DE3700128A1 - Biologisch abbaubare poly- (hydroxyalkyl)- aminodicarbonsaeure-derivate, verfahren zu ihrer herstellung und verwendung derselben fuer depotzubereitungen mit kontrollierter wirkstoffabgabe - Google Patents

Biologisch abbaubare poly- (hydroxyalkyl)- aminodicarbonsaeure-derivate, verfahren zu ihrer herstellung und verwendung derselben fuer depotzubereitungen mit kontrollierter wirkstoffabgabe

Info

Publication number
DE3700128A1
DE3700128A1 DE19873700128 DE3700128A DE3700128A1 DE 3700128 A1 DE3700128 A1 DE 3700128A1 DE 19873700128 DE19873700128 DE 19873700128 DE 3700128 A DE3700128 A DE 3700128A DE 3700128 A1 DE3700128 A1 DE 3700128A1
Authority
DE
Germany
Prior art keywords
hydroxyalkyl
poly
formula
polymer
acid derivatives
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19873700128
Other languages
English (en)
Inventor
Hubert Dr Bader
Diether Dr Rueppel
Axel Dr Walch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoechst AG
Original Assignee
Hoechst AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst AG filed Critical Hoechst AG
Priority to DE19873700128 priority Critical patent/DE3700128A1/de
Priority to JP62330334A priority patent/JPH0825909B2/ja
Priority to AT87119291T priority patent/ATE97930T1/de
Priority to DE87119291T priority patent/DE3788344D1/de
Priority to EP87119291A priority patent/EP0274127B1/de
Priority to US07/140,132 priority patent/US4906473A/en
Publication of DE3700128A1 publication Critical patent/DE3700128A1/de
Priority to US07/402,609 priority patent/US5041291A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/08Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
    • C08G69/10Alpha-amino-carboxylic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1641Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/2031Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyethylene oxide, poloxamers
    • A61K9/2045Polyamides; Polyaminoacids, e.g. polylysine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5021Organic macromolecular compounds
    • A61K9/5031Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poly(lactide-co-glycolide)

Description

Biologisch abbaubare Poly-(hydroxyalkyl)-Aminodicarbonsäure- Derivate, Verfahren zu ihrer Herstellung und Verwendung derselben für Depotzubereitungen mit kontrollierter Wirkstoffabgabe.
Die Erfindung betrifft biologisch abbaubare Poly-(hydroxyalkyl)-Aminodicarbonsäure-Derivate, ein Verfahren zu ihrer Herstellung und die Verwendung derselben für Depotzubereitungen mit kontrollierter Wirkstoffabgabe. Dabei werden die Wirkstoffe in einer Matrix, bestehend aus den erfindungsgemäßen Polyamiden, eingebettet und in vivo durch Bioerosion der Matrix kontrolliert freigesetzt. Beim Abbau der erfindungsgemäßen Produkte entstehen ausschließlich körpereigene, bzw. in ihrer Bioverträglichkeit bekannte Fragmente, die in natürlichen Stoffwechselwegen metabolisiert oder auf Grund ihrer Wasserlöslichkeit durch die Nieren ausgeschieden werden.
Eine moderne Arzneitherapie erfordert insbesondere zur Applikation von Wirkstoffen neue Darreichungsformen, die eine kontrollierte Abgaberate der Wirkstoffe mit hoher Biokompatibilität des Depots vereinigen. Eine langandauernde kontrollierte Wirkstoffabgabe ist wegen der zunehmenden Bedeutung chronischer Erkrankungen und langzeitorientierter Therapiekonzepte in Human- und Veterinärmedizin von großer Aktualität. Als Matrixmaterialien für solche Depotsysteme sind bioabbaubare Polymere besonders vorteilhaft, da die Bioerosion die Wirkstofffreisetzung steuert und die chirurgische Entfernung eines derartigen Depots entbehrlich macht.
Arzneiabgabesysteme, in denen der Wirkstoff in einer nicht abbaubaren Polymermatrix dispergiert ist und durch Diffusion freigesetzt wird, sind in der amerikanischen Patentschrift 40 69 307 beschrieben. Nach Erschöpfung des Wirkstoffreservoirs müssen solche Implantate jedoch operativ aus dem Organismus entfernt werden.
In biologisch abbaubaren Arzneistoffabgabesystemen, wie in dem amerikanischen Patent 40 93 709 angegeben, wird der Wirkstoff in einem bioabbaubaren Polymeren dispergiert, welches beim Abbau den Wirkstoff freigibt. Typische, nach dem Stand der Technik meist untersuchte, biologisch abbaubare Polymere sind Homo- und Copolyester, insbesondere der Milch- und Glykolsäure, wie sie in den US-Patenten 37 73 919 bzw. 32 97 033 beschrieben sind. Nachteilig ist u. a. die geringe oder schlecht kontrollierbare Quellbarkeit der Polyester im physiologischen Milieu, welche den Transport der im Implantat inkorporierten Wirkstoffe durch die Polymermatrix hindurch an die Oberfläche behindert und eine nach initialem "burst effect" nur geringe Freisetzungsrate bewirkt.
In neuerer Zeit sind Polyacetale und -ketale (US-PS 43 04 767) bzw. Polyanhydride (H. G. Rosen et al., Biomaterials 4, 131 (1983)) und Polyorthoester (US-PS 41 80 646) beschrieben worden, die als biologisch abbaubare Polymere für den Einsatz als Implantatmaterialien entwickelt wurden.
Der Abbau dieser Polymere ist, ähnlich den angeführten Polyestern, nur durch die hydrolytische Beständigkeit der Carbonylfunktion in der Polymer-Hauptkette bestimmt und läßt sich lediglich durch Comonomereneinbau geringfügig beeinflussen. Solche Polymere verfügen außerdem nicht über eine für Implantationszeiträume von Monaten ausreichende Stabilität.
Als weitere Polymerklasse sind in der amerikanischen Patentschrift 33 71 069 Polyamide, insbesondere Poly-α-L-Aminosäuren, als bioresorbierbare Implantatmaterialien beschrieben worden. Die technische Herstellung von Polyaminosäuren erfordert jedoch den Einsatz teurer geschützter Aminosäuren, größere Mengen an hochgiftigem Phosgen, die Abspaltung der Schutzgruppen und die anschließende Derivatisierung der erhaltenen Polymere.
Ein weiterer Nachteil derartiger Polyamide ist das Vorliegen geladener Gruppen durch nicht vollständige Derivatisierung beim Aufbau des Implantatmaterials und die zusätzliche Erzeugung solcher ionogener Gruppen durch die Bioerosion im Organismus. Die in den Patentschriften erwähnte reine Poly-L-Glutaminsäure sowie reines Poly-L-Lysin sind toxikologisch äußerst bedenklich (A. D. Kenny, Proc. Soc. Exp. Biol. Med. 100, 778 (1959)) und ihre durch Bioabbau aus hydrophoben Derivaten entstehenden Copolymeren müssen daher ebenfalls sehr kritisch bewertet werden.
In der US-PS 43 56 166 werden bioabbaubare Implantatmaterialien beschrieben, die in vivo eine bioaktive Verbindung freisetzen. Als bioaktive Verbindungen werden in der US-PS 43 56 166 Progestine beschrieben, die zunächst chlorformyliert und dann kovalent an das Polymer gebunden werden. Als Polymere werden dabei Poly-(hydroxyalkyl)- L-glutamin oder Poly(hydroxyalkyl)-L-aspartamid eingesetzt. Die bioaktiven Verbindungen sind entweder über eine sogenannte "Spacer-Group" oder aber direkt über die reaktive Komponente des Polymeren gebunden. Die Freigabe der bioaktiven Verbindungen wird über das Molekulargewicht des Polymeren oder über die Länge und den Charakter der "Spacer-Group" gesteuert.
Nachteilig an den Substanzen gemäß US-PS 43 56 166 ist, daß sie bereits selbst Pharmaka mit hoher pharmakologischer Aktivität darstellen. In solchen Polymer/Wirkstoff-Konjugaten (polymeric drugs) bilden biokompatibles Polymer und Wirkstoff eine Einheit, deren Eigenschaften in komplexer Weise von beiden Komponenten bestimmt werden. Die Freigaberate des polymerfixierten bioaktiven Moleküls ist im Rahmen der vorgenannten Parameter variabel, jedoch entscheidend von der Natur des Wirkstoffs abhängig. Hydrophobe bioaktive Stoffe, z. B. Steroidhormone, können im wäßrigen biologischen Milieu nur sehr langsam vom Polymerrückgrat abgespalten werden und eignen sich daher ausschließlich für extreme Langzeitdepotformen. Für jeden Wirkstoff müssen neue Polymer/Wirkstoff-Konjugate synthetisiert werden, was die Verwendbarkeit des in der US-PS 43 56 166 beschriebenen Konzepts polymerfixierter Pharmaka außerordentlich eingeschränkt.
Aus diesen Gründen eignen sich diese Substanzen nicht für den Einsatz als gesteuert abbaubare Polymere, die durch ihre eigene Biodegradation einen Wirkstoff freisetzen, der in die inerte Polymermatrix eingebettet ist, ohne dabei chemisch an das Polymere gebunden zu sein.
Es wurden nun Poly-(hydroxyalkyl)-Aminodicarbonsäure- Derivate synthetisiert, die sich überraschenderweise hervorragend zum Einsatz als abbaubare Arzneistoffimplantate mit kontrollierter Wirkstoffabgabe eignen. Erfindungswesentlich ist dabei, daß die Wirkstoffe nicht chemisch an das Polymere gebunden werden, sondern lediglich in diese Polymermatrix eingebettet werden. Durch Einbau geeigneter biologisch inaktiver Acylgruppen läßt sich die Abbaugeschwindigkeit des Polymers in vivo in gewünschter Weise steuern und somit gleichzeitig die Freigaberate des Wirkstoffs. Der Vorteil dieser Verfahrensweise ist, daß nun auch solche Wirkstoffe über einen längeren Zeitraum mit relativ konstanter Dosis appliziert werden können, die entweder überhaupt nicht chemisch an ein Polymer gebunden werden können, ober aber zu empfindlich sind, und die doch recht drastischen Bedingungen bei der chemischen Ankoppelung an das Polymer zu überstehen. Darüber hinaus sind die Polymere als pharmakologisch inerte Matrix grundsätzlich für alle relevanten Pharmaka universell einsetzbar, unabhängig von der Molekülgröße und anderer physikalisch-chemischer Parameter. Diese biologisch abbaubaren Polymere erhält man durch Polykondensation von Aminodicarbonsäuren, die anschließend mit Aminoalkoholen zu Poly-(hydroxyalkyl)- Aminodicarbonsäuren umgesetzt werden und dann mit Carbonsäuren, Carbonsäurehalogeniden oder Halogenameisensäureestern in einer polymeranalogen Acylierung zu den gewünschten Poly-(hydroxyalkyl)- Aminodicarbonsäure-Derivaten reagieren. In vivo werden diese Polymere zu untoxischen, nicht allergenen und nicht immunogenen Verbindungen metabolisiert und ausgeschieden.
Die Erfindung betrifft somit:
Poly-(hydroxyalkyl)-Aminodicarbonsäure-Derivate der Formel I
in denen n 1 oder 2, m 2 bis 6, x und y 1 bis 400 und z 0 bis 40 sind, dadurch gekennzeichnet, daß die Reste R und R′ gleich oder unabhängig voneinander verschieden sind und verzweigtes oder unverzweigtes, gesättigtes oder ungesättigtes Alkyl, Cycloalkyl, Alkyloxy oder Cycloalkyloxy mit insgesamt 1-22 C-Atomen im Alkylteil, wobei der Alkylteil gegebenenfalls durch eine Carbonyloxy-Gruppe unterbrochen sein kann, oder biologisch inaktive Steroidalkohole, gebunden über ihre Hydroxylgruppen, bedeutet, wobei die in eckige Klammern gesetzten Monomereinheiten statistisch im Polymeren verteilt sind.
Ebenso betrifft die Erfindung das Verfahren zur Herstellung der obengenannten Polyamide und deren Verwendung auch in Abmischungen mit anderen, bioverträglichen Polyamiden, besonders in Verbindung mit biologisch aktiven Substanzen, als abbaubare Wirkstoffdepotzubereitung mit kontrollierter Wirkstoffabgabe.
Im folgenden wird die Erfindung detailliert beschrieben.
Als Aminodicarbonsäuren können Asparaginsäure (n =1) oder Glutaminsäure (n = 2) eingesetzt werden.
Bevorzugt wird Asparaginsäure eingesetzt, die in einer Polykondensationsreaktion zu der entsprechenden Polyanhydroasparaginsäure (VII) reagiert. Durch Umsetzung mit einem Aminoalkohol der Formel IV
H₂N-(CH₂) m -OH (IV)
in dem m eine Zahl von 2 bis 6 ist, wobei 3-Aminopropanol, insbesondere 2-Aminoethanol bevorzugt ist, erhält man α,β-Poly-(hydroxyalkyl)-DL-Aspartamid der Formel II
Ein Verfahren zur Herstellung von α,β-Poly-(2-hydroxyethyl)- DL-Aspartamid (PHEA) wird von P. Neri, G. Antoni, F. Benvenuti, F. Cocola, G. Gazzei, in J. Med. Chem. 16, 893 (1973) beschrieben. Eine allgemeine Arbeitsvorschrift zur Herstellung von PHEA findet sich in P. Neri, G. Antoni, Macromol. Synth 8, 25. Auf diese Literaturstelle wird an dieser Stelle ausdrücklich Bezug genommen. Die Umsetzung erfolgt in hoher Ausbeute zu einem Produkt mit hohem Reinheitsgrad. In gleicher Weise lassen sich die analogen höheren Aminoalkoholderivate der Polyanhydroasparaginsäure herstellen.
Zur Herstellung von Poly-(hydroxyalkyl)-L-glutamin muß ein anderes, umständlicheres Verfahren angewendet werden, wie es in der US-PS 43 56 166 beschrieben ist. Dabei wird zunächst die γ-ständige COOH-Gruppe der L-Glutaminsäure durch Veresterung mit Benzylalkohol geschützt. Anschließend wird dieses γ-Benzyl-Glutamat mit Phosgen zu einem N-Carboxyanhydrid umgesetzt, welches dann nach Zugabe vom Triethylamin in einem inerten Lösungsmittel polymerisiert, wobei man Poly-q-(benzyl)-L-glutamat erhält. Die Abspaltung der Schutzgruppe erfolgt entweder durch Zugabe von einem HCl/HBr-Gemisch zur freien Poly-α-L-Glutaminsäure oder aber in Gegenwart von Hydroxyalkylaminen zu den analogen Poly-α-(hydroxyalkyl)-L-glutaminen. Eine allgemeine Arbeitsvorschrift zur Herstellung von Poly-α-(hydroxypropyl)- L-glutamin findet sich in der US-PS 43 56 166, auf die an dieser Stelle ausdrücklich Bezug genommen wird. In gleicher Weise lassen sich auch den analogen höherer Aminoalkoholderivate von Poly-γ-(benzyl)-L-glutamat herstellen.
Diese Poly-(hydroxyalkyl)-Aminodicarbonsäuren der Formel IIa
bevorzugt α,β-Poly-(hydroxylalkyl)-DL-Aspartamid, werden nun erfindungsgemäß im folgenden Reaktionsschritt mit einer oder mehreren verschiedenen, biologisch inaktiven Verbindungen der Formel V und/oder VI
zu den erfindungsgemäßen Poly-(hydroxyalkyl)- Aminodicarbonsäure-Derivaten umgesetzt. Hierbei steht X für eine Abgangsgruppe, die eine schonende Veresterung der Polymer-Alkoholgruppe ermöglicht. Bevorzugt sind Chlor, Brom, Jod, Imidazolide, Anhydride oder Hydroxyl, insbesondere Chlor. Geeignete Reste R″ sind Alkyl- oder Cycloalkylgruppen mit insgesamt 1-22 C-Atomen in den Alkylresten. Bevorzugt werden in Homopolymeren Alkylreste mit 7-22 C-Atomen, insbesondere solche mit 8-18 C-Atomen eingesetzt. Besonders bevorzugt in Verbindungen gemäß Formel V sind solche Alkylreste R″ mit gerader Kohlenstoffatomzahl; in Verbindungen gemäß Formel VI solche Alkylreste R″ mit ungerader Kohlenstoffatomenzahl. Bei der Herstellung von Copolymeren, also bei der Umsetzung mit zwei oder mehreren verschiedenen Verbindungen der Formel V und/oder VI können auch Verbindungen mit kürzeren Alkylresten als in den Verzugsbereichen angegeben, eingesetzt werden. So können beispielsweise 50 Mol-% einer Verbindung mit C-8-Alkylkette zusammen mit 50 Mol-% einer Verbindung mit C-2-Alkylkette zu den Poly-(hydroxyalkyl)- aminodicarbonsäurederivaten umgesetzt werden. Die genannten Alkylreste können verzweigt, bevorzugt jedoch unverzweigt sein. Ebenso lassen sich ungesättigte, bevorzugt jedoch gesättigte Alkylreste einsetzen. Weiterhin kann der Alkylrest auch durch eine Carbonyloxy-Gruppe unterbrochen sein. Als Reste R″ sind weiterhin auch Steroide, insbesondere Cholesteryl geeignet.
Die Umsetzung mit den Verbindungen des Formeltyps V oder VI kann sowohl mit einer einzigen solchen Verbindung erfolgen als auch mit beliebigen Kombinationen dieser Verbindungen oder auch mit Verbindungen, die unterschiedliche, z. B. in der Art ihrer Verzweigung, insbesondere in ihrer Kettenlänge verschiedene Reste R″ haben.
Die letztgenannte polymeranaloge Acylierung wird nach bekannten Verfahren der organischen Chemie durchgeführt, wie sie z. B. in Houben-Weyl, Methoden der Organischen Chemie, Bd. VIII (3, S. 543 ff., G. Thieme Verlag, Stuttgart, 1952) beschrieben sind. Sie verläuft selektiv an der Hydroxylfunktion zu Estern bzw. Carbonaten, ohne weitere Funktionen am Ausgangspolymeren anzugreifen. Besonders eignet sich die Einhorn-Variante der Schotten-Baumann- Acylierung in Gegenwart von Pyridin. Dabei werden unter schonenden Bedingungen sehr hohe Derivatisierungsgrade (größer als 70%) erzielt.
Bei Derivatisierungsgraden unter 100%, d. h. bei noch vorhandenen freien Hydroxylgruppen, und für den Fall, daß verschiedene Substituenten R und R′ in das Polymer eingebaut sind, kann das Polymer aus bis zu drei unterschiedlichen Monomereinheiten (in Formel I in eckige Klammern gesetzt) aufgebaut sein, die dann statistisch in diesem Polymeren verteilt sind.
Bei Acylierung mit nur einer Substanz gemäß Formel V oder VI und bei Derivatisierungsgraden von 100% entsteht ein Homopolymer.
Das Molekulargewicht der erfindungsgemäßen Polymeren beträgt 200 bis 90 000 (für x + y + z = 2 bis 840 und bei einem Molekulargewicht von ca. 100), bevorzugt 20 000 bis 84 000 (für x + y + z = 200 bis 840). Der Anteil der Hydroxyalkylaminodicarbonsäureamid-Monomereinheit - bezogen auf den molaren Anteil der acylierten Aminodicarbonsäureamide - sollte 30 mol-%, bevorzugt 10 mol-% nicht überschreiten (d. h. z = 0 bis 40).
Unter den Carbonsäurehalogeniden und Halogenameisensäureestern sind die Chlorverbindungen bevorzugt.
Die bevorzugt als Ausgangssubstanzen eingesetzten Chlorameisensäureester erhält man durch Umsetzung von Phosgen mit den entsprechenden biologisch inaktiven, physiologisch unbedenklichen, aliphatischen oder cycloaliphatischen, insbesondere unverzweigten Alkoholen. Besonders bevorzugt werden solche Alkohole eingesetzt, die eine geradzahlige Kohlenstoffanzahl aufweisen. Auf diese Weise erhält man auch die chlorformylierten Steroide. Prinzipiell sind somit alle biologisch inaktiven Steroide zugänglich, die reaktive Hydroxylgruppen aufweisen. Beispielsweise seien hier genannt: Cholesterol, Cholestanol, Coprostanol, Ergosterol, Sitosterol oder Stigmasterol.
Die ebenfalls bevorzugt als Ausgangsverbindungen einsetzbaren Säurechloride erhält man beispielsweise aus den entsprechenden Carbonsäuren durch Umsetzung mit Phosphortrichlorid, Phosphorpentachlorid, Oxalylchlorid oder Thionylchlorid (Houben-Weyl, Meth. d. Org. Chem., 4. Auf., Bd. VIII, S. 463 ff., Thieme Verlag Stuttgart 1952; bzw. Houben-Weyl, Meth. d. Org. Chem. 4. Aufl., Erg. Bd. E5, S. 587 ff., Thieme Verlag Stuttgart, 1985).
Verbindungen des Formeltyps V oder VI, in denen eine Alkylkette durch eine Carbonyloxy-Gruppe unterbrochen ist, werden beispielsweise durch Umsetzung von cyclischen Dicarbonsäureanhydriden mit Alkoholen hergestellt. Die auf diese Weise erhaltenen Dicarbonsäuremonoester werden dann analog zu den oben beschriebenen Carbonsäuren, z. B. mit Oxalylchlorid zu den entsprechenden Säurechloriden umgesetzt.
Die Hydrophobie der Poly-(hydroxyalkyl)-Aminodicarbonsäure- Derivate - und damit die Verweildauer eines daraus hergestellten Implantats im Organismus - läßt sich sowohl über die Anzahl der C-Atome im Acylierungsagens als auch über den Substitutionsgrad in weiten Grenzen einstellen. So sind die entsprechenden Derivate mit mindestens 7 C-Atomen im Alkylteil schon wasserunlöslich.
Eine exakte Angabe der Relation Kettenlänge - Abbauzeit in vitro/vivo ist jedoch nur schwer möglich, da die Abbauzeit außer von der Kettenlänge noch von einer Vielzahl anderer Parameter abhängig ist; beispielsweise von der Partikelgröße und -verteilung, der Herstellungsmethode z. B. für Microspheres, der Porosität der Microspheres, der Temperatur oder dem Abbaumedium.
Der Substitutionsgrad kann über die Stöchiometrie der bei der Acylierungsreaktion eingesetzten Substanzen verändert werden, sollte vorzugsweise jedoch im Rahmen der maximalen Ausbeute (größer 70%) gehalten werden, d. h. ein möglichst großer Prozentsatz der substituierbaren OH-Gruppen am Polymergerüst sollte verestert werden. Ist ein niedrigerer Substitutionsgrad erwünscht, so erniedrigt man entsprechend die Konzentration des Acylierungsagens in bezug auf das Polymere.
Beim Abbau dieser Polyamide in vivo wird der Ester wieder gespalten und es entstehen die entsprechenden biologisch inaktiven Carbonsäuren bzw. Alkohole und Poly-(hydroxyalkyl)- Aminodicarbonsäure. Dieser Abbau unter physiologischen Bedingungen soll idealerweise ausschließlich körpereigene bzw. in ihrer hohen Bioverträglichkeit bekannte Fragmente erzeugen, die in natürlichen Stoffwechselwegen metabolisiert oder auf Grund ihrer Wasserlöslichkeit durch die Nieren ausgeschieden werden. Zu den bioverträglichen Carbonsäuren bzw. Alkoholen zählen solche mit 9-22 C-Atomen im Alkylteil, insbesondere solche mit geradzahliger Anzahl von Kohlenstoffatomen oder die biologisch inaktiven Steroide wie z. B. Cholesterol. Insbesondere wird das Polymer, vorzugsweise das neutrale PHEA zurückgebildet, das auf Grund seiner starken Wechselwirkung mit Wasser ausgezeichnet löslich ist.
Vor allem in diesem Punkt unterscheiden sich die neuen Polymeren von versuchsweise ebenfalls in Implantaten eingesetzten Derivaten von Poly-α-Aminosäuren, wie z. B. Poly-α-L-Glutamisäureestern, aus denen durch Biodegradation Polyelektrolyte enstehen, die besonders bei wiederholter Implantation zu toxikologischen und immunologischen Komplikationen Anlaß geben können.
Das Vorliegen von α- und β-Peptidbindungen in D- und L-Form in den bevorzugt eingesetzten α,β-Poly-(hydroxyalkyl)-DL- Aspartamid-Derivaten verhindert die Ausbildung organisierter Strukturen (z. B. Faltblatt- oder Helixbereiche) im Polymeren, die den Bioabbau in nicht vorhersehbarer Weise beeinflussen.
Die durch die Amidbindungen verursachte partielle Steifigkeit, die durch Wasserstoffbrückenbindungen (N. . .H. . .O) hervorgerufen wird, bedingt eine Reihe verarbeitungstechnischer Vorteile dieser erfindungsgemäßen Polymerklasse. Durch Acylierung mit geeigneten reaktiven Carbonsäuren, bzw. Alkoholen an der Hydroxyalkylfunktion des Polymers entstehen hydrophobe Polyamide (dann, wenn der Alkylteil mindestens 7 C-Atome aufweist), die sich in einer Vielzahl von organischen Lösungsmitteln lösen und sich aus den Lösungen zu Filmen verarbeiten lassen. Die erfindungsgemäßen Polyamide sind thermoplastisch und eignen sich daher zur Herstellung von Wirkstoffdepotformen nach verschiedenen Methoden, wie z. B. durch Kompression, Extrusion, Fällung, Versprühung, etc.
Aus den erfindungsgemäßen Polyamiden können nach bekannten Methoden implantierbare Partikel, insbesondere Mikrokapseln und Mikrosphären sowie durch Kompaktierung makroskopische Formkörper beliebiger Geometrie, insbesondere Tabletten und Stäbchen hergestellt werden.
Das Polyamid kann beispielsweise mit dem Wirkstoff in einem geeigneten polaren aprotischen Lösungsmittel, beispielsweise Dimethylsulfoxid oder Dimethylacetamid, gelöst werden. Die Lösung wird unter Zugabe eines Emulgators in eine Ölphase (z. B. Paraffin) bei einer Temperatur emulgiert, bei der die Polymerlösung verflüssigt ist. Nach einigen Minuten werden die einzelnen Lösungsmittel-/Polymertröpfchen durch Abkühlen der Emulsion zum Erstarren gebracht. Durch Waschen mit einem geeigneten Lösungsmittel, in dem sich das zur Lösung des Polyamids eingesetzte Lösungsmittel sowie die Ölphase lösen, die Polymertröpfchen jedoch nicht, werden die Polymerkugeln ausgehärtet. Dabei verkleinert sich ihr Volumen, die Form ändert sich nicht.
Die erfindungsgemäßen Polyamide können auch als Gemische und in Abmischungen mit anderen bioabbaubaren und/oder bioverträglichen Polymeren (z. B. ®Pluronic F68, PHEA, Dextrane, Polyethylenglykole, Hydroxyethylstärke und andere abbaubare oder ausscheidbare Polysaccharide) oder physiologisch unbedenklichen Hilfsstoffen (z. B. Polymerweichmacher) eingesetzt werden.
Abbauversuche in vitro mit den erfindungsgemäßen Polyamiden haben gezeigt, daß die Abbaurate über die funktionellen Seitengruppen kontrolliert gesteuert werden kann.
In den folgenden Beispielen wird die Erfindung im einzelnen beschrieben. Prozentangaben beziehen sich auf das Gewicht, sofern nicht anders angegeben.
Beispiel 1 Herstellung von α,β-Poly-(2-cholesterylformylethyl)-DL- Aspartamid
3,16 g (20 mmol) α,β-Poly-(2-hydroxyethyl)-DL-Aspartamid (PHEA) werden in 50 ml trockenem N,N-Dimethylformamid (DMF) gelöst. Nach Zugabe von 2 g (25 mmol) Pyridin wird auf 0°C abgekühlt und unter Rühren innerhalb 10 Minuten 11,23 g (25 mmol) Chlolesterylchlorformiat zugegeben. Der Ansatz wird anschließend 2 Stunden bei Raumtemperatur gerührt und dann in 500 ml Ether gegeben. Das ausgefallene Produkt wird abgesaugt, mit Ether, Aceton, Wasser, Aceton und Ether gewaschen und im Vakuum getrocknet. Man erhält 6,5-7 g eines bräunlich-weißen Polymers mit einem Substitutionsgrad von ca. 80%, das sich in DMF und Dichlormethan/Methanol löst und sich oberhalb 250°C zersetzt.
Beispiel 2 Herstellung von α,β-Poly-(2-acetylethyl/2-octanoylethyl)- DL-Aspartamid
3,16 g (20 mmol) PHEA, gelöst in 20 ml DMF, werden mit 3 g (30 mmol) Pyridin versetzt und auf 0°C abgekühlt. Unter Rühren werden 0,79 g (10 mmol) Acetylchlorid zugetropft und anschließend 30 Minuten bei Raumtemperatur gerührt. Dann wird erneut auf 0°C abgekühlt und 3,25 g (20 mmol) Octanoylchlorid zugetropft. Anschließend wird noch 2 Stunden bei Raumtemperatur gerührt, in 500 ml Ether gegossen und abgesaugt. Das Produkt wird zur weiteren Reinigung in Methanol gelöst, durch Eintropfen in 10%ige wäßrige Essigsäurelösung ausgefällt, abgesaugt, intensiv mit Wasser gewaschen und im Vakuum getrocknet. Man erhält 5 g eines fädenziehenden, fast weißen Polymeren, das sich in DMF, Dichlormethan/Methanol und Methanol löst und oberhalb 180°C schmilzt.
Beispiel 3
Wie in Beispiel 1 angegeben, werden 3,16 g (20 mmol) PHEA mit 4,77 g (25 mmol) Chlorameisensäure-2-cyclohexylethylester zur Reaktion gebracht. Man erhält ca. 5 g eines schwach gelb gefärbten thermoplastischen Polymeren, an dem durch NMR-Spetroskopie keine freien primären Alkoholgruppen mehr nachweisbar sind (Substitutionsgrad größer 90%).
Beispiel 4
Wie in Beispiel 1 angegeben, werden 3,16 g (20 mmol) PHEA mit 9 g (25 mmol) Docosanoylchlorid zur Reaktion gebracht. Das erhaltene Polymer (ca. 8 g) ist thermoplastisch und löst sich in Dichlormethan und Tetrahydrofuran.
Beispiel 5
Das zur Reaktion eingesetzte Säurechlorid (4-Chlor-4- oxobuttersäure-n-butylester) wird auf folgendem Wege dargestellt: Bernsteinsäure-monobutylester wird mit überschüssigem Oxalylchlorid und einem Tropfen DMF versetzt, wobei die Reaktion unter Gasentwicklung anspringt. Man läßt den Ansatz über Nacht unter Feuchtigkeitsausschluß stehen und zieht dann bei 40°C den Oxalylchloridüberschuß am Rotationsverdampfer ab. Das Produkt weist IR-Banden bei 1800 cm-1 (Säurechlorid) und 1740 cm-1 (Ester) von gleicher Intensität auf und wird wegen seiner Zersetzlichkeit ohne weitere Reinigung eingesetzt.
Wie in Beispiel 1 beschrieben, werden 3,16 g (20 mmol) PHEA mit 4,82 g (25 mmol) 4-Chlor-4-oxobuttersäure-n-butylester zur Reaktion gebracht. Im erhaltenen Polymer sind NMR-spektroskopisch keine freien primären Alkoholgruppen mehr nachweisbar.
Beispiel 6
3,16 g (20 mmol) PHEA in 30 ml DMF werden mit 4,76 g (25 mmol) Bernsteinsäuremono-n-octylester und 120 mg DMAP (4-Dimethylaminopyridin) versetzt, die Lösung wird auf 0°C abgekühlt und anschließend eine Lösung von 5,2 g (25 mmol) DCC (Dicyclohexylcarbodiimid) in 20 ml DMF zugetropft. Nach 15 min Rühren bei 0°C wird über Nacht bei RT weiterreagieren lassen, dann der ausgefallene Dicyclohexylharnstoff abfiltriert und das Filtrat an Rotationsverdampfer auf 0 ml eingeengt. Das Polymer wird durch Eintropfen der DMF-Lösung in 500 ml Ether ausgefällt.
Beispiel 7
Analog Beispiel 1 werden 3,16 g (20 mmol) PHEA mit 6,15 g (25 mmol) Tetradecanoylchlorid zur Reaktion gebracht. Das erhaltene schwach bräunliche Polymer (ca. 5,1 g) ist thermoplastisch und löst sich in Dichlormethan und Tetrahydrofuran.
Beispiel 8
Analog Beispiel 1 werden 3,16 g (20 mmol) PHEA mit 4,05 g (25 mmol) Octanoylchlorid zur Reaktion gebracht. Das erhaltene gelblich-weiße Polymer (ca. 4,8 g) ist thermoplastisch und löst sich in Dichlormethan und Tetrahydrofuran.
Beispiel 9
Analog Beispiel 2 werden 3,16 g (20 mmol) PHEA mit 0,91 g (10 mmol) Methoxycarbonylchlorid und 3,24 g (20 mmol) Octanoylchlorid versetzt. Das erhaltene gelblich-weiße Polymer (ca. 5,0 g) ist thermoplastisch und löst sich in Dichlormethan und Tetrahydrofuran.
Beispiel 10 Herstellung von Microspheres
40 mg C₁₄-PHEA aus Beispiel 7 werden in 1 ml Methylenchlorid/Methanol (Volumenanteil 50/1) gelöst. Die Lösung wird mit 10 g Buserelin versetzt, das mit Ultraschall dispergiert wird. Die Dispersion wird unter Rühren (800 Upm) in ein Becherglas mit 60 ml 0,1 Gew.-%iger, wäßriger Polyvinylalkohol-Lösung (RMowiol 28-99) eingebracht, die mit 0,3 ml Methylenchlorid/Methanol (50/1) gesättigt ist.
Nach 5 Minuten wird der Inhalt in ein Becherglas mit 200 ml Wasser gegeben und 30 Minuten gerührt (200 Upm). Das überstehende Wasser wird abdekantiert und die Microspheres werden lyophilisiert (Durchmesser nach Lyophilsation: 20-90µm).
Beispiel 11 Herstellung von Microspheres
44 mg C₂-C₈-PHEA aus Beispiel 2 werden in 100 ml Dimethylsulfoxid gelöst und danach mit 100 µl Methylenchlorid versetzt.
Die Lösung wird unter Rühren (800 Upm) in ein Becherglas mit 60 ml 0,1 Gew.-%iger, wäßriger Lösung von Carboxymethylcellulose (RServa, 300 cps) bei 4°C eingebracht, die mit 0,3 ml Methylenchlorid gesättigt ist.
Nach 5 Minuten wird der Inhalt gemäß Beispiel 10 aufgearbeitet.
Beispiel 12 Herstellung von Microspheres
80 mg C₈-PHEA aus Beispiel 8 werden bei 50°C in 1 ml Dimethylsulfoxid gelöst und mit 20 mg Hydroxypropylcellulose (®Klucel M.) versetzt. Die Lösung der beiden Polymeren wird mit einer Kanüle (Einwegspritze, Kanülendurchmesser außen 0,6 mm) in eine Vorlage von flüssigem Stickstoff (100 ml) eingetropft.
Die enstandenen Microspheres werden in 200 ml Wasser überführt und 2 Stunden von restlichem Lösungsmittel extrahiert. Überschüssiges Wasser wird abdekantiert und die Microspheres werden lyophilisiert (Durchmesser nach Lyophilisation 1-2 mm, Erweichungsbereich 190-210°C).
Beispiel 13 Polymerabbau
Es wird wie Wasserresorption (in Gew.-%) verschieden substituierter Polyhydroxyethylaspartamide nach 74 h Lagerung bei 92% relativer Luftfeuchte bestimmt sowie die Dauer der Hydrolyse der Alkylester-/Alkylcarbonat- Seitengruppen (in Stunden) bis zur vollständigen Solubilisierung von je 100 mg Polymerpulver in 100 ml wäßriger NaOH (pH 13):
Beispiel 14 Polymerabbau
3 Proben von jeweils 500 mg Polymer werden in je 30 ml einer Phosphat-Pufferlösung aus 0,00205 mol Na₂HPO₄ und 0,0045 mol NaH₂PO₄ (pH 7,4) inkubiert und in verschlossenen Glasflaschen (50 ml) bei 37°C gerührt.
Der Phosphatpuffer wird mit 0,0078 mol NaN₃ gegen mikrobiellen Befall stabilisiert und nach jeweils 7 Tagen in seinem pH korrigiert.
Über einen Zeitraum von 150 Tagen werden die Gewichtsabnahmen der Polymerproben gemessen: die Pufferlösung mit inkubiertem Polymer wird über eine tarierte Glasfritte filtriert, der Rückstand 24 h im Vakuum über Phsophorpentaoxid getrocknet und die Gewichtsabnahme bestimmt.
Beispiel 15 Herstellung von stäbchenförmigen Implantaten ("rods")
Ein inniges Gemisch aus pulverförmigen Polymeren, Additiven und Wirkstoff(en) wird in einer geeigneten Vorrichtung, z. B. einem Extruder für Thermoplasten, über den Erweichungspunkt erhitzt, wobei eine verformbare Masse entsteht. Durch Kneten werden Additive und Wirkstoff(e) im erweichten Polymer homogen dispergiert und die erhaltene Polymer/Wirkstoff-Suspension durch eine Düse geeigneten Durchmessers (< 0,5 mm) gepreßt. Beim Abkühlen erstarrt der Strang der extrudierten Polymer/Wirkstoff-Suspension zu einem festen stäbchenförmigen Aggregat, dessen Wirkstoffgehalt von seiner Länge und seinem Durchmesser bestimmt ist.
Beispiel 16 Wirkstoffabgabe (Release von Buserelin)
Analog Beispiel 10 werden Microspheres mit einer Zusammensetzung von
88 Gew.-% LEMF
 6 Gew.-% C₂-C₈-PHEA aus Beispiel 2
 6 Gew.-% Buserelin
hergestellt. LEMF=Polylysinethyl/methylesterfumaramid ist Gegenstand der deutschen Patentanmeldung Nr. P 36 16 320.1 (Beispiel 8) und wird beispielsweise hergestellt durch Polykondensation von Fumarsäurechlorid, Lysinmethylesterdihydrochlorid und Lysinethylesterdihydrochlorid.
Die Wirkstoffabgabe (Buserelin-Release) wird in einer Pufferlösung (2,91 g Na₂HPO₄, 0,540 g NaH₂PO₄, 0,4 g NaN₃, 6,328 g NaCl und 2,52 g NaHCO₃ auf 1 l Wasser) UV-spektroskopisch gemessen. In Fig. 1 ist der gesamte abgegebene Anteil von Buserelin als Funktion der Zeit aufgetragen.

Claims (7)

1. Poly-(hydroxyalkyl)-Aminodicarbonsäure-Derivate der Formel I in der n 1 oder 2, m 2 bis 6, x und y 1 bis 400 und z 0 bis 40 sind, und in der die Reste R und R′ gleich oder unabhängig voneinander verschieden sind und gesättigte oder ungesättigte verzweigte oder unverzweigte Alkyl-, Cycloalkyl-, Alkoxy- oder Cycloalkyloxy-Gruppen mit insgesamt 1-22 C-Atomen im Alkylteil, wobei der Alkylteil gegebenenfalls durch eine Carbonyloxy-Gruppe unterbrochen sein kann, oder biologisch inaktive Steroidalkohole, gebunden über ihre Hydroxylgruppen, bedeuten, wobei die in eckige Klammern gesetzten Monomereinheiten statistisch im Polymeren verteilt sind.
2. Poly-(hydroxyalkyl)-Aminodicarbonsäure-Derivate gemäß Formel I nach Anspruch 1, in der n 1 und m 2 und die Reste R und R′ gleich oder unabhängig voneinander verschieden sind und unverzweigte Alkyl- oder Alkoxy- Gruppen mit 1-22 C-Atomen im Alkylteil, wobei der Alkylteil gegebenenfalls durch eine Carbonyloxy-Gruppe unterbrochen sein kann, bedeuten.
3. Poly-(hydroxyalkyl)-aminodicarbonsäure-Derivate gemäß Formel I nach Anspruch 1, in der n 1 und m 2 ist und R eine Methyl- oder Methoxy-Gruppe und R′ eine Heptyl- oder Butyloxycarbonylethyl-Gruppe ist.
4. Verfahren zur Herstellung von Poly-(hydroxyalkyl)- Aminodicarbonsäure-Derivaten der Formel I, dadurch gekennzeichnet, daß man eine Poly-(hydroxyalkyl)- aminodicarbonsäure der Formel IIa mit einer oder mehreren verschiedenen Verbindungen der Formel III umsetzt, wobei n, m, x, y, z, R und R′ die in Anspruch 1 zu Formel I angegebenen Bedeutungen haben und X Chlor, Brom, Jod oder Hydroxyl ist.
5. Verwendung eines Polyamids nach Anspruch 1, 2 oder 3 zur Herstellung von biologisch abbaubaren Wirkstoffdepotzubereitungen mit kontrollierter Wirkstoffabgabe.
6. Verwendung eines Polyamids nach Anspruch 1, 2 oder 3 zum Einkapseln von biologisch aktiven Substanzen.
7. Verwendung eines Polyamids nach Anspruch 1, 2 oder 3 in Abmischungen mit anderen bioabbaubaren und/oder bioverträglichen Polyamiden oder physiologisch unbedenklichen Hilfsstoffen zur Herstellung von biologisch abbaubaren Wirkstoffdepotzubereitungen mit kontrollierter Wirkstoffabgabe.
DE19873700128 1987-01-03 1987-01-03 Biologisch abbaubare poly- (hydroxyalkyl)- aminodicarbonsaeure-derivate, verfahren zu ihrer herstellung und verwendung derselben fuer depotzubereitungen mit kontrollierter wirkstoffabgabe Withdrawn DE3700128A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE19873700128 DE3700128A1 (de) 1987-01-03 1987-01-03 Biologisch abbaubare poly- (hydroxyalkyl)- aminodicarbonsaeure-derivate, verfahren zu ihrer herstellung und verwendung derselben fuer depotzubereitungen mit kontrollierter wirkstoffabgabe
JP62330334A JPH0825909B2 (ja) 1987-01-03 1987-12-28 生物分解可能なポリ〔(ヒドロキシアルキル)アミノジカルボン酸〕誘導体
AT87119291T ATE97930T1 (de) 1987-01-03 1987-12-29 Biologisch abbaubare poly-(hydroxyalkyl)aminodicarbons|ure-derivate, verfahren zu ihrer herstellung und verwendung derselben fuer depotzubereitungen mit kontrollierter wirkstoffabgabe.
DE87119291T DE3788344D1 (de) 1987-01-03 1987-12-29 Biologisch abbaubare Poly-(hydroxyalkyl)-Aminodicarbonsäure-Derivate, Verfahren zu ihrer Herstellung und Verwendung derselben für Depotzubereitungen mit kontrollierter Wirkstoffabgabe.
EP87119291A EP0274127B1 (de) 1987-01-03 1987-12-29 Biologisch abbaubare Poly-(hydroxyalkyl)-Aminodicarbonsäure-Derivate, Verfahren zu ihrer Herstellung und Verwendung derselben für Depotzubereitungen mit kontrollierter Wirkstoffabgabe
US07/140,132 US4906473A (en) 1987-01-03 1987-12-31 Biodegradable poly(hydroxyalkyl)amino dicarboxylic acid) derivatives, a process for their preparation, and the use thereof for depot formulations with controlled delivery of active ingredient
US07/402,609 US5041291A (en) 1987-01-03 1989-09-05 Biodegradable poly(hydroxyalkyl)amino dicarboxylic acid) derivatives, a process for their preparation, and the use thereof for depot formulations with controlled deivery of active ingredient

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19873700128 DE3700128A1 (de) 1987-01-03 1987-01-03 Biologisch abbaubare poly- (hydroxyalkyl)- aminodicarbonsaeure-derivate, verfahren zu ihrer herstellung und verwendung derselben fuer depotzubereitungen mit kontrollierter wirkstoffabgabe

Publications (1)

Publication Number Publication Date
DE3700128A1 true DE3700128A1 (de) 1988-07-14

Family

ID=6318447

Family Applications (2)

Application Number Title Priority Date Filing Date
DE19873700128 Withdrawn DE3700128A1 (de) 1987-01-03 1987-01-03 Biologisch abbaubare poly- (hydroxyalkyl)- aminodicarbonsaeure-derivate, verfahren zu ihrer herstellung und verwendung derselben fuer depotzubereitungen mit kontrollierter wirkstoffabgabe
DE87119291T Expired - Fee Related DE3788344D1 (de) 1987-01-03 1987-12-29 Biologisch abbaubare Poly-(hydroxyalkyl)-Aminodicarbonsäure-Derivate, Verfahren zu ihrer Herstellung und Verwendung derselben für Depotzubereitungen mit kontrollierter Wirkstoffabgabe.

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE87119291T Expired - Fee Related DE3788344D1 (de) 1987-01-03 1987-12-29 Biologisch abbaubare Poly-(hydroxyalkyl)-Aminodicarbonsäure-Derivate, Verfahren zu ihrer Herstellung und Verwendung derselben für Depotzubereitungen mit kontrollierter Wirkstoffabgabe.

Country Status (5)

Country Link
US (2) US4906473A (de)
EP (1) EP0274127B1 (de)
JP (1) JPH0825909B2 (de)
AT (1) ATE97930T1 (de)
DE (2) DE3700128A1 (de)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5175285A (en) * 1989-07-04 1992-12-29 Rohm Gmbh Chemische Fabrik Polymers derived from polysuccinimide, used as surface coatings for medicinals and foods
US6218459B1 (en) 1998-05-20 2001-04-17 Th. Goldschmidt Ag Pigment pastes comprising hydrophobically modified polyaspartic acid derivatives
WO2018109201A1 (de) 2016-12-16 2018-06-21 Basf Se Wasch- und reinigungsaktive mehrschichtfolien, verfahren zu ihrer herstellung und deren verwendung
WO2018109200A1 (de) 2016-12-16 2018-06-21 Basf Se Mehrschichtfolien, verfahren zu ihrer herstellung und deren verwendung
WO2018108687A1 (de) 2016-12-16 2018-06-21 Basf Se Verfahren zur herstellung funktioneller wasserlöslicher folien
WO2019048474A1 (en) 2017-09-06 2019-03-14 Basf Se ACTIVE WASHING AND CLEANING POLYMER FILMS, METHOD FOR PRODUCING THE SAME, AND USE THEREOF
WO2019238761A1 (en) 2018-06-15 2019-12-19 Basf Se Water soluble multilayer films containing wash active chemicals and enzymes
WO2019238730A1 (en) 2018-06-14 2019-12-19 Basf Se Process for producing water-soluble containers for dosing detergent
WO2020035567A1 (en) 2018-08-16 2020-02-20 Basf Se Water-soluble polymer films of ethylene oxide homo- or copolymers, calendering process for the production thereof and the use thereof
WO2020224962A1 (en) 2019-05-03 2020-11-12 Basf Se Water-soluble films with three-dimensional topography
WO2021191175A1 (en) 2020-03-24 2021-09-30 Basf Se Detergent formulation in form of a three dimensional body

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5237016A (en) * 1989-01-05 1993-08-17 Siska Diagnostics, Inc. End-attachment of oligonucleotides to polyacrylamide solid supports for capture and detection of nucleic acids
DE4002736A1 (de) * 1990-01-31 1991-08-01 Hoechst Ag Biologisch abbaubare polymere, verfahren zu ihrer herstellung und verwendung derselben fuer depotzubereitungen mit kontrollierter wirkstoffabgabe
US5190982A (en) * 1990-04-26 1993-03-02 Hoechst Aktiengesellschaft Ultrasonic contrast agents, processes for their preparation and the use thereof as diagnostic and therapeutic agents
US5137928A (en) * 1990-04-26 1992-08-11 Hoechst Aktiengesellschaft Ultrasonic contrast agents, processes for their preparation and the use thereof as diagnostic and therapeutic agents
US5205287A (en) * 1990-04-26 1993-04-27 Hoechst Aktiengesellschaft Ultrasonic contrast agents, processes for their preparation and the use thereof as diagnostic and therapeutic agents
US5714167A (en) 1992-06-15 1998-02-03 Emisphere Technologies, Inc. Active agent transport systems
US5693338A (en) 1994-09-29 1997-12-02 Emisphere Technologies, Inc. Diketopiperazine-based delivery systems
WO1994023767A1 (en) * 1993-04-22 1994-10-27 Emisphere Technologies, Inc. Oral drug delivery compositions and methods
US5629020A (en) 1994-04-22 1997-05-13 Emisphere Technologies, Inc. Modified amino acids for drug delivery
US6221367B1 (en) 1992-06-15 2001-04-24 Emisphere Technologies, Inc. Active agent transport systems
US5578323A (en) * 1992-06-15 1996-11-26 Emisphere Technologies, Inc. Proteinoid carriers and methods for preparation and use thereof
US6099856A (en) 1992-06-15 2000-08-08 Emisphere Technologies, Inc. Active agent transport systems
ES2134787T3 (es) * 1991-12-20 1999-10-16 Hoechst Ag Derivados de poliaspartamida como agentes de adsorcion para acidos biliares, derivados de poliaspartamida cargados con acidos biliares, y procedimiento para su preparacion, asi como su utilizacion como medicamentos.
US5792451A (en) * 1994-03-02 1998-08-11 Emisphere Technologies, Inc. Oral drug delivery compositions and methods
US5811127A (en) * 1992-06-15 1998-09-22 Emisphere Technologies, Inc. Desferrioxamine oral delivery system
EP0601417A3 (de) * 1992-12-11 1998-07-01 Hoechst Aktiengesellschaft Physiologisch verträglicher und physiologisch abbaubarer, Kohlenhydratrezeptorblocker auf Polymerbasis, ein Verfahren zu seiner Herstellung und seine Verwendung
US5643957A (en) * 1993-04-22 1997-07-01 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US5709861A (en) * 1993-04-22 1998-01-20 Emisphere Technologies, Inc. Compositions for the delivery of antigens
US5965121A (en) 1995-03-31 1999-10-12 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US5866536A (en) 1995-03-31 1999-02-02 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US6090958A (en) 1995-03-31 2000-07-18 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US6001347A (en) 1995-03-31 1999-12-14 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US5989539A (en) 1995-03-31 1999-11-23 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
CN1151836C (zh) 1995-03-31 2004-06-02 艾米斯菲尔技术有限公司 用作传送活性剂的化合物和组合物
US5750147A (en) 1995-06-07 1998-05-12 Emisphere Technologies, Inc. Method of solubilizing and encapsulating itraconazole
DE19528782A1 (de) * 1995-08-04 1997-02-06 Bayer Ag Verwendung von Polyasparaginsäureamiden als Lederhilfsmittel
DE19681560T1 (de) 1995-09-11 1998-08-20 Emisphere Tech Inc Verfahren zur Herstellung von omega-Aminoalkansäure-Derivaten aus Cycloalkanonen
JP2000512671A (ja) 1996-06-14 2000-09-26 エミスフェアー テクノロジーズ インク マイクロカプセル化香料及び調製方法
US5750070A (en) * 1996-07-19 1998-05-12 Nalco Chemical Company Use of biodegradable polymers in preventing corrosion and scale build-up
US5776875A (en) * 1996-07-16 1998-07-07 Nalco Chemical Company Use of biodegradable polymers in preventing scale build-up
US5876623A (en) * 1996-09-20 1999-03-02 Nalco Chemical Company Biodegradable aspartic acid polymers for preventing scale formation in boilers
DE19635061A1 (de) * 1996-08-30 1998-03-05 Bayer Ag Mittel zum Färben oder Bedrucken von Textilmaterialien
US5804688A (en) 1997-02-07 1998-09-08 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US5990166A (en) 1997-02-07 1999-11-23 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US6358504B1 (en) 1997-02-07 2002-03-19 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US6313088B1 (en) 1997-02-07 2001-11-06 Emisphere Technologies, Inc. 8-[(2-hydroxy-4-methoxy benzoyl) amino]-octanoic acid compositions for delivering active agents
US5879681A (en) 1997-02-07 1999-03-09 Emisphere Technolgies Inc. Compounds and compositions for delivering active agents
US6060513A (en) 1997-02-07 2000-05-09 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US5876710A (en) 1997-02-07 1999-03-02 Emisphere Technologies Inc. Compounds and compositions for delivering active agents
US5939381A (en) 1997-02-07 1999-08-17 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US5863944A (en) 1997-04-30 1999-01-26 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US5962710A (en) 1997-05-09 1999-10-05 Emisphere Technologies, Inc. Method of preparing salicyloylamino acids
DE19809359A1 (de) * 1998-03-05 1999-09-09 Bayer Ag Gleichzeitiges Waschen und Bleichen nativer Fasern und textiler Erzeugnisse daraus
DE10342926A1 (de) * 2003-09-17 2005-04-14 Bayer Chemicals Ag Polyethermodifizierte Polymere als Lederhilfsmittel
US20100036093A1 (en) * 2006-05-09 2010-02-11 Osaka University Cholesterolamine-introduced poly-gamma-glutamic acid derivative
US8637468B2 (en) 2009-08-12 2014-01-28 The University Of Kansas Synthetic cholesterylamine-linker derivatives for agent delivery into cells

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3371069A (en) * 1963-03-20 1968-02-27 Ajinomoto Kk Filaments and surgical sutures of polyl-glutamic acid partly esterified with lower alkanols and process therefor
US3297033A (en) * 1963-10-31 1967-01-10 American Cyanamid Co Surgical sutures
US3773919A (en) * 1969-10-23 1973-11-20 Du Pont Polylactide-drug mixtures
US4069307A (en) * 1970-10-01 1978-01-17 Alza Corporation Drug-delivery device comprising certain polymeric materials for controlled release of drug
US4180646A (en) * 1975-01-28 1979-12-25 Alza Corporation Novel orthoester polymers and orthocarbonate polymers
US4093709A (en) * 1975-01-28 1978-06-06 Alza Corporation Drug delivery devices manufactured from poly(orthoesters) and poly(orthocarbonates)
US4356166A (en) * 1978-12-08 1982-10-26 University Of Utah Time-release chemical delivery system
US4304767A (en) * 1980-05-15 1981-12-08 Sri International Polymers of di- (and higher functionality) ketene acetals and polyols
DE3045135A1 (de) * 1980-11-29 1982-06-09 Sandoz-Patent-GmbH, 7850 Lörrach Pharmazeutische kompositionen enthaltende bioabbaubare polymere
US4652443A (en) * 1983-06-07 1987-03-24 Japan Atomic Energy Research Institute Slow-release composite and process for producing the same
EP0130935B1 (de) * 1983-07-01 1987-04-15 Battelle Memorial Institute In-vivo abbaubares Polypeptid und dessen Anwendung zur verzögerten Freigabe von Medikamenten
EP0179023B1 (de) * 1984-10-19 1991-01-23 Battelle Memorial Institute Durch Mikroorganismen abbaubares Polypeptid und seine Verwendung für die fortschreitende Abgabe von Medikamenten
CS254355B1 (en) * 1985-04-10 1988-01-15 Vladimir Saudek Soluble and biodegradatable copolymeres activated for bond of biologicaly active substances
US4668506A (en) * 1985-08-16 1987-05-26 Bausch & Lomb Incorporated Sustained-release formulation containing and amino acid polymer
CH667874A5 (fr) * 1985-12-19 1988-11-15 Battelle Memorial Institute Polypeptide synthetique biodegradable et son utilisation pour la preparation de medicaments.

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5175285A (en) * 1989-07-04 1992-12-29 Rohm Gmbh Chemische Fabrik Polymers derived from polysuccinimide, used as surface coatings for medicinals and foods
US6218459B1 (en) 1998-05-20 2001-04-17 Th. Goldschmidt Ag Pigment pastes comprising hydrophobically modified polyaspartic acid derivatives
WO2018109201A1 (de) 2016-12-16 2018-06-21 Basf Se Wasch- und reinigungsaktive mehrschichtfolien, verfahren zu ihrer herstellung und deren verwendung
WO2018109200A1 (de) 2016-12-16 2018-06-21 Basf Se Mehrschichtfolien, verfahren zu ihrer herstellung und deren verwendung
WO2018108687A1 (de) 2016-12-16 2018-06-21 Basf Se Verfahren zur herstellung funktioneller wasserlöslicher folien
WO2019048474A1 (en) 2017-09-06 2019-03-14 Basf Se ACTIVE WASHING AND CLEANING POLYMER FILMS, METHOD FOR PRODUCING THE SAME, AND USE THEREOF
WO2019238730A1 (en) 2018-06-14 2019-12-19 Basf Se Process for producing water-soluble containers for dosing detergent
WO2019238761A1 (en) 2018-06-15 2019-12-19 Basf Se Water soluble multilayer films containing wash active chemicals and enzymes
WO2020035567A1 (en) 2018-08-16 2020-02-20 Basf Se Water-soluble polymer films of ethylene oxide homo- or copolymers, calendering process for the production thereof and the use thereof
WO2020224962A1 (en) 2019-05-03 2020-11-12 Basf Se Water-soluble films with three-dimensional topography
WO2021191175A1 (en) 2020-03-24 2021-09-30 Basf Se Detergent formulation in form of a three dimensional body

Also Published As

Publication number Publication date
DE3788344D1 (de) 1994-01-13
JPH0825909B2 (ja) 1996-03-13
EP0274127A3 (en) 1990-06-27
EP0274127A2 (de) 1988-07-13
US5041291A (en) 1991-08-20
JPS63174937A (ja) 1988-07-19
ATE97930T1 (de) 1993-12-15
EP0274127B1 (de) 1993-12-01
US4906473A (en) 1990-03-06

Similar Documents

Publication Publication Date Title
EP0274127B1 (de) Biologisch abbaubare Poly-(hydroxyalkyl)-Aminodicarbonsäure-Derivate, Verfahren zu ihrer Herstellung und Verwendung derselben für Depotzubereitungen mit kontrollierter Wirkstoffabgabe
EP0458079B1 (de) Ultraschall-Kontrastmittel, Verfahren zu ihrer Herstellung und Verwendung derselben als Diagnostika und Therapeutika
DE69825619T2 (de) Strikt alternierende poly(alkylenoxid)copolymere
DE69721265T2 (de) Hydrolysierbare hydrogele zur gesteuerten freisetzung
US7595392B2 (en) Biodegradable oxidized cellulose esters
DE69837443T2 (de) Abbaubare polyethyleneglycolhydrogele mit kontrollierter halbwertzeit und ihre vorprodukte
DE69838731T2 (de) Polyanhydride mit therapeutisch verwendbaren abbauprodukten
DE3045135A1 (de) Pharmazeutische kompositionen enthaltende bioabbaubare polymere
EP0696605A1 (de) Biokompatibles Blockcopolymer
JP2003517886A (ja) ドラッグデリバリーシステム用生分解性ブロック共重合体の液体組成物およびその製造方法
EP0245840B1 (de) Biologisch abbaubare Polymere für Depotzubereitungen mit kontrollierter Wirkstoffabgabe
EP0439846B1 (de) Biologisch abbaubare Polymere, Verfahren zu ihrer Herstellung und Verwendung derselben für Depotzubereitungen mit kontrollierter Wirkstoffabgabe
EP1476470B1 (de) ST RKEDERIVATE, ST RKE&amp;minus;WIRKSTOFF&amp;minus;KONJ UGATE, VERFAHREN ZU IHRER HERSTELLUNG UND IHRE VERWENDUNG ALS ARZNEIMITTEL
DE69925757T2 (de) Dextran-maleinsäuremonoester und hydrogele daraus
LT3199B (en) Biodegradable non-crosslinked polymers of low or zero-water-solubility
DE2842089A1 (de) Arzneimittel mit verzoegerter wirkstoffabgabe
EP0514790A2 (de) Polykondensate, die Weinsäurederivate enthalten, Verfahren zu ihrer Herstellung und Verwendung derselben
EP0719286B1 (de) Dextranester, verfahren zu ihrer herstellung und ihre verwendung zur umhüllung oder einbettung von arzneimitteln
AT397804B (de) Biologisch abbaubare polymere für depotzubereitungen mit kontrollierter wirkstoffabgabe, verfahren zu ihrer herstellung und ihre verwendung
Kumar et al. Biodegradable oxidized cellulose esters
DE19958586A1 (de) Mikropartikel auf Basis von Asparaginsäure und deren Verwendung als MRI-Kontrastmittel
DD267497A1 (de) Verfahren zur bindung von methotrexat an polysaccharide
JPH02212436A (ja) 徐放性基剤
DE10206517A1 (de) Depotarzneimittel, Trägermaterialien für Depotarzneimittel und Verfahren zu deren Herstellung
DE102014005782A1 (de) lnjizierbare und implantierbare Trägersysteme auf Basis von modifizierten Poly(dikarbonsäure-multiol estern) zur kontrollierten Wirkstofffreisetzung

Legal Events

Date Code Title Description
8125 Change of the main classification

Ipc: C08G 69/10

8130 Withdrawal