DE60038198T2 - Hybrides ARQ-System mit Daten- und Kontrollkanal für Datenpaketübertragung - Google Patents

Hybrides ARQ-System mit Daten- und Kontrollkanal für Datenpaketübertragung Download PDF

Info

Publication number
DE60038198T2
DE60038198T2 DE60038198T DE60038198T DE60038198T2 DE 60038198 T2 DE60038198 T2 DE 60038198T2 DE 60038198 T DE60038198 T DE 60038198T DE 60038198 T DE60038198 T DE 60038198T DE 60038198 T2 DE60038198 T2 DE 60038198T2
Authority
DE
Germany
Prior art keywords
data
indicator
channel
receiving
control channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
DE60038198T
Other languages
English (en)
Other versions
DE60038198D1 (de
Inventor
Thomas Wiebke
Eiko Seidel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8168759&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=DE60038198(T2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Application granted granted Critical
Publication of DE60038198D1 publication Critical patent/DE60038198D1/de
Publication of DE60038198T2 publication Critical patent/DE60038198T2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0078Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
    • H04L1/0083Formatting with frames or packets; Protocol or part of protocol for error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • H04L1/0017Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy where the mode-switching is based on Quality of Service requirement
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0025Transmission of mode-switching indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0078Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0078Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
    • H04L1/0079Formats for control data
    • H04L1/008Formats for control data where the control data relates to payload of a different packet
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1835Buffer management
    • H04L1/1845Combining techniques, e.g. code combining
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1874Buffer management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/403Bus networks with centralised control, e.g. polling
    • H04L12/4035Bus networks with centralised control, e.g. polling in which slots of a TDMA packet structure are assigned based on a contention resolution carried out at a master unit
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • H04W28/12Flow control between communication endpoints using signalling between network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1685Details of the supervisory signal the supervisory signal being transmitted in response to a specific request, e.g. to a polling signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1835Buffer management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0098Unequal error protection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information

Description

  • Die vorliegende Erfindung betrifft Wiederübertragungstechniken in mobilen Kommunikationssystemen, besonders CDMA-Systemen, und im Besonderen eine hybride ARQ-(automatische Wiederübertragungsanforderung) Sendevorrichtung- und Empfangsvorrichtung zur Paketdatenübertragung, das vorher übertragene Pakete mit wiederübertragenen Paketen kombiniert. Bei jedem Kombinierungsvorgang wird die Redundanz erhöht, und es ist wahrscheinlicher, dass das Paket auch in unwirtlichen Kommunikationsumgebungen richtig empfangen wird.
  • Im Einzelnen betrifft die vorliegende Erfindung eine hybride ARQ-Sende- und Empfangsvorrichtung. Diese von den Vorrichtungen verwendete Technik wird gewöhnlich als Hybrid-ARQ Typ II oder III oder Zuwachs-Redundanz bezeichnet.
  • Ein übliches Verfahren zur Fehlererkennung von Nicht-Echtzeit-Diensten basiert auf automatischen Wiederholungsanforderungs-(ARQ)Schemas, die mit Vorwärts-Fehlerkorrektur (FEC), genannt Hybrid-ARQ, kombiniert werden. Wenn ein Fehler durch zyklische Redundanzprüfung (CRC) erkannt wird, fordert der Empfänger den Sender auf, zusätzliche Bits von Daten zu senden.
  • Von den verschiedenen bestehenden Schemas wird das kontinuierliche Selektiv-Wiederholen-ARQ am häufigsten in der Mobilkommunikation verwendet. Dieses Schema in Verbindung mit FEC wird für die nächste Generation von Mobilkommunikationssystemen, wie z. B. UMTS, benutzt werden. Eine Wederübertragungseinheit der RLC-(Funkverbindungssteuer-)Schicht wird als PDU (Protokolldateneinheit) bezeichnet.
  • In der Technik werden gewöhnlich drei verschiedene Typen von ARQ, wie unten angegeben, definiert. Beispiele von entsprechenden Dokumenten des Stands der Technik sind:
    • Performance of punctured channel codes with ARQ for multimedia transmission in Rayleigh fading channels, Lou, H. and Cheung, A. S.; 46. IEEE Vehicle Technology Conference, 1996.
    • Analysis of a type II hybrid ARQ scheme with code combining, S. Kallel, IEEE Transactions an Communications, Vol. 38#8, August 1990, und
    • Throughput performance of Memory ARQ schemes, S. Kallel, R. Link, S. Bakhtiyari, IEEE Transactions an Vehicular Technology, Vo. 48#3, Mai 1999.
  • Typ I: Die fehlerhaften PDUs werden weggeworfen, und eine neue Kopie dieser PDU wird wiederübertragen und getrennt decodiert. Es gibt kein Kombinieren von früheren oder späteren Versionen dieser PDU.
  • Typ II: Die fehlerhafte PDU, die wiederübertragen werden muss, wird nicht weggeworfen, sondern mit einigen Zuwachs-Redundanzbits kombiniert, die durch den Sender zur nachfolgenden Decodierung bereitgestellt werden. Wiederübertragene PDUs besitzen manchmal höhere Codierungsraten und werden im Empfänger mit gespeicherten Werten kombiniert. Das bedeutet, dass bei jeder Wiederübertragung nur etwas Redundanz hinzugefügt wird.
  • Typ III: Ist der gleiche wie Typ II mit dem einzigen Unterschied, dass jede wiederübertragene PDU jetzt selbst-decodierbar ist. Dies bedeutet, dass die PDU decodierbar ist, ohne eine Kombination mit vorherigen PDUs bilden zu müssen. Dies ist hilfreich, wenn einige PDUs so schwer beschädigt sind, das fast keine Information wiederverwendbar ist.
  • Schemas des Typs II und III sind offensichtlich intelligenter und zeigen einigen Leistungsgewinn, weil sie die Fähigkeit besitzen, die Codierungsrate an veränderliche Funkumgebungen anzupassen und die Redundanz von früher übertragenen PDUs wiederzuverwenden.
  • Um die Zuwachs-Redundanz zu unterstützen, muss die Sequenznummer SN der Übertragungseinheit getrennt decodiert werden. Die gespeicherten Daten mit der bekannten SN können dann mit nachfolgenden Wiederübertragungen kombiniert werden.
  • Beim Stand der Technik wird die SN im PDU-Vorspann oder im Zeitschlitz-Vorspann codiert (z. B. EP-A-0938207 ) und zusammen mit der PDU übertragen. Wenn die PDU verfälscht ist, ist es wahrscheinlich, dass auch der Vorspann zerstört ist. Die Codierung muss daher mit einer niedrigeren Codierungsrate erfolgen, damit die SN auch dann gelesen werden kann, wenn die Daten fehlerhaft sind. Das bedeutet, dass es ein großes Codier-Overhead geben wird, um eine zuverlässige Übertragung der Sequenznummer sicherzustellen. Die Codierung für die SN muss daher anders sein als die für die PDUs, was eine erhöhte Komplexität zur Folge hat. Um sicherzustellen, dass die SN richtig ist, könnte eine CRC-Paritätsprüfung angewandt werden, aber einer zuverlässige CRC über wenige Bits ist nicht sehr effizient.
  • Neben dem Signalisierungs-Overhead, das durch die Verfahren des Stands der Technik eingebracht wird, ist es die Implementierungs-Komplexität, die verhindert hat, dass diese Tech nik verwendet wird. Ein große Menge an Speicher wird im Empfänger benötigt, um die fehlerhaften Pakete zum Kombinieren mit den Wiederübertragungen zu speichern. Da die SNs vor dem Empfangen der Wiederübertragung nicht bekannt sind, ist es nicht möglich, den Kombinierungsprozess zu beginnen, bevor die SNs decodiert worden sind.
  • Die Aufgabe, die der vorliegenden Erfindung zugrunde liegt, besteht darin, eine hybride ARQ-Sende- und Empfangsvorrichtung mit kleinerem Signalisierungs-Overhead und niedriger Implementierungs-Komplexität bereitzustellen.
  • Diese Aufgabe wird durch die Gegenstände der unabhängigen Ansprüche gelöst.
  • Die vorliegende Erfindung überwindet die Probleme des Stands der Technik, da die Folgenummer über einen getrennten Steuerkanal übertragen wird. Dies macht es möglich, die Komplexität des Empfängers zu verringern, da die Sequenznummer im Voraus übertragen werden kann, was ein effizienteres Decodieren und Kombinieren der PDUs gestattet, was zu einer späteren Zeit folgen kann. Anstelle des Speicherns des vollständigen Rahmens, Decodierens der SNs, Kombinierens gespeicherter Pakete mit nun identifizierten wiederübertragenen Paketen und schließlichen Decodierens der Pakete muss nur das Kombinieren und Decodieren vorgenommen werden. Des Weiteren erleichtert das Liefern der SNs auf einem getrennten Kanal die Einführung dieses Verfahrens in bestehende Systeme, da das PDU-Format und die vollständige Abbildungsfunktion in der Medien-Zugang-Steuer-(MAC)Schicht verglichen mit einem Wiederübertragungsschema, das kein Typ II/III Kombinieren verwendet, unverändert gelassen werden kann.
  • Nach bevorzugten Ausführungen werden verschiedene Kanalisierungscodes, verschiedene Zeitschlitze und verschiedene Frequenzen für den Steuerkanal zur Übertragung der Folgenummern und den Datenkanal zur Übertragung der PDUs benutzt. Dies sorgt für zusätzlichen Leistungsgewinn, der infolge von Zeit- und Frequenz-Diversity und getrennter physikalischer Kanäle der PDU und der SN erhalten wird.
  • Der Datenkanal zur Übertragung der PDUs ist bevorzugt ein Kanal, den sich mehrere Benutzer teilen, was eine effizientere Nutzung der Kanalressourcen gestattet.
  • Nach einer bevorzugten Ausführung ist der Steuerkanal zur Übertragung der SNs ein dedi zierter Kanal mit niedriger Rate oder ein gemeinsam genutzter Steuerkanal, um Kanalressourcen zu sparen.
  • Nach einer weiter bevorzugten Ausführung ist die Qualität des Dienstes QoS des Steuerkanals unabhänigig von dem QoS des Datenkanals zur Übertragung der PDUs durch geeignetes Steuern wenigstens eines der Parameter-Übertragungsleistung, Codierrate und Spreizfaktor. Daher wird eine Übertragungseffizienz sowie eine zuverlässige Übertragung der Sequenznummer durch unabhänigiges Steuern des QoS für die SN und die PDU erreicht.
  • Für höhere Datenraten ist es vorteilhaft, mehrfache Sequenznummern in einer Sequenznummer-Dateneinheit SNDU zu kombinieren, um die Signalisierung zu verdichten und die CRC-Effizienz zu erhöhen. Die SNDU wird vorzugsweise mit anderen Signalisierungsdaten oder Benutzerdaten gemultiplext, um Kanalressourcen zu sparen. Nach einer weiteren bevorzugten Ausführung wird die SNDU zusammen mit einer Zuweisungsnachricht auf dem Steuerkanal für einen gemeinsamen Aufwärtsstrecken- oder Abwärtsstreckenkanal, der mit einer hohen Datenrate überträgt, gesendet.
  • Abhängig von dem benutzten physikalischen Kanal und der Zugangstechnik ist der Empfang der SNs und der PDUs zeitlich nicht oder kaum korreliert. Obwohl es vorteilhaft ist, dass die SNs der SNDU in der Reihenfolge der empfangenen PDUs eintreffen, sind die Hochgeschwindigkeits-Paketübertragungen zeitlich weniger eingeschränkt und erlauben einen Zeitversatz zwischen der SN und der entsprechenden PDU.
  • Nach einer weiteren bevorzugten Ausführung wird die SNDU in mehr als einem Rahmen des Steuerkanals abgebildet, was eine Verschachtelung erlaubt.
  • Des Weiteren wird bevorzugt, dass der richtige Empfang einer SNDU von der Mobilstation an die Basisstation oder umgekehrt als Teil eines Übertragungsprotokolls mitgeteilt wird.
  • Wenn die Sequenznummer in dem Header jeder PDU zusätzlich enthaften ist, kann Typ III ARQ erreicht werden.
  • Gemäß einer weiter bevorzugten Ausführung der Erfindung überträgt eine Netzwerksteuereinheit ein Signal, ob das Hybrid-ARQ-Verfahren verwendet werden soll oder nicht. Alternativ hierzu kann das Signal von der Mobilstation oder Basisstation übertragen werden. Als eine Variante kann die Basisstation und/oder die Mobilstation aus der Existenz einer SNDU erkennen, ob das Hybrid-ARQ-Verfahren verwendet werden soll oder nicht.
  • Die vorliegende Erfindung wird nun ausführlicher mit Verweis auf die begleitenden Zeichnungen beschrieben. Inhalt der Zeichnungen:
  • 1 zeigt eine Rahmen- und Schlitzstruktur eines DCH-Rahmens, auf den vorliegende Erfindung angewandt werden kann.
  • 2 zeigt eine Rahmen- und Schlitzstruktur eines DSCH-Rahmens, auf den vorliegende Erfindung angewandt werden kann.
  • 3 zeigt die Zeitbeziehung zwischen dem DCH-Rahmen und dem zugehörigen DSCH-Rahmen.
  • 4 zeigt die DCH-Rahmendatenstruktur, die auf einem 10 ms Rahmen zu multiplexen ist.
  • 5 zeigt ein Flussdiagramm, das die Prinzipien der vorliegenden Erfindung erklärt.
  • Mobilkommunikationssysteme der nächsten Generation, z. B. UMTS, werden die Fähigkeiten bereitstellen, Pakete mit variabler Bitrate zu übertragen. Verkehrseigenschaften können sehr stoßartig sein und benötigen eine schnelle Zuweisungsstrategie. Ein Beispiel für ein schnelles Zuweisungsschema ist der Gebrauch eines gemeinsam benutzten Kanals, wo ein Paketkanal hoher Rate nur Benutzern zugewiesen wird, die wirklich Daten zu übertragen haben. Leerlaufzeiten eines dedizierten Hochgeschwindigkeitskanals werden somit minimiert. In WO-A-00/02326 wird ein Beispiel für ein Konzept mit gemeisamem Kanal gegeben. Die Erfindung kann vorteilhaft mit einem gemeinsamen Hochgeschwindigkeitskanal benutzt werden.
  • Das Errichten eines dedizierten Kanals DCH als eine permanente Ressource ist nicht sehr effizient, um Paketverkehr zu unterstützen, da die Errichtung eines DCH erhebliche Zeit in Anspruch nehmen wird. Für CDMA-Kommunikationssysteme, die orthogonale Codes verwenden, ist außerdem die verfügbare Code-Ressource begrenzt. Der Gebrauch eines gemeinsamen Abwärtsstreckenkanals DSCH mit schneller Ressourcen-Zuweisung wird als wichtig angesehen, da für Paketdaten der Datenstrom hohe Spitzenraten, aber niedrige Aktivitätszyklen aufweisen könnte.
  • Im Folgenden soll die Erfindung auf dem Wege eines Beispiels in Verbindung mit einem gemeinsamen Abwärtsstreckenkanal, genannt DSCH, beschrieben werden. Wenn ein gemein samer Kanal benutzt wird, werden die Spreizungscodes für Hochgeschwindigkeitscode-Benutzer Rahmen für Rahmen zugewiesen. Parallel zu dem DSCH wird es einen Signalisierungskanal für Zuweisungsnachrichrichten geben. Dies könnte ein gemeinsamer Steuerkanal oder zugehöriger Kanal niedriger Rate sein. In dem beschriebenen Beispiel wird ein dedizierter Kanal DCH niedriger Rate jedem Benutzer zugeteilt, um die DCMA-Leistungssteuerung aufrechtzuerhalten und die Mobilstation zu informieren, wenn auf dem gemeinsamen Kanal Daten zu decodieren sind. Dem DCH wird ein hoher Spreizungsfaktor zugewiesen (z. B. SF = 256), was aber noch immer ein beträchtlich großes Overhead darstellt.
  • 1 zeigt die Rahmen- und Schlitzstruktur des langsamen DCH, der Pilotbits zur Kohärenz-Detektion, ein TPC-(Sendeleistungssteuer)Bit zur Leistungssteuerung und einen TFCI (Transportformatindikator) zum Anzeigen des Transportformats und ein Datenfeld enthält.
  • Wie in der Zeichnung angegeben, enthält ein Zeitschlitz 2.560 Chips, und 15 Schlitze #0 bis #14 bilden einen vollständigen Rahmen mit einer Dauer von 10 ms.
  • 2 zeigt die Rahmen- und Schlitzstruktur des DSCH, der nur Daten enthält. Der DSCH kann variable Datenraten übertragen, während verschiedene Spreizungsfaktoren (SF) angewandt werden (k = 0 ... 6 bezieht sich auf SF = 256 ... 4). Die TFCI-Information auf dem DSCH umfasst Information über den Spreizungsfaktor, die Datenrate und den Kanalisierungscode des DSCH.
  • 3 zeigt die Zeitbeziehung des DSCH mit einer Mobilstation (mit einem langsamen DCH), die Daten auf dem DSCH erhalten könnte, wenn es an diesen Benutzer zu sendende Daten gibt. Das Timing des DSCH ist bekannt, da es synchron zu anderen gewöhlichen Kanälen ist. Der schnelle Kanal (DSCH) wird nur bei Bedarf zugewiesen und wird von mehreren Benutzern geteilt. Somit müssen die Daten auf dem DSCH nur decodiert werden, wenn es durch TFCI angezeigte Daten gibt. Der kontinuierliche DCH kann zur gleichen Zeit benutzt werden, um andere Daten (z. B. vermittelte oder andere verzögerungseingeschränkte Daten) oder Signalisierungsdaten zu transportieren. DSCH und DCH arbeiten in einer asynchronen Weise, da verschiedene DCHs verschiedenes Timing zueinander haben, aber das relative Timing ist der Mobilstation bekannt, und die Daten können richtig decodiert werden.
  • Nach einem Aspekt der Erfindung werden die PDU-Sequenznummern auf einem getrennten pysikalischen Kanal gesendet. In der bevorzugten Ausführung werden die SNs zusammen mit der Zuweisungsnachricht gesendet, um das für die Paketübertragung und das Zuwachs-Redundanzschema benötigte Signalisierungs-Overhead zu minimieren.
  • Für CDMA-Kommunikationssysteme bedeutet dies, dass der Kanal, auf dem die Signalisierungsdaten abgebildet werden, mit verschiedenen Kanalisierungscodes gespreizt wird, bevor das Signal muduliert wird. Dies erlaubt, dass die QoS durch diesen Kanal getrennt von dem Kanal gesteuert wird, wo die PDUs gesendet werden. Zum Beispiel kann der Leistungspegel des DCH erhöht werden, um den Empfang der SNs zu verbessern. In künftigen Mobilkommunikationssystemen wie UMTS ist es auch möglich, bestimmte Felder mit unterschiedlicher Leistung zu übertragen. Zum Beispiel kann die Leistung des DCH-Datenfeldes anders sein als die TFCI-, TPC- oder Pilotleistung. Die Trennung von Steuer- und Benutzerdaten liefert zusätzliche Flexibiltät. Einige Systeme verwenden daher auch getrennte Protokollstapel für die Steuer- und Benutzerebene des ISO (International Standardisation Organisation) OSI (Open System Interconnection) Protokollstapels. Ein Nutzen der Trennung von Steuerinformation von Daten ist, dass die Signalisierung mit anderer Signalisierung kombiniert werden kann, um so eine effizientere Übertragung bereitzustellen. Um die SNs über einen anderen physikalischen Kanal zu senden, kann auch bedeuten, sie in einem anderen Schlitz (z. B. TDMA) oder auf einer anderen Frequenz (z. B. FDMA, OFDM) zu senden.
  • In Systemen des Stands der Technik werden die Sequenznummern zur unzweideutigen Zuweisung und minimalen Verzögerung zusammen mit der PDU gesendet. Typischerweise wird ein starker Blockcode benutzt, um einzelne Sequenznummern zu codieren, da nur ein paar Bits codiert werden müssen. Neue Paketdatenanwendungen erlauben einige Verzögerung, die für traditionelle Vermittlungsanwendungen (z. B. Sprache) nicht annehmbar war. In der bevorzugten Ausführung liefert der DCH-Rahmen, der die Zuweisungsnachricht (TFCI) für den gemeinsamen Kanal enthält, auch die SNs für die PDUs, die in dem entsprechenden DSCH-Rahmen zu übertragen sind. Mit der Kombination dieser zwei Verfahren werden das Signalisierungs-Overhead des gemeinsamen Kanalkonzepts und Zuwachs-Redundanz minimiert, indem die Kanäle zusammen benutzt werden. Durch diese Kombination wird auch die neu eingebrachte Verzögerung auf einem Minimum gehalten, weil die Zuweisungsnachricht in jedem Fall benötigt wird, wenn ein Kanal mit hoher Rate von vielfachen Benutzern geteilt wird. Simulationen haben gezeigt, dass die Verzögerung für Paketdaten auch im Vergleich mit einer vermittelten Verbindung reduziert werden kann, da das 'große Rohr', das von vielfachen Benutzern geteilt wird, ein besser geeignetes Übertragungsschema für Anwendungen ist, wo Daten nicht kontinuierlich eintreffen. Der Zeitunterschied zwischen der Zuweisungsnachricht und den Datenpaketen muss sehr klein gehalten werden, da sich in einer Mobilkommunikationsumgebung die Bedingungen recht oft ändern können.
  • Die Sequenznummern werden in dem Datenfeld des DCH als Signalisierungsnachricht höherer Schicht geliefert. Da die gemeinsamen Kanäle nur für höhere Datenraten benutzt werden, ist es möglich, sie zur zuverlässigen Codierung zu kombinieren und besser geeignete Codes, z. B. Konvolutions- oder Turbo-Codes, zu verwenden. Im Folgenden soll das Paket mit den SNs Sequenznummern-Dateneinheit SNDU genannt werden. 4 zeigt die einfachste Anordnung von SNs. Sequenznummern für alle Pakete in dem nächsten DSCH-Rahmen werden in Reihenfolge angeordnet und durch einen 1/3-Raten-Konvolutionscodierer codiert. Vor dem Codieren werden 8 Bits zur Codebeendigung als ein Schwanz an die SNs angehängt. Andere Codierverfahren wie Turbo- oder BCH-Codierung könnten ebenfalls benutzt werden. Um einen zuverlässigen Empfang zu gewährleisten, wird das Datenfeld durch einen CRC-Code geschützt, der eine variable Größe von 8, 12, 16 oder 24 Bits haben kann. Die Anzahl von PDUs in dem DSCH-Rahmen und folglich die Anzahl von SNs in dem DCH-Rahmen, die übertragen werden, kann abhängig von der PDU-Größe und der gewählten Datenrate des DSCH zwischen 1 und mehr als 100 variieren. Nach dem Codieren wird Punktierung oder Wiederholung angewandt, um die Daten auf dem physikalischen Kanal abzubilden. Vor der Schlitzsegmentierung werden die Daten über einem Rahmen (10 ms) verschachtelt. Natürlich sollte man verstehen, dass die Verarbeitung des Codierens und Multiplexens nur als eine vereinfachte Beispielausführung der Erfindung gegeben wird.
  • Es ist auch möglich, dass die SNDU zusammen mit anderen Signalisierungsdaten und mit Benutzerdaten auf dem DCH gemultiplext wird. Ein Hauptvorteil des vorgeschlagenen Schemas ist, dass es möglich ist, vielfache SNs zu Gruppen zusammenzufassen. ARQ-Protokolle verwenden gewöhnlich ein Schiebefenster-Verfahren. Das bedeutet, dass außer den Wiederübertragungen, die oft mit höherer Priorität gesendet werden, alle Pakete in Reihenfolge gesendet werden. Verschiedene Anordnungen können verwendet werden, um die eigentliche Information, die über die Luftschnittstelle gesendet wird, zu verdichten. Sie müssen z. B. nicht als eine Liste gesendet werden, wobei jede SN etwa 6 bis 12 Bits aufweist. Stattdessen könnten sie in Serien, z. B. 1–4 oder 1 + 3, 7–12 oder 7 + 5 anstelle von 1, 2, 3, 4, 7, 8, 9, 10, 11, 12 gesendet werden.
  • Für einen gemeinsamen Kanal mit hoher Rate, der mehrere PDUs pro Rahmen überträgt, wird es schwer sein, die SNDU unter Bewahrung des hohen Spreizungsfaktors (z. B. 256, 512) in einen einzigen Rahmen zu legen. Eine Verringerung des Spreizungsfaktors sollte vermieden werden, um die in Leerlaufzeiten zugewiesenen Ressourcen zu minimieren. Es sollte daher möglich sein, die SNDU auf mehr als einem Rahmen abzubilden. Der Zeitversatz zwischen dem DCH und dem DSCH sollte die maximale Zahl von Rahmen pro SNDU berücksichtigen. Die Verschachtelungsgröße kann auch auf mehrfache Rahmen oder Reste auf einer Rahmenbasis erhöht werden, um die SNs so bald als möglich verfügbar zu machen. SNs könnten auch auf mehrfachen SNDUs gesendet werden, um große Paketverluste zu vermeiden, wenn eine SNDU verfälscht wird.
  • Im Folgenden soll ein Beispiel gegeben werden. Die SNDU wird in zwei Rahmen abgebildet, während Verschachtelung nur über 10 ms vorgenommen wird. Der DCH/DSCH-Versatz wird auf ein Minimum von einem Rahmen definiert. Das bedeutet, dass der erste Rahmen der SNDU vor dem entsprechenden DSCH-Rahmen empfangen wird, während der zweite gleichzeitig empfangen wird.
  • Die Wiederübertragungs-Fenstergröße und folglich die Anzahl für die Sequenznummer benötigter Bits sollte ebenfall so klein wie möglich gehalten werden, um das Signalisierungs-Overhead pro PDU zu reduzieren. Eine kleine Fenstergröße erfordert, dass die Umlaufverzögerung so klein wie möglich ist, um den Wiederübertragungs- und Bestätigungsprozess zu beschleunigen.
  • Die SNs in dem DCH-Datenfeld identifizieren leicht, ob Zuwachs-Redundanz benutzt wird oder nicht, bevor die PDUs empfangen werden. Dadurch wird nochmals die Empfängerkomplexität verringert, da die Rekonfiguration des Empfängers vor dem Empfang der PDUs vorgenommen werden kann. Die Zuwachs-Redundanz kann durch das vorgeschlagene Verfahren leicht ein- oder ausgeschaltet werden, z. B., wenn dem Empfänger der Speicher ausgeht.
  • Die Sequenznummern identifizieren, welche PDUs miteinander kombiniert werden sollen. Für eine richtige Funktion ist es daher wichtig, dass die Sequenznummern korrekt sind.
  • Die CRC wird ein wirksames Mittel bereitstellen, um sicherzustellen, dass die SNDU richtig empfangen wird. Trotzdem müssen in dem Protokoll Einrichtungen bereitgestellt werden, um Sequenznummernfehler, die nicht erfasst werden, aufzulösen. Eine hohe FEC-Codierung wird sicherstellen, dass die SNDU richtig empfangen wird, auch wenn einige oder alle PDUs fehlerhaft sind. Es gibt einen Kompromiss in Zuverlässigkeit und Codierungs-Overhead. Es könnte effizienter sein, regelmäßige Fehler in Kauf zu nehmen, anstatt zu zuverlässig zu codieren. Ein erkanntes Problem ist, wenn die SNDU verlorengeht, werden alle PDUs des entsprechenden Rahmens auf dem DSCH gesendet, auch wenn sie nicht identifiziert werden können.
  • Eine Variante der Erfindung ist, dass die Mobilstation nach dem richtigen Empfang einer SNDU einen Indikator auf dem Aufwärtsstrecken-DCH an die Basisstation senden wird. Nur wenn dieser Indikator von der Basisstation empfangen wird, werden die PDUs auf dem DSCH gesendet. Wenn der Indikator nicht empfangen wird, werden die PDUs nicht gesendet werden, und Störungen werden minimiert.
  • Für Hybrid-ARQ Typ III ist jede PDU selbst-decodierbar, was bedeutet, dass sie theoretisch ohne irgendwelches Kombinieren mit früheren PDUs decodiert werden können. In jeder PDU wird genug Information bereitgestellt, um sie ohne Kombinieren zu decodieren. Für solche Schemas hat sich eine andere Lösung als nützlich erwiesen. Die SNDU wird auch auf einem getrennten Kanal geliefert, wird aber nicht sehr stark codiert. Gleichzeitig wird die Folgenummer zusätzlich als Teil des Vorspanns in der PDU, wie im gewöhnlichen Betrieb, übertragen. Der Vorspann ist in der RLC-Schicht enthalten. Wenn die SNDU richtig empfangen wird, kann der Empfang durch PDU-Kombinieren verbessert werden. Wenn die SNDU verlorengeht, können die PDUs noch immer ohne Kombinieren (wenn es die Empfangsgüte zulässt) decodiert werden, weil die Sequenznummer im PDU-Vorspann die PDU für die RLC-Schicht identifiziert. Dadurch wird das Overhead für SNDUs verringert, und das Protokoll kann noch effizient arbeiten, wenn die SNDU verlorengeht. Es gibt andere Vorteile dieser Lösung, da es möglich ist, das RLC-Wiederübertragungsprotokoll vollständig von dem Rekombinierungsprozess in der physikalischen Schicht zu trennen. Wenn beabsichtigt ist, keine SNDU-Übertragung zu verwenden, ist das RLC-Schichtprotokoll genau das gleiche wie ohne Hybrid-ARQ Typ III. Dies erlaubts es, die Kombinierungsoperation ohne irgendeine Wirkung auf das RLC-Protokoll, die PDU-Struktur oder den DSCH im Allgemeinen auszuschalten. Der Nachteil ist, dass es redundante Information in dem PDU-Vorspann gibt, die gesendet wird, wenn die SNDU richtig empfangen wird.
  • Im Folgenden wird eine bevorzugte Ausführung der Erfindung mit Verweis auf 5 erklärt.
  • Wenn eine Mobilstation eine Paketdatensession in Schritt 100 (z. B. Internet-Zugriff) einrichtet, kann die Basisstation, abhängig von der Anwendung, entscheiden, für diesen Benutzer den DSCH zu verwenden. Ein dedizierter Kanal wird auf der Aufwärts- und Abwärtsstrecke errichtet. Ein Transportformat-Steuerindikator TFCI, der die möglichen Datenraten auf dem DSCH identifiziert, wird durch die Basisstation zugewiesen und der Mobilstation signalisiert.
  • Wenn es an der Basisstation eintreffende Pakete gibt, werden die Daten in Schritt 200 in PDUs segmentiert. Jetzt werden die SNs den PDUs zugewiesen (Schritt 210), bevor sie gemäß Schritt 220 zur möglichen Wiederübertragung gespeichert werden. Sobald genug auf dem DSCH zu sendende PDUs akkumuliert sind, wird die Basisstation einen Rahmen auf dem DSCH für diesen Benutzer planen (Schritt 230). Die Sequenznummern werden gemultiplext, gemäß 4 codiert und auf dem Steuerkanal abgebildet, wie in der Fig. in Schritt 240 gezeigt. Anschließend sendet die Basisstation den Steuerkanal, der den TFCI auf dem DCH enthält, an die Mobilstation. In Schritt 250 werden die PDUs gemultiplext, codiert und auf dem Datenkanal abgebildet, der auf dem DSCH gesendet wird. Mit dem spezifizierten Timing (s. 3) empfängt die Mobilstation den DCH und wird folglich über den TFCI (Schritt 230) auf dem DCH (Signal wird mit Spreizungscode x gespreizt) über die auf dem DSCH zu decodierenden Daten (Signal wird mit Spreizungscode y gespreizt) und ihr Transportformat informiert. Im gleichen DCH-Rahmen (oder den folgenden Rahmen, wenn in mehreren Rahmen abgebildet) werden die Sequenznummern der Mobilstation mitgeteilt und von dieser decodiert (Schritt 260). Die Mobilstation kennt daher genau den Anfang des DSCH-Rahmens, undvwird die in Schritt 250 gesendeten PDUs auf dem DSCH empfangen und decodieren (Schritt 270).
  • Die Speicherung fehlerhafter PDUs (Schritt 280) und das Kombinieren mit Wiederübertragungen (Schritt 270) wird gemäß einem implementierten Algorithmus stattfinden, der außerhalb des Umfangs dieser Beschreibung liegt. Alle richtig decodierten Pakete werden an die höheren Schichten übertragen. Nicht erfolgreich decodierte Pakete werden zum Rekombinieren mit Wiederübertragungen gespeichert. Bestätigungs-(ACK) und Nicht-Bestätigungs(NACK)Nachrichten (Schritt 290) werden gemäß dem implementierten RLC-Protokoll an den Sender gesendet.
  • Die Mobilstation wird auf neue zu übertragende Pakete warten, solange die Session andauert (Rückkehr zu Schritt 220), und der Benutzer wird wahrscheinlich den DSCH benutzen.
  • Bei künftigen Systemen wird es üblich sein, dass mehrfache logische Kanäle auf einem physikalischen Kanal abgebildet werden. Ein logischer Kanal könnte aus Steuerdaten und Benutzerdaten bestehen und kann zu verschiedenen Anwendungs- oder Protokoll-Entitäten gehören. Das Multiplexen des Transportkanals geschieht nicht unbedingt in der physikalischen Schicht, sondern wird wahrscheinlich durch die Medien-Zugang-Steuer-(MAC)Schicht zustande gebracht. Für Zuwachs-Redundanz ist dieses Multiplexen auf höherer Schicht problematisch, weil ein Transportblock, der zur Übertragung an die physikalische Schicht übergeben wird, aus Daten von verschiedenen logischen Kanälen bestehen kann. Nach Decodierung könnte einer der Blöcke richtig empfangen werden, während der andere fehlerhaft ist. Eine Wiederübertragung muss auf der Basis der ursprünglich gesendeten Daten vorgenommen werden. Der genaue Datenblock, einschließlich des richtig empfangenen Datenteils, müsste wiederübertragen werden, um den Rekombinierungsprozess arbeiten zu lassen. Einige der logischen Kanäle könnten nicht einmal ARQ verwenden, wenn sie eine niedrige QoS-Anforderung aufweisen.
  • Eine andere Eigenschaft der vorliegenden Erfindung ist, das MAC-Multiplexen auszuschalten, um die Zuwachs-Redundanz effizienter zu machen. Dies kann in Verbindung mit der Entscheidung erfolgen, ob Zuwachs-Redundanz benutzt wird nicht. Dies wird sicherstellen, dass, wenn Zuwachs-Redundanz benutzt wird, verschiedene logische Kanäle als getrennte Transportkanäle an die physikalische Schicht übergeben werden. Zusätzlich zu den Transportblöcken für jeden Transportkanal wird der physikalischen Schicht weitere Information gegeben, ob Zuwachs-Redundanz benutzt werden soll oder nicht. Zuwachs-Redundanz ist nur für logische Kanäle möglich, die ARQ anwenden (die im Bestätigungsmodus sind).
  • Welche Transportkanäle Zuwachs-Redundanz verwenden werden, wird in der Abwärtsstrecke auch von den Fähigkeiten des Mobilterminals abhängen. Die Hauptbegrenzung in dem Terminal wird ein Mangel an Speicher sein, um Werte weicher Entscheidungen zu speichern. Wenn das Mobilterminal die Zuwachs-Redundanz für alle Transportkanäle nicht unterstützen kann, kann die Zuwachs-Redundanz für einige Transportkanäle abgeschaltet werden.

Claims (27)

  1. Hybrides ARQ-Sendeverfahren, das die folgenden Schritte umfasst: Senden (250) von Daten auf einem Datenkanal in Form einer Protokoll-Dateneinheit; Einstellen eines Indikators für die Protokoll-Dateneinheit; und Senden des Indikators auf einem Steuerkanal (240); wobei der Indikator auf dem Steuerkanal gemultiplext mit einer Zuweisungsnachricht des Datenkanals gesendet wird.
  2. Sendeverfahren nach Anspruch 1, wobei der Indikator eine Sequenznummer ist.
  3. Sendeverfahren nach Anspruch 1 oder 2, wobei die Zuweisungsnachricht Informationen enthält, die ein Transportformat des Datenkanals anzeigen.
  4. Sendeverfahren nach Anspruch 1 oder 2, wobei die Zuweisungsnachricht einen Transportformat-Indikator des Datenkanals enthält.
  5. Sendeverfahren nach einem der Ansprüche 1 bis 4, das des Weiteren den Schritt des Empfangens einer Nachricht über einen erfolgreichen oder nicht erfolgreichen Empfangs einer vorangehenden Sendung umfasst.
  6. Sendeverfahren nach einem der Ansprüche 1 bis 5, das des Weiteren die folgenden Schritte umfasst: Empfangen einer Aufforderung zum erneuten Senden der Daten; und erneutes Senden der Daten.
  7. Sendeverfahren nach Anspruch 2, wobei der Steuerkanal ein dedizierter Steuerkanal ist und die Sequenznummer auf dem dedizierten Steuerkanal gemultiplext mit einem Transportformat-Indikator des Datenkanals gesendet wird.
  8. Hydride ARQ-Sendevorrichtung, die umfasst: einen Sendeabschnitt, der so betrieben werden kann, dass er Daten auf einem Datenkanal in Form einer Protokoll-Dateneinheit sendet (250), und einen Einstellabschnitt, der so betrieben werden kann, dass er einen Indikator für die Protokoll-Dateneinheit einstellt; wobei der Sendeabschnitt des Weiteren so betrieben werden kann, dass er den Indikator auf einem Steuerkanal gemultiplext mit einer Zuweisungsnachricht des Datenkanals sendet (240).
  9. Sendevorrichtung nach Anspruch 8, wobei der Indikator eine Sequenznummer ist.
  10. Sendevorrichtung nach Anspruch 8 oder 9, wobei die Zuweisungsnachricht Informationen enthält, die ein Transportformat des Datenkanals anzeigen.
  11. Sendevorrichtung nach Anspruch 8 oder 9, wobei die Zuweisungsnachricht einen Transportformat-Indikator des Datenkanals enthält.
  12. Sendevorrichtung nach einem der Ansprüche 8 bis 11, die des Weiteren einen Empfangsabschnitt umfasst, der so betrieben werden kann, dass er eine Nachricht über einen erfolgreichen oder nicht erfolgreichen Empfang einer vorangehenden Sendung empfängt.
  13. Sendevorrichtung nach einem der Ansprüche 8 bis 11, die des Weiteren umfasst: einen Empfangsabschnitt, der so betrieben werden kann, dass eine Aufforderung zum erneuten Senden der Daten empfängt; und wobei der Sendeabschnitt des Weiteren so betrieben werden kann, dass er die Daten erneut sendet.
  14. Vorrichtung nach Anspruch 9, wobei der Steuerkanal ein dedizierter Steuerkanal ist und der Sendeabschnitt des Weiteren so betrieben werden kann, dass er die Sequenznummer auf dem dedizierten Steuerkanal gemultiplext mit einem Transportformat-Indikator des Datenkanals sendet.
  15. Hybride ARQ-Empfangsvorrichtung, die umfasst: einen Empfangsabschnitt, der so betrieben werden kann, dass er Daten auf einem Datenkanal in Form einer Protokoll-Dateneinheit empfängt (270); ein Decodierabschnitt, der so betrieben werden kann, dass er die Protokoll-Dateneinheit decodiert (260); wobei der Empfangsabschnitt des Weiteren so betrieben werden kann, dass er einen Indikator auf einem Steuerkanal empfängt, wobei der Indikator mit der Protokoll-Dateneinheit verknüpft und auf dem Steuerkanal mit einer Zuweisungsnachricht multiplexiert ist (270).
  16. Empfangsvorrichtung nach Anspruch 15, wobei der Indikator eine Sequenznummer ist.
  17. Empfangsvorrichtung nach Anspruch 15 oder 16, wobei die Zuweisungsnachricht Informationen enthält, die ein Transportformat des Datenkanals anzeigen.
  18. Empfangsvorrichtung nach Anspruch 15 oder 16, wobei die Zuweisungsnachricht einen Transportformat-Indikator des Datenkanals enthält.
  19. Empfangsvorrichtung nach einem der Ansprüche 15 bis 18, die des Weiteren umfasst: einen Kombinierabschnitt, der so betrieben werden kann, dass er eine erneut gesendete Protokoll-Dateneinheit mit einer zuvor empfangenen Protokoll-Dateneinheit auf Basis des Indikators kombiniert.
  20. Empfangsvorrichtung nach einem der Ansprüche 15 bis 19, die des Weiteren umfasst: einen Sendeabschnitt, der so betrieben werden kann, dass er eine Nachricht über ein Ergebnis des Decodierens der Protokoll-Dateneinheit durch den Decodierabschnitt sendet.
  21. Sendesystem, das eine Sendevorrichtung nach einem der Ansprüche 8 bis 14 und eine Empfangsvorrichtung nach einem der Ansprüche 15 bis 20 umfasst.
  22. Hybrides ARQ-Empfangsverfahren, das die folgenden Schritte umfasst: Empfangen von Daten auf einem Datenkanal in Form einer Protokoll-Dateneinheit (270), Empfangen eines Indikators auf einem Steuerkanal, wobei der Indikator mit der Protokoll-Dateneinheit verknüpft und mit einer Zuweisungs-Nachricht auf dem Steuerkanal gemultiplext ist, Decodieren der Protokoll-Dateneinheit (260).
  23. Empfangsverfahren nach Anspruch 22, wobei der Indikator eine Sequenznummer ist.
  24. Empfangsverfahren nach Anspruch 22 oder 23, wobei die Zuweisungsnachricht eine Information enthält, die ein Transportformat des Datenkanals anzeigt.
  25. Empfangsverfahren nach Anspruch 22 oder 23, wobei die Zuweisungsnachricht einen Transportformat-Indikator des Datenkanals enthält.
  26. Empfangsverfahren nach einem der Ansprüche 22 bis 25, das des Weiteren umfasst: Kombinieren einer erneut gesendeten Protokoll-Dateneinheit mit einer zuvor empfangenen Protokoll-Dateneinheit auf Basis des Indikators.
  27. Empfangsverfahren nach einem der Ansprüche 22 bis 26, das des Weiteren umfasst: Senden einer Nachricht über ein Ergebnis des Decodierens der Protokoll-Dateneinheit.
DE60038198T 2000-05-17 2000-05-17 Hybrides ARQ-System mit Daten- und Kontrollkanal für Datenpaketübertragung Expired - Lifetime DE60038198T2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP00110551A EP1156617B1 (de) 2000-05-17 2000-05-17 Hybrides ARQ Verfahren zur Datenpaketübertragung
EP06007523A EP1679817B1 (de) 2000-05-17 2000-05-17 Hybrides ARQ-System mit Daten- und Kontrollkanal für Datenpaketübertragung

Publications (2)

Publication Number Publication Date
DE60038198D1 DE60038198D1 (de) 2008-04-10
DE60038198T2 true DE60038198T2 (de) 2009-03-26

Family

ID=8168759

Family Applications (5)

Application Number Title Priority Date Filing Date
DE60005150T Expired - Lifetime DE60005150T2 (de) 2000-05-17 2000-05-17 Hybrides ARQ Verfahren zur Datenpaketübertragung
DE60038198T Expired - Lifetime DE60038198T2 (de) 2000-05-17 2000-05-17 Hybrides ARQ-System mit Daten- und Kontrollkanal für Datenpaketübertragung
DE60035530T Expired - Lifetime DE60035530T2 (de) 2000-05-17 2000-05-17 Hybrides ARQ-System mit Daten- und Kontroll-Kanal für Datenpaket-Übertragung
DE20023936U Expired - Lifetime DE20023936U1 (de) 2000-05-17 2000-05-17 Hybride ARQ-Sende- und Empfangsvorrichtung
DE20023933U Expired - Lifetime DE20023933U1 (de) 2000-05-17 2000-05-17 Hybride ARQ-Sende- und Empfangsvorrichtung

Family Applications Before (1)

Application Number Title Priority Date Filing Date
DE60005150T Expired - Lifetime DE60005150T2 (de) 2000-05-17 2000-05-17 Hybrides ARQ Verfahren zur Datenpaketübertragung

Family Applications After (3)

Application Number Title Priority Date Filing Date
DE60035530T Expired - Lifetime DE60035530T2 (de) 2000-05-17 2000-05-17 Hybrides ARQ-System mit Daten- und Kontroll-Kanal für Datenpaket-Übertragung
DE20023936U Expired - Lifetime DE20023936U1 (de) 2000-05-17 2000-05-17 Hybride ARQ-Sende- und Empfangsvorrichtung
DE20023933U Expired - Lifetime DE20023933U1 (de) 2000-05-17 2000-05-17 Hybride ARQ-Sende- und Empfangsvorrichtung

Country Status (7)

Country Link
US (4) US6658005B2 (de)
EP (5) EP1156617B1 (de)
JP (7) JP3455195B2 (de)
CN (3) CN101075859B (de)
CA (2) CA2545466C (de)
DE (5) DE60005150T2 (de)
ES (4) ES2206103T3 (de)

Families Citing this family (153)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10007564A1 (de) * 2000-02-18 2001-08-30 Siemens Ag Verfahren, Kommunikationssystem und Empfänger zum Übertragen von Daten in Paketform
DE10007602A1 (de) * 2000-02-18 2001-08-30 Siemens Ag Verfahren zum Übertragen von Paketdateninformationen in einem Funk-Kommunikationssystem
JP3469560B2 (ja) * 2000-04-10 2003-11-25 ヒュンダイ エレクトロニクス インダストリーズ カムパニー リミテッド 広帯域無線通信システムのダウンリンクにおけるハイブリッド自動再伝送要求2/3方式のためのデータ伝達方法
JP3569724B2 (ja) * 2000-04-10 2004-09-29 ユーティースターコム コリア リミテッド 広帯域無線通信システムにおけるハイブリッド自動再伝送要求方式2/3のためのデータ伝送方法
JP3507809B2 (ja) * 2000-04-10 2004-03-15 ヒュンダイ エレクトロニクス インダストリーズ カムパニー リミテッド 広帯域無線通信システムのアップリンクにおけるハイブリッド自動再伝送要求2/3方式のためのデータ伝送方法
EP1156617B1 (de) * 2000-05-17 2003-09-10 Matsushita Electric Industrial Co., Ltd. Hybrides ARQ Verfahren zur Datenpaketübertragung
KR100640921B1 (ko) * 2000-06-29 2006-11-02 엘지전자 주식회사 프로토콜 데이터 유닛의 생성 및 전송 방법
US7295509B2 (en) 2000-09-13 2007-11-13 Qualcomm, Incorporated Signaling method in an OFDM multiple access system
US9130810B2 (en) 2000-09-13 2015-09-08 Qualcomm Incorporated OFDM communications methods and apparatus
CN100456660C (zh) * 2000-11-17 2009-01-28 Lg电子株式会社 在自动重发请求系统中使用确认的盲型链路适配方法
US8189556B2 (en) * 2001-03-21 2012-05-29 Lg Electronics Inc. Packet transmitting method in mobile communication system
EP1244240B1 (de) * 2001-03-21 2010-11-10 LG Electronics, Inc. Wiederübertragung von daten durch eine Rückwärtsverbindung in einem Paketdatenübertragungssystem mit automatischer Wiederholungsaufforderung
US7143179B2 (en) * 2001-05-24 2006-11-28 Yuri Yaport Method and system for parallel data transmission on demand to an unlimited number of clients without acknowledgment and on the basis of constant data availability
GB2387304B (en) * 2001-06-28 2004-07-07 Samsung Electronics Co Ltd Apparatus and method for decoding TFCI bits for a hard split mode in a CDMA mobile communication system
DE10131561A1 (de) * 2001-06-29 2003-01-16 Nokia Corp Verfahren zur Übertragung von Anwendungspaketdaten
US7436806B2 (en) 2001-07-09 2008-10-14 Samsung Electronics Co., Ltd. Apparatus and method for symbol mapping TFCI bits for a hard split mode in a CDMA mobile communication system
US7020822B2 (en) * 2001-08-02 2006-03-28 Texas Instruments Incorporated Automatic repeat request for centralized channel access
US20030066004A1 (en) * 2001-09-28 2003-04-03 Rudrapatna Ashok N. Harq techniques for multiple antenna systems
US7376879B2 (en) * 2001-10-19 2008-05-20 Interdigital Technology Corporation MAC architecture in wireless communication systems supporting H-ARQ
SE0103506D0 (sv) * 2001-10-19 2001-10-19 Ericsson Telefon Ab L M HARQ stall avoidance
EP1313253A1 (de) * 2001-11-15 2003-05-21 Evolium S.A.S. Verfahren zur Fehlerdetektion in Echtzeitdatenpaketen die mindestens zwei Bitsorten mit verschiedener Relevanz tragen
JP4005796B2 (ja) * 2001-11-30 2007-11-14 富士通株式会社 電力制御回路および無線送信装置
DE10159637C1 (de) * 2001-12-05 2003-08-07 Siemens Ag Verfahren zur Zuweisung von Übertragungskanälen in einer Mobilfunkzelle für einen Multicast-Dienst
US20030112780A1 (en) * 2001-12-17 2003-06-19 Koninklijke Philips Electronics N.V. Time diversity combining to increase the reliability of the IEEE 802.11 WLAN receiver
EP1337065A1 (de) * 2002-02-13 2003-08-20 Telefonaktiebolaget L M Ericsson (Publ) Halb-zuverlässiges ARQ Verfahren und entsprechende Einrichtung
US6975650B2 (en) 2002-02-13 2005-12-13 Interdigital Technology Corporation Transport block set segmentation
US8233501B2 (en) * 2002-02-13 2012-07-31 Interdigital Technology Corporation Transport block set segmentation
US7177658B2 (en) 2002-05-06 2007-02-13 Qualcomm, Incorporated Multi-media broadcast and multicast service (MBMS) in a wireless communications system
US6973579B2 (en) 2002-05-07 2005-12-06 Interdigital Technology Corporation Generation of user equipment identification specific scrambling code for the high speed shared control channel
US6901063B2 (en) * 2002-05-13 2005-05-31 Qualcomm, Incorporated Data delivery in conjunction with a hybrid automatic retransmission mechanism in CDMA communication systems
US6744766B2 (en) 2002-06-05 2004-06-01 Meshnetworks, Inc. Hybrid ARQ for a wireless Ad-Hoc network and a method for using the same
JP4142917B2 (ja) * 2002-08-23 2008-09-03 松下電器産業株式会社 Cdma送信装置及びofdm−cdma送信装置
KR100965861B1 (ko) * 2002-10-24 2010-06-24 삼성전자주식회사 이동통신 시스템에서 복합 재전송 제어 장치
US7042857B2 (en) 2002-10-29 2006-05-09 Qualcom, Incorporated Uplink pilot and signaling transmission in wireless communication systems
DE10252536A1 (de) * 2002-11-08 2004-05-27 Philips Intellectual Property & Standards Gmbh Verfahren und Vorrichtung zur Übertragung von Datenpaketen
EP1420539A3 (de) * 2002-11-14 2006-05-17 Hughes Network Systems, LLC Systeme und Verfahren zur Auswahl der Übertragungsrate und der Kodierungsrate für Satellitenkommunikation
CN100496140C (zh) * 2003-02-12 2009-06-03 松下电器产业株式会社 接收装置与接收方法
US7813322B2 (en) 2003-02-19 2010-10-12 Qualcomm Incorporated Efficient automatic repeat request methods and apparatus
US8099099B2 (en) 2003-02-19 2012-01-17 Qualcomm Incorporated Methods and apparatus related to assignment in a wireless communications system
EP1610468B1 (de) 2003-03-31 2013-01-23 Fujitsu Limited Turbo-Dekoder mit Erkennung fehlerfreier Teil-Blöcke
AU2003224532A1 (en) 2003-04-10 2004-11-01 Telefonaktiebolaget Lm Ericsson (Publ) Method and system of retransmission
US7177297B2 (en) * 2003-05-12 2007-02-13 Qualcomm Incorporated Fast frequency hopping with a code division multiplexed pilot in an OFDMA system
CN101044485A (zh) * 2003-06-18 2007-09-26 安布里克股份有限公司 集成电路开发系统
US8005222B2 (en) * 2003-07-15 2011-08-23 Sony Corporation Radio communication system, radio communication device, radio communication method, and computer program
US8694869B2 (en) * 2003-08-21 2014-04-08 QUALCIMM Incorporated Methods for forward error correction coding above a radio link control layer and related apparatus
US7318187B2 (en) * 2003-08-21 2008-01-08 Qualcomm Incorporated Outer coding methods for broadcast/multicast content and related apparatus
US8804761B2 (en) * 2003-08-21 2014-08-12 Qualcomm Incorporated Methods for seamless delivery of broadcast and multicast content across cell borders and/or between different transmission schemes and related apparatus
TWI392266B (zh) * 2003-08-21 2013-04-01 Qualcomm Inc 跨越小區邊界及/或於不同傳輸架構中無縫傳送廣播及多播內容之方法及其相關裝置
WO2007092257A1 (en) * 2006-02-03 2007-08-16 Interdigital Technology Corporation Method and apparatus for dynamically configuring a hybrid automatic repeat request memory
US8644341B1 (en) * 2003-09-26 2014-02-04 Sigma Designs Israel S.D.I. Ltd MAC structure with packet-quasi-static blocks and ARQ
US7283492B2 (en) * 2003-10-02 2007-10-16 Qualcomm Incorporated Systems and methods for multiplexing control information onto a physical data channel
US7474643B2 (en) * 2003-10-02 2009-01-06 Qualcomm Incorporated Systems and methods for communicating control data using multiple slot formats
KR100976492B1 (ko) * 2003-12-05 2010-08-18 엘지전자 주식회사 이동 통신 시스템의 역방향 데이터 전송률 제어 방법
SE0303590D0 (sv) * 2003-12-29 2003-12-29 Ericsson Telefon Ab L M Method and arrangement for ARQ in packet data transmission
US8611283B2 (en) * 2004-01-28 2013-12-17 Qualcomm Incorporated Method and apparatus of using a single channel to provide acknowledgement and assignment messages
EP1566914A3 (de) * 2004-02-18 2011-05-04 Siemens Aktiengesellschaft Verfahren zum Verbessern der Qualität einer Sprachübertragung über eine Luftschnittstelle
US20050193315A1 (en) * 2004-02-18 2005-09-01 Massimo Bertinelli Method and apparatus for performing a TFCI reliability check in E-DCH
GB0407144D0 (en) * 2004-03-30 2004-05-05 British Telecomm Networks
US7957389B2 (en) * 2004-03-31 2011-06-07 Alcatel-Lucent Usa Inc. Method of stall identification and recovery
US8018945B2 (en) 2004-04-29 2011-09-13 Interdigital Technology Corporation Method and apparatus for forwarding non-consecutive data blocks in enhanced uplink transmissions
WO2006105010A1 (en) 2005-03-25 2006-10-05 Neocific, Inc. Methods and apparatus for cellular broadcasting and communication system
US7706346B2 (en) * 2004-05-10 2010-04-27 Alcatel-Lucent Usa Inc. Hybrid wireless communications system
GB0414057D0 (en) * 2004-06-23 2004-07-28 Koninkl Philips Electronics Nv Method of,and system for,communicating data, and a station for transmitting data
US9148256B2 (en) 2004-07-21 2015-09-29 Qualcomm Incorporated Performance based rank prediction for MIMO design
US9137822B2 (en) 2004-07-21 2015-09-15 Qualcomm Incorporated Efficient signaling over access channel
US8891349B2 (en) 2004-07-23 2014-11-18 Qualcomm Incorporated Method of optimizing portions of a frame
US7852746B2 (en) * 2004-08-25 2010-12-14 Qualcomm Incorporated Transmission of signaling in an OFDM-based system
KR101116419B1 (ko) 2004-09-15 2012-03-07 노키아 지멘스 네트웍스 게엠베하 운트 코. 카게 정보 콘텐트의 전송 방법
US7489629B2 (en) * 2004-12-07 2009-02-10 Intel Corporation Methods and media access controller for broadband wireless communications with variable data unit size and delayed data unit construction
US20060120323A1 (en) * 2004-12-07 2006-06-08 Fengji Ye Media access controller with enhanced data unit retransmission for broadband wireless communication and method
US8238923B2 (en) * 2004-12-22 2012-08-07 Qualcomm Incorporated Method of using shared resources in a communication system
US8831115B2 (en) * 2004-12-22 2014-09-09 Qualcomm Incorporated MC-CDMA multiplexing in an orthogonal uplink
US7453849B2 (en) * 2004-12-22 2008-11-18 Qualcomm Incorporated Method of implicit deassignment of resources
JP4620743B2 (ja) * 2005-02-13 2011-01-26 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 再送の方法とシステム
US9246560B2 (en) 2005-03-10 2016-01-26 Qualcomm Incorporated Systems and methods for beamforming and rate control in a multi-input multi-output communication systems
US9154211B2 (en) 2005-03-11 2015-10-06 Qualcomm Incorporated Systems and methods for beamforming feedback in multi antenna communication systems
US8446892B2 (en) 2005-03-16 2013-05-21 Qualcomm Incorporated Channel structures for a quasi-orthogonal multiple-access communication system
US9520972B2 (en) 2005-03-17 2016-12-13 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9461859B2 (en) 2005-03-17 2016-10-04 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9143305B2 (en) 2005-03-17 2015-09-22 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
WO2006135710A2 (en) 2005-06-09 2006-12-21 Neocific, Inc. Methods and apparatus for power efficient broadcasting and communication systems
US9184870B2 (en) 2005-04-01 2015-11-10 Qualcomm Incorporated Systems and methods for control channel signaling
US9408220B2 (en) 2005-04-19 2016-08-02 Qualcomm Incorporated Channel quality reporting for adaptive sectorization
US9036538B2 (en) 2005-04-19 2015-05-19 Qualcomm Incorporated Frequency hopping design for single carrier FDMA systems
US7613138B2 (en) * 2005-05-23 2009-11-03 Microsoft Corporation Separating control and data in wireless networks
US8565194B2 (en) 2005-10-27 2013-10-22 Qualcomm Incorporated Puncturing signaling channel for a wireless communication system
US8611284B2 (en) 2005-05-31 2013-12-17 Qualcomm Incorporated Use of supplemental assignments to decrement resources
US8879511B2 (en) 2005-10-27 2014-11-04 Qualcomm Incorporated Assignment acknowledgement for a wireless communication system
US8462859B2 (en) 2005-06-01 2013-06-11 Qualcomm Incorporated Sphere decoding apparatus
KR100975698B1 (ko) * 2005-06-13 2010-08-12 삼성전자주식회사 셀룰러 통신을 위한 중계통신 시스템 및 방법
US8599945B2 (en) 2005-06-16 2013-12-03 Qualcomm Incorporated Robust rank prediction for a MIMO system
US9179319B2 (en) 2005-06-16 2015-11-03 Qualcomm Incorporated Adaptive sectorization in cellular systems
US8885628B2 (en) 2005-08-08 2014-11-11 Qualcomm Incorporated Code division multiplexing in a single-carrier frequency division multiple access system
US20070041457A1 (en) 2005-08-22 2007-02-22 Tamer Kadous Method and apparatus for providing antenna diversity in a wireless communication system
US9209956B2 (en) 2005-08-22 2015-12-08 Qualcomm Incorporated Segment sensitive scheduling
US8644292B2 (en) 2005-08-24 2014-02-04 Qualcomm Incorporated Varied transmission time intervals for wireless communication system
US9136974B2 (en) 2005-08-30 2015-09-15 Qualcomm Incorporated Precoding and SDMA support
CN100433921C (zh) * 2005-10-12 2008-11-12 上海华为技术有限公司 一种在下行链路上传输数据的方法
US9172453B2 (en) 2005-10-27 2015-10-27 Qualcomm Incorporated Method and apparatus for pre-coding frequency division duplexing system
US9210651B2 (en) 2005-10-27 2015-12-08 Qualcomm Incorporated Method and apparatus for bootstraping information in a communication system
US8582509B2 (en) 2005-10-27 2013-11-12 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
US9225488B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Shared signaling channel
US8693405B2 (en) 2005-10-27 2014-04-08 Qualcomm Incorporated SDMA resource management
US8477684B2 (en) 2005-10-27 2013-07-02 Qualcomm Incorporated Acknowledgement of control messages in a wireless communication system
US9225416B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Varied signaling channels for a reverse link in a wireless communication system
US8045512B2 (en) 2005-10-27 2011-10-25 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
US9144060B2 (en) 2005-10-27 2015-09-22 Qualcomm Incorporated Resource allocation for shared signaling channels
US9088384B2 (en) 2005-10-27 2015-07-21 Qualcomm Incorporated Pilot symbol transmission in wireless communication systems
US8582548B2 (en) 2005-11-18 2013-11-12 Qualcomm Incorporated Frequency division multiple access schemes for wireless communication
US8432794B2 (en) 2005-12-29 2013-04-30 Interdigital Technology Corporation Method and apparatus for selecting multiple transport formats and transmitting multiple transport blocks simultaneously with multiple H-ARQ processes
US8831607B2 (en) 2006-01-05 2014-09-09 Qualcomm Incorporated Reverse link other sector communication
WO2007078169A1 (en) * 2006-01-06 2007-07-12 Samsung Electronics Co., Ltd. Apparatus and method for transmitting/receiving arq packet in mobile communication system
JP4413869B2 (ja) * 2006-01-17 2010-02-10 株式会社エヌ・ティ・ティ・ドコモ 無線通信装置及び送信方法
JP2009525699A (ja) 2006-02-03 2009-07-09 インターデイジタル テクノロジー コーポレーション 送信時間間隔ごとに複数のハイブリッド自動再送要求プロセスをサポートする方法およびシステム
US7464313B2 (en) * 2006-03-09 2008-12-09 Motorola, Inc. Hybrid approach for data transmission using a combination of single-user and multi-user packets
KR101165120B1 (ko) 2006-03-29 2012-07-12 삼성전자주식회사 이동통신 시스템에서 복합 재전송 방법
US7903614B2 (en) * 2006-04-27 2011-03-08 Interdigital Technology Corporation Method and apparatus for selecting link adaptation parameters for CDMA-based wireless communication systems
WO2007129856A1 (en) * 2006-05-08 2007-11-15 Samsung Electronics Co., Ltd. Retransmission apparatus and method for high-speed data processing
KR101224334B1 (ko) * 2006-05-08 2013-01-18 삼성전자주식회사 고속 데이터 처리를 위한 재전송 장치 및 방법
JP5008721B2 (ja) * 2006-06-23 2012-08-22 エルジー エレクトロニクス インコーポレイティド 無線通信システムで資源を効率的に用いる方法
CN101123793B (zh) * 2006-08-09 2011-01-05 大唐移动通信设备有限公司 一种发送连续多个协议数据单元的方法及用户设备
JP2008053854A (ja) * 2006-08-22 2008-03-06 Fujitsu Ltd データの再送方法、通信装置、およびコンピュータプログラム
US8892979B2 (en) 2006-10-26 2014-11-18 Qualcomm Incorporated Coding schemes for wireless communication transmissions
US8453030B2 (en) 2006-10-26 2013-05-28 Qualcomm Incorporated Coding schemes for wireless communication transmissions
CN101001130B (zh) * 2007-01-23 2010-05-19 华为技术有限公司 Iub接口丢包率监测方法和装置
US8488610B2 (en) * 2007-05-16 2013-07-16 Broadcom Corporation System and method for communicating packet in a wireless multicast and broadcast communication network
JP5004679B2 (ja) * 2007-06-04 2012-08-22 京セラ株式会社 通信方法およびそれを利用した送信装置
US8553624B2 (en) 2007-10-10 2013-10-08 Samsung Electronics Co., Ltd. Asynchronous hybrid ARQ process indication in a MIMO wireless communication system
JP5251972B2 (ja) 2008-03-17 2013-07-31 日本電気株式会社 通信システム、基地局、移動局、再送制御方法およびプログラム
KR101003696B1 (ko) 2008-10-17 2010-12-24 숭실대학교산학협력단 무선 통신에서의 재전송에 의한 오버헤드를 줄이기 위한 패킷의 인코딩 및 디코딩을 이용한 패킷 전송 방법
EP2378738A4 (de) * 2008-12-17 2013-11-27 Fujitsu Ltd Paketsender, paketempfänger, kommunikationssystem und paketkommunikationsverfahren
CA2754348A1 (en) * 2009-03-05 2010-09-10 Telefonaktiebolaget L M Ericsson (Publ) Robust data transmission
US20100232400A1 (en) * 2009-03-11 2010-09-16 Sony Corporation Virtualizing single radio for multiple wireless interfaces in home mesh network
US8553547B2 (en) * 2009-03-30 2013-10-08 Broadcom Corporation Systems and methods for retransmitting packets over a network of communication channels
JP5257515B2 (ja) * 2009-05-19 2013-08-07 富士通株式会社 基地局、中継局、通信システムおよび通信方法
JP5453948B2 (ja) 2009-06-18 2014-03-26 富士通セミコンダクター株式会社 データ受信処理方法及びデータ受信処理装置
CN101931515A (zh) * 2009-06-19 2010-12-29 大唐移动通信设备有限公司 一种数据重传方法、系统及装置
CN102714583B (zh) * 2009-11-30 2015-06-03 法国电信公司 数据载波标识方法和系统
US9264342B2 (en) 2009-12-24 2016-02-16 Samsung Electronics Co., Ltd. Terminal device based on content name, and method for routing based on content name
US9268813B2 (en) 2009-12-24 2016-02-23 Samsung Electronics Co., Ltd. Terminal device based on content name, and method for routing based on content name
US9154260B2 (en) * 2010-03-26 2015-10-06 Qualcomm Incorporated Method and apparatus for reliable transmission of control information in a wireless communication network
WO2012050838A1 (en) 2010-09-28 2012-04-19 Neocific, Inc. Methods and apparatus for flexible use of frequency bands
CN102300333B (zh) * 2011-09-19 2013-09-04 电信科学技术研究院 一种mac调度方法及装置
US9059932B2 (en) 2011-11-03 2015-06-16 Qualcomm Incorporated Packet ordering based on delivery route changes in communication networks
US8824477B2 (en) 2011-11-03 2014-09-02 Qualcomm Incorporated Multiple delivery route packet ordering
US9148236B2 (en) * 2012-09-24 2015-09-29 Qualcomm Incorporated Optimized HARQ recombining within transmission window
EP2782280A1 (de) 2013-03-20 2014-09-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Zweistufen-Signalisierung für die Übertragung eines Datenstroms
CN105991242A (zh) * 2015-03-05 2016-10-05 中兴通讯股份有限公司 数据发送方法、接收方法、发送装置及接收装置
JP2016174211A (ja) * 2015-03-16 2016-09-29 富士通株式会社 通信システム
RU2761016C2 (ru) 2016-02-10 2021-12-02 АйПиКОМ ГМБХ УНД КО. КГ Механизмы автоматического запроса на повторение
KR20180013171A (ko) * 2016-07-28 2018-02-07 삼성전자주식회사 이동 통신 시스템에서 harq 프로세스 관리 방법 및 장치
CN107888341B (zh) * 2016-09-29 2022-09-16 大唐移动通信设备有限公司 一种数据传输方法及装置
KR20180091527A (ko) * 2017-02-07 2018-08-16 삼성전자주식회사 무선 셀룰라 통신 시스템에서 제어 및 데이터 정보 전송방법 및 장치

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4862461A (en) * 1987-01-12 1989-08-29 International Business Machines Corp. Packet switch network protocol
US4999834A (en) * 1989-03-20 1991-03-12 International Business Machines Corporation Communication method and apparatus
US5603081A (en) * 1993-11-01 1997-02-11 Telefonaktiebolaget Lm Ericsson Method for communicating in a wireless communication system
JP3248348B2 (ja) * 1994-03-15 2002-01-21 松下電器産業株式会社 通信方法及び通信装置
US5617417A (en) * 1994-09-07 1997-04-01 Stratacom, Inc. Asynchronous transfer mode communication in inverse multiplexing over multiple communication links
US5784362A (en) * 1995-04-17 1998-07-21 Telefonaktiebolaget Lm Ericsson Temporary frame identification for ARQ in a reservation-slotted-ALOHA type of protocol
US5699367A (en) * 1995-12-29 1997-12-16 Telefonaktiebolaget Lm Ericsson Concatenated error detection coding and packet numbering for hierarchical ARQ schemes
US6021124A (en) * 1997-08-19 2000-02-01 Telefonaktiebolaget Lm Ericsson Multi-channel automatic retransmission query (ARQ) method
US6317430B1 (en) * 1998-02-19 2001-11-13 Lucent Technologies Inc. ARQ protocol support for variable size transmission data unit sizes using a hierarchically structured sequence number approach
US6778558B2 (en) 1998-02-23 2004-08-17 Lucent Technologies Inc. System and method for incremental redundancy transmission in a communication system
FI981546A (fi) 1998-07-03 2000-01-04 Nokia Networks Oy Tiedonsiirtomenetelmä ja matkapuhelinjärjestelmä
US6359877B1 (en) * 1998-07-21 2002-03-19 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for minimizing overhead in a communication system
AU5663199A (en) * 1998-08-07 2000-02-28 Telefonaktiebolaget Lm Ericsson (Publ) Group addressing in a packet communication system
JP4037965B2 (ja) * 1998-08-18 2008-01-23 富士通株式会社 符号分割多元接続通信システム並びに符号分割多元接続通信システム用基地局及び符号分割多元接続通信システム用端末装置並びに符号分割多元接続通信方法並びに端末装置の通信方法
US6614810B1 (en) * 1998-09-14 2003-09-02 Samsung Electronics Co., Ltd. Method for processing data to be transmitted over common channel
EP0996248A1 (de) * 1998-10-21 2000-04-26 Telefonaktiebolaget L M Ericsson (Publ) ARQ Protokoll mit Packetbasierten Zuverlässigkeits Einstellung
US6704898B1 (en) * 1998-10-23 2004-03-09 Telefonaktiebolaget Lm Ericsson (Publ) Combined hybrid automatic retransmission request scheme
US6367045B1 (en) * 1999-07-01 2002-04-02 Telefonaktiebolaget Lm Ericsson (Publ) Bandwidth efficient acknowledgment/negative acknowledgment in a communication system using automatic repeat request (ARQ)
JP2000196673A (ja) 1998-12-28 2000-07-14 Toshiba Corp ハイブリッド移動通信システム、ハイブリッド移動通信装置及びハイブリッド移動通信方法
US6498936B1 (en) * 1999-01-22 2002-12-24 Ericsson Inc. Methods and systems for coding of broadcast messages
US7065068B2 (en) * 1999-12-29 2006-06-20 Motorola, Inc. Multi channel stop and wait ARQ communication method and apparatus
US6801512B1 (en) * 2000-03-23 2004-10-05 Motorola, Inc. Method and apparatus for providing a distributed architecture digital wireless communication system
EP1156617B1 (de) * 2000-05-17 2003-09-10 Matsushita Electric Industrial Co., Ltd. Hybrides ARQ Verfahren zur Datenpaketübertragung
US6816478B1 (en) * 2000-11-03 2004-11-09 Lucent Technologies Inc. Apparatus and method for use in effecting automatic repeat requests in wireless multiple access communications systems

Also Published As

Publication number Publication date
CA2348137C (en) 2006-09-05
DE60005150D1 (de) 2003-10-16
EP2375612A1 (de) 2011-10-12
JP3746278B2 (ja) 2006-02-15
JP2010022016A (ja) 2010-01-28
EP2375612B1 (de) 2013-01-23
EP1931077B1 (de) 2015-08-05
ES2550222T3 (es) 2015-11-05
EP1156617A1 (de) 2001-11-21
JP2010028822A (ja) 2010-02-04
CN101075859A (zh) 2007-11-21
JP2001358699A (ja) 2001-12-26
US20060171416A1 (en) 2006-08-03
EP1931077A2 (de) 2008-06-11
US20010055290A1 (en) 2001-12-27
JP3913259B2 (ja) 2007-05-09
EP1931077A3 (de) 2008-12-03
CN1968073B (zh) 2012-11-07
EP1337075B1 (de) 2007-07-11
US20080069055A1 (en) 2008-03-20
JP4420912B2 (ja) 2010-02-24
JP4485594B2 (ja) 2010-06-23
DE20023933U1 (de) 2007-09-27
CN1968073A (zh) 2007-05-23
EP1337075A2 (de) 2003-08-20
US7061915B2 (en) 2006-06-13
ES2289205T3 (es) 2008-02-01
JP4427096B2 (ja) 2010-03-03
EP1679817A1 (de) 2006-07-12
EP1156617B1 (de) 2003-09-10
CA2545466C (en) 2011-10-18
DE20023936U1 (de) 2007-09-27
CN1323123A (zh) 2001-11-21
US6658005B2 (en) 2003-12-02
CA2348137A1 (en) 2001-11-17
CN101075859B (zh) 2012-12-05
DE60038198D1 (de) 2008-04-10
ES2301110T3 (es) 2008-06-16
CN1333562C (zh) 2007-08-22
US8072981B2 (en) 2011-12-06
JP3455195B2 (ja) 2003-10-14
EP1337075A3 (de) 2005-04-27
JP2004007686A (ja) 2004-01-08
JP2006311615A (ja) 2006-11-09
US20040062222A1 (en) 2004-04-01
JP2010022017A (ja) 2010-01-28
EP1679817B1 (de) 2008-02-27
JP2006094551A (ja) 2006-04-06
DE60035530T2 (de) 2007-10-25
ES2206103T3 (es) 2004-05-16
US7310340B2 (en) 2007-12-18
DE60035530D1 (de) 2007-08-23
CA2545466A1 (en) 2001-11-17
DE60005150T2 (de) 2004-04-01

Similar Documents

Publication Publication Date Title
DE60038198T2 (de) Hybrides ARQ-System mit Daten- und Kontrollkanal für Datenpaketübertragung
DE60007090T2 (de) Vorwärtsfehlerkorrektur über multiplexierte cdma kanäle die hohe kodierungsleistung ermöglichen
DE60103491T2 (de) Ratenanpassung in einem Funkübertragungssystem
DE60312689T2 (de) Verfahren und vorrichtung zur verminderung von übertragungsfehlern
DE69915280T2 (de) Datenübertragung über eine kommunikationsverbindung mit variabler datenrate
DE10248706B4 (de) Sendeempfänger-Vorrichtung und Verfahren für die effiziente Neuübertragung und Decodierung von Daten mit hoher Geschwindigkeit in einem CDMA-Mobilkommunikationssystem
DE60124923T2 (de) Flexible automatische wiederholungsaufforderung für paketdatenübertragung
DE10233883B4 (de) Vorrichtung und Verfahren für die Wiederholungsübertragung von Hochgeschwindigkeitsdaten in einem mobilen CDMA Kommunikationssystem
DE60221606T2 (de) Verfahren zum Steuern der Datenübertragung in einem Funkkommunikationssystem
DE10251289B4 (de) Sendeempfängervorrichtung und Verfahren zur effizienten Neuübertragung von Hochgeschwindigkeits-Paketdaten
DE60035773T2 (de) Datenwiederübertragungsverfahren in einem sprach-über-datenkommunikationssystem
DE60127836T2 (de) Übertragungsverfahren von rückführungsinformationen in einem hybriden wiederholungsaufforderungsprotokoll
DE60104113T2 (de) Übertragungsverfahren und Übertragungsgerät mit Mehrkanal-ARQ
DE60311426T2 (de) Datentransferverfahren
DE602004012702T2 (de) Verfahren zur HARQ-Wiederholungszeitsteuerung
DE10248446B4 (de) Sende/Empfangsvorrichtung und Verfahren für eine Paketwiederholungsübertragung in einem mobilen Kommunikationssystem
DE60129658T2 (de) Teilpaket-Anpassung in einem drahtlosen Kommunikationssystem
DE60035291T2 (de) Verfahren und vorrichtung zur nachrichtenübertragung mit mehrkanal stop-und-warten arq
EP1256242B1 (de) Verfahren zum übertragen von paketdateninformationen in einem funk-kommunikationssystem
DE69632092T2 (de) Sendewiederholungssteuerungsverfahren für CDMA-Mobilkommunikation
EP1461888B1 (de) Verfahren und vorrichtung zur datenübertragung, wobei ein bitratenanpassungsmuster zwischen sender und empfänger signalisiert wird
DE20221907U1 (de) Vorrichtung zur drahtlosen Kommunikation
DE10295696T5 (de) Schlitzformat und Quittierungsverfahren für ein drahtloses Kommunikationssystem
DE602004010433T2 (de) Verfahren, system und vorrichtung zur arq-datenübertragung
DE10022270B4 (de) Verfahren und Kommunikationssystem zum Übertragen von kodierten Datenpaketen

Legal Events

Date Code Title Description
8363 Opposition against the patent
8327 Change in the person/name/address of the patent owner

Owner name: PANASONIC CORP., KADOMA, OSAKA, JP