제조 방법, 및 경량 구조체
WO2010067967A2 (ko) * 2008-12-08 2010-06-17 가야에이엠에이 주식회사 금속 중공구, 금속 중공구의 제조 방법, 경량 구조체, 및 경량 구조체의 제조 방법
US8329091B2 (en) * 2009-01-30 2012-12-11 Widener University Porous metallic structures
DE102009016803A1 (de) * 2009-04-09 2010-10-14 Rolls-Royce Deutschland Ltd & Co Kg Labyrinth-Anstreifdichtung für eine Strömungsmaschine
CN101870588B (zh) * 2009-04-21 2012-10-31 河北勇龙邦大新材料有限公司 一种制备空心陶瓷微珠的方法与装置
US8815408B1 (en) 2009-12-08 2014-08-26 Imaging Systems Technology, Inc. Metal syntactic foam
US10240419B2 (en) 2009-12-08 2019-03-26 Baker Hughes, A Ge Company, Llc Downhole flow inhibition tool and method of unplugging a seat
US9127515B2 (en) 2010-10-27 2015-09-08 Baker Hughes Incorporated Nanomatrix carbon composite
US9243475B2 (en) 2009-12-08 2016-01-26 Baker Hughes Incorporated Extruded powder metal compact
JP2011156962A (ja) * 2010-02-01 2011-08-18 Miyata:Kk エアバッグインフレータ用フィルタおよびその製造法
US9314996B1 (en) * 2010-06-04 2016-04-19 Carol Ann Wedding Metal foam containing hollow shells and methods of preparation
US9090955B2 (en) 2010-10-27 2015-07-28 Baker Hughes Incorporated Nanomatrix powder metal composite
US9096034B2 (en) * 2011-04-12 2015-08-04 Powdermet, Inc. Syntactic metal matrix materials and methods
US9080098B2 (en) 2011-04-28 2015-07-14 Baker Hughes Incorporated Functionally gradient composite article
US8631876B2 (en) 2011-04-28 2014-01-21 Baker Hughes Incorporated Method of making and using a functionally gradient composite tool
US9139928B2 (en) 2011-06-17 2015-09-22 Baker Hughes Incorporated Corrodible downhole article and method of removing the article from downhole environment
US9707739B2 (en) * 2011-07-22 2017-07-18 Baker Hughes Incorporated Intermetallic metallic composite, method of manufacture thereof and articles comprising the same
US9643250B2 (en) 2011-07-29 2017-05-09 Baker Hughes Incorporated Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle
US9833838B2 (en) 2011-07-29 2017-12-05 Baker Hughes, A Ge Company, Llc Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle
US9057242B2 (en) 2011-08-05 2015-06-16 Baker Hughes Incorporated Method of controlling corrosion rate in downhole article, and downhole article having controlled corrosion rate
US9033055B2 (en) 2011-08-17 2015-05-19 Baker Hughes Incorporated Selectively degradable passage restriction and method
US9090956B2 (en) 2011-08-30 2015-07-28 Baker Hughes Incorporated Aluminum alloy powder metal compact
US9856547B2 (en) 2011-08-30 2018-01-02 Bakers Hughes, A Ge Company, Llc Nanostructured powder metal compact
US9109269B2 (en) 2011-08-30 2015-08-18 Baker Hughes Incorporated Magnesium alloy powder metal compact
US9643144B2 (en) 2011-09-02 2017-05-09 Baker Hughes Incorporated Method to generate and disperse nanostructures in a composite material
US9133695B2 (en) 2011-09-03 2015-09-15 Baker Hughes Incorporated Degradable shaped charge and perforating gun system
US9347119B2 (en) 2011-09-03 2016-05-24 Baker Hughes Incorporated Degradable high shock impedance material
JP6185391B2 (ja) * 2011-12-28 2017-08-23 太盛工業株式会社 多孔質焼結体及び多孔質焼結体の製造方法
US9010416B2 (en) 2012-01-25 2015-04-21 Baker Hughes Incorporated Tubular anchoring system and a seat for use in the same
US9068428B2 (en) 2012-02-13 2015-06-30 Baker Hughes Incorporated Selectively corrodible downhole article and method of use
US9605508B2 (en) 2012-05-08 2017-03-28 Baker Hughes Incorporated Disintegrable and conformable metallic seal, and method of making the same
US9024526B1 (en) 2012-06-11 2015-05-05 Imaging Systems Technology, Inc. Detector element with antenna
US20130330388A1 (en) * 2012-06-12 2013-12-12 Mattech, Inc. Porous Sphere-like Objects, Method to Form Same and Uses Thereof Involvoing the Treatment of Fluids Including Anti-bacterial Applications
DE102013019309B4 (de) 2012-11-14 2014-07-24 Technische Universität Bergakademie Freiberg Verfahren zum Gießen von offenporigen zellularen Metallteilen
US9816339B2 (en) 2013-09-03 2017-11-14 Baker Hughes, A Ge Company, Llc Plug reception assembly and method of reducing restriction in a borehole
US9605789B2 (en) 2013-09-13 2017-03-28 Biofilm Ip, Llc Magneto-cryogenic valves, systems and methods for modulating flow in a conduit
DE102013114429A1 (de) * 2013-12-19 2015-06-25 Endress + Hauser Flowtec Ag Messrohr für ein magnetisch-induktives Durchflussmessgerät und Magnetisch-induktives Durchflussmessgerät
US11167343B2 (en) 2014-02-21 2021-11-09 Terves, Llc Galvanically-active in situ formed particles for controlled rate dissolving tools
US10865465B2 (en) 2017-07-27 2020-12-15 Terves, Llc Degradable metal matrix composite
US10150713B2 (en) 2014-02-21 2018-12-11 Terves, Inc. Fluid activated disintegrating metal system
US9738788B1 (en) * 2014-05-26 2017-08-22 Hrl Laboratories, Llc Nanoparticle-coated multilayer shell microstructures
US9910026B2 (en) 2015-01-21 2018-03-06 Baker Hughes, A Ge Company, Llc High temperature tracers for downhole detection of produced water
US10378303B2 (en) 2015-03-05 2019-08-13 Baker Hughes, A Ge Company, Llc Downhole tool and method of forming the same
US10221637B2 (en) 2015-08-11 2019-03-05 Baker Hughes, A Ge Company, Llc Methods of manufacturing dissolvable tools via liquid-solid state molding
US10016810B2 (en) 2015-12-14 2018-07-10 Baker Hughes, A Ge Company, Llc Methods of manufacturing degradable tools using a galvanic carrier and tools manufactured thereof
EP3199984A1 (de) * 2016-02-01 2017-08-02 Canon Kabushiki Kaisha Antireflexbeschichtung, optisches element und verfahren zur herstellung eines optischen elements
DE102016110672A1 (de) * 2016-06-09 2017-12-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Beaufschlagen einer Flüssigkeit mit beschleunigten Elektronen
US10214825B2 (en) * 2016-12-29 2019-02-26 GM Global Technology Operations LLC Method of depositing one or more layers of microspheres to form a thermal barrier coating
US10851711B2 (en) 2017-12-22 2020-12-01 GM Global Technology Operations LLC Thermal barrier coating with temperature-following layer
CN112441843A (zh) * 2020-12-05 2021-03-05 任杰 一种基于有机泡沫浸渍法的附丝型多孔陶瓷制备工艺
CN113088739A (zh) * 2021-03-30 2021-07-09 孙增俊 泡沫金属的制备工艺、制备装置及泡沫金属

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1266824A (fr) * 1960-09-03 1961-07-17 Gen Electric Produits métalliques poreux et procédé pour les fabriquer
US4013461A (en) * 1971-07-21 1977-03-22 Union Carbide Corporation High void porous sheet and process therefor
US3975194A (en) * 1974-03-04 1976-08-17 Canadian Patents And Development Limited Formation of hollow spherical articles
DE2737248C2 (de) * 1977-08-18 1985-09-19 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Bauteil hoher Festigkeit mit komplizierter geometrischer Form und Verfahren zu dessen Herstellung
US4293777A (en) * 1979-07-30 1981-10-06 Joseph Gamell Industries, Inc. Turbo-electric power plant and process
DD200766A1 (de) * 1981-07-31 1983-06-08 Eberhard Kasper Verfnhren zur herstellung von ventilmetallsinterkoerpern fuer elektrolytkondensatoren
DE3210770C2 (de) * 1982-03-24 1984-12-20 Manfred 2854 Loxstedt Jaeckel Metallische, im wesentlichen kugelförmige Leichtkörperteilchen, sowie Verwendung und Verfahren zu ihrer Herstellung
FR2542650B1 (fr) * 1983-03-14 1985-10-25 Commissariat Energie Atomique Procede de fabrication de pieces en materiau inorganique presentant une forte porosite et pour la mise en oeuvre de ce procede

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4232969A1 (de) * 1992-10-01 1994-04-07 Abb Research Ltd Elektrisches Widerstandselement
US5416462A (en) * 1992-10-01 1995-05-16 Abb Research Ltd. Electrical resistance element
DE19929760A1 (de) * 1999-06-29 2001-01-04 Fraunhofer Ges Forschung Verfahren und Einrichtung zur Herstellung metallischer, oxydischer oder keramischer Hohlkugeln
DE19929760C2 (de) * 1999-06-29 2003-05-22 Fraunhofer Ges Forschung Verfahren zur Herstellung metallischer, oxydischer oder keramischer Hohlkugeln
DE10018501C1 (de) * 2000-04-14 2001-04-05 Glatt Systemtechnik Dresden Metallische miniaturisierte hohle Formkörper und Verfahren zur Herstellung derartiger Formkörper

Also Published As

Publication number Publication date
US4775598A (en) 1988-10-04
JPS63149306A (ja) 1988-06-22
EP0271944A1 (de) 1988-06-22

Similar Documents

Publication Publication Date Title
DE3640586A1 (de) Verfahren zur herstellung von hohlkugeln oder deren verbunden mit wandungen erhoehter festigkeit
EP0300543B1 (de) Verfahren zum Herstellen von metallischen oder keramischen Hohlkugeln
EP0034328B1 (de) Verfahren zur Herstellung von Formkörpern auf der Basis von Siliziumkarbid
EP1272300B1 (de) Verfahren zur herstellung von metallischen hohlkörpern und hiernach hergestellte miniaturisierte hohlkörper
EP2468436B1 (de) Verfahren zur Herstellung von Metallformkörpern mit strukturierter Oberfläche
DE3009182A1 (de) Material zur waermedaemmung bei hohen temperaturen und verfahren zu dessen herstellung
DE2322593A1 (de) Feuerfestes leichtmaterial
DE102006020860B4 (de) Verfahren zur Herstellung von Verbundkörpern sowie danach hergestellte Verbundkörper
WO2007014559A1 (de) Verfahren zur pulvermetallurgischen herstellung von metallschaumstoff und von teilen aus metallschaumstoff
DE69631093T2 (de) Anorganischer, poröser träger für eine filtrationsmembran und herstellungsverfahren
WO2011089130A2 (de) Verfahren zur herstellung von hohlkörpern mit eingeschlossenen frei beweglichen partikeln
EP1557819A1 (de) Schallabsorbierende Struktur
EP2009132A1 (de) Verfahren zur Herstellung einer funktionalen Schicht, Beschichtungsmaterial, Verfahren zu seiner Herstellung sowie funktionale Schicht
WO2010115919A1 (de) Verfahren zur herstellung von hohlkörpern mit eingeschlossenen frei beweglichen partikeln
AT501587B1 (de) Rohstoffgranaliengranulat für feuerfeste erzeugnisse sowie verfahren zur herstellung und verwendung des rohstoffgranaliengranulats
DE2234737C3 (de) Masse zum Extrudieren eines spitzbaren Mantels um eine Mine und Verfahren zur Herstellung eines Schreibstiftes
DE2941606C2 (de) Wärmedämmkörper sowie ein Verfahren zu seiner Herstellung
DE2038682B2 (de) Verbundmaterial und Verfahren zu seiner Herstellung
EP1323616A1 (de) Fahrzeuglenkrad aus Metallschaum
DE10256221B3 (de) Verfahren zur Herstellung gesinterter Formkörper und so hergestellte Formkörper
DE1771415C3 (de) Verfahren zum Herstellen von Leichtbaustoffen und -Zuschlagstoffen aus vulkanischen Tuffen
EP2636658A2 (de) Verfahren zur Herstellung eines offenporigen keramischen Formkörpers
WO2005000502A1 (de) Aus metallschaumbausteinen aufgebautes bauteil und verfahren zu seiner herstellung
DE2333422A1 (de) Hartstoff und verfahren zu seiner herstellung
DE2360595B2 (de) Verfahren zum Herstellen von Kaltpellets

Legal Events

Date Code Title Description
8130 Withdrawal