DE69633207T2 - Haarentfernungsgerät unter Verwendung von optischen Pulsen - Google Patents

Haarentfernungsgerät unter Verwendung von optischen Pulsen Download PDF

Info

Publication number
DE69633207T2
DE69633207T2 DE69633207T DE69633207T DE69633207T2 DE 69633207 T2 DE69633207 T2 DE 69633207T2 DE 69633207 T DE69633207 T DE 69633207T DE 69633207 T DE69633207 T DE 69633207T DE 69633207 T2 DE69633207 T2 DE 69633207T2
Authority
DE
Germany
Prior art keywords
skin
applicator
hair
optical
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
DE69633207T
Other languages
English (en)
Other versions
DE69633207D1 (de
DE69633207T3 (de
Inventor
Rox R. Anderson
Melanie Grossman
William Farinelli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Hospital Corp
Original Assignee
General Hospital Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27009635&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=DE69633207(T2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US08/382,122 external-priority patent/US5595568A/en
Application filed by General Hospital Corp filed Critical General Hospital Corp
Publication of DE69633207D1 publication Critical patent/DE69633207D1/de
Publication of DE69633207T2 publication Critical patent/DE69633207T2/de
Application granted granted Critical
Publication of DE69633207T3 publication Critical patent/DE69633207T3/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/203Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser applying laser energy to the outside of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00137Details of operation mode
    • A61B2017/00154Details of operation mode pulsed
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00137Details of operation mode
    • A61B2017/00154Details of operation mode pulsed
    • A61B2017/00172Pulse trains, bursts, intermittent continuous operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22082Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for after introduction of a substance
    • A61B2017/22085Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for after introduction of a substance light-absorbing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/30Surgical pincettes without pivotal connections
    • A61B2017/306Surgical pincettes without pivotal connections holding by means of suction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00011Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
    • A61B2018/00017Cooling or heating of the probe or tissue immediately surrounding the probe with fluids with gas
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00011Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
    • A61B2018/00023Cooling or heating of the probe or tissue immediately surrounding the probe with fluids closed, i.e. without wound contact by the fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00452Skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00452Skin
    • A61B2018/00476Hair follicles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/064Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
    • A61B2090/065Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension for measuring contact or contact pressure

Description

  • Hintergrund
  • Die vorliegende Erfindung betrifft eine Vorrichtung zum Entfernen von Haaren mit optischer Strahlung. Übermäßige Behaarung (Hypertrichose) und/oder unerwünschte Haare sind weit verbreitete dermatologische und kosmetische Probleme und können durch Vererbung, Malignität oder endokrinologische Krankheiten, z. B. Hirsutismus (d. h. durch Hormone wie z. B. Androgene bedingte übermäßige Behaarung) verursacht werden. Haare können mit einer Anzahl verschiedener Methoden, darunter Wachsepilation, Enthaarungscremes und selbstverständlich Rasieren, vorübergehend entfernt werden. Alternativ können Haare durch Elektrolyse permanent entfernt werden; dieser Prozess beinhaltet das Einführen einer stromführenden Nadel in jedes Haarfollikel und ist oft schmerzhaft, uneffizient und zeitraubend.
  • Auf optischer Technik basierende Verfahren, wie z. B. die Verwendung von Laserlicht, werden ebenfalls für die Enthaarung eingesetzt. Zum Beispiel beschreibt US-A-4 388 924 die Bestrahlung einzelner Haarfollikel mit einem Laser; bei diesem Verfahren bewirkt die Erwärmung des Wurzelteils des Haares die Gerinnung in den lokalen Blutgefäßen, was die Zerstörung des Follikels und somit die Beseitigung des Haares bewirkt. Verwandte Methoden, wie die in US-A-5 226 907 beschriebenen, betreffen die Zerstörung des Follikels durch erstens Auftragen eines lichtabsorbierenden Stoffes auf den Bereich von Interesse, wobei der lichtabsorbierende Stoff wenigstens teilweise in das Follikel hineinwandert, Entfernen von überschüssigem lichtabsorbierendem Stoff und dann Bestrahlen des Bereichs zum Erwärmen des Stoffs und somit des Follikels, um die Zerstörung des Follikels zu verursachen.
  • Die obigen Methoden vom Stand der Technik haben eine Anzahl von Begrenzungen. Zunächst sind die Methoden zum Bestrahlen eines einzelnen Haarfollikels zeitraubend und daher allgemein zum Entfernen von Haaren, außer aus einem sehr kleinen Bereich oder aus einem Bereich, in dem sich nur wenige Haare befinden, nicht praktisch. Der Vorgang kann auch sehr schmerzhaft sein, besonders wenn ein nadelartiges Element in das Haarfollikel eingeführt wird, um zu ermöglichen, dass Lichtenergie den Bulbus oder die Haarwurzel oder Papille erreicht, Teile des Haarfollikels, die zerstört werden müssen, um ein Nachwachsen des Haares zu verhindern. Wo die Strahlungsquelle nicht in das Follikel eingeführt wird, ist es schwierig, den erforderlichen Teilen des Follikels ausreichend Energie zuzuführen, um ihre Zerstörung zu bewirken, ohne gleichzeitig auch an dem umgebenden Gewebe beträchtlichen Schaden zu verursachen und dem Patienten dadurch Schmerzen und Verletzungen zuzufügen.
  • Während die Methode des letzteren Patentes insofern vorteilhaft ist, als sie das gleichzeitige Entfernen einer Anzahl von Haaren in einem bestimmten Bereich zulässt, ist es mit dieser Methode schwierig, den lichtabsorbierenden Stoff oder Chromophor tief genug in das Follikel einzubringen, um die Zerstörung der Papille zu bewirken. Ferner führt diese Methode dazu, dass beträchtliche Energie auf die Epidermis und andere Hautschichten im behandelten Bereich ausgeübt und von diesen absorbiert wird, wobei beträchtlich weniger Energie die Wurzel oder Papille des Follikels erreicht. Die völlige Zerstörung des Follikels und daher permanente oder wenigstens langfristige Enthaarung lässt sich daher nur schwer erreichen, besonders ohne eine Beschädigung der Epidermis und anderer Hautschichten in dem Bereich zu riskieren.
  • Es besteht daher ein Bedarf an einer verbesserten Methode zur Durchführung der Haarentfernung, die optischer Energie das Erreichen von Bulbus und Grund oder Wurzel von Haarfollikeln in einem Bereich ermöglicht, während die Beschädigung der Epidermis in dem Bereich minimiert wird, wodurch Beschwerden für den Patienten und potentielle nachteilige Nebenwirkungen der Behandlung minimiert werden.
  • Zusammenfassung der Erfindung
  • Die vorliegende Erfindung sieht eine Vorrichtung zum gleichzeitigen Entfernen einer Mehrzahl von Haaren von einem Hautbereich vor, wie in Anspruch 1 definiert.
  • Die genannte Strahlung hat vorzugsweise eine Wellenlänge zwischen 680 nm und 900 nm und eine Fluenz zwischen 10 J/cm2 und 200 J/cm2 und die Dauer der Bestrahlung des genannten Hautbereichs beträgt 50 μs bis 200 ms, vorzugsweise 2 ms bis 200 ms und bevorzugt 2 ms bis 100 ms.
  • Vorzugsweise ist auch wenigstens die genannte Oberfläche des Applikators aus einem Material mit einem Brechungsindex, der mit dem Brechungsindex der Hautoberfläche in dem genannten Hautbereich im Wesentlichen übereinstimmt, gebildet.
  • Vorzugsweise umfasst die Vorrichtung auch ein Element in dem optischen Weg zum Konvergieren der optischen Strahlung beim Verlassen des Applikators durch die genannte Oberfläche.
  • Ebenfalls vorzugsweise beinhaltet der Applikator ferner ein Gehäuse, wobei eine an dem Gehäuse angeordnete Oberfläche eine konvexe Form hat und ausgeführt ist, um in dem genannten Hautbereich mit der Hautoberfläche in Druckkontakt zu sein.
  • Die Methode zum Gebrauch der Vorrichtung der Erfindung beinhaltet das Inberührungbringen des Applikators mit der Hautoberfläche in dem Hautbereich und das Ausüben optischer Strahlung einer ausgewählten Wellenlänge und einer ausgewählten Fluenz durch den Applikator auf den Hautbereich für ein vorbestimmtes Zeitintervall. Der Applikator wird vorzugsweise auf die Hautoberfläche gepresst, wodurch der Abstand vom Applikator zur Papille der Haarfollikel verringert und ihre Zerstörung ermöglicht wird. Ferner kann die Hautfläche im Hautbereich während des Ausübens optischer Strahlung auf den Hautbereich und/oder vorher auf eine ausgewählte Tiefe gekühlt werden.
  • Der Applikator wird zum Kühlen der Hautfläche im Hautbereich auf die auswählte Tiefe genutzt und die ausgewählte Tiefe ist vorzugsweise wenigstens gleich der Tiefe der Epidermisschicht der Haut (d. h. die der Hautoberfläche am nächsten liegende Hautschicht (Oberhaut)). Das Kühlen durch den Applikator wird durch Kühlen von wenigstens der Oberfläche des mit der Hautoberfläche in Berührung befindlichen Applikators erreicht, wobei derartiges Kühlen vorzugsweise vor und während der Bestrahlung der Haut erfolgt. Vorzugsweise wird das Kühlen des Applikators durch Hindurchführen eines Kühlungsfluids, wie z. B. Wasser, durch den Applikator, vorzugsweise durch einen Kanal nahe der Oberflächen erreicht. Vorzugsweise wird das Bestrahlung der Hautoberfläche nicht durchgeführt, bis der Hautbereich auf im Wesentlichen die ausgewählte Tiefe gekühlt worden ist. Bevorzugt wird die Kühlung sowohl vor als auch während der Bestrahlung durchgeführt, und der ausgewählte Fluss und die vorbestimmte Belichtungszeit (d. h. Zeitintervall für die Bestrahlung) werden so ausgewählt, dass es höchstens eine minimale Erwärmung der Haut im Hautbereich bis auf die ausgewählte Tiefe gibt, während Haare und Follikel unterhalb der ausgewählten Tiefe ausreichend erwärmt werden, um wenigstens die Haare und Follikel zu beschädigen, ohne eine signifikante Beschädigung des die Follikel umgebenden Gewebes zu verursachen. Ein bevorzugtes Zeitintervall für die Bestrahlung ist 2 bis 100 ms.
  • In einigen Ausgestaltungen konvergiert der Applikator auf den Hautbereich aufgestrahlte optische Strahlen, wodurch die Bestrahlung der Follikelpapillen weiter erleichtert wird.
  • Vorzugsweise ist das Element, das die Strahlen konvergiert, eine Linse. In bevorzugten Ausgestaltungen hat der Applikator auch eine mit der Hautoberfläche in Berührung befindliche konvexe Oberfläche, die weitgehend einheitlichen Druck auf sie ausübt, um die darunter liegende Hautoberfläche zu verformen. Für anderen Ausgestaltungen ist der Applikator zum Bilden einer Hautfalte im Hautbereich und zum Übertragen optischer Strahlung auf zwei weitgehend entgegengesetzte Seiten der Falte ausgelegt. Beispielsweise kann der Applikator eine in seiner Oberfläche, die mit der Hautoberfläche in Berührung ist, gebildete Ausnehmung (Schlitz) haben, wobei wenigstens ein Teil des Hautbereichs in die Ausnehmung hineingezogen wird und der Hautbereich mit optischen Strahlen von wenigstens zwei entgegengesetzten Seiten der Ausnehmung bestrahlt wird.
  • In einigen Ausgestaltungen kann eine beträchtliche Brechungsindexanpassung zwischen dem Applikator und der Hautoberfläche in dem genannten Hautbereich aufrecht erhalten werden. Eine solche Brechungsindexanpassung kann durch eine Schicht von Brechwertanpassungsstoff zwischen dem Applikator und der Hautoberfläche in einem Hautbereich und/oder durch Bilden des Applikators aus einem Material bereitgestellt werden, das wenigstens für die mit dem Hautbereich in Berührung befindliche Oberfläche einen Brechungsindex hat, der im Wesentlichen mit dem der Hautoberfläche übereinstimmt.
  • Zum Erleichtern der Enthaarung kann die Behaarung im Hautbereich vor der Bestrahlung abrasiert werden. Eventuell ist es aber vorzuziehen, die Haare im Hautbereich vor der Bestrahlung zu epilieren. Wenn Haare epiliert werden, kann die Zerstörung der Follikel dadurch erleichtert werden, dass die Follikel, aus denen Haare epiliert wurden, mit einem Stoff gefüllt werden, der vorzugsweise optische Strahlen mit der für die Bestrahlung verwendeten ausgewählten Wellenlänge absorbiert (d. h. ein Chromophor). Ferner kann, wenn nur eine vorübergehende Enthaarung gewünscht wird, dies relativ schmerzlos für einen Zeitraum von bis zu mehreren Wochen erreicht werden, indem der Chromophor auf den Bereich aufgetragen wird, der vorzugsweise zuvor rasiert worden ist, wobei der Chromophor bis auf eine Tiefe von einigen Millimetern, ungefähr bis auf die Tiefe der Talgdrüse in die Haarfollikel eindringt. Durch den Applikator auf den Hautbereich ausgeübte schwache Bestrahlung ergibt dann die Zerstörung des Haares ohne eine Zerstörung des Follikels.
  • In einer Ausgestaltung hat die mit der Haut in Berührung befindliche Oberfläche des Applikators eine konvexe Form, während die Oberfläche für eine alternative Ausgestaltung eine in ihr gebildete Ausnehmung hat, wobei der optische Weg zu wenigstens zwei entgegengesetzten Seiten der Ausnehmung führt, und der Applikator eine Einrichtung zum Hineinziehen von wenigstens einem Teil des Hautbereichs in den Schlitz hinein hat, wobei diese Einzieheinrichtung vorzugsweise ein Unterdruckanlegeelement aufweist.
  • Kurze Beschreibung der Zeichnungen
  • Die Erfindung wird unter Bezugnahme auf die Zeichnungen beispielhaft weiter beschrieben. Dabei zeigt bzw. zeigen:
  • 1 eine perspektivische Ansicht einer Ausgestaltung einer erfindungsgemäßen Enthaarungsvorrichtung auf Laserbasis;
  • 2A und 2B Querschnittansichten einer Bestrahlungseinheit oder eines Applikators, die/der zur Verwendung mit einer Enthaarungsvorrichtung der Erfindung geeignet ist, wobei der Applikator Licht von einem Lichtwellenleiter oder einem Lichtwellenleiterbündel beziehungsweise einer Spiegelbaugruppe erhält;
  • 3A, 3B und 3C eine auseinandergezogene Querschnittansicht der Kontaktvorrichtung der Bestrahlungseinheit in direktem Kontakt mit einem Haare enthaltenden Hautbereich bzw. eine ausbruchweise Querschnittansicht, die die rückgestreuten optischen Felder am Schnittstellenbereich Kontaktvorrichtung/Epidermis zeigt, und eine ausbruchsweise Querschnittansicht, die den Wärmetransport am Schnittstellenbereich zeigt;
  • 4 eine grafische Darstellung, die die optischen Absorptionsspektra von Melanin, Hämoglobin, oxidiertem Hämoglobin und Wasser zeigt;
  • 5A und 5B die zeitlichen und räumlichen Profile bzw. das bevorzugte optische Feld, die während des Enthaarungsprozesses verwendet werden;
  • 6 eine grafische Darstellung der computererzeugten optischen Intensität (Leistungsdichte) im Verhältnis zur Hauttiefe für verschiedene optische Felder;
  • 7 eine Fotografie, die Hautbereiche eines Patienten drei Monate nach der Behandlung gemäß dem Enthaarungsverfahren der Erfindung zeigt;
  • 8A, 8B und 8C Oszilloskopkurven, die die zeitabhängigen Temperaturreaktionen von trockenem schwarzem Haar bzw. nassem schwarzem Haar und von den schwarzhaarigen Versuchsbereich umgebender lebender Haut nach der Bestrahlung zeigen;
  • 9 eine grafische Darstellung, die den Temperaturanstieg im Verhältnis zu Laserimpulsenergie für trockenes Haar (DH), nasses Haar (WH) und Haut (S) von Versuchsbereichen acht verschiedener Patienten zeigt;
  • 10A einen teilweisen Querschnitt eines Applikators der Erfindung, der zum Ausüben einer alternativen Ausgestaltung der Erfindung verwendet wird, wobei vor der Bestrahlung eine Epilation und das Füllen leerer Follikel mit einem Chromophor durchgeführt werden, und
  • 10B einen Querschnitt eines Applikators gemäß einer weiteren zur Haarentfernung verwendeten Ausgestaltung.
  • Ausführliche Beschreibung
  • Ein beispielhaftes lasergestütztes Haarentfernungssystem 10, Bezug nehmend auf 1, hat eine Lichtquelle 12, die z. B. einen oder mehr Laser zum Erzeugen des Bestrahlungsfeldes aufweisen kann. Die Lichtquelle 12 kann optisch in eine Reihe von strahlmanipulierenden Optiken 14 eingekoppelt sein, die wiederum über ein Lichtwellenleiterkabel 16 (oder eine andere faseroptische Vorrichtung) mit der Bestrahlungseinheit oder dem Applikator 18 verbunden sein können. Während der Enthaarungstherapie wird die Lichtquelle von einer Spannungs- und Stromversorgung 19 betrieben und überträgt einen Lichtstrom durch die Optik 14 und die Faseroptik 16 zur Bestrahlungseinheit oder zum Applikator 18. Das Feld wird dann an einem Bereich 20 eines Patienten 22 (der sich zum Beispiel auf einem Tisch 25, einem Stuhl oder einem anderen geeigneten Positionierungselement, je nach der Lage des Bereichs 20 am Körper des Patienten, befindet) erzeugt, was zum Entfernen von Haar in dem Bereich 20 führt. Wenn der gewünschte Bereich behandelt worden ist, kann die Bestrahlungseinheit leicht am Patienten 22 entlang bewegt werden, wie durch Pfeile 27 angedeutet, und zum Behandeln nachfolgender Bereiche verwendet werden.
  • Die räumlichen und zeitlichen Eigenschaften des optischen Feldes bestimmen die Effizienz des Enthaarungsprozesses, und einige dieser Eigenschaften können, wenn erwünscht, mit einer Reihe von Einstellelementen 24, 26, 28 eingestellt werden, die sich an verschiedenen Komponenten des Haarentfernungssystems 10 befinden. Beispielsweise können mit Hilfe der an der Stromversorgung befindlichen Einstellelemente 24 die optische Intensität und Pulsrate des Bestrahlungsfeldes gesteuert werden, indem Parameter wie Spannung, Strom und Schaltrate für die Stromversorgung des Lasers eingestellt werden. Andere Eigenschaften des Feldes, wie Wellenlänge und Impulsdauer, können mit den Einstellelementen 26 variiert werden, die Komponenten (z. B. Gitter-, Spiegel- oder Filterpositionen, Verschlüsse oder impulsformende Einrichtungen) der Lichtquelle 12 einstellen; für bevorzugte Ausgestaltungen würde die Wellenlänge aber nicht verstellt. Desgleichen können Einstellelemente 28 zum Einstellen der Modulationsoptik 14 verwendet werden, was die Regelung von Eigenschaften wie Modenqualität, Strahldurchmesser und Einkopplung des Bestrahlungsfeldes in die Faseroptik 16 zur Folge hat. Alle Einstellelemente können von Hand eingestellt werden und das System kann auch von Hand (d. h. der Laser kann eingeschaltet werden) oder alternativ mit einem mit dem System 10 verbundenen Pedal 30 betätigt werden.
  • In anderen Ausgestaltungen können Lichtquelle, Kopplungsoptik und Bestrahlungseinheit in einem einzelnen, handgehaltenen Gerät eingeschlossen sein.
  • In diesem Fall ist die Lichtquelle vorzugsweise eine Anordnung von direkt mit der Bestrahlungseinheit gekoppelten Diodenlasern und wird von einer kleinen externen Stromversorgung angetrieben. Die Kompaktheit dieser Art von optischem System lässt eine kontrollierbarere, manövrierbarere Vorrichtung zu und schließt zusätzlich die Notwendigkeit von Lichtwellenleiter-Übertragungssystemen aus.
  • Um die bestrahlten Haarfollikel effektiv zu zerstören, ohne die umgebende Haut zu beschädigen, ist das von dem System 10 und der Bestrahlungseinheit 18 erzeugte Lichtfeld für das Maximieren des Quantums der in die Haarfollikel eingetragenen lichtinduzierten Wärme, während der Grad der Verletzung der umgebenden Haut reduziert wird, ausgelegt. Vorzugsweise wird z. B. ausreichend optische Energie zu mehreren „Ziel"-Bereichen (Targets) am Haarfollikel übertragen; zu diesen Bereichen übertragene Strahlung hat eine vollständige und lokalisierte Zerstörung der Follikel zur Folge.
  • Vor der Behandlung kann der zu behandelnde Bereich rasiert werden, um die Bestrahlung der Follikel zu erleichtern. Alternativ, wie später noch besprochen wird, können Haare in dem Bereich epiliert werden und ein Chromophor kann auf Bereich 20 aufgetragen werden, wobei dieses Chromophor in die leeren Follikel wandert. Überschüssiges Chromophor kann dann vor der Bestrahlung von der Hautoberfläche entfernt werden. Vor der Behandlung kann auch ein anästhesierendes Mittel lokal eingespritzt oder auf die Hautoberfläche aufgetragen werden, und nach der Behandlung können Patienten mit topischen antibiotischen Salben behandelt werden.
  • Mechanische Konstruktion
  • Der Applikator oder die Bestrahlungseinheit 18 des Haarentfernungssystems, jetzt mit Bezug auf die 2A und 2B, erlaubt die Übertragung des Bestrahlungsfeldes 38 auf die im Bereich 20 befindlichen Haarfollikel 40. Wie in 2A gezeigt, kann das Feld 38 mit Hilfe eines Lichtwellenleiterkabels 16 (oder einer anderen faseroptischen Vorrichtung), das eine oder mehr Glasfasern oder faseroptischen Bündel enthält, zur Bestrahlungseinheit 18 übertragen werden. In diesem Fall ist das Feld 38 nach dem Verlassen des Hohlleiters im typischen Fall räumlich gestreut und wird vorzugsweise mit einer plankonvexen Linse 42 gesammelt und grob ausgerichtet. Alternativ kann das Feld, wie in 2B gezeigt, beispielsweise mit einem oder mehreren Reflexionsspiegeln 44 zur Bestrahlungseinheit übertragen werden. Dies lässt es zu, dass das Feld 38 grob ausgerichtet wird, bevor es auf die Linse 42 auftrifft. In Abhängigkeit von der Brennweite der Linse 42 und der Modenqualität des Bestrahlungsfeldes wird das Feld vorzugsweise mit Hilfe z. B. einer plankonvexen Linse, wie in der Figur gezeigt, verdichtet. Nachdem der Strahl durch diese Optik hindurchgeleitet worden ist, trifft er auf eine Linse oder Kontaktvorrichtung 46 auf, die mit dem Hautbereich 20 in Berührung gebracht ist.
  • Die optischen und mechanischen Eigenschaften der Kontaktvorrichtung 46 sind ausgewählt, um effizientes Einkoppeln der optischen Strahlung in den Hautbereich zuzulassen (was ein übertragenes Feld 38 zur Folge hat), und die thermischen Eigenschaften der Kontaktvorrichtung sind ausgewählt, um effizientes Auskoppeln von Wärme aus dem Hautbereich zuzulassen. Wenn das Feld übertragen worden ist, wird es zum Bestrahlen, Erwärmen und dann Zerstören der Haarfollikel 40 verwendet. Die Kontaktvorrichtung 46 wird außerdem zum Auskoppeln von Licht und Wärme aus der oberflächlichen Hautschicht (d. h. Epidermis) des bestrahlten Bereichs verwendet. Das lässt die Bestrahlung und selektive Erwärmung des im tiefen Teil der Haarfollikel enthaltenen, lichtabsorbierenden Pigments (d. h. Melanin) zu, was die permanente Zerstörung des Follikels erlaubt, während potentiell nachteilige optische und thermische Energie gleichzeitig aus den darüberliegenden Hautschichten herausgeleitet wird. Es können somit mehrere Haarfollikel zerstört werden, wodurch Haar bleibend aus dem Hautbereich entfernt wird, ohne dem Patienten wesentliche Schmerzen oder Verletzungen zu verursachen. Die zerstörten Follikel werden schließlich vom Körper entfernt.
  • Sowohl die Linse 42 als auch die Kontaktvorrichtung 46 sind vorzugsweise in einem Gehäuse 48 angeordnet, das Eingangs- 50 und Ausgangsöffnungen 52 zum Hinein- und Herausfließen von Fluids enthält, wie z. B. Kühlwasser und reines Gas (d. h. Stickstoff zum Verhindern des Beschlagens der Linse); Fluids werden zum Kühlen der Kontaktvorrichtung 46 verwendet, die wiederum die Hautoberfläche kühlt. Alternativ kann das Gehäuse 48 einen elektrisch gesteuerten Kühler haben, um die genaue Kontrolle über die Temperatur der Kontaktvorrichtung 46 zu ermöglichen.
  • Vorzugsweise wird die Temperatur der Oberflächenschicht oder Epidermis (Oberhaut) der Haut auf zwischen 4–15°C verringert. Außerdem wird bevorzugt, dass man vor der Bestrahlung einen kurze Zeitraum (z. B. ungefähr eine Sekunde) verstreichen lässt, um sicherzustellen, dass die Epidermis ausreichend gekühlt wird. Ein externes Gehäuse 39, wie in 2B durch die gestrichelte Linie angedeutet, oder ein Lichtwellenleiter-Kopplungsgehäuse 37, wie in 2A gezeigt, kann zum Verbinden der lichterzeugenden Einrichtung mit dem Gehäuse 48 verwendet werden. Die Kontaktvorrichtung 46, jetzt Bezug nehmend auf 3A, ist vorzugsweise zu einer zum Konvergieren des Bestrahlungsfeldes, vorzugsweise nahe dem unteren Ende des Haarfollikels 40, geformten Linse geformt. Um Licht zu konvergieren, muss die Kontaktvorrichtung bei der Bestrahlungswellenlänge optisch transparent sein und hat vorzugsweise eine bikonvexe oder plankonvexe Linsenform, vorzugsweise mit einer Blendenzahl, die kleiner als oder gleich f/1,0 ist, und eine Brennweite zwischen ungefähr 0,5 und 2 cm. Die Kontrolle über die Oberflächenform der Kontaktvorrichtung erlaubt dem konvergierten Lichtfeld 38'' die gleichzeitige Bestrahlung verschiedener Zielteile des Haarfollikels, was zu einer effizienten Zerstörung führt. Typisch hat jeder bestrahlte Haarschaft einen Durchmesser von ungefähr 75 Mikrometern, wobei das gesamte Follikel einen Durchmesser von ungefähr 200 Mikrometern hat.
  • Nach dem Passieren durch die Kontaktvorrichtung 46 wird das Lichtfeld 38'' vorzugsweise durch die Epidermis 56 der Hautschicht (die eine Dicke von beispielsweise ungefähr 0,1 mm hat) hindurch konvergiert und in der Dermis 58 nahe den Papillen 54 der Follikel 40 verdichtet. Weil die dermale Dicke über den Körper verbreitet stark variiert, können die Papillen oberflächlich (wie z. B. an Augenlidern und Hodensack) sein, aber in den meisten Bereichen von Interesse (z. B. Gesicht, Achselhöhlen und Beine) befinden sich die Papillen auf Tiefen von ungefähr 4 bis 7 mm unterhalb der epidermalen Oberfläche. Einige Zehntel Millimeter unterhalb der Papillen befinden sich neurovaskulare Bündel 60, die den metabolischen und anderen Bedürfnissen einer Haarmatrix dienen, dem Bereich rasch wachsender, Keratin einlagernder Zellen in der Papille, die den Haarschaft 55 produzieren. Matrix, Papille und das entsprechende vaskulare Bündel sowie der Bulbus nahe der Mitte des Follikels stellen die zu bestrahlenden/zerstörenden follikularen Ziele dar.
  • Vorzugsweise wird das Feld während der Bestrahlung dieser Bereiche gepulst, wobei die Bestrahlungsimpulsdauer kurz genug gehalten wird, sodass die Beschädigung gemäß den Grundsätzen der selektiven Photothermolyse auf einen kleinen Bereich der Dermis (typisch innerhalb von ungefähr 0,2 mm) um jedes Follikel herum lokalisiert wird. Das Ausmaß der Beschädigung ist vorzugsweise viel kleiner als die Hälfte des Abstands zwischen benachbarten Follikeln (typisch zwischen 1 und 4 mm); wenn es bedeutend größer als diese ist, kann die lichtinduzierte Verletzung eine Verbrennung dritten Grades ergeben.
  • Außer dem Bereitstellen einer lichtkonvergierenden Funktion erlaubt eine Kontaktvorrichtung 46 mit einer konvexförmigen Oberfläche 62 auch, dass die Haut während der Berührung effizient zusammengedrückt wird. Das Zusammendrücken der unter der Oberfläche 62 der Kontaktvorrichtung befindlichen Dermis 58 verringert den Abstand zwischen diesem Bereich und den Papillen; je nach der angewendeten Kraft kann der Abstand um bis zu mehrere Millimeter verringert werden. Weil das Strahlungsfeld 38'' während der Fortpflanzung durch die Dermis gestreut und entsprechend geschwächt wird, führt das Zusammendrücken der Haut dazu, mehr Licht zu tiefen Teilen der Haarfollikel zu bringen für effizienteres lichtinduziertes Erwärmen der Papillen. Außerdem drückt das Zusammendrücken der Dermis mit der Kontaktvorrichtung mit einem Druck, der größer als der Blutdruck des Patienten ist, lichtabsorbierendes Blut aus dem bestrahlten Bereich heraus (während der Behandlung durch ein Verblassen der Haut im unter Druck gesetzten Bereich angedeutet). Das verringert die Absorption des optischen Feldes, was zu einer effizienteren Übertragung von Licht zu den follikularen Zielbereichen führt. Mit einer Kontaktvorrichtung mit einer konvexen Oberfläche ausgeübter Druck ergibt eine relativ einheitliche Verdrängung des Blutes aus dem Hautbereich. Daher wird eine Kontaktvorrichtung mit dieser Form einer flachen Vorrichtung vorgezogen, die oft Bereiche erzeugt, die mittlere Teile haben, die nicht vollkommen blutleer sind.
  • In anderen Ausgestaltungen kann die Kontaktvorrichtung auf gefederte Weise in dem Gehäuse montiert sein, sodass sie mit einstellbarem Druck gegen die Hautoberfläche gedrückt werden kann.
  • Außerdem kann der Federmechanismus in dieser Ausgestaltung an einer Sensor- und Anzeigevorrichtung angebracht sein, sodass der genaue auf die Hautoberfläche ausgeübte Druck genau überwacht und/oder geregelt werden kann.
  • Wenn sie gegen die Haut gedrückt wird, erlaubt die Kontaktvorrichtung 46 das Ein- und Auskoppeln optischer Strahlen in die Epidermis und aus ihr heraus. Der Brechungsindex (nCD) der Kontaktvorrichtung 46, wobei jetzt auf 3B Bezug genommen wird, muss ungefähr mit dem (nEP) der Epidermis 56 übereinstimmen, der ungefähr 1,55 beträgt. Weil von einem brechenden Medium (d. h. der Kontaktvorrichtung) zu einem anderen (der Epidermis) sich bewegendes Licht an der die zwei Bereiche trennenden Schnittstelle 57 um einen Betrag gebrochen wird, der mit dem Quadrat der Brechungsindexdifferenz in Bezug steht, lässt das Fast-Abstimmen der Brechungsindexe das effiziente Einkoppeln des Strahlungsfeldes in die Haut zu. Eine aus einem Material mit einem nahe an 1,5 liegenden oder etwas größeren Brechungsindex zusammengesetzte Kontaktvorrichtung erlaubt daher, dass das einfallende Bestrahlungsfeld an der Schnittstelle Epidermis/Kontaktvorrichtung 57 minimale Reflexionen erfährt (in der Figur durch den Pfeil 64 angedeutet). Desgleichen werden, wie in der Figur durch die Pfeile 66 angedeutet, optische Felder innerhalb der Dermis auf Grund des Grads der zerstreuten Reflexion zur Epidermis rückgestreut.
  • Diese rückgestreuten Felder tragen zu unerwünschter epidermaler Erwärmung bei und werden mit Hilfe der Kontaktvorrichtung 46 mit abgestimmtem Brechungsindex leicht aus der Haut ausgekoppelt.
  • Dies erlaubt die Minimierung der lichtinduzierten Beschädigung der Epidermis 56, während es die effektive Bestrahlung der Follikelzielstellen innerhalb der Dermis zulässt. In bevorzugten Ausgestaltungen ist die Kontaktvorrichtung, um einen im Wesentlichen abgestimmten Index zu haben, vorzugsweise aus einem hochdichten Material, wie z. B. Saphir (nCD = 1,7), Quarzglas (nCD = 1,5) oder ähnlichen optisch transparenten Gläsern oder Kunststoffen, gebildet. Um ein in die Haut eindringendes konvergentes Feld bereitzustellen und die konvexe Form der Kontaktvorrichtung, wie abgebildet, zu haben, ist die Verwendung von Saphir vorteilhaft, dessen etwas höherer Brechungsindex die gewünschte Feldkonvergenz ermöglicht.
  • Um Wärme von der Epidermis weg zu leiten, wobei jetzt auf 3C Bezug genommen wird, wird außerdem bevorzugt, dass die Kontaktvorrichtung 46 aus einem Material mit einer hohen Wärmeleitfähigkeit (kCD), die der der Haut ähnlich ist, besteht. Das erlaubt effiziente Wärmeübertragung (in der Figur durch die Pfeile 68 angedeutet) von der Epidermis 56 über die Schnittstelle Kontaktvorrichtung/Epidermis 57 und in die Kontaktvorrichtung 46 hinein. Eine hohe Wärmeleitfähigkeit ist außerdem notwendig, um lokale Erwärmungseffekte zu minimieren, die an der Schnittstelle 57 auftreten können, wodurch die Möglichkeit einer Wärmebeschädigung oder -verletzung der bestrahlten Epidermis verringert wird. Wie später noch besprochen wird, ist dies besonders wichtig, wenn die Kontaktvorrichtung gekühlt wird.
  • Idealerweise erlauben die thermischen Eigenschaften der Kontaktvorrichtung und die Zeit, die die Kontaktvorrichtung an die Haut gehalten wird, bevor die Bestrahlung beginnt, die Minimierung der Erwärmung in der Nähe der Epidermis, haben aber wenig Einfluss auf in der Nähe der Papillen der Haarfollikel (in der Figur als Bereich 70 gezeigt) eingetragene Wärme. Materialien mit hoher Wärmeleitfähigkeit sind Saphir (kCD = 0,083 cal s–1 cm–2 °C cm–2 entlang der C-Achse bei 30°C), Quarzglas (kCD = 0,026 cal s–1 cm–2 °C cm–1 entlang der C-Achse bei 30°C) sowie andere hochdichte Gläser und Kunststoffe.
  • Außerdem ist es zum Verbessern der optischen (d. h. Transmission von rückgestreutem Licht) und thermischen (d. h. Wärmeleitung) Eigenschaften an der Schnittstelle Kontaktvorrichtung/Epidermis 57 erwünscht, eine topische Flüssigkeit oder ein Linderungsmittel, wie z. B. eine Lotion, Wasser, Alkohol oder Öl, aufzutragen, die/das einen Brechungsindex hat, der dem der Kontaktvorrichtung 46 und der Epidermis ähnlich ist. Beispielsweise minimiert das Auftragen eines Öls mit einem Brechungsindex zwischen dem der Epidermis (n = 1,55) und dem des Saphirs (n = 1,7) optische Reflexionseffekte an der Schnittstelle, wodurch eine effizienterer Lichtübertragung von der Kontaktvorrichtung in den Hautbereich und von rückgestreuter Strahlung aus dem Hautbereich möglich ist. Auch lässt eine Flüssigkeit eine effizientere Wärmeübertragung durch Leitung aus der Haut in den Saphir zu, wodurch das Ausmaß der Beschädigung oder Verletzung der Epidermis verringert wird.
  • Optische Eigenschaften
  • Die zeitliche und räumliche Intensitätsverteilung für das optische Bestrahlungsfeld im Inneren der Haut bestimmt letztendlich, wieviel Wärme an den Zielbereichen des Haarfollikels eingetragen wird; diese Eigenschaften können daher zum Optimieren des Enthaarungsprozesses ausgewählt und/oder eingestellt werden. Im Besonderen zählen zu den Eigenschaften, die den Enthaarungsprozess beeinflussen, die Folgenden: Impulsenergie, Impulsdauer, Wiederholungsrate (d. h. die Zeitdauer zwischen aufeinander folgenden Impulsen), Wellenlänge, Energie, Bestrahlungspunktgröße, Strahlkonvergenz beim Eintritt in die Haut und Modengeometrie (d. h. räumliches Ausmaß und Einheitlichkeit) des optischen Impulses. Diese Eigenschaften können entsprechend dem in Haar und Haut vorhandenen Pigment ausgewählt werden; vorzugsweise wird jeder Parameter so eingestellt, dass die Temperatur an jeder Zielstelle unmittelbar nach der Bestrahlung auf zwischen ungefähr 80 und 120°C erhöht wird. Das Erwärmen des Follikels auf diese Temperatur führt zu bleibender Beschädigung und anschließender Entfernung.
  • Die Wellenlänge des Bestrahlungsfeldes, jetzt Bezug nehmend auf 4, ist ausgewählt, um mit dem in den Zielstellen (d. h. Haarschaft, Bulbus, Matrix und Papille) vorhandenen natürlichen Pigment (d. h. Melanin) resonant zu sein. Die in der Figur gezeigten Absorptionsspektra von Melanin, Wasser, Hämoglobin und Oxyhämoglobin zeigen die Fähigkeit dieser Verbindungen zum Absorbieren optischer Strahlung mit verschiedenen Wellenlängen auf; geringe Absorption deutet an, dass Licht mit der betreffenden Wellenlänge in den absorbierenden Medien tiefer eindringt. Um die Zielbereiche selektiv zu erwärmen, wird im Allgemeinen die Wellenlänge des Bestrahlungsfeldes passend zum Absorptionsspektrum von Melanin gewählt, das im Wesentlichen Licht von ungefähr 200 bis 1200 nm absorbiert; umgekehrt wird die Wellenlänge auf die Absorptionsspektra von in der Haut befindlichen Verbindungen, wie Wasser und Hämoglobin, fehlangepasst. Licht mit Wellenlängen zwischen 680 und 1200 nm, einem durch den Pfeil 70 in der Figur angedeuteten Bereich, wird effektiv von Melanin absorbiert, während es von Hämoglobin und Wasser relativ übertragen wird, und kann daher zum selektiven Erwärmen von pigmentiertem Haar verwendet werden, das von weißer oder leicht gebräunter Haut umgeben ist. Im Besonderen wird Licht im Bereich von 680 bis 900 nm oder 1000 bis 1200 nm bevorzugt, weil diese Strahlung stark von Melanin absorbiert wird und von den in Wasser und in Oxyhämoglobin in der Nähe von 950 nm befindlichen Bändern nicht absorbiert wird. Für Patienten mit weniger Melanin in den Haarfollikeln (z. B. mit rotbraunem oder hellbraunem Haar) sind die kürzeren Wellenlängen in diesem Bereich wegen des höheren Absorptionskoeffizienten von Melanin vorzuziehen.
  • Außerdem sind auch andere lichtdämpfende Wirkungen neben Absorption, z. B. Strahlungsstreuung, ebenfalls wellenlängenabhängig und während der Auswahl der Wellenlänge des optischen Feldes zu berücksichtigen. Beispielsweise wird in der menschlichen Haut die Lichteindringung teilweise vom Transportstreuungskoeffizienten (μs) bestimmt, der auf Grund von Streuung in der Dermis mit längeren Wellenlängen abnimmt. Für Strahlung mit 1000 nm beträgt μs ungefähr 10 cm–1; Licht, das aus einem Medium mit allgemein übereinstimmendem Index bei dieser Wellenlänge in die Haut hinein dringt, erreicht daher ungefähr 1 mm unter der Hautoberfläche eine maximale Intensität.
  • Zu sichtbares oder fast infrarotes Licht in dem bevorzugten Bereich von 680–1200 nm erzeugenden Quellen gehören Dioden- (λ >> 800–1000 nm), Nd:YAG- und Nd:YLF- (λ = 1064–1053 nm), Ti:Saphir- und Infrarot-Farbstoff- (λ >> 700–1000 nm), Rubin- (λ = 694 nm) und Alexandrit-Laser (λ = 700–850 nm). Rubin-, Nd:YAG- und Dioden-Laser (besondere Anordnungen von Dioden-Lasern) werden bevorzugt, weil diese Quellen im Handel erhältlich und gut kategorisiert sind und in kleinem Rahmen hergestellt werden können. Lichtquellen dieses Typs können in kompakte Haarentfernungsvorrichtungen integriert werden, die wiederum während Haarentfernungsvorgängen leicht von der Bedienkraft manipuliert werden können.
  • Die Dauer der optischen Impulse kann ebenfalls geregelt werden, um die Erwärmung der Haarfollikel zu variieren. Die optischen Impulse, wobei jetzt auf 5A Bezug zu nehmen ist, angedeutet durch die Schwingungsform 74, 74', haben vorzugsweise eine Dauer 76, 76', die es zulässt, dass das Follikel für kurze Zeitintervalle erwärmt wird. Die Impulsbreite wird geregelt, um die Wärmeleitung während des optischen Impulses und somit die Beschädigung des Follikels und der es unmittelbar umgebenden Dermis zu variieren; eine zu geringe Beschädigung hat zur Folge, dass Haare nachwachsen, während eine weitreichende Beschädigung eine Vernarbung im bestrahlten Bereich hervorruft. Vorzugsweise beträgt die Impulsdauer 76, 76'' zwischen etwa 2 ms und 100 ms.
  • Die genaue Impulsdauer wird durch die Wärmediffusion in der Haut vorgeschrieben, einem Prozess, der ungefähr der Wärmediffusionsgleichung folgt, die Diffusionszeit t, Diffusionsabstand d und Temperaturleitfähigkeit k in Beziehung setzt, wie von Welch, A. J., in „The thermal response of Zaser-irradiated tissue" (Die thermische Reaktion von laserbestrahltem Gewebe), IEEE J. Quant. Electron. QE-21 (12), 1471–1481 (1984) besprochen: t = d2/4k (k für die menschliche Dermis beträgt ungefähr 1,3 × 10–3 cm2/s). Die zum Abziehen von Wärme aus der Epidermis während eines Laserimpulses benötigte Zeit beträgt ungefähr 2 ms und die Wärmeentspannungszeit für ein typisches 200-Mikrometer-Haarfollikel beträgt ungefähr 40 ms.
  • Für Belichtungen von mehr als einigen Hundert Mikrosekunden Dauer kann während der Belichtungsperiode zu viel Thermodiffusion stattfinden, was entweder die uneffiziente Zerstörung der Zielbereiche des Haarfollikels oder übermässige dermale Beschädigung oder beides zur Folge hat. Ferner findet die Erwärmung der Epidermis, da sich das meiste Melanin (rund zwei Drittel) in der Epidermis im unteren Bereich der Epidermis befindet, hauptsächlich in ihren tieferen Bereichen statt und es dauert einige Zeit, bis diese Wärme die Oberfläche erreicht, um von der Kontaktvorrichtung 46 entfernt zu werden. Da diese Zeit wenigstens 2 ms beträgt, ist dies deshalb die vorgeschlagene Mindestimpulsdauer, wobei eine längere Zeit, vorzugsweise mindestens 5 ms, vorgeschlagen wird, um die epidermale Beschädigung minimal zu halten. Ferner könnte jeder Impuls, je nach dem angewendeten Laser, die Form eines einzelnen Dauerimpulses haben, wie in 5A gezeigt, oder die Form einer Serie dicht aufeinanderfolgender Impulse kürzerer Dauer, wobei der Abstand zwischen derartigen dicht aufeinanderfolgenden Impulsen viel kürzer als 5 ms ist.
  • Für eine bestimmte Fluenz ist die Intensität des optischen Feldes in umgekehrtem Verhältnis zur Impulsdauer; daher können, wenn die Pulsdauer unter ungefähr 10 μs beträgt, große optische Intensitäten zu unerwünschten Arten der Beschädigung der umgebenden Hautbereiche führen. Außerdem können kurze Impulse zu lokalisierten wärmeinduzierten „Explosionen" im Follikel führen, die eine mechanische Beschädigung der Haut verursachen. In besonders bevorzugten Ausgestaltungen hat der Impuls eine Dauer oder Impulsbreite von ungefähr 2–100 ms. Während dieses Zeitintervalls findet Thermodiffusion über eine Entfernung von ungefähr 0,05 bis 0,3 mm statt; auf ungefähr diese Entfernung begrenzte Beschädigung führt hauptsächlich zur Zerstörung der bestrahlten Haarfollikel mit wenig oder keiner Beschädigung der umgebenden Haut.
  • Optische Impulse mit gut definierter und einstellbarer Dauer können mit bekannten Techniken erzeugt werden. Beispielsweise erlaubt die Intra-Cavity-Modulation (Modulation im Resonator) des Lichtfeldes in einem Hohlraum mit elektro- oder akusto-optischen gütegeschalteten Geräten die Erzeugung von Impulsen mit zeitlichen Profilen, die eine typisch Gaußsche Form haben. Mit Hilfe dieser Verfahren erzeugte Impulse sind im typischen Fall zu kurz, da ihre Dauer im Submikrosekundenbereich liegt. Durch Lichtblitzerregung von Rubin-, Alexandrit-, Ti:Saphir- oder Nd:YAG-Lasern erzeugte Normal-Moden-Impulse werden bevorzugt, weil diese typischenfalls Hochenergieimpulse mit einer Dauer im Bereich von 0,1–10 ms sind. Alternativ kann ein von einem Laser emittiertes kontinuierliches (d. h. zeitunabhängiges) optisches Feld unter Verwendung von z. B. einer mechanischen Blende oder einem elektro-optischen Gate extern moduliert werden. Externe Verfahren verwendende Modulation ermöglicht das leichte Variieren der Impulsbreite von einigen Hundert Mikrosekunden bis zu mehreren Hundert Mikrosekunden. Mit externer Modulation erzeugte Impulse können auch zeitliche „Rechteck"-Profile (wie in 5A gezeigt) haben, die das Aufbringen eines einheitlicheren optischen Feldes auf den Bereich von Interesse zulassen. Externe Modulation wird aber für derzeit bevorzugte Ausgestaltungen nicht verwendet.
  • Wenn eine Kontaktvorrichtung zum Senden des optischen Impulses verwendet wird, besteht vorzugsweise eine Verzögerungszeit zwischen dem Zeitpunkt, an dem die Kontaktvorrichtung die Hautoberfläche berührt, und der Ankunft des Impulses. Das ermöglicht es, dass die gesamte epidermale Schicht 56 vor der Bestrahlung wesentlich gekühlt wird, wodurch ihre Beschädigungsschwelle erhöht wird. Schmerzen und eine Beschädigung der Epidermis werden somit reduziert und weiter minimiert, indem die Kontaktvorrichtung 46 während der Bestrahlung weiter gekühlt wird, sodass Wärme weiterhin aus der Epidermis abgezogen wird. Das Erwärmen auf tieferen Schichten, wo die Zerstörung der Follikel und im Besonderen deren Bulbus und Papillen erwünscht ist, wird jedoch von der vor oder während der Bestrahlung durchgeführten Kühlung nicht beeinflusst.
  • Außerdem kann die Zeitdauer zwischen optischen Impulsen (in 5A durch den Pfeil 78 angedeutet) eingestellt werden, um die gesamte und die durchschnittlich in den bestrahlten Bereich eingetragene Wärmemenge zu regeln. Wird für die Zerstörung des Follikels eine wiederholte Belichtung benötigt, ist dieses Zeitintervall vorzugsweise konstant und liegt zwischen mehreren Sekunden und einigen Hundert Millisekunden. Alternativ wird dieses Zeitintervall für eine „Single-Shot"-Belichtung selektiv von der Bedienkraft geregelt. In diesem Fall wird ein einzelner Laser-Shot zum Bereich von Interesse übertragen und der Bereich wird dann von der Bedienkraft auf Beschädigung untersucht. Wenn mehr Strahlung erforderlich ist, können dann zusätzliche Laser-Shots zum Bereich übertragen werden. Andernfalls wird die Bestrahlungseinheit fortbewegt und zum Behandeln eines separaten Bereichs verwendet.
  • Das räumliche Ausmaß des optischen Feldes wird gewählt, damit mehrere Haarfollikel mit einem einzelnen Laser-Shot bestrahlt werden können. Außerdem werden größere Punktgrößen bevorzugt, weil die Dämpfung entlang der Strahlachse in der Haut auf Grund von Streuung mit zunehmendem Strahlradius R abnimmt. Somit lassen großflächige Strahlen eine effizientere Übertragung optischer Strahlung zu den tiefen Zielstellen zu. Die Breite 80 des räumlichen Profils 82 des Bestrahlungsstrahls an der Oberfläche der Haut, wobei jetzt auf 5B Bezug genommen wird, ist vorzugsweise in der Größenordnung von der und vorzugsweise viel größer als die Tiefe des zu bestrahlenden Ziels. Höchst vorzugsweise beträgt der Strahldurchmesser wenigstens 8 mm. Die Fläche des Bestrahlungsfeldes beträgt vorzugsweise zwischen ungefähr 0,5 und 2 cm2 und beträgt bevorzugt zwischen 0,75 und 1 cm2. Weil der Strahl vorzugsweise konvergierend ist, ist das räumliche Profil im Verhältnis zur Tiefe verdichtet, bevor es auf einer durch optische Streuung in der Dermis definierten Tiefe eine Verengung erreicht.
  • Vorzugsweise, wie in 5B gezeigt, ist die Intensität über den Strahldurchmesser ungefähr konstant, um ein im Wesentlichen einheitliches Bestrahlungsfeld bereitzustellen.
  • Nach der Belichtung, jetzt Bezug nehmend auf 6, wird die Intensitätsverteilung der optischen Strahlung (d. h. die y-Achse in der Figur) im Verhältnis zur Hauttiefe (d. h. der x-Achse) mit Hilfe von Monte Carlo-gestützten Computersimulationen berechnet. Die Verteilung ist eine Funktion des räumlichen Profils des Strahls, den optischen Eigenschaften des mit der Haut in Kontakt befindlichen Mediums. Die grafisch dargestellten Daten sind zwar auf eine Computersimulation gestützt und daher nur ungefähr, die Einheiten der x-Achse werden aber auf ungefähr 500 Mikrometer pro Markierung geschätzt. Die erste Kurve 90 zeigt die von der Hauttiefe abhängigen Eigenschaften eines optischen Feldes, das aus einem kleinen kollimierten Punkt von 800 nm Licht in Luft stammt. In diesem Fall wird der Großteil der optischen Intensität nahe der Oberfläche der Haut verteilt (durch den Punkt „0" entlang der x-Achse angedeutet), wobei die Intensität in größeren Tiefen rasch abfällt. Ein größerer kollimierter, von Luft (Kurve 92) ausgehender Punkt hat eine gleichmäßiger verteilte, von der Tiefe in der Haut abhängige Intensität, obwohl der Großteil des Lichts immer noch nahe der Hautoberfläche konzentriert wird. Das Erzeugen eines großen kollimierten Strahlungspunktes aus einem Material mit einem Brechungsindex von 1,5 (Kurve 94) ergibt eine relativ einheitliche optische Intensität im ersten Millimeter oder so der Haut; bei größeren Tiefen beginnt diese Intensität mit einer relativ langsamen Zeitkonstante abzunehmen. In der bevorzugten Ausgestaltung schließlich hat ein großes, räumlich konvergierendes optisches Feld aus dem Material mit Brechungsindex von n = 1,5 eine Intensität an der Hautoberfläche, die, nachdem es sich ungefähr einen Millimeter weit in die Haut hinein fortgepflanzt hat, auf einen Höchstwert ansteigt. Die Intensität wird dann im Verhältnis zur Tiefe in der Haut mit einer Zeitkonstante, die langsamer ist als die von der Kurve 94 aufgewiesene, gedämpft. Ein derartiges Feld kann somit verwendet werden, um die Zielstellen des Follikels bei reduzierter Erwärmung der Haut an der Oberfläche effektiv zu erwärmen, wodurch Wärmeverletzungen der Haut vermieden werden.
  • In dem Fall, in dem der belichtende Laser einen Strahl mit einem Durchmesser unter den bevorzugten Werten erzeugt, muss der Strahl vor Lieferung an die Bestrahlungseinheit eventuell erweitert werden. Dies kann mit konventionellen Teleskopoptiken erreicht werden, z. B. Zweilinsensystemen, die konfiguriert sind, um den emittierten Strahl zunächst zu erweitern und dann zu parallel auszurichten. Alternativ kann das Feld, wie in 2A gezeigt, in einen Lichtwellenleiter eingekoppelt und dann zur Bestrahlungseinheit übertragen werden. In diesem Fall wird das entstehende Feld auf Grund der Hohlleiterart des Leiters natürlich gestreut und dann von einer ausrichtenden Linse gesammelt. Die Verschiebung der Linse von der Leiterspitze erlaubt die Vergrößerung des Profils des Bestrahlungsstrahls auf das gewünschte Quantum.
  • Die Fluenz des optischen Feldes wird gemäß dem Pigmentierungsgrad des Patienten variiert und beträgt vorzugsweise zwischen etwa 10 und 200 j/cm2 für jeden Impuls; Patienten mit dunklerem Haar benötigen geringere Fluenz als Patienten mit hellerem Haar. Vorzugsweise beträgt die Impulsfluenz des Bestrahlungsfeldes für Impulse von ungefähr 1 ms Dauer zwischen 30 und 50 J/cm2. Wie hierin beschrieben, wird die Fluenz in allen Fällen eingestellt, um die Zielbereiche auf die gewünschte Temperatur von ungefähr 80 bis 120°C zu erwärmen.
  • Darüber hinaus kann der Fluenzgrad bei Verlängern der Impulsdauer als Ausgleich für ein weniger effizientes Erwärmen von Follikeln auf Grund von Wärmeleitung während langen Impulsen erhöht werden.
  • Eventuell muss die optische Fluenz erhöht oder verringert werden, um das Haarfollikel auf die gewünschte Temperatur zu erwärmen, wenn die Wellenlänge des Bestrahlungslichtfeldes nicht in den bevorzugten spektralen Bereichen (d. h. 680–900 nm oder 1000–1200 nm) liegt. Außerdem kann es in Fällen, in denen die Laserabgabeleistung unter der gewünschten optischen Fluenz liegt, notwendig sein, dass die einzelnen Impulse vor der Bestrahlung der Haut verstärkt werden. Für diesen Zweck können optische Verstärker, wie externe optische Hohlräume (Cavity), verwendet werden.
  • In der unten gezeigten Tabelle 1 werden die bevorzugten Parameter der für die Haarentfernung verwendeten optischen Felder aufgelistet. Der Wert jedes Parameters hängt von der Haarmenge im Bereich von Interesse, dem Grad der Pigmentierung der Haare und der Pigmentierung der umgebenden Haut des Patienten ab.
  • Tabelle 1
    Figure 00290001
  • Im Folgenden wird die Erfindung unter Bezugnahme auf die folgenden Beispiele weiter beschrieben.
  • Beispiele
  • Um die Wirksamkeit einer erfindungsgemäßen Haarentfernungsvorrichtung zu demonstrieren, wurde schwarz behaarte Hundehaut in vitro mit Licht von der normalen Betriebsart eines Rubin-Lasers bei λ = 694 nm mit einer Impulsdauer von 270 μs und optischen Fluenzen von 40 J/min2, 71 J/min2 und 160 J/min2 bestrahlt.
  • Das räumliche Ausmaß des Strahls (8 mm Durchmesser an der Hautoberfläche) erlaubte die Bestrahlung von etwa 100 Haaren mit einem einzelnen Laser-Shot. Nach der Bestrahlung wurde jeder Hautbereich histologisch untersucht. Die Untersuchung ergab, dass bei den höchsten Fluenzen mit einer Vernarbung der Haut übereinstimmender dermaler Schaden offensichtlich war, was darauf schließen ließ, dass bei den höchsten Fluenzen eine lichtinduzierte thermische Beschädigung nicht selektiv für die Haare war. Im Gegensatz dazu wurde bei den niedrigeren Fluenzen und insbesondere bei 40 J/min2 eine lokalisierte Beschädigung der Follikel beobachtet, ohne dass in den benachbarten Hautbereichen oder der Dermis zwischen Haarfollikeln eine merkliche Beschädigung stattfand.
  • In einem separaten Satz von Versuchen zum Zeigen, dass der Temperaturanstieg in dem bestrahlten Haar vom Grad der Pigmentierung abhängt, wurden frische menschliche Haar- und Hautproben mit verschiedenen Farben unter Verwendung des hierin beschriebenen Haarentfernungsverfahrens bestrahlt. Die Lichtquelle für alle Versuche war der oben beschriebene Rubin-Laser. Emittiertes Licht wurde zunächst bei 694 nm in eine geschlossene strahllenkende Vorrichtung eingekoppelt, die mehrere Spiegel enthält, die beschichtet sind, um hohe Reflexionsvermögen zu haben, und dann zu einer Bestrahlungseinheit ähnlich der in 2B gezeigten übertragen. Die Einheit hat eine plankonvexe 5-cm-Glaslinse, die am proximalen Ende eines wassergekühlten Plexiglasgehäuses positioniert ist.
  • Eine als eine Linse mit 1 cm Brennweite geformte Saphir-Kontaktvorrichtung wurde am distalen Ende der Kontaktvorrichtung angeordnet, wobei die konvexe Seite die Haut berührt, um während der Bestrahlung, wie oben beschrieben, ihr Zusammendrücken zu ermöglichen. Menschliche Haut wurde mit einem Strahl mit 8 mm Durchmesser bestrahlt, indem die gekühlte (4°) Kontaktvorrichtung auf den Hautbereich der Patienten gepresst und dann ein einzelner Laser-Shot übertragen wurde. Im typischen Fall hatte jeder Laser-Shot jeweils die gleichzeitige Bestrahlung von ungefähr 10 Haaren zur Folge.
  • Haut und Haar von sechs adulten Patienten mit einer Haarfarbe, die von rot bis schwarz reichte, wurden bestrahlt und dann beobachtet. Bei jedem Patienten wurden acht Behandlungsstellen mit einer Fläche von jeweils 10 cm2 bestrahlt. Um die Zerstörung der Papille zu überwachen, wurden Stellen 1–4 vor dem Bestrahlen mit Laserlicht mit Wachs epiliert, während die Stellen 5–8 vor dem Bestrahlen rasiert wurden. Jede Stelle erhielt dann eine optische Fluenz von 28 J/cm2, 42 J/cm2 oder 57 J/cm2.
  • Patienten wurden in Nachuntersuchungen einen Monat und drei Monate (und bei einigen Patienten auch ein Jahr) nach der Bestrahlung untersucht. Wie aus den Aufnahmen der bestrahlten Bereiche in 7 (d. h. Bereiche A–C) zu sehen ist, war die Behaarung nach drei Monaten in allen Fällen verglichen mit dem rasierten aber unbehandelten Bereich (Bereich D) minimal oder nicht nachgewachsen, was deutlich eine bleibende Beschädigung des Haarfollikels anzeigt. In der Figur wurden die Stellen A–C mit abnehmender Energie vom Laser behandelt. Es ist deutlich offensichtlich, dass die Enthaarung im Bereich C, der mit einer Fluenz von 27 J/cm2 behandelt wurde, relativ weniger ausgeprägt ist. Bereich D, der Kontrollbereich, wurde am gleichen Tag rasiert, an dem die Bereiche A–C behandelt wurden. Außerdem ergaben an den behandelten Stellen gewonnene histologische Proben, dass die Beschädigung ausschließlich am Haarfollikel erfolgte, während die umgebende Dermis im Wesentlichen unbeschädigt blieb.
  • Für alle Versuchspersonen gab es an den laserbehandelten Stellen verglichen mit nicht bestrahlten, rasierten Kontrollstellen statistisch bedeutenden Haarverlust. Ein Jahr später gab es ebenfalls weitgehenden permanenten Haarverlust ohne Vernarbung.
  • Ein separater Satz Versuche, die die Messung der zeitabhängigen Temperaturcharakteristik von Haar- und Hautproben zulassen, wurde mit einer Pulsphotothermo-Radiometrie-(PPTR – pulsed photothermal radiometry)-Vorrichtung durchgeführt.
  • In diesen Versuchen wurde der oben beschriebene Rubin-Laser mit geringeren Fluenzen verwendet, um optische Impulse mit einer das Erwärmen, aber nicht das Zerstören der Follikel zulassenden Energie zu erzeugen. Die Ausgabe vom Laser wurde auf die Proben von menschlichem Haar und menschlicher Haut fokussiert, um ein einheitliches Erregungsfeld zu erzeugen. Ein Black-Body-Strahlungsdetektor der New England Research, Inc., der einen verstärkten Flüssigstickstoff-gekühlten HgCdTe-Detektor enthält, wurde zum Überwachen der zeitabhängigen Charakteristik der Probentemperatur verwendet und ein Laserenergiemessgerät von Gentec, Inc. wurde zum Überwachen des Bestrahlungsimpulses verwendet. Der Ausgang von beiden Detektoren wurde dann mit einem kompensierten 0–10 MHz-Gleichstrom-gekoppelten Vorverstärker verstärkt und dann zum Aufzeichnen und Speichern der Daten an ein digitales Oszilloskop weitergeleitet.
  • Acht Patienten mit verschiedenen Hauttypen und von rot/blond bis schwarz reichenden Haarfarben wurden untersucht. Allgemein zeigten die PPTR-Ergebnisse an, dass schwarzes Haar nach der Bestrahlung mit 694 nm einen größeren Temperaturanstieg erfuhr als helleres braunes Haar und dass diese Proben im Vergleich mit roter/blonder Behaarung beide höhere Temperaturanstiege erfuhren. Außerdem hatte Haut des Typs II nach der Bestrahlung einen niedrigeren Temperaturanstieg als Haut des Typs III oder des Typs IV.
  • In einem besonderen Beispiel mit einem Patienten mit schwarzem Haar und weißer Haut, wobei jetzt auf die 8A8C Bezug genommen wird, deuten mit Hilfe der PPTR-Vorrichtung gemessenene zeitabhängige Kurven an, dass 400 ms nach der Bestrahlung nasses und trockenes schwarzes Haar Temperaturanstiege von 7°C bzw. 72°C (8A und 8B) von einer Grundlinientemperatur von 23°C erfahren, während die umgebende Haut (8C) einen Temperaturanstieg von weniger als 1°C durchmacht. Der Unterschied bei Temperaturanstieg und zeitabhängiger Abfallcharakteristik des nassen Haares beruht wahrscheinlich auf thermischen Wirkungen (z. B. der höheren Wärmekapazität von nassem Haar).
  • In allen Fällen, jetzt Bezug nehmend auf 9, waren die normalisierten Temperaturanstiege (d. h. das Verhältnis von Temperaturanstieg zu Laserimpulsenergie) in den Follikeln von nassem und trockenem Haar bedeutend höher als die in der Haut gemessenen, was selektives Erwärmen der Follikel andeutet. Die unten gezeigte Tabelle 2 listet Haar- und Hauttyp jedes Patienten in der Studie auf. Die Patientennummern in der Tabelle entsprechen den Patientennummern in 9.
  • Tabelle 2
    Figure 00350001
  • Andere Ausgestaltungen
  • 10A illustriert eine alternative Ausgestaltung der Erfindung, bei der der Bereich 20 vor der Behandlung epiliert wird anstatt nur rasiert. Eine ein Chromophor enthaltende Fluidlösung oder Suspension 100 kann dann auf den Hautbereich 20 aufgetragen werden, wobei das Chromophor enthaltende Fluid in die leeren Follikel wandert und die Follikel füllt. „Kapillarwirkung" des Fluids/Chromophors in die Follikel ist erwünscht und kann dadurch verbessert werden, dass für eine geringe Oberflächenspannung zwischen Fluid und Haut gesorgt wird, z. B. durch Verwendung von Tensiden oder Lösungsmitteln. Das überschüssige Fluid/Chromophor kann dann durch Waschen, Wischen oder Strippen von der Hautoberfläche entfernt werden. Während der Bestrahlung absorbiert das Chromophor 100 im Follikel Licht und wird erwärmt und hat, zusammen mit der Erwärmung des Melanins des Follikels selbst, eine bedeutende Erwärmung des Follikels zur Folge, um Teile davon, einschließlich des Bulbus und der Papille, zu zerstören, was zum Verhindern des Nachwachsens von Haar erforderlich ist. Das Chromophor muss deshalb Licht mit der Wellenlänge oder den Wellenlängen, die für die Bestrahlung verwendet wird bzw. werden, absorbieren.
  • Zu geeigneten Chromophoren könnten eine Kohlepartikelsuspension oder ein Farbstoff wie Methylenblau oder Indocyaningrün zählen. Auch Melanin selbst in liposomaler Form könnte verwendet werden. Da das Chromophor nur in den Follikeln ist, maximiert diese Methode die Beschädigung der Follikel, während sie die Beschädigung des umgebenden Gewebes minimiert, und aus diesem Grund ist sie eine bevorzugte Ausübungsform der Erfindung, besonders für Personen mit blonden, roten, hellbraunen oder anderen hellfarbigen Haaren. Mit Ausnahme der oben angedeuteten Unterschiede funktioniert diese Ausgestaltung der Erfindung auf die gleiche Weise wie für frühere Ausgestaltungen beschrieben, einschließlich dem Kühlen der Kontaktvorrichtung 46, der Verformung der Haut im Bereich 20 und der bevorzugten optischen Bestrahlung, mit der Ausnahme, dass beim Verwenden von Chromophoren niedrigere Frequenzen erlaubt sein können.
  • 10B illustriert eine weitere alternative Ausgestaltung der Erfindung, bei der die Kontaktvorrichtung oder der Applikator 46' modifiziert ist, um gleichzeitig beide Seiten einer Hautfalte zu bestrahlen. Das erhöht ferner die relative Übertragung von Licht zum tiefen Teil der Follikel. In 10B hat die Kontaktvorrichtung in der Stirnseite des Applikators zum Beispiel eine Öffnung oder einen Schlitz 110, in den die Fläche 20 der Haut hineingezogen werden kann, z. B. durch Unter- oder Saugdruck, der an Leitung 112, die in das obere Ende des Schlitzes 110 hinein führt, angelegt wird, wobei die Haut im Schlitz 110 zu einer Falte 113 geformt wird. Strahlung kann durch ein Lichtwellenleiterbündel 114 übertragen werden, das sich teilt, um die Strahlung zu Linsen 116 an jeder Seite des Schlitzes 110 zu übertragen.
  • Kühlwasser kann durch eine Leitung 118 über die Oberflächen der Linsen 116 geströmt werden. Alternativ können zwei Applikatoren, die denen ähnlich sind, die z. B. in 2A und 2B gezeigt werden, an entgegengesetzten Seiten einer Hautfalte positioniert werden, die durch Einspannen des Hautbereichs zwischen ihnen oder durch andere geeignete Mittel gebildet wird.
  • Der Vorteil des Bildens einer Hautfalte, wie für die obigen Ausgestaltungen besprochen, ist, dass Strahlung von beiden Seiten auf einen relativ dünnen Hautteil übertragen wird. Die Papille eines bestimmten Follikels kann daher nicht nur von der Linse 116 an der Seite von Schlitz 110 bestrahlt werden, wo sich das Follikel befindet, sondern auch etwas Strahlung von der Linse 116 an den entgegengesetzten Seiten des Schlitzes erhalten. Auf die Papille jedes Follikels ausgeübte Energie wird somit erhöht, ohne die Energie an der Oberfläche zu erhöhen, wodurch die Haarentfernung mit weniger Schmerzen und Verletzungen ermöglicht wird. Dadurch, dass der Schlitz 110 relativ schmal gemacht wird, wird auf beiden Seiten des Schlitzes Druck auf die Haut ausgeübt, wobei die Haut zwischen den Wänden des Schlitzes zusammengedrückt wird. Die Vorteile des Zusammendrückens der Haut, einschließlich des Entfernens von Blut aus ihr und des Verringerns der Entfernung von der Hautoberfläche zur Papille, werden so mit dieser Ausgestaltung der Erfindung auch erreicht. Einspannen zum Bilden der Falte würde ebenfalls Druck auf die Haut ausüben.
  • Auch kann es möglich sein, die Vorrichtung dieser Erfindung für die kurzfristige Haarentfernung einzusetzen, wobei die Vorrichtung z. B. als Rasiervorrichtung dient, die eine vielleicht ein oder zwei Wochen anhaltende Rasur ergeben könnte.
  • Dies wird erreicht, indem Fluid/Chromophor auf den zu „rasierenden" Bereich aufgetragen wird, wobei dieser Bereich vorzugsweise mit konventionellen Methoden rasiert, aber nicht epiliert worden ist. In diesem Fall kann das Chromophor nur einige Millimeter weit in das Follikel eindringen, zum Beispiel bis auf die Höhe der Talgdrüse. Überschüssiges Chromophor kann dann entfernt werden und die Kontaktvorrichtung dieser Erfindung mit relativ schwacher Strahlung zum Erwärmen des Chromophors genutzt werden und zum Zerstören des davon umgebenen Haars ohne eine bedeutende Beschädigung der Haut oder des Follikels.
  • Ferner wurde für die bevorzugte Ausgestaltung zum Kühlen der Kontaktvorrichtung 46 zwar Kühlwasser gezeigt, aber dies ist keine Begrenzung der Erfindung und andere Kühlungsmethoden können genutzt werden. Beispielsweise kann ein Tieftemperaturgas oder flüssiges Gas zu Kühlzwecken über die Kontaktvorrichtung geleitet werden oder die Kontaktvorrichtung kann vor dem Gebrauch ausreichend gekühlt werden, sodass sie die Kühlfunktion während der Bestrahlung weiterhin durchführt, ohne dass ein Kühlmittel über sie geleitet wird. Andere in der Technik bekannte Kühlmethoden können ebenfalls genutzt werden.

Claims (13)

  1. Vorrichtung zum gleichzeitigen Entfernen einer Mehrzahl von Haaren von einem Hautbereich, wobei sich jedes Haar in einem sich von einer Oberfläche in die Haut hinein erstreckenden Follikel befindet, wobei die Vorrichtung Folgendes umfasst: einen Applikator (18) (46'), eine Quelle (12) optischer Strahlung, einen optischen Weg (16) (114) von der Quelle optischer Strahlung zu einer Oberfläche des genannten Applikators, wobei der Weg für optische Strahlung mit einer ausgewählten Wellenlänge im wesentlichen transparent ist, wobei die optische Strahlung durch die genannte Oberfläche des genannten Applikators zu dem genannten Hautbereich hindurchgeleitet wird, und eine Einrichtung (50, 52) (118) zum Kühlen einer Oberfläche des Applikators auf eine Temperatur unter der des genannten Hautbereichs, dadurch gekennzeichnet, dass die Quelle optischer Strahlung eine Quelle optischer Strahlung mit einer Wellenlänge zwischen 680 nm und 1200 nm ist.
  2. Vorrichtung nach Anspruch 1, bei der die Einrichtung zum Kühlen (50, 52) (118) die genannte Oberfläche des Applikators (18) (46') um einen Betrag unter die des genannten Hautbereichs abkühlt, der in Verbindung mit ausgewählter Strahlung ausreicht, um ein beträchtliches Erwärmen des genannten Hautbereichs, mit dem der Applikator in Berührung ist, für eine ausgewählte Tiefe zu verhindern und um die Erwärmung der Haut in dem genannten Bereich jenseits der genannten ausgewählten Tiefe nicht wesentlich zu stören.
  3. Vorrichtung nach Anspruch 1 oder 2, bei der die Einrichtung zum Kühlen (50, 52) (118) ein Kanal nahe der genannten Oberfläche des Applikators (18) (46') ist, durch den Kühlwasser geleitet wird.
  4. Vorrichtung nach einem der vorhergehenden Ansprüche, bei der die Quelle optischer Strahlung eine Quelle optischer Strahlung mit einer Fluenz zwischen 10 J/cm2 und 200 J/cm2 ist und wobei die Dauer der Bestrahlung des genannten Hautbereichs 50 μs bis 200 ms, spezieller 2 ms bis 200 ms, vorzugsweise 2 ms bis 100 ms beträgt.
  5. Vorrichtung nach einem der vorhergehenden Ansprüche, bei der die Quelle optischer Strahlung eine Quelle optischer Strahlung mit einer Wellenlänge zwischen 680 nm und 900 nm ist.
  6. Vorrichtung nach einem der vorhergehenden Ansprüche, bei der wenigstens die genannte Oberfläche des Applikators (18) (46'') aus einem Material mit einem Brechungsindex, der mit dem Brechungsindex der Hautoberfläche in dem genannten Hautbereich im Wesentlichen übereinstimmt, gebildet ist.
  7. Vorrichtung nach einem der vorhergehenden Ansprüche, bei der der Applikator (18) (46') eine Oberfläche hat, die ausgeführt ist, um in einem Hautbereich, von dem Haar zu entfernen ist, mit der Hautoberfläche in Berührung zu sein.
  8. Vorrichtung nach einem der vorhergehenden Ansprüche, ferner umfassend ein Element (42, 46) (116) in dem optischen Weg zum Konvergieren der optischen Strahlung beim Verlassen des Applikators (18) (46') durch die genannte Oberfläche.
  9. Vorrichtung nach Anspruch 8, bei der das genannte Element (42, 46) (116) eine Linse ist.
  10. Vorrichtung nach einem der vorhergehenden Ansprüche, bei der der Applikator (18) (46'') ein Gehäuse (48) beinhaltet, wobei die genannte Oberfläche an dem Gehäuse angeordnet ist und eine konvexe Form hat und der genannte optische Weg (16) (114) von der Quelle (12) optischer Strahlung durch das genannte Gehäuse zu der genannten Oberfläche verläuft.
  11. Vorrichtung nach einem der vorhergehenden Ansprüche, bei der die genannte Oberfläche des Applikators (46') eine in ihm gebildete Ausnehmung (110) hat und bei der der optische Weg (114) zu wenigstens zwei entgegengesetzten Seiten der Ausnehmung führt und eine Einrichtung (112) zum Positionieren von wenigstens einem Teil (113) des genannten Hautbereichs in die Ausnehmung hinein hat.
  12. Vorrichtung nach Anspruch 11, bei der die Einrichtung zum Positionieren eine Einrichtung (112) zum Anlegen von Unterdruck an den Schlitz hat.
  13. Vorrichtung nach einem der vorangehenden Ansprüche, bei der die Quelle (12) optischer Strahlung ein Laser ist.
DE69633207.8T 1995-02-01 1996-01-31 Haarentfernungsgerät unter Verwendung von optischen Pulsen Expired - Lifetime DE69633207T3 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US08/382,122 US5595568A (en) 1995-02-01 1995-02-01 Permanent hair removal using optical pulses
US382122 1995-02-01
US593565 1996-01-30
US08/593,565 US5735844A (en) 1995-02-01 1996-01-30 Hair removal using optical pulses
EP02076294.4A EP1230900B2 (de) 1995-02-01 1996-01-31 Haarentfernungsgerät unter Verwendung von optischen Pulsen

Publications (3)

Publication Number Publication Date
DE69633207D1 DE69633207D1 (de) 2004-09-23
DE69633207T2 true DE69633207T2 (de) 2005-09-15
DE69633207T3 DE69633207T3 (de) 2015-03-26

Family

ID=27009635

Family Applications (3)

Application Number Title Priority Date Filing Date
DE69633207.8T Expired - Lifetime DE69633207T3 (de) 1995-02-01 1996-01-31 Haarentfernungsgerät unter Verwendung von optischen Pulsen
DE69621775.9T Expired - Lifetime DE69621775T3 (de) 1995-02-01 1996-01-31 Enthaarung mit optischen pulsen
DE69635684T Revoked DE69635684T2 (de) 1995-02-01 1996-01-31 Verfahren zur Haarentfernung unter Verwendung von optischen Pulsen

Family Applications After (2)

Application Number Title Priority Date Filing Date
DE69621775.9T Expired - Lifetime DE69621775T3 (de) 1995-02-01 1996-01-31 Enthaarung mit optischen pulsen
DE69635684T Revoked DE69635684T2 (de) 1995-02-01 1996-01-31 Verfahren zur Haarentfernung unter Verwendung von optischen Pulsen

Country Status (10)

Country Link
US (1) US5735844A (de)
EP (4) EP0806913B2 (de)
JP (4) JP3819025B2 (de)
KR (1) KR19980701882A (de)
CN (1) CN1119129C (de)
CA (2) CA2210720C (de)
DE (3) DE69633207T3 (de)
ES (4) ES2526531T3 (de)
HK (1) HK1048754B (de)
WO (1) WO1996023447A1 (de)

Families Citing this family (333)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6280438B1 (en) * 1992-10-20 2001-08-28 Esc Medical Systems Ltd. Method and apparatus for electromagnetic treatment of the skin, including hair depilation
US6277111B1 (en) * 1993-12-08 2001-08-21 Icn Photonics Limited Depilation
US20020019624A1 (en) * 1993-12-08 2002-02-14 Clement Robert Marc Depilation
US7189230B2 (en) * 1996-01-05 2007-03-13 Thermage, Inc. Method for treating skin and underlying tissue
US7229436B2 (en) * 1996-01-05 2007-06-12 Thermage, Inc. Method and kit for treatment of tissue
US7115123B2 (en) * 1996-01-05 2006-10-03 Thermage, Inc. Handpiece with electrode and non-volatile memory
US7267675B2 (en) * 1996-01-05 2007-09-11 Thermage, Inc. RF device with thermo-electric cooler
US7452358B2 (en) * 1996-01-05 2008-11-18 Thermage, Inc. RF electrode assembly for handpiece
US7141049B2 (en) * 1999-03-09 2006-11-28 Thermage, Inc. Handpiece for treatment of tissue
US7022121B2 (en) * 1999-03-09 2006-04-04 Thermage, Inc. Handpiece for treatment of tissue
US20030212393A1 (en) * 1996-01-05 2003-11-13 Knowlton Edward W. Handpiece with RF electrode and non-volatile memory
US7006874B2 (en) * 1996-01-05 2006-02-28 Thermage, Inc. Treatment apparatus with electromagnetic energy delivery device and non-volatile memory
US7473251B2 (en) * 1996-01-05 2009-01-06 Thermage, Inc. Methods for creating tissue effect utilizing electromagnetic energy and a reverse thermal gradient
US20040000316A1 (en) * 1996-01-05 2004-01-01 Knowlton Edward W. Methods for creating tissue effect utilizing electromagnetic energy and a reverse thermal gradient
US6547781B1 (en) * 1996-04-09 2003-04-15 Cynsure, Inc. Ultra-long flashlamp-excited pulse dye laser for therapy and method therefor
KR100376650B1 (ko) 1996-04-09 2003-08-25 싸이노슈어, 인코포레이티드 피부병리학적표본의처리를위한알렉산더레이저시스템
US5871479A (en) * 1996-11-07 1999-02-16 Cynosure, Inc. Alexandrite laser system for hair removal and method therefor
US5843072A (en) * 1996-11-07 1998-12-01 Cynosure, Inc. Method for treatment of unwanted veins and device therefor
US6096029A (en) * 1997-02-24 2000-08-01 Laser Skin Toner, Inc. Laser method for subsurface cutaneous treatment
NO963546D0 (no) * 1996-08-23 1996-08-23 Eric Larsen Metode for permanent hårfjerning ved hjelp av lys
US6306128B1 (en) 1996-10-09 2001-10-23 Laser Industries Ltd. Cooling apparatus for cutaneous treatment employing a laser and method for operating same
US20060095097A1 (en) * 1996-10-30 2006-05-04 Provectus Devicetech, Inc. Treatment of pigmented tissue using optical energy
US7036516B1 (en) * 1996-10-30 2006-05-02 Xantech Pharmaceuticals, Inc. Treatment of pigmented tissues using optical energy
US6228075B1 (en) * 1996-11-07 2001-05-08 Cynosure, Inc. Alexandrite laser system for hair removal
US8182473B2 (en) 1999-01-08 2012-05-22 Palomar Medical Technologies Cooling system for a photocosmetic device
US6273884B1 (en) 1997-05-15 2001-08-14 Palomar Medical Technologies, Inc. Method and apparatus for dermatology treatment
US6653618B2 (en) 2000-04-28 2003-11-25 Palomar Medical Technologies, Inc. Contact detecting method and apparatus for an optical radiation handpiece
US6517532B1 (en) 1997-05-15 2003-02-11 Palomar Medical Technologies, Inc. Light energy delivery head
FR2756741B1 (fr) * 1996-12-05 1999-01-08 Cird Galderma Utilisation d'un chromophore dans une composition destinee a etre appliquee sur la peau avant un traitement laser
US6162211A (en) * 1996-12-05 2000-12-19 Thermolase Corporation Skin enhancement using laser light
US6190376B1 (en) 1996-12-10 2001-02-20 Asah Medico A/S Apparatus for tissue treatment
US5793781A (en) * 1997-01-24 1998-08-11 Spectra Science Corporation Solid state source for generating intense light for photodynamic therapy and photomedicine
US6248102B1 (en) 1997-04-04 2001-06-19 Keralase Ltd. Method of hair removal by transcutaneous application of laser light
US6235015B1 (en) * 1997-05-14 2001-05-22 Applied Optronics Corporation Method and apparatus for selective hair depilation using a scanned beam of light at 600 to 1000 nm
GB9710562D0 (en) * 1997-05-23 1997-07-16 Medical Laser Technologies Lim Light delivery
EP0885629A3 (de) * 1997-06-16 1999-07-21 Danish Dermatologic Development A/S Vorrichtung zur Erzeugung von pulsiertem Licht und kosmetische und therapeutische Photobehandlung
US6104959A (en) 1997-07-31 2000-08-15 Microwave Medical Corp. Method and apparatus for treating subcutaneous histological features
GB2335603B (en) * 1997-12-05 2002-12-04 Thermolase Corp Skin enhancement using laser light
IL122840A (en) * 1997-12-31 2002-04-21 Radiancy Inc Hair removal device and methods
US6575964B1 (en) 1998-02-03 2003-06-10 Sciton, Inc. Selective aperture for laser delivery system for providing incision, tissue ablation and coagulation
AUPP176898A0 (en) * 1998-02-12 1998-03-05 Moldflow Pty Ltd Automated machine technology for thermoplastic injection molding
US6080146A (en) * 1998-02-24 2000-06-27 Altshuler; Gregory Method and apparatus for hair removal
AU3450799A (en) * 1998-03-12 1999-09-27 Palomar Medical Technologies, Inc. System for electromagnetic radiation of the skin
ES2403359T3 (es) 1998-03-27 2013-05-17 The General Hospital Corporation Procedimiento y aparato para la determinación selectiva de tejidos ricos en lípidos
US6561998B1 (en) * 1998-04-07 2003-05-13 Transvascular, Inc. Transluminal devices, systems and methods for enlarging interstitial penetration tracts
US6264649B1 (en) * 1998-04-09 2001-07-24 Ian Andrew Whitcroft Laser treatment cooling head
JPH11318922A (ja) * 1998-05-11 1999-11-24 Kaihatsu Komonshitsu:Kk レーザ脱毛方法、皮膚保持具並びに手袋及び指サック
US6030378A (en) * 1998-05-26 2000-02-29 Stewart; Bob W. Method of hair removal by transcutaneous application of laser light
US6267755B1 (en) * 1998-10-08 2001-07-31 M & E Corporation Of Delaware Method of hair depilation
US6595986B2 (en) 1998-10-15 2003-07-22 Stephen Almeida Multiple pulse photo-dermatological device
US6228074B1 (en) * 1998-10-15 2001-05-08 Stephen Almeida Multiple pulse photo-epilator
US6059820A (en) * 1998-10-16 2000-05-09 Paradigm Medical Corporation Tissue cooling rod for laser surgery
EP1124612A1 (de) * 1998-10-28 2001-08-22 Keralase Ltd. Verfahren zur haarentfernung mittels transkutanen laserlichts
DE19852948C2 (de) 1998-11-12 2002-07-18 Asclepion Meditec Ag Dermatologisches Handstück
US6514242B1 (en) * 1998-12-03 2003-02-04 David Vasily Method and apparatus for laser removal of hair
US6402739B1 (en) * 1998-12-08 2002-06-11 Y-Beam Technologies, Inc. Energy application with cooling
US6183773B1 (en) * 1999-01-04 2001-02-06 The General Hospital Corporation Targeting of sebaceous follicles as a treatment of sebaceous gland disorders
US6200308B1 (en) 1999-01-29 2001-03-13 Candela Corporation Dynamic cooling of tissue for radiation treatment
US20020156471A1 (en) * 1999-03-09 2002-10-24 Stern Roger A. Method for treatment of tissue
US7041094B2 (en) * 1999-03-15 2006-05-09 Cutera, Inc. Tissue treatment device and method
US6383176B1 (en) * 1999-03-15 2002-05-07 Altus Medical, Inc. Hair removal device and method
US6569155B1 (en) 1999-03-15 2003-05-27 Altus Medical, Inc. Radiation delivery module and dermal tissue treatment method
RU2181571C2 (ru) * 1999-03-18 2002-04-27 Закрытое акционерное общество "LC" Устройство для терапевтической и косметологической фотообработки биотканей и способ его использования
AU3274900A (en) 1999-03-19 2000-10-09 Asah Medico A/S An apparatus for tissue treatment
CA2369792A1 (en) 1999-04-27 2000-11-02 The General Hospital Corporation Phototherapy method for treatment of acne
JP4388655B2 (ja) * 2000-02-10 2009-12-24 株式会社ニデック レーザ治療装置
WO2003053266A2 (en) * 1999-06-30 2003-07-03 Thermage, Inc. Liquid cooled rf handpiece
US6461348B1 (en) 1999-08-27 2002-10-08 Howard S. Bertan Photo-thermal epilation apparatus with advanced energy storage arrangement
US6355054B1 (en) 1999-11-05 2002-03-12 Ceramoptec Industries, Inc. Laser system for improved transbarrier therapeutic radiation delivery
US6364872B1 (en) * 1999-12-06 2002-04-02 Candela Corporation Multipulse dye laser
US6743222B2 (en) 1999-12-10 2004-06-01 Candela Corporation Method of treating disorders associated with sebaceous follicles
US20080091179A1 (en) * 1999-12-10 2008-04-17 Candela Corporation Compact, handheld device for home-based acne treatment
US20020091377A1 (en) * 2000-01-25 2002-07-11 Anderson R. Rox Method and apparatus for medical treatment utilizing long duration electromagnetic radiation
EP1309284B1 (de) * 2000-02-23 2006-05-17 Carl Zeiss Meditec AG Handstück zur abstrahlung von licht auf eine hautfläche
US6436094B1 (en) 2000-03-16 2002-08-20 Laserscope, Inc. Electromagnetic and laser treatment and cooling device
US6503268B1 (en) * 2000-04-03 2003-01-07 Ceramoptec Industries, Inc. Therapeutic laser system operating between 1000nm and 1300nm and its use
AU2000246149A1 (en) * 2000-05-19 2001-11-26 Ya-Man Ltd. Apparatus for laser depilation
US7083610B1 (en) * 2000-06-07 2006-08-01 Laserscope Device for irradiating tissue
US6613042B1 (en) * 2000-06-30 2003-09-02 Nikolai Tankovich Rainbow laser
DE60141758D1 (en) * 2000-08-16 2010-05-20 Gen Hospital Corp Topische aminolevulinsäure-photodynamische therapie für akne vulgaris
RU2167625C1 (ru) * 2000-09-12 2001-05-27 Владимир Валентинович Хомченко Способ лазерной эпиляции
US6702808B1 (en) 2000-09-28 2004-03-09 Syneron Medical Ltd. Device and method for treating skin
GB2370229A (en) * 2000-12-22 2002-06-26 Icn Photonics Ltd Light delivery system for improving the appearance of skin
US7351252B2 (en) * 2002-06-19 2008-04-01 Palomar Medical Technologies, Inc. Method and apparatus for photothermal treatment of tissue at depth
EP1347711B1 (de) * 2000-12-28 2006-11-15 Palomar Medical Technologies, Inc. Apparat zur therapeutischen elektromagnetischen strahlen therapie von der haut
EP1358907A4 (de) * 2001-01-29 2005-03-23 Ya Man Ltd Laserenthaarungsverfahren und laserenthaarungsvorrichtung
US6888319B2 (en) * 2001-03-01 2005-05-03 Palomar Medical Technologies, Inc. Flashlamp drive circuit
US6743221B1 (en) * 2001-03-13 2004-06-01 James L. Hobart Laser system and method for treatment of biological tissues
JP4536953B2 (ja) * 2001-05-23 2010-09-01 株式会社ニデック レーザ治療装置
WO2002096311A1 (en) * 2001-05-30 2002-12-05 Tomoyuki Takahashi Safe laser hair removal system with a protraction-retraction mechanism
US6770069B1 (en) 2001-06-22 2004-08-03 Sciton, Inc. Laser applicator
WO2003003903A2 (en) 2001-07-02 2003-01-16 Palomar Medical Technologies, Inc. Laser device for medical/cosmetic procedures
ITFI20010133A1 (it) * 2001-07-13 2003-01-13 El En Spa Apparecchiatura anti cellulite a tecniche composite
EP1412142B1 (de) * 2001-07-23 2005-12-14 Radiancy Inc. Echter elektrischer rasierer
CN1476312A (zh) * 2001-07-27 2004-02-18 皇家菲利浦电子有限公司 具有确定辐射脉冲剂量用的处理器的皮肤处理装置
US7303578B2 (en) * 2001-11-01 2007-12-04 Photothera, Inc. Device and method for providing phototherapy to the brain
US8308784B2 (en) * 2006-08-24 2012-11-13 Jackson Streeter Low level light therapy for enhancement of neurologic function of a patient affected by Parkinson's disease
US20040147984A1 (en) * 2001-11-29 2004-07-29 Palomar Medical Technologies, Inc. Methods and apparatus for delivering low power optical treatments
US7935139B2 (en) * 2001-12-10 2011-05-03 Candela Corporation Eye safe dermatological phototherapy
US7762964B2 (en) * 2001-12-10 2010-07-27 Candela Corporation Method and apparatus for improving safety during exposure to a monochromatic light source
WO2003103523A1 (en) * 2002-06-06 2003-12-18 Inolase 2002 Ltd. Eye safe dermotological phototherapy
EP1829496A2 (de) * 2001-12-10 2007-09-05 Inolase 2002 Ltd. Verfahren und Vorrichtung zur augensicheren Haarentfernung
US7762965B2 (en) * 2001-12-10 2010-07-27 Candela Corporation Method and apparatus for vacuum-assisted light-based treatments of the skin
EP1627662B1 (de) * 2004-06-10 2011-03-02 Candela Corporation Apparat für vakuumunterstützte dermatologische Phototherapien
US20030109787A1 (en) * 2001-12-12 2003-06-12 Michael Black Multiple laser diagnostics
US20030109860A1 (en) * 2001-12-12 2003-06-12 Michael Black Multiple laser treatment
US20040082940A1 (en) * 2002-10-22 2004-04-29 Michael Black Dermatological apparatus and method
US10695577B2 (en) * 2001-12-21 2020-06-30 Photothera, Inc. Device and method for providing phototherapy to the heart
AU2002367397A1 (en) * 2001-12-27 2003-07-24 Palomar Medical Technologies, Inc. Method and apparatus for improved vascular related treatment
EP1482848A4 (de) * 2002-03-12 2007-08-15 Palomar Medical Tech Inc Verfahren und gerät für die kontrolle von haarwachstum
EP1917935B1 (de) 2002-03-15 2011-01-12 The General Hospital Corporation Verfahren zur selektiven Spaltung von Fettgewebe durch gesteuerte Kühlung
US8840608B2 (en) 2002-03-15 2014-09-23 The General Hospital Corporation Methods and devices for selective disruption of fatty tissue by controlled cooling
FR2838042B1 (fr) * 2002-04-08 2005-03-11 Eurofeedback Sa Dispositif de traitement par emission de flashs lumineux
US20070213698A1 (en) * 2006-03-10 2007-09-13 Palomar Medical Technologies, Inc. Photocosmetic device
US7479137B2 (en) * 2002-05-31 2009-01-20 Ya-Man Ltd. Laser depilator
KR20050026404A (ko) 2002-06-19 2005-03-15 팔로마 메디칼 테크놀로지스, 인코포레이티드 깊이로 조직을 광열 치료하기 위한 방법 및 장치
US7740600B2 (en) * 2002-08-02 2010-06-22 Candela Corporation Apparatus and method for inhibiting pain signals transmitted during a skin related medical treatment
US7250047B2 (en) * 2002-08-16 2007-07-31 Lumenis Ltd. System and method for treating tissue
US20040156743A1 (en) * 2002-08-28 2004-08-12 Eric Bornstein Near infrared microbial elimination laser system
US20040126272A1 (en) * 2002-08-28 2004-07-01 Eric Bornstein Near infrared microbial elimination laser system
US7713294B2 (en) 2002-08-28 2010-05-11 Nomir Medical Technologies, Inc. Near infrared microbial elimination laser systems (NIMEL)
US20080131968A1 (en) * 2002-08-28 2008-06-05 Nomir Medical Technologies, Inc. Near-infrared electromagnetic modification of cellular steady-state membrane potentials
US8506979B2 (en) 2002-08-28 2013-08-13 Nomir Medical Technologies, Inc. Near-infrared electromagnetic modification of cellular steady-state membrane potentials
EP1558339A1 (de) * 2002-10-07 2005-08-03 Palomar Medical Technologies, Inc. Vorrichtung zur photobiostimulation
US6916315B2 (en) * 2002-10-07 2005-07-12 Kenneth Lawrence Short Methods of operating a photo-thermal epilation apparatus
US20070219604A1 (en) * 2006-03-20 2007-09-20 Palomar Medical Technologies, Inc. Treatment of tissue with radiant energy
EP2522294A2 (de) 2002-10-23 2012-11-14 Palomar Medical Technologies, Inc. Photobehandlungsvorrichtung zur Verwendung mit Kühlmitteln und topischen Substanzen
US6824542B2 (en) * 2002-11-08 2004-11-30 Harvey H. Jay Temporary hair removal method
US7699058B1 (en) * 2002-11-08 2010-04-20 Jay Harvey H Hair treatment method
US7931028B2 (en) 2003-08-26 2011-04-26 Jay Harvey H Skin injury or damage prevention method using optical radiation
US6916316B2 (en) * 2002-11-08 2005-07-12 Harvey H. Jay Hair treatment method
JP5037789B2 (ja) * 2002-11-28 2012-10-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 照射線によって人間の皮膚を処置するための装置
US7255560B2 (en) * 2002-12-02 2007-08-14 Nomir Medical Technologies, Inc. Laser augmented periodontal scaling instruments
US6991644B2 (en) * 2002-12-12 2006-01-31 Cutera, Inc. Method and system for controlled spatially-selective epidermal pigmentation phototherapy with UVA LEDs
AU2003301111A1 (en) * 2002-12-20 2004-07-22 Palomar Medical Technologies, Inc. Apparatus for light treatment of acne and other disorders of follicles
US11007373B1 (en) * 2002-12-20 2021-05-18 James Andrew Ohneck Photobiostimulation device and method of using same
US20040147985A1 (en) * 2003-01-27 2004-07-29 Altus Medical, Inc. Dermatological treatment flashlamp device and method
US20050177141A1 (en) * 2003-01-27 2005-08-11 Davenport Scott A. System and method for dermatological treatment gas discharge lamp with controllable current density
US7703458B2 (en) * 2003-02-21 2010-04-27 Cutera, Inc. Methods and devices for non-ablative laser treatment of dermatologic conditions
ES2570989T3 (es) * 2003-02-25 2016-05-23 Tria Beauty Inc Aparato de tratamiento dermatológico seguro para el ojo
US20100069898A1 (en) * 2003-02-25 2010-03-18 Tria Beauty, Inc. Acne Treatment Method, System and Device
US7981111B2 (en) 2003-02-25 2011-07-19 Tria Beauty, Inc. Method and apparatus for the treatment of benign pigmented lesions
JP2006518614A (ja) * 2003-02-25 2006-08-17 スペクトラジェニクス インコーポレイテッド ニキビ処置装置および方法
EP2604216B1 (de) * 2003-02-25 2018-08-22 Tria Beauty, Inc. In sich geschlossene Vorrichtung zur dermatologischen Behandlung auf Diodenlaserbasis
WO2004075681A2 (en) 2003-02-25 2004-09-10 Spectragenics, Inc. Self-contained, eye-safe hair-regrowth-inhibition apparatus and method
US7413567B2 (en) * 2003-02-25 2008-08-19 Spectragenics, Inc. Optical sensor and method for identifying the presence of skin
EP1596745B1 (de) * 2003-02-25 2016-02-17 Tria Beauty, Inc. Abgeschlossenes dermatologisches behandlungs gerät auf diodenlaser-basis
US20040176824A1 (en) * 2003-03-04 2004-09-09 Weckwerth Mark V. Method and apparatus for the repigmentation of human skin
JP4435149B2 (ja) * 2003-03-06 2010-03-17 トリア ビューティ インコーポレイテッド 皮膚接触感知装置
ES2546658T3 (es) * 2003-03-27 2015-09-25 The General Hospital Corporation Método para tratamiento dermatológico cosmético y renovación fraccionada de la piel
US7659301B2 (en) * 2003-04-15 2010-02-09 The General Hospital Corporation Methods and devices for epithelial protection during photodynamic therapy
US7220778B2 (en) * 2003-04-15 2007-05-22 The General Hospital Corporation Methods and devices for epithelial protection during photodynamic therapy
US20040215470A1 (en) * 2003-04-17 2004-10-28 International Business Machines Corporation Providing services with respect to a building according to a projected future condition of the building
US7470124B2 (en) * 2003-05-08 2008-12-30 Nomir Medical Technologies, Inc. Instrument for delivery of optical energy to the dental root canal system for hidden bacterial and live biofilm thermolysis
JP2007531544A (ja) * 2003-07-11 2007-11-08 リライアント・テクノロジーズ・インコーポレイテッド 皮膚の分画光治療のための方法と装置
US7291140B2 (en) * 2003-07-18 2007-11-06 Cutera, Inc. System and method for low average power dermatologic light treatment device
US7722600B2 (en) 2003-08-25 2010-05-25 Cutera, Inc. System and method for heating skin using light to provide tissue treatment
US8915906B2 (en) * 2003-08-25 2014-12-23 Cutera, Inc. Method for treatment of post-partum abdominal skin redundancy or laxity
US8870856B2 (en) * 2003-08-25 2014-10-28 Cutera, Inc. Method for heating skin using light to provide tissue treatment
MXPA06003466A (es) * 2003-10-14 2006-06-05 Gregg S Homer Metodo y dispositivo para la retraccion dermica y la generacion de colageno y elastina.
WO2005038762A1 (en) * 2003-10-17 2005-04-28 Scanvue Technologies Llc Differentiating circuit display
US7326199B2 (en) * 2003-12-22 2008-02-05 Cutera, Inc. System and method for flexible architecture for dermatologic treatments utilizing multiple light sources
US7282060B2 (en) 2003-12-23 2007-10-16 Reliant Technologies, Inc. Method and apparatus for monitoring and controlling laser-induced tissue treatment
US7184184B2 (en) * 2003-12-31 2007-02-27 Reliant Technologies, Inc. High speed, high efficiency optical pattern generator using rotating optical elements
US20050143792A1 (en) * 2003-12-24 2005-06-30 Harvey Jay Hair treatment method
WO2005065565A1 (en) * 2003-12-31 2005-07-21 Palomar Medical Technologies, Inc. Dermatological treatment with vusualization
US7372606B2 (en) 2003-12-31 2008-05-13 Reliant Technologies, Inc. Optical pattern generator using a single rotating component
US7090670B2 (en) * 2003-12-31 2006-08-15 Reliant Technologies, Inc. Multi-spot laser surgical apparatus and method
US7196831B2 (en) * 2003-12-31 2007-03-27 Reliant Technologies, Inc. Two-dimensional optical scan system using a counter-rotating disk scanner
JP2005224502A (ja) * 2004-02-16 2005-08-25 Terumo Corp 光照射装置
US8777935B2 (en) * 2004-02-25 2014-07-15 Tria Beauty, Inc. Optical sensor and method for identifying the presence of skin
AU2005231443B2 (en) 2004-04-01 2012-02-23 The General Hospital Corporation Method and apparatus for dermatological treatment and tissue reshaping
US7331954B2 (en) * 2004-04-08 2008-02-19 Omniguide, Inc. Photonic crystal fibers and medical systems including photonic crystal fibers
WO2005102201A1 (en) * 2004-04-26 2005-11-03 Koninklijke Philips Electronics N.V. A hair removing device
US20070179482A1 (en) * 2004-05-07 2007-08-02 Anderson Robert S Apparatuses and methods to treat biological external tissue
US20050251117A1 (en) * 2004-05-07 2005-11-10 Anderson Robert S Apparatus and method for treating biological external tissue
US8571648B2 (en) * 2004-05-07 2013-10-29 Aesthera Apparatus and method to apply substances to tissue
US7842029B2 (en) 2004-05-07 2010-11-30 Aesthera Apparatus and method having a cooling material and reduced pressure to treat biological external tissue
US7241291B2 (en) * 2004-06-02 2007-07-10 Syneron Medical Ltd. Method and system for skin treatment using light energy and skin deformation
US7413572B2 (en) * 2004-06-14 2008-08-19 Reliant Technologies, Inc. Adaptive control of optical pulses for laser medicine
US7837675B2 (en) * 2004-07-22 2010-11-23 Shaser, Inc. Method and device for skin treatment with replaceable photosensitive window
US7333698B2 (en) * 2004-08-05 2008-02-19 Polyoptics Ltd Optical scanning device
US20060047281A1 (en) 2004-09-01 2006-03-02 Syneron Medical Ltd. Method and system for invasive skin treatment
FR2860704B1 (fr) * 2004-12-15 2009-02-13 Eurofeedback Sa Dispositif de traitement par emission de flashs lumineux.
US20070032781A1 (en) * 2004-12-22 2007-02-08 Henry James P Reduction of hair growth
MX2007007624A (es) * 2004-12-22 2007-08-03 Gillette Co Reduccion del crecimiento del pelo con inhibidores de survivina.
US20060195073A1 (en) * 2005-01-07 2006-08-31 Connors Kevin P System and method for treatment of uvula and soft palate to reduce tissue laxity
US20110015549A1 (en) * 2005-01-13 2011-01-20 Shimon Eckhouse Method and apparatus for treating a diseased nail
US8277495B2 (en) * 2005-01-13 2012-10-02 Candela Corporation Method and apparatus for treating a diseased nail
US7291141B2 (en) * 2005-02-02 2007-11-06 Jay Harvey H Method and apparatus for enhancing hair removal
CN101132831A (zh) * 2005-02-18 2008-02-27 帕洛玛医疗技术公司 皮肤处理设备
WO2006111201A1 (en) 2005-04-18 2006-10-26 Pantec Biosolutions Ag Laser microporator
US7856985B2 (en) 2005-04-22 2010-12-28 Cynosure, Inc. Method of treatment body tissue using a non-uniform laser beam
JP2009502258A (ja) * 2005-07-21 2009-01-29 ノミール・メディカル・テクノロジーズ・インコーポレーテッド 標的部位の生物学的汚染物質のレベルを下げる方法
CN101282692A (zh) * 2005-08-08 2008-10-08 帕洛玛医疗技术公司 人眼安全的光美容设备
US20070176262A1 (en) * 2005-08-11 2007-08-02 Ernest Sirkin Series connection of a diode laser bar
US20120010603A1 (en) * 2005-08-12 2012-01-12 Dermalucent, LLC Tissue optical clearing devices for subsurface light-induced phase-change and method of use
EP2656809A1 (de) * 2005-08-12 2013-10-30 Board Of Regents, The University Of Texas System Systeme, Vorrichtungen und Verfahren zur optischen Klärung von Gewebe
US20070173799A1 (en) * 2005-09-01 2007-07-26 Hsia James C Treatment of fatty tissue adjacent an eye
CA2622560A1 (en) 2005-09-15 2007-03-29 Palomar Medical Technologies, Inc. Skin optical characterization device
JP2009508689A (ja) * 2005-09-19 2009-03-05 リモ パテントフェルヴァルトゥング ゲーエムベーハー ウント コー.カーゲー レーザビームによってヒトの毛髪を剃るための装置
US9028469B2 (en) * 2005-09-28 2015-05-12 Candela Corporation Method of treating cellulite
US20070083190A1 (en) * 2005-10-11 2007-04-12 Yacov Domankevitz Compression device for a laser handpiece
US7891362B2 (en) * 2005-12-23 2011-02-22 Candela Corporation Methods for treating pigmentary and vascular abnormalities in a dermal region
WO2007087374A2 (en) * 2006-01-24 2007-08-02 Nomir Medical Technologies, Inc. Optical method and device for modulation of biochemical processes in adipose tissue
US20070179570A1 (en) * 2006-01-30 2007-08-02 Luis De Taboada Wearable device and method for providing phototherapy to the brain
US7575589B2 (en) 2006-01-30 2009-08-18 Photothera, Inc. Light-emitting device and method for providing phototherapy to the brain
US20070194717A1 (en) * 2006-02-17 2007-08-23 Palomar Medical Technologies, Inc. Lamp for use in a tissue treatment device
WO2007099546A2 (en) * 2006-03-03 2007-09-07 Alma Lasers Ltd. Method and apparatus for light-based hair removal using incoherent light pulses
CA2644512C (en) 2006-03-03 2016-08-02 Alma Lasers Ltd. Method and apparatus for light-based hair removal
US20080031833A1 (en) * 2006-03-13 2008-02-07 Oblong John E Combined energy and topical composition application for regulating the condition of mammalian skin
US8460280B2 (en) * 2006-04-28 2013-06-11 Cutera, Inc. Localized flashlamp skin treatments
US8246611B2 (en) * 2006-06-14 2012-08-21 Candela Corporation Treatment of skin by spatial modulation of thermal heating
US8821482B2 (en) * 2006-06-26 2014-09-02 Koninklijke Philips N.V. Device and method for the treatment of skin, and use of the device
US7586957B2 (en) 2006-08-02 2009-09-08 Cynosure, Inc Picosecond laser apparatus and methods for its operation and use
US20080161745A1 (en) * 2006-09-08 2008-07-03 Oliver Stumpp Bleaching of contrast enhancing agent applied to skin for use with a dermatological treatment system
US8192474B2 (en) 2006-09-26 2012-06-05 Zeltiq Aesthetics, Inc. Tissue treatment methods
US9132031B2 (en) 2006-09-26 2015-09-15 Zeltiq Aesthetics, Inc. Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile
US8613741B1 (en) 2006-10-11 2013-12-24 Candela Corporation Voltage bucking circuit for driving flashlamp-pumped lasers for treating skin
US20100016843A1 (en) 2006-10-25 2010-01-21 Pantec Biosolutions Ag Tip Member for a Laser Emitting Device
ES2529051T3 (es) * 2006-11-13 2015-02-16 Lumenis, Inc. Aparato, boquilla y método para tratar un tejido
US20080154247A1 (en) * 2006-12-20 2008-06-26 Reliant Technologies, Inc. Apparatus and method for hair removal and follicle devitalization
EP2106823A4 (de) * 2007-01-26 2010-10-27 Panasonic Elec Works Co Ltd Vorrichtung zur regulierung des sichtbaren körperhaarwachstums
US20080186591A1 (en) * 2007-02-01 2008-08-07 Palomar Medical Technologies, Inc. Dermatological device having a zoom lens system
US8435234B2 (en) * 2007-02-06 2013-05-07 Reliant Technologies, Inc. Method and apparatus for monitoring and controlling laser-induced tissue treatment
EP2120761A1 (de) * 2007-03-02 2009-11-25 Candela Corporation Durch laser erfolgende hauterwärmung von variabler tiefe
US20080221649A1 (en) * 2007-03-09 2008-09-11 Agustina Echague Method of sequentially treating tissue
US9241763B2 (en) 2007-04-19 2016-01-26 Miramar Labs, Inc. Systems, apparatus, methods and procedures for the noninvasive treatment of tissue using microwave energy
CN101711134B (zh) 2007-04-19 2016-08-17 米勒玛尔实验室公司 对组织施加微波能量的系统及在组织层中产生组织效果的系统
US8688228B2 (en) 2007-04-19 2014-04-01 Miramar Labs, Inc. Systems, apparatus, methods and procedures for the noninvasive treatment of tissue using microwave energy
EP2767308B1 (de) 2007-04-19 2016-04-13 Miramar Labs, Inc. Vorrichtungen und Systeme zur nichtinvasiven Verabreichung von Mikrowellentherapie
WO2008131306A1 (en) 2007-04-19 2008-10-30 The Foundry, Inc. Systems and methods for creating an effect using microwave energy to specified tissue
EP3391844A1 (de) * 2007-04-19 2018-10-24 Miramar Labs, Inc. Vorrichtung zur verringerung der schweissproduktion
US20080262484A1 (en) * 2007-04-23 2008-10-23 Nlight Photonics Corporation Motion-controlled laser surface treatment apparatus
US20080287839A1 (en) 2007-05-18 2008-11-20 Juniper Medical, Inc. Method of enhanced removal of heat from subcutaneous lipid-rich cells and treatment apparatus having an actuator
EP2644228A1 (de) * 2007-06-27 2013-10-02 The General Hospital Corporation Verfahren und Vorrichtung zur optischen Unterdrückung der photodynamischen Therapie
US20090012434A1 (en) * 2007-07-03 2009-01-08 Anderson Robert S Apparatus, method, and system to treat a volume of skin
US8523927B2 (en) 2007-07-13 2013-09-03 Zeltiq Aesthetics, Inc. System for treating lipid-rich regions
US8236036B1 (en) 2007-07-21 2012-08-07 Frost Ricky A Optical dermatological and medical treatment apparatus having replaceable laser diodes
EP2194899A4 (de) * 2007-08-08 2012-11-28 Tria Beauty Inc Kapazitives messverfahren und vorrichtung zum nachweis von haut
US8285390B2 (en) 2007-08-21 2012-10-09 Zeltiq Aesthetics, Inc. Monitoring the cooling of subcutaneous lipid-rich cells, such as the cooling of adipose tissue
US8858229B2 (en) * 2007-08-27 2014-10-14 Morgan Gustavsson Volume emitter
US20090069795A1 (en) * 2007-09-10 2009-03-12 Anderson Robert S Apparatus and method for selective treatment of tissue
US7740651B2 (en) * 2007-09-28 2010-06-22 Candela Corporation Vacuum assisted treatment of the skin
US8920409B2 (en) * 2007-10-04 2014-12-30 Cutera, Inc. System and method for dermatological lesion treatment using gas discharge lamp with controllable current density
US20090093864A1 (en) * 2007-10-08 2009-04-09 Anderson Robert S Methods and devices for applying energy to tissue
KR100958612B1 (ko) * 2007-10-09 2010-05-18 한국전기연구원 펄스열을 이용한 치료용 레이저장치
FR2924327B1 (fr) * 2007-12-03 2011-03-18 Heatwave Technology Dispositif et procede de traitement thermique dermatologique par faisceau laser.
ES2471971T3 (es) 2007-12-12 2014-06-27 Miramar Labs, Inc. Sistema y aparato para el tratamiento no invasivo de tejido utilizando energía de microondas
EP2561819B1 (de) 2008-01-17 2015-01-07 Syneron Medical Ltd. Haarentfernungsgerät zur persönlichen Verwendung
WO2009093230A2 (en) * 2008-01-24 2009-07-30 Syneron Medical Ltd. A device, apparatus, and method of adipose tissue treatment
MX2010009762A (es) * 2008-03-07 2010-09-28 Koninkl Philips Electronics Nv Dispositivo de foto-depilacion.
EP2252229B1 (de) * 2008-03-11 2012-12-05 Shaser, Inc. Verbesserung von optischen bestrahlungssystemen zur verwendung bei dermatologischen behandlungen
WO2009117437A1 (en) * 2008-03-17 2009-09-24 Palomar Medical Technologies, Inc. Method and apparatus for fractional deformation and treatment of tissue
EP2268198A4 (de) * 2008-04-25 2014-10-15 Tria Beauty Inc Optischer sensor und verfahren zur erkennung des vorhandenseins von haut und hautpigmentation
US9314293B2 (en) * 2008-07-16 2016-04-19 Syneron Medical Ltd RF electrode for aesthetic and body shaping devices and method of using same
US20100017750A1 (en) * 2008-07-16 2010-01-21 Avner Rosenberg User interface
EP2358436B1 (de) * 2008-09-16 2015-08-05 EL.EN. S.p.A. Vorrichtung für die regenerative therapie durch hochleistungslasertherapie
WO2010032235A1 (en) 2008-09-21 2010-03-25 Syneron Medical Ltd. A method and apparatus for personal skin treatment
FR2921249B1 (fr) * 2008-11-14 2012-04-27 Eurofeedback Sa Dispositif de traitement par emission de flashs lumineux
US20110190749A1 (en) 2008-11-24 2011-08-04 Mcmillan Kathleen Low Profile Apparatus and Method for Phototherapy
EP2361117A4 (de) 2008-11-24 2012-05-09 Gradiant Res Llc Fotothermische behandlung von weichgewebe
FR2939633B1 (fr) 2008-12-11 2011-01-21 Seb Sa Appareil a main de soins corporels a detection de presence.
US8603073B2 (en) 2008-12-17 2013-12-10 Zeltiq Aesthetics, Inc. Systems and methods with interrupt/resume capabilities for treating subcutaneous lipid-rich cells
JP4380785B1 (ja) 2009-01-08 2009-12-09 パナソニック電工株式会社 光照射装置
US8606366B2 (en) 2009-02-18 2013-12-10 Syneron Medical Ltd. Skin treatment apparatus for personal use and method for using same
US20100211055A1 (en) * 2009-02-18 2010-08-19 Shimon Eckhouse Method for body toning and an integrated data management system for the same
US9278230B2 (en) 2009-02-25 2016-03-08 Syneron Medical Ltd Electrical skin rejuvenation
WO2010115209A2 (en) * 2009-04-03 2010-10-07 Palomar Medical Technologies, Inc. Method and apparatus for treatment of tissue
ES2916830T3 (es) 2009-04-30 2022-07-06 Zeltiq Aesthetics Inc Dispositivo para eliminar el calor de las células subcutáneas ricas en lípidos
US8512322B1 (en) 2009-05-01 2013-08-20 Tria Beauty, Inc. Antimicrobial layer for optical output window
EP3078364A1 (de) 2009-05-26 2016-10-12 The General Hospital Corporation Zusammensetzung enthaltend metallische nanopartikel zur verwendung in der behandlung von akne
GB2470927A (en) * 2009-06-10 2010-12-15 Dezac Group Ltd Phototherapy apparatus with skin temperature control
US9919168B2 (en) 2009-07-23 2018-03-20 Palomar Medical Technologies, Inc. Method for improvement of cellulite appearance
US20110190745A1 (en) * 2009-12-04 2011-08-04 Uebelhoer Nathan S Treatment of sweat glands
MX2012006497A (es) 2009-12-06 2012-07-30 Syneron Medical Ltd Metodo y aparato para el tratamiento personal de la piel.
WO2011075442A1 (en) 2009-12-15 2011-06-23 Omniguide, Inc. Two-part surgical waveguide
US9314368B2 (en) 2010-01-25 2016-04-19 Zeltiq Aesthetics, Inc. Home-use applicators for non-invasively removing heat from subcutaneous lipid-rich cells via phase change coolants, and associates devices, systems and methods
US8676338B2 (en) 2010-07-20 2014-03-18 Zeltiq Aesthetics, Inc. Combined modality treatment systems, methods and apparatus for body contouring applications
US9962225B2 (en) 2010-10-07 2018-05-08 Gradiant Research, Llc Method and apparatus for skin cancer thermal therapy
JP5435739B2 (ja) * 2010-10-19 2014-03-05 国立大学法人東北大学 光ファイバーおよびそれを用いた水中衝撃波発生装置
JP5852661B2 (ja) 2010-10-25 2016-02-03 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 皮膚処理システム
US8834365B2 (en) 2010-12-23 2014-09-16 Nlight Photonics Corporation Skin color and capacitive sensor systems
US10722395B2 (en) 2011-01-25 2020-07-28 Zeltiq Aesthetics, Inc. Devices, application systems and methods with localized heat flux zones for removing heat from subcutaneous lipid-rich cells
US9038640B2 (en) 2011-03-31 2015-05-26 Viora Ltd. System and method for fractional treatment of skin
US8812979B2 (en) 2011-05-11 2014-08-19 General Electric Company Feature license management system
US9314301B2 (en) 2011-08-01 2016-04-19 Miramar Labs, Inc. Applicator and tissue interface module for dermatological device
WO2013128380A1 (en) * 2012-02-28 2013-09-06 Koninklijke Philips N.V. Device for light based skin treatment
KR102183581B1 (ko) 2012-04-18 2020-11-27 싸이노슈어, 엘엘씨 피코초 레이저 장치 및 그를 사용한 표적 조직의 치료 방법
CN110251839A (zh) 2012-09-10 2019-09-20 真皮光子公司 皮肤病学的医疗装置
US9750572B2 (en) * 2013-01-10 2017-09-05 Koninklijke Philips N.V. Cutting head for a device for cutting hair
US9844460B2 (en) 2013-03-14 2017-12-19 Zeltiq Aesthetics, Inc. Treatment systems with fluid mixing systems and fluid-cooled applicators and methods of using the same
US9545523B2 (en) 2013-03-14 2017-01-17 Zeltiq Aesthetics, Inc. Multi-modality treatment systems, methods and apparatus for altering subcutaneous lipid-rich tissue
US10105182B2 (en) * 2013-03-15 2018-10-23 Skarp Technologies (Delaware) Inc. Laser shaving
US9017322B2 (en) * 2013-03-15 2015-04-28 Morgan Lars Ake Gustavsson Laser shaving
EP2973894A2 (de) 2013-03-15 2016-01-20 Cynosure, Inc. Optische picosekunden-strahlungssysteme und verfahren zur verwendung
DE102013005483A1 (de) * 2013-03-28 2014-10-16 Holger Ernst Verfahren zur Behandlung in der Medizin mittels kombinierter gepulster Laserstrahlung
US10779885B2 (en) 2013-07-24 2020-09-22 Miradry. Inc. Apparatus and methods for the treatment of tissue using microwave energy
USD747800S1 (en) 2013-09-10 2016-01-19 Dermal Photonics Corporation Dermatological medical device
KR101403331B1 (ko) 2014-01-29 2014-06-05 (주)하배런메디엔뷰티 광선 및 쿨링 카트리지의 교체가 가능한 포터블 제모기
US10575890B2 (en) 2014-01-31 2020-03-03 Zeltiq Aesthetics, Inc. Treatment systems and methods for affecting glands and other targeted structures
US10675176B1 (en) 2014-03-19 2020-06-09 Zeltiq Aesthetics, Inc. Treatment systems, devices, and methods for cooling targeted tissue
USD777338S1 (en) 2014-03-20 2017-01-24 Zeltiq Aesthetics, Inc. Cryotherapy applicator for cooling tissue
US10952891B1 (en) 2014-05-13 2021-03-23 Zeltiq Aesthetics, Inc. Treatment systems with adjustable gap applicators and methods for cooling tissue
US10935174B2 (en) 2014-08-19 2021-03-02 Zeltiq Aesthetics, Inc. Stress relief couplings for cryotherapy apparatuses
US10568759B2 (en) 2014-08-19 2020-02-25 Zeltiq Aesthetics, Inc. Treatment systems, small volume applicators, and methods for treating submental tissue
KR101540645B1 (ko) 2014-11-19 2015-08-03 (주)하배런메디엔뷰티 제모기와 냉각기로 구성된 제모 장치
US10518104B2 (en) 2015-04-23 2019-12-31 Cynosure, Llc Systems and methods of unattended treatment
US10737109B2 (en) 2015-04-23 2020-08-11 Cynosure, Llc Systems and methods of unattended treatment of a subject's head or neck
WO2017070112A1 (en) 2015-10-19 2017-04-27 Zeltiq Aesthetics, Inc. Vascular treatment systems, cooling devices, and methods for cooling vascular structures
ES2733006T3 (es) * 2015-12-22 2019-11-27 Koninklijke Philips Nv Dispositivo de corte de pelo
CA3009414A1 (en) 2016-01-07 2017-07-13 Zeltiq Aesthetics, Inc. Temperature-dependent adhesion between applicator and skin during cooling of tissue
ES2891307T3 (es) * 2016-02-02 2022-01-27 Braun Gmbh Dispositivo para el tratamiento de la piel
US10765552B2 (en) 2016-02-18 2020-09-08 Zeltiq Aesthetics, Inc. Cooling cup applicators with contoured heads and liner assemblies
EP3216368A1 (de) 2016-03-09 2017-09-13 Koninklijke Philips N.V. Haarstyling
US11382790B2 (en) 2016-05-10 2022-07-12 Zeltiq Aesthetics, Inc. Skin freezing systems for treating acne and skin conditions
US10555831B2 (en) 2016-05-10 2020-02-11 Zeltiq Aesthetics, Inc. Hydrogel substances and methods of cryotherapy
US10682297B2 (en) 2016-05-10 2020-06-16 Zeltiq Aesthetics, Inc. Liposomes, emulsions, and methods for cryotherapy
US10974061B2 (en) * 2016-05-27 2021-04-13 Sharp Kabushiki Kaisha Optical treatment apparatus and fixing tool
EP3281598A1 (de) * 2016-08-09 2018-02-14 Koninklijke Philips N.V. Lichtbasierte hautbehandlungsvorrichtung und -verfahren
KR101869003B1 (ko) * 2016-10-14 2018-06-20 (주)클래시스 피부치료용 레이저 핸드 피스
MX2019004674A (es) * 2016-10-21 2019-08-14 Massachusetts Gen Hospital Sistemas y metodos para preacondicionamiento de gradiente termico para focalizacion fototermica selectiva.
US11076879B2 (en) 2017-04-26 2021-08-03 Zeltiq Aesthetics, Inc. Shallow surface cryotherapy applicators and related technology
KR101865784B1 (ko) * 2017-09-07 2018-06-08 주식회사 지티지웰니스 지방분해용 핸드피스의 레이저 장치와 이를 이용한 핸드피스
CA3092248A1 (en) 2018-02-26 2019-08-29 Mirko Mirkov Q-switched cavity dumped sub-nanosecond laser
WO2020028472A1 (en) 2018-07-31 2020-02-06 Zeltiq Aesthetics, Inc. Methods, devices, and systems for improving skin characteristics
CN113645879A (zh) 2019-04-05 2021-11-12 吉列有限责任公司 皮肤处理个人护理装置及其制造方法
JP7220385B2 (ja) * 2019-11-07 2023-02-10 パナソニックIpマネジメント株式会社 毛切断装置及び毛切断システム
JP7450173B2 (ja) * 2020-02-04 2024-03-15 パナソニックIpマネジメント株式会社 電気かみそり
CN116096460A (zh) * 2020-06-05 2023-05-09 一路达株式会社 真皮血管收缩条件下皮肤病变的激光治疗
JP6860946B1 (ja) * 2020-07-21 2021-04-21 株式会社Eidea 脱毛装置及び脱毛方法
CN114192507B (zh) * 2020-09-17 2023-08-08 厦门汇听科技有限公司 一种基于光热分解技术的燕窝快速去毛系统及其实现方法
CN112690898A (zh) * 2021-01-22 2021-04-23 江苏利孚医疗技术有限公司 一种脱毛模组、脱毛仪以及使用该种脱毛仪的方法

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3538919A (en) * 1967-04-07 1970-11-10 Gregory System Inc Depilation by means of laser energy
US3693623A (en) * 1970-12-25 1972-09-26 Gregory System Inc Photocoagulation means and method for depilation
US3834391A (en) * 1973-01-19 1974-09-10 Block Carol Ltd Method and apparatus for photoepilation
US3900034A (en) * 1974-04-10 1975-08-19 Us Energy Photochemical stimulation of nerves
US4197671A (en) 1977-09-02 1980-04-15 Brouwer Walter W De Kinematic optical device
US4388924A (en) * 1981-05-21 1983-06-21 Weissman Howard R Method for laser depilation
US4461294A (en) * 1982-01-20 1984-07-24 Baron Neville A Apparatus and process for recurving the cornea of an eye
GB2123287B (en) * 1982-07-09 1986-03-05 Anna Gunilla Sutton Depilaton device
US4608978A (en) * 1983-09-26 1986-09-02 Carol Block Limited Method and apparatus for photoepiltion
IL75998A0 (en) * 1984-08-07 1985-12-31 Medical Laser Research & Dev C Laser system for providing target tissue specific energy deposition
JPS62500626A (ja) * 1984-10-25 1987-03-12 キャンデラ・レ−ザ−・コ−ポレ−ション 光のパルス出力ビームを発生させるために光を増幅する方法及び装置
JPH0213014Y2 (de) * 1984-11-30 1990-04-11
US4819669A (en) * 1985-03-29 1989-04-11 Politzer Eugene J Method and apparatus for shaving the beard
GB2184021A (en) * 1985-12-13 1987-06-17 Micra Ltd Laser treatment apparatus for port wine stains
FR2591902B1 (fr) * 1985-12-23 1989-06-30 Collin Yvon Appareil de lasertherapie externe comportant une ou plusieurs diodes laser dans des ventouses
JPH0199574A (ja) * 1987-10-13 1989-04-18 Matsushita Electric Ind Co Ltd 半導体レーザ医療装置
JPH01181877A (ja) * 1988-01-14 1989-07-19 Matsushita Electric Ind Co Ltd レーザ医療装置
US5486172A (en) 1989-05-30 1996-01-23 Chess; Cyrus Apparatus for treating cutaneous vascular lesions
US5057104A (en) * 1989-05-30 1991-10-15 Cyrus Chess Method and apparatus for treating cutaneous vascular lesions
DE3936367A1 (de) * 1989-11-02 1991-05-08 Simon Pal Rasierapparat
US5059192A (en) * 1990-04-24 1991-10-22 Nardo Zaias Method of hair depilation
IL97531A (en) * 1991-03-12 1995-12-31 Kelman Elliot Hair cutting apparatus
US5282842A (en) 1991-03-27 1994-02-01 Changaris David G Method of inducing tanning by pulsed light and apparatus to effect same
AU2414392A (en) * 1991-09-26 1993-04-27 Warner-Lambert Company Hair ablation system by optical irradiation
US5226907A (en) * 1991-10-29 1993-07-13 Tankovich Nikolai I Hair removal device and method
US5425728A (en) * 1991-10-29 1995-06-20 Tankovich; Nicolai I. Hair removal device and method
US5344418A (en) * 1991-12-12 1994-09-06 Shahriar Ghaffari Optical system for treatment of vascular lesions
CA2093055C (en) * 1992-04-09 2002-02-19 Shimon Eckhouse Method and apparatus for therapeutic electromagnetic treatment
GB9325109D0 (en) * 1993-12-08 1994-02-09 Sls Wales Ltd Depilation
US6273884B1 (en) 1997-05-15 2001-08-14 Palomar Medical Technologies, Inc. Method and apparatus for dermatology treatment

Also Published As

Publication number Publication date
EP0806913A1 (de) 1997-11-19
EP1230900B1 (de) 2004-08-18
JP2007252945A (ja) 2007-10-04
WO1996023447A1 (en) 1996-08-08
US5735844A (en) 1998-04-07
EP1219258B1 (de) 2005-12-28
JP4117846B2 (ja) 2008-07-16
DE69621775T3 (de) 2015-03-19
JP3819025B2 (ja) 2006-09-06
CA2210720A1 (en) 1996-08-08
JP4159595B2 (ja) 2008-10-01
JP2006051388A (ja) 2006-02-23
CA2210720C (en) 2006-08-08
ES2526531T3 (es) 2015-01-13
ES2179937T5 (es) 2015-02-18
EP1495735A1 (de) 2005-01-12
EP1219258A1 (de) 2002-07-03
EP1230900A1 (de) 2002-08-14
HK1048754A1 (en) 2003-04-17
EP0806913B2 (de) 2014-11-19
EP1230900B2 (de) 2014-11-19
DE69621775D1 (de) 2002-07-18
DE69635684D1 (de) 2006-02-02
ES2227387T5 (es) 2015-02-17
EP1495735B1 (de) 2014-11-19
CA2550682A1 (en) 1996-08-08
KR19980701882A (ko) 1998-06-25
DE69621775T2 (de) 2003-02-06
CN1172420A (zh) 1998-02-04
DE69635684T2 (de) 2006-08-24
ES2179937T3 (es) 2003-02-01
HK1048754B (zh) 2005-04-29
JP2008132368A (ja) 2008-06-12
ES2255597T3 (es) 2006-07-01
CN1119129C (zh) 2003-08-27
DE69633207D1 (de) 2004-09-23
JPH11501231A (ja) 1999-02-02
DE69633207T3 (de) 2015-03-26
ES2227387T3 (es) 2005-04-01
EP0806913B1 (de) 2002-06-12

Similar Documents

Publication Publication Date Title
DE69633207T2 (de) Haarentfernungsgerät unter Verwendung von optischen Pulsen
DE69635430T2 (de) Vorrichtung zur Entfernung von Haaren mit einer pulsierten elektromagnetischen Strahlung
DE19512481C2 (de) Vorrichtung zum dynamischen Kühlen von biologischen Geweben für die thermisch vermittelte Chirurgie
DE69333677T2 (de) Eine therapeutische Behandlungsvorrichtung
US5595568A (en) Permanent hair removal using optical pulses
EP0601130B1 (de) Verfahren zum enthaaren
US6267771B1 (en) Hair removal device and method
DE69926348T2 (de) System zur elektromagnetischen bestrahlung der haut
Patil Overview of lasers
US5425728A (en) Hair removal device and method
DE60124585T2 (de) Apparat zur therapeutischen elektromagnetischen Strahlentherapie von der Haut
DE69633520T2 (de) Enthaaren durch selektive photothermolyse mit hilfe eines alexandrite-lasers
KR20010109307A (ko) 펄스광을 이용한 주름살 감소장치 및 방법
DE19944401A1 (de) Verfahren und Vorrichtung zur Struktur-/tiefenselektiven Denaturierung biologischen Gewebes
DE60126678T2 (de) Therapeutische behandlungsvorrichtung
US20050065503A1 (en) Method and apparatus for reducing the appearance of skin markings
DE19832221A1 (de) Verfahren zur kosmetischen Haarentfernung

Legal Events

Date Code Title Description
8363 Opposition against the patent
8328 Change in the person/name/address of the agent

Representative=s name: PATENT- UND RECHTSANWAELTE BARDEHLE, PAGENBERG, DOS