DE69635858T2 - Telezentrische 3d kamera und zugehöriges verfahren - Google Patents

Telezentrische 3d kamera und zugehöriges verfahren Download PDF

Info

Publication number
DE69635858T2
DE69635858T2 DE69635858T DE69635858T DE69635858T2 DE 69635858 T2 DE69635858 T2 DE 69635858T2 DE 69635858 T DE69635858 T DE 69635858T DE 69635858 T DE69635858 T DE 69635858T DE 69635858 T2 DE69635858 T2 DE 69635858T2
Authority
DE
Germany
Prior art keywords
radiation
scene
detector
source
modulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
DE69635858T
Other languages
English (en)
Other versions
DE69635858D1 (de
Inventor
Giora Yahav
I. Gavriel IDDAN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Microsoft International Holdings BV
Original Assignee
3DV Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from IL114278A external-priority patent/IL114278A/en
Priority claimed from IL116223A external-priority patent/IL116223A/en
Application filed by 3DV Systems Ltd filed Critical 3DV Systems Ltd
Publication of DE69635858D1 publication Critical patent/DE69635858D1/de
Application granted granted Critical
Publication of DE69635858T2 publication Critical patent/DE69635858T2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/02Picture taking arrangements specially adapted for photogrammetry or photographic surveying, e.g. controlling overlapping of pictures
    • G01C11/025Picture taking arrangements specially adapted for photogrammetry or photographic surveying, e.g. controlling overlapping of pictures by scanning the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/30Systems for automatic generation of focusing signals using parallactic triangle with a base line
    • G02B7/32Systems for automatic generation of focusing signals using parallactic triangle with a base line using active means, e.g. light emitter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • G01S17/18Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves wherein range gates are used
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/933Lidar systems specially adapted for specific applications for anti-collision purposes of aircraft or spacecraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/4802Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4812Constructional features, e.g. arrangements of optical elements common to transmitter and receiver transmitted and received beams following a coaxial path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/51Display arrangements

Description

  • GEBIET UND HINTERGRUND DER ERFINDUNG
  • Die vorliegende Erfindung betrifft dreidimensionale Kameras und spezieller Systeme zur genauen Bestimmung des Abstands zu verschiedenen Objekten und Teilabschnitten von Objekten in der Szene.
  • Verschiedene Techniken sind bekannt, um ein dreidimensionales Bild einer Szene zu erzeugen, d.h. ein zweidimensionales Bild, das zusätzlich dazu, dass es das laterale Maß von Objekten in der Szene anzeigt, weiter den relativen oder absoluten Abstand der Objekte oder Teilabschnitte derselben von einem gewissen Bezugspunkt, wie z.B. dem Ort der Kamera, anzeigt.
  • Mindestens drei grundlegende Techniken werden üblicherweise verwendet, um solche Bilder zu erzeugen. Bei einer Technik wird ein Laser oder eine ähnliche Strahlenquelle verwendet, um einen Impuls zu einem speziellen Punkt in der Szene zu schicken. Der reflektierte Impuls wird detektiert, und die Laufzeit des Impulses, dividiert durch zwei, wird verwendet, um den Abstand des Punkts zu veranschlagen. Um den Abstand von verschiedenen Punkten in der Szene zu erhalten, lässt man die Quelle die Szene scannen, wobei eine Reihe von Impulsen zu aufeinanderfolgenden Punkten der Szene geschickt wird.
  • Bei einer noch anderen Technik wird eine Phasenverschiebung statt einer Laufzeit gemessen und verwendet, um Abstände zu veranschlagen. Auch hier muss die ganze Szene oder relevante Teilabschnitte derselben gescannt werden, jeweils ein Punkt auf einmal.
  • Bei einer dritten Technik, die auch ein Scannen beinhaltet, werden mindestens eine einzige Strahlenquelle und ein entsprechender Detektor mit geeigneter Optik verwendet, die auf das Licht auf eine Weise einwirkt, die vom Abstand zum Objekt, das untersucht wird, abhängt, um den Abstand zu einem speziellen Punkt in der Szene unter Verwendung einer Triangulierungstechnik zu bestimmen.
  • Der Hauptnachteil von allen drei der oben beschriebenen Techniken besteht darin, dass jede ein punktweises oder linienweises Scannen erfordert, um den Abstand der verschiedenen Objekte in der Szene zu bestimmen. Ein solches Scannen erhöht signifikant die Zyklusdauer des Systems, erfordert kostspielige Scannausrüstung und macht die Verwendung von schnellen und leistungsstarken Recheneinrichtungen und komplizierter Programmierung notwendig.
  • Die WO 89 12837 beschreibt ein optisches Radarsystem, das Reichweitedaten für eine Mehrzahl von Punkten in einer Szene simultan erfasst. Das System beleuchtet die Szene mit Lichtimpulsen und detektiert von der Szene reflektiertes Licht unter Verwendung eines torgesteuerten Detektors. Von Lichtimpulsen reflektierte Lichtmengen, die den torgesteuerten Detektor während seiner Ein-Zeiten erreichen, werden verwendet, um Abstände zu Punkten in der Szene zu bestimmen.
  • Die US 5,216,259 beschreibt eine Vorrichtung zur Bestimmung von Abständen zur Szene, die die Szene mit Lichtimpulsen beleuchtet. Licht, das von den Lichtimpulsen durch die Szene reflektiert wird, wird durch eine zeitabhängige Verstärkungsfunktion moduliert. Das modulierte Licht von einem Lichtimpuls wird verarbeitet, um ein Maß der Verstärkung, die das Licht moduliert, und daraus Verzögerungszeiten zwischen einer Zeit zu bestimmen, bei der der Impuls gesendet wurde, und Zeiten, bei denen von dem Impuls reflektiertes Licht bei der Vorrichtung ankommt. Die Verzögerungszeiten werden verwendet, um Reichweiten zu Gebieten der Szene zu bestimmen.
  • ZUSAMMENFASSUNG DER ERFINDUNG
  • Gemäß der vorliegenden Erfindung wird ein telezentrisches System bereitgestellt, um ein Bild zu erzeugen, das Abstände zu verschiedenen Objekten in einer Szene anzeigt, umfassend: (a) eine Strahlenquelle, um Quellstrahlung auf die Szene zu richten; (b) einen Detektor, um die Strahlungsintensität zu detektieren, die von den Objekten in der Szene reflektiert wird; (c) einen Quellenmodulator, um die Strahlenquelle zu modulieren; (d) Einrichtungen zum Kollimieren eines Anteils der von den Objekten in der Szene reflektierten Strahlung; (e) einen Reflexionsstrahlungsmodulator, um kollimierte Strahlung zu modulieren, die von den Objekten in der Szene reflektiert wird, wobei der Reflexionsstrahlungsmodulator aus der Gruppe ausgewählt ist, die aus akustooptischen Bauelementen und elektrooptischen Bauelementen besteht; (f) einen Quellenmodulatorsteuermechanismus, um den Quellenmodulator zu steuern; und (g) einen Reflexionsstrahlungsmodulatorsteuermechanismus, um den Detektormodulator zu steuern.
  • Gemäß der Erfindung wird ein telezentrisches System mit den Merkmalen von Anspruch 1 bereitgestellt.
  • Gemäß einer bevorzugten Ausführungsform der vorliegenden Erfindung arbeiten der Quellenmodulatorsteuermechanismus und der Detektormodulatorsteuermechanismus, um den Quellenmodulator und den Detektormodulator simultan zu steuern.
  • Gemäß weiteren Merkmalen bei bevorzugten Ausführungsformen der Erfindung, die unten beschrieben werden, dienen der Modulator der Quellstrahlung und der Modulator der reflektierten Strahlung dazu, die Quellstrahlung bzw. reflektierte Strahlung alternierend zu blockieren und freizugeben oder alternierend zu aktivieren und zu deaktivieren.
  • Gemäß noch weiteren Merkmalen in den beschriebenen bevorzugten Ausführungsformen ist die Strahlenquelle eine Quelle von sichtbarem Licht, wie z.B. ein Laser, und der Detektor umfasst fotografischen Film oder einen Videokamerasensor, wie z.B. ein ladungsgekoppeltes Bauelement (CCD).
  • Gemäß noch weiteren Merkmalen umfasst das Verfahren weiter:
    Verarbeiten der Strahlungsintensität, die von den Objekten in der Szene reflektiert wird, um Abstände der Objekte zu bestimmen, und in einer bevorzugtesten Ausführungsform: Vergleichen der Intensitäten, die während einer relativ kontinuierlichen Bestrahlungs- und Detektorperiode detektiert werden, mit Intensitäten, die während einer Modulation der Quelle und des Detektors detektiert werden.
  • Auch wird gemäß der vorliegenden Erfindung ein Verfahren zur Erzeugung eines Bildes bereitgestellt, das Abstände zu verschiedenen Objekten in einer Szene anzeigt, umfassend: (a) Richten von Quellstrahlung auf die Szene unter Verwendung einer Strahlenquelle; (b) Detektieren einer Strahlungsintensität, die von den Objekte in der Szene reflektiert wird; (c) Modulieren der Strahlenquelle unter Verwendung eines Strahlenquellenmodulators; (d) Kollimieren eines Anteils der Strahlung, die von den Objekten in der Szene reflektiert wird; (e) Modulieren der kollimierten Strahlung, die von den Objekten in der Szene reflektiert wird, wobei das Modulieren der reflektierten Strahlung durch ein Modulationsbauelement bewerkstelligt wird, das aus der Gruppe ausgewählt ist, die aus akustooptischen Bauelementen und elektrooptischen Bauelementen besteht; (f) Steuern des Quellenmodulators; und (g) Steuern des Detektormodulators.
  • Gemäß weiteren Merkmalen umfasst das Verfahren weiter: Verarbeiten der Intensität der von den Objekten in der Szene reflektierten Strahlung, um Abstände der Objekte zu bestimmen.
  • In einer bevorzugten Ausführungsform umfasst die Verarbeitung einen Vergleich von Intensitäten, die während einer relativ kontinuierlichen Bestrahlungs- und Detektorperiode detektiert werden, mit Intensitäten, die während einer Modulation der Quelle und des Detektors detektiert werden.
  • Die vorliegende Erfindung geht erfolgreich die Nachteile der gegenwärtig bekannten Konfigurationen an, indem ein System und ein Verfahren bereitgestellt werden, um Abstände zu Teilabschnitten einer Szene schnell und leicht zu bestimmen, ohne dass ein kostspieliges und zeitraubendes Scannen der Szene benötigt wird.
  • KURZE BESCHREIBUNG DER ZEICHNUNGEN
  • Die Erfindung wird hierin mit Bezug auf die begleitenden Zeichnungen nur als Beispiel beschrieben.
  • 1A stellt eine mögliche Konfiguration eines Systems und eines Verfahrens gemäß der vorliegenden Erfindung dar;
  • 1B gibt eine zweite mögliche Konfiguration eines Systems und eines Verfahrens gemäß der vorliegenden Erfindung wieder;
  • 2 stellt ein typisches Modulationsschema dar, das in einem System und bei einem Verfahren der vorliegenden Erfindung verwendet werden kann;
  • 3 stellt ein anderes Modulationsschema dar, das verwendet werden kann;
  • 4 veranschaulicht noch ein anderes Modulationsschema, das verwendet werden kann, um die Genauigkeit eines Systems und eines Verfahrens gemäß der vorliegenden Erfindung zu verbessern.
  • BESCHREIBUNG DER BEVORZUGTEN AUSFÜHRUNGSFORMEN
  • Bei der vorliegenden Erfindung handelt es sich um ein System und ein Verfahren, die verwendet werden können, um den Abstand von verschiedenen Teilabschnitten einer Szene zu bestimmen, insbesondere einer Szene, die verhältnismäßig nahe gelegen ist.
  • Die Prinzipien und der Betrieb eines Systems und eines Verfahrens gemäß der vorliegenden Erfindung können mit Bezug auf die Zeichnungen und die begleitende Beschreibung besser verstanden werden.
  • Mit Bezug nun auf die Zeichnungen veranschaulichen die 1A und 1B zwei erläuternde Konfigurationen von Systemen gemäß der vorliegenden Erfindung.
  • Mit Bezug auf das System von 1A lenkt eine Strahlenquelle 10 Strahlung auf die Szene 11, die beobachtet wird. Zwecks Veranschaulichung umfasst die wiedergegebene Szene ein dreidimensionales Objekt, wobei hierin auf Teilabschnitte des Objekts Bezug genommen wird, die verhältnismäßig weit entfernt bzw. nahe gelegen sind, die mit 'A' und 'B' bezeichnet sind. Die verwendete Strahlung kann eine beliebige geeignete Strahlung mit einer geeigneten Wellenlänge für die untersuchten Abstände oder anderen geeigneten Eigenschaften sein, wie aus der anschließenden Erörterung deutlicher wird. Für die meisten Anwendungen ist die Strahlung sichtbare oder Infrarot-Strahlung, wie z.B. Laserstrahlung oder stroboskopisches Licht.
  • Das System umfasst weiter einen Detektor 12, um die Intensität von Strahlung zu detektieren, die von den Objekten in der Szene reflektiert wird. Die detektierte Strahlung ist derjenige Anteil der Quellstrahlung, der auf das Objekt oder die Objekte der Szene auftrifft und der in der Richtung auf den Detektor 12 zurückreflektiert wird. Der verwendete Detektor kann ein beliebiger geeigneter Detektor mit einer geeigneten Auflösung und einer geeigneten Anzahl von Graustufen sein, einschließlich, aber nicht darauf beschränkt, eine fotografische Filmkamera, eine elektronische Kamera und eine Videokamera, wie z.B. eine CCD-Kamera.
  • Das System umfasst einen Strahlenquellenmodulator, der als Gegenstand 16 schematisch wiedergegeben ist, um die Strahlenquelle 10 oder die Quellstrahlung zu modulieren. Das System umfasst weiter einen Detektormodulator 18, um die reflektierte Strahlung zu modulieren, die in Richtung auf den Detektor 12 gelenkt wird.
  • Das Wort 'modulieren', wie hierin verwendet, soll ein beliebiges Variieren des Betriebsniveaus oder beliebiger Betriebsparameter der Strahlenquelle 10 oder der Quellstrahlung selbst und/oder der reflektierten Strahlung umfassen, wenn es zweckdienlich erscheint, einschließlich, aber nicht darauf beschränkt, das alternierende Blockieren und Freigeben und das alternierende Aktivieren und Deaktivieren der Strahlenquelle 10 oder der Quellstrahlung und des Detektors 12 oder der reflektierten Strahlung.
  • Verschiedene Mechanismen können verwendet werden, um die Strahlenquelle 10 oder die Quellstrahlung und die reflektierte Strahlung zu modulieren. Z.B. kann die Quellstrahlung unter Verwendung einer geeigneten Unterbrecherblende 17 oder eines ähnlichen Elements periodisch physisch blockiert werden.
  • Andere Mechanismen, die verwendet werden können, um die Strahlenquelle 10 zu modulieren, umfassen verschiedene elektronische Hochfrequenzmodulationseinrichtungen zum periodischen Deaktivieren der Strahlenquelle 10 und/oder des Detektors 12. In der 1 ist ein Quellenmodulator 16 wiedergegeben, der das Konzept eines elektronischen Aktivierens und Deaktivierens der Strahlenquelle 10 vermitteln soll.
  • Man kann sich verschiedene Einrichtungen zum Modulieren des Detektors 12 vorstellen, einschließlich derjenigen, die den Einrichtungen zum Modulieren der Strahlenquelle 10 entsprechen, die oben beschrieben sind. Vorzugsweise wird die reflektierte Strahlung mit der Hilfe von verschiedenen elektrooptischen Modulatoren moduliert, wie z.B. KDP (KH2PO4) oder eines beliebigen anderen elektrooptischen Kristalls, der Licht modulieren oder schalten kann, Lithiumniobat und Flüssigkristalle, die schnelle und genaue Modulationsvermögen oder vorzugsweise Torsteuervermögen aufweisen.
  • Es muss angemerkt werden, dass, immer wenn in der Beschreibung und den Ansprüchen auf einen Strahlenquellenmodulator oder auf die Modulation der Strahlenquelle Bezug genommen wird, es so zu verstehen ist, dass die Modulation der Strahlenquelle selbst und/oder der Quellstrahlung einbezogen ist.
  • Ein System gemäß der vorliegenden Erfindung umfasst eine Miniaturirisblende 40, durch die ein wenig von der vom Objekt 11 reflektierten Strahlung hindurchgehen kann. Durch die Irisblende 40 hindurchgehende Strahlung wird dann unter Verwendung von mindestens einer kollimierenden Gegenstandslinse 42 kollimiert. Die Irisblende 40 ist im Wesentlichen am Brennpunkt der kollimierenden Gegenstandslinse 42 angeordnet.
  • Die kollimierte Strahlung geht dann durch ein geeignetes akustooptisches Bauelement oder einen elektrooptischen Kristall, wie z.B. KDP 18, der als ein Modulations- oder Torsteuerbauelement dient, hindurch.
  • Die den KDP 18 verlassende modulierte Strahlung geht durch mindestens eine Abbildungslinse 44 hindurch, die die modulierte Strahlung durch eine Austrittsirisblende 46 schickt, die im Wesentlichen am Brennpunkt der Abbildungslinse 44 angeordnet ist. Durch die Austrittsirisblende 46 hindurchgehende Strahlung trifft dann auf einen geeigneten Detektor auf, wie z.B. einen CCD-Sensor 12.
  • Schließlich umfasst ein System gemäß der vorliegenden Erfindung Mechanismen zum Steuern des Quellenmodulators 16 und des Detektormodulators 18. Vorzugsweise arbeiten die Mechanismen zum Steuern des Quellenmodulators 16 und des Detektormodulators 18 auf eine koordinierte Weise zusammen oder sind am bevorzugtesten derselbe Mechanismus 20, um den Quellenmodulator 16 und den Detektormodulator 18 simultan zu steuern.
  • Die simultane Steuerung kann synchron sein, so dass der Betrieb von sowohl der Strahlenquelle 10 als auch des Detektors 12 auf dieselbe Weise zum selben Zeitpunkt, d.h. synchron, beeinflusst wird. Jedoch ist die simultane Steuerung nicht auf eine solche synchrone Steuerung beschränkt, und es ist eine breite Vielfalt von anderen Steuerungen möglich. Z.B., und ohne dass der Bereich der vorliegenden Erfindung in irgendeiner Weise be schränkt wird, können im Fall einer Blockier- und Freigabesteuerung die Strahlenquelle 10 und der Detektor 12 unterschiedliche Zeitdauern lang während jedes Zyklus offen sein und/oder kann das Freigeben des Detektors 12 dem Freigeben der Strahlenquelle 10 während jedes Zyklus nacheilen.
  • Ein System gemäß der vorliegenden Erfindung umfasst weiter einen geeigneten Prozessor 22, der die Intensität von Strahlung, die durch den Detektor 12 detektiert wird, analysiert und den Abstand zu verschiedenen Objekten und Teilabschnitten von Objekten in der Szene, die untersucht wird, bestimmt. Der Betrieb des Prozessors 22 wird in größerer Einzelheit unten erörtert.
  • Eine Variation eines Systems gemäß der vorliegenden Erfindung ist in 1B wiedergegeben. Die Konfiguration von 1B unterscheidet sich von derjenigen von 1A in einer Anzahl von Hinsichten, wobei die hauptsächliche von diesen darin besteht, dass in 1B die Modulation von sowohl der Quelle als auch der reflektierten Strahlung durch den KDP 18 bewerkstelligt wird. Dieses Merkmal der Konfiguration von 1B schreibt eine Anzahl von Änderungen in der Konfiguration des Systems vor. Folglich wird die Strahlenquelle 10 nun von der Seite in den KDP 18 eingespeist. Ein Strahlenteiler 50 wird verwendet, um einen signifikanten Anteil der Quellstrahlung in Richtung auf die Objekte 11 abzulenken und ermöglicht es für reflektierte Strahlung, die von den Objekten 11 kommt, auf ihrem Weg zum CCD-Sensor 12 durch den KDP 18 hindurchzugehen. Der Mechanismus 20', der die Modulation des KDP 18 steuert, ist insofern modifiziert, als nur ein einziges Bauelement statt der synchronen Steuerung von zwei separaten Bauelementen, wie in der Konfiguration von 1A, moduliert werden muss.
  • Beim Betrieb arbeitet ein typisches System gemäß der vorliegenden Erfindung, das einen Laser als die Strahlenquelle, einen CCD-Sensor als den Detektor verwendet und das die Quelle und den Detektor durch synchrones Schalten moduliert, wie folgt.
  • Die Strahlenquelle (z.B. Laser) 10 oder die Quellstrahlung wird moduliert. Der KDP 18 moduliert die durch ihn hindurchgehende reflektierte Strahlung auf eine Weise, die mit der Modulation der Quellstrahlung synchron ist. In der Konfiguration von 1B moduliert der KDP 18 sowohl die Quellstrahlung als auch die reflektierte Strahlung.
  • Dies ist schematisch in 2 wiedergegeben, die einen Typ von Rechteckwellenmodulation darstellt, wobei die Legende 'CCD' die Modulation der reflektierten Strahlung anzeigen soll, während sie durch den KDP 18 hindurchgeht. Folglich sind während jedes Zyklus sowohl der Laser 10 als auch die reflektierte Strahlung eine Zeit 'a' lang aktiv, und sie sind eine Zeit 'b' lang inaktiv. Die Zeiten 'a' und 'b' können gleich oder verschieden sein. Die Wellenlänge des Lasers 10 und die Zeit 'a' werden so gewählt, dass Licht vom Laser 10 zu den entferntesten Objekten von Interesse in der Szene laufen kann und zurück zur CCD 12 reflektiert wird.
  • Die Wahl der Zeit 'a' kann mit einem einfachen Beispiel veranschaulicht werden. Man nehme an, dass die Szene, die untersucht werden soll, wie in 1A und 1B ist, wobei der maximale Abstand, der zu untersuchen ist, ungefähr 50 Meter von der Quelle oder dem Detektor entfernt ist, d.h. beide Objekte A und B befinden sich innerhalb von etwa 50 Metern von dem Detektor und der Quelle. Licht, das von der Quelle zu dem entferntesten Objekt und zurück zum Detektor läuft, würde ungefähr 0,33 μsec brauchen, um die 100 Meter zu durchlaufen. Folglich sollte die Zeitdauer 'a' ungefähr 0,33 μsec betragen.
  • Systeme und Verfahren gemäß der vorliegenden Erfindung beruhen auf der Idee, dass während jedes Zyklus ein nahe gelegenes Objekt eine längere Zeitspanne lang als ein weit entferntes Objekt Licht zum Detektor reflektiert. Der Unterschied in der Zeitdauer des detektierten reflektierten Lichts während jedes Zyklus wirkt sich in einer unterschiedlichen Intensität oder Graustufe auf dem Detektor aus. Folglich, wenn man z.B. an nimmt, dass ein gewisser Punkt auf dem Objekt B eine gewisse Anzahl von Metern von der Quelle und/oder dem Detektor entfernt ist, während ein gewisser Punkt auf dem Objekt A einen größeren Abstand entfernt ist, dann fängt reflektiertes Licht vom Punkt auf B verhältnismäßig früh im aktiven Anteil des Detektorzyklus damit an, am Detektor anzukommen (siehe 2) und fährt fort, durch den Detektor empfangen zu werden, bis der Detektor am Ende des aktiven Anteils des Detektorzyklus deaktiviert wird. Das reflektierte Licht vom Punkt auf B fährt fort, seinen Weg in Richtung auf den Detektor eine Periode 'a' lang fortzusetzen, die der Bestrahlungsperiode entspricht (siehe die strichpunktierte Linie in 2). Jedoch wird der Anteil dieser reflektierten Strahlung, die jenseits der Deaktivierung oder Blockierung des Detektors liegt, nicht durch den Detektor empfangen und trägt nicht zur Intensität bei, die durch die entsprechenden Pixel des Detektors erfasst wird.
  • Im Gegensatz dazu fängt Licht, das vom Punkt auf einem Objekt A reflektiert wird, später während des aktiven Anteils des Detektorzyklus damit an, am Detektor anzukommen, und fährt auch fort, durch den Detektor empfangen zu werden, bis der Detektor deaktiviert wird.
  • Das Ergebnis ist, dass reflektiertes Licht von einem Punkt auf dem Objekt B eine längere Zeitspanne lang als reflektiertes Licht von einem Punkt auf dem Objekt A empfangen wird (siehe die schraffierten Bereiche in 2). Der Detektor ist so beschaffen, dass die Graustufenintensität jedes Pixels während jedes Zyklus mit der Zeit in jedem Zyklus in Beziehung gesetzt wird, während welcher Strahlung durch dieses Pixel empfangen wurde. Folglich kann die Intensität oder die Graustufe in den Abstand, relativ oder absolut, des Punktes auf dem Objekt übersetzt werden.
  • Wie oben angegeben, ist der synchrone Ein/Aus-Betrieb, der in dem Beispiel beschrieben ist und in 2 wiedergegeben ist, nicht der einzig mögliche Betriebsmodus. Andere Modulationen können verwendet werden. Z.B. kann die Strahlenquelle und/oder der Detektor harmonisch moduliert werden, wie in 3 dargestellt.
  • Um zu vermeiden, dass man falsche Signale von entfernten Objekten erhält, die jenseits des Gebiets von Interesse sind, kann es wünschenswert sein, die Zeitdauer 'b' zu erhöhen, während welcher die Quelle/Detektor inaktiv sind, so dass der größte Teil der reflektierten Strahlung von weit entfernten Objekten, die von keinem Interesse sind, den Detektor erreicht, wenn der Detektor deaktiviert ist, und sie deshalb nicht zur Intensität beitragen, die durch das entsprechende Pixel des Detektors detektiert wird. Eine richtige Wahl der Zeitdauer 'b' kann folglich verwendet werden, um zu gewährleisten, dass nur reflektierte Strahlung von Objekten innerhalb der gewünschten Untersuchungsreichweite während jedes spezifischen Zyklus empfangen wird, wodurch die Interpretation des Intensitätsbilds erleichtert wird.
  • Wie leicht ersichtlich ist, können in gewissen Anwendungen unterschiedliche Teilabschnitte der verschiedenen Objekte in der Szene unterschiedliche Reflexionsvermögen aufweisen. Die unterschiedlichen Reflexionsvermögen ergeben sich aus unterschiedlichen Farben, Texturen und Winkeln der verschiedenen Teilabschnitte der Objekte. Folglich werden zwei Punkte, die gleich weit von der Quelle/Detektor entfernt sind, so detektiert, dass sie unterschiedliche Intensitäten aufweisen, was zu falschen Abstandsanzeigewerten führen könnte, die auf Intensitäten beruhen, wie oben beschrieben.
  • Es ist möglich, Unterschiede in Reflexionsvermögen von unterschiedlichen Objekten oder Teilabschnitten von Objekten, die untersucht werden, leicht zu kompensieren. Wie wohlbekannt ist, ist die Intensität, die durch ein Pixel eines Detektors detektiert wird, das von einem spezifischen Teilabschnitt einer Szene kontinuierliche Strahlung empfängt, direkt proportional zum Reflexionsvermögen des Teilabschnitts der Szene, der betrachtet wird, und umgekehrt proportional zum Quadrat des Abstands zwischen dem Teilabschnitt der Szene, die betrachtet wird, und dem Detektor.
  • Es kann leicht gezeigt werden, dass, wenn eine Impulsstrahlenquelle, wie z.B. diejenigen, die oben beschrieben sind, verwendet wird, die Intensität, die durch ein Pixel eines Detektors detektiert wird, das Strahlung von einem speziellen Teilabschnitt einer Szene empfängt, noch direkt proportional zum Reflexionsvermögen des Teilabschnitts der Szene, die betrachtet wird, ist, aber umgekehrt proportional zum Abstand zwischen dem Teilabschnitt der Szene, die betrachtet wird, und dem Detektor hoch 3 ist.
  • Folglich kann man, um die Wirkungen von verschiedenen Reflexionsvermögen zu kompensieren, sowohl kontinuierliche Strahlung als auch Impulsstrahlung verwenden. Ein Beispiel für einen solchen Zyklus ist in 4 dargestellt. Hier sind die Strahlenquelle und der Detektor für eine verhältnismäßig lange Zeitspanne aktiv, um die kontinuierliche Intensität der Objekte in der Szene zu liefern. Die Quelle und der Detektor werden periodisch deaktiviert, und die Quelle und der Detektor werden auf dieselbe Weise gepulst, wie oben mit Bezug auf die grundlegende Ausführungsform beschrieben, wobei einer oder mehrere, vorzugsweise ein Zug von Impulsen verwendet wird.
  • Die Detektion während des Impulsanteils des Zyklus wird wie oben beschrieben angewandt. Jedoch wird zusätzlich die kontinuierliche Detektion während der langen aktiven Periode des Zyklus angewandt, um die Abstände zu korrigieren oder zu normieren und Unterschiede in Reflexionsvermögen zu kompensieren. Die Kompensation kann durch ein beliebiges bequemes Verfahren bewerkstelligt werden, z.B. indem man die Intensität von jedem Pixel während der kontinuierlichen Periode durch die Intensität desselben Pixels während der Impulsperiode dividiert, wobei der Quotient zwischen den zwei direkt proportional zum Abstand des Gebiets ist, das vom Pixel betrachtet wird.

Claims (8)

  1. Vorrichtung zur Erzeugung eines Bildes, das Abstände zu Objekten (A, B) in einer Szene (11) anzeigt, umfassend – eine modulierte Strahlenquelle (10), die Strahlung in Richtung auf eine Szene lenkt, so dass ein Anteil der Strahlung von der Quelle von der Szene reflektiert wird und die Vorrichtung erreicht; – einen Detektor (12), der ein Bild detektiert, das von der Strahlung erzeugt wird, die die Vorrichtung erreicht; – einen Prozessor (22), der ein Bild mit einer Intensitätswertverteilung erzeugt, die den Abstand von Objekten von der Vorrichtung anzeigt, ansprechend auf die Intensitätsverteilung des detektierten Bildes; und umfassend – eine erste telezentrische Optik, die mindestens eine Linse (42) und eine Irisblende (40) umfasst, die im Wesentlichen am Brennpunkt der mindestens einen Linse (42) angeordnet ist, die die Strahlung, die von der Szene reflektiert wird, die die Vorrichtung erreicht, empfängt und kollimiert; und – einen Modulator (18), der die kollimierte Strahlung moduliert, so dass ein Teil des Anteils der Strahlung, die die Vorrichtung erreicht, durch den Modulator zu einer zweiten telezentrischen Optik durchgelassen wird, die mindestens eine Abbildungslinse (44) umfasst, die das Licht sendet, um durch eine Irisblende (46) hindurchzutreten, die im Wesentlichen am Brennpunkt der Abbildungslinse (44) angeordnet ist, wobei Licht, das durch die Irisblende (46) hindurchtritt, das Bild erzeugt, das durch den Detektor detektiert wird, wobei der Teil vom Abstand von respektiven Teilabschnitten der Szene von der Vorrichtung abhängt.
  2. Vorrichtung nach Anspruch 1, bei der die Quelle (10) und der Detektor (12) fluchten.
  3. Vorrichtung nach Anspruch 1 oder Anspruch 2, bei der die Strahlenquelle eine kontinuierliche Strahlenquelle umfasst, die durch denselbe Modulator wie die detektierte Strahlung moduliert wird.
  4. Vorrichtung nach einem der vorangehenden Ansprüche, bei der die modulierte Strahlenquelle Strahlung in Richtung auf die Szene entlang einer Achse lenkt, so dass ein Anteil der Strahlung von der Quelle von der Szene reflektiert wird und die Vorrichtung erreicht.
  5. Vorrichtung nach einem der vorangehenden Ansprüche und umfassend eine Fokussierlinse (44), die die modulierte kollimierte Strahlung empfängt und sie auf den Detektor (12) fokussiert.
  6. Vorrichtung nach einem der vorangehenden Ansprüche, bei der der Modulator ein elektro-optischer Modulator ist.
  7. Vorrichtung nach einem der vorangehenden Ansprüche, bei der der Modulator ein KDP-Modulator ist.
  8. Vorrichtung nach einem der vorangehenden Ansprüche, bei der der Modulator ein akusto-optisches Gerät ist.
DE69635858T 1995-06-22 1996-06-20 Telezentrische 3d kamera und zugehöriges verfahren Expired - Lifetime DE69635858T2 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
IL11427895 1995-06-22
IL114278A IL114278A (en) 1995-06-22 1995-06-22 Camera and method
IL116223A IL116223A (en) 1995-12-01 1995-12-01 Telecentric 3d camera and method
IL11622395 1995-12-01
PCT/IL1996/000021 WO1997001112A2 (en) 1995-06-22 1996-06-20 Telecentric 3d camera and method of rangefinding

Publications (2)

Publication Number Publication Date
DE69635858D1 DE69635858D1 (de) 2006-04-27
DE69635858T2 true DE69635858T2 (de) 2006-11-30

Family

ID=26323086

Family Applications (2)

Application Number Title Priority Date Filing Date
DE69635891T Expired - Lifetime DE69635891T2 (de) 1995-06-22 1996-06-20 Verbesserte optische kamera zur entfernungsmessung
DE69635858T Expired - Lifetime DE69635858T2 (de) 1995-06-22 1996-06-20 Telezentrische 3d kamera und zugehöriges verfahren

Family Applications Before (1)

Application Number Title Priority Date Filing Date
DE69635891T Expired - Lifetime DE69635891T2 (de) 1995-06-22 1996-06-20 Verbesserte optische kamera zur entfernungsmessung

Country Status (7)

Country Link
US (2) US6057909A (de)
EP (2) EP0886790B1 (de)
JP (8) JPH11508359A (de)
CN (3) CN100524015C (de)
AU (2) AU6136096A (de)
DE (2) DE69635891T2 (de)
WO (2) WO1997001112A2 (de)

Families Citing this family (369)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7655895B2 (en) * 1992-05-05 2010-02-02 Automotive Technologies International, Inc. Vehicle-mounted monitoring arrangement and method using light-regulation
US9102220B2 (en) 1992-05-05 2015-08-11 American Vehicular Sciences Llc Vehicular crash notification system
US9008854B2 (en) 1995-06-07 2015-04-14 American Vehicular Sciences Llc Vehicle component control methods and systems
US9443358B2 (en) 1995-06-07 2016-09-13 Automotive Vehicular Sciences LLC Vehicle software upgrade techniques
US10573093B2 (en) 1995-06-07 2020-02-25 Automotive Technologies International, Inc. Vehicle computer design and use techniques for receiving navigation software
US6445884B1 (en) * 1995-06-22 2002-09-03 3Dv Systems, Ltd. Camera with through-the-lens lighting
CN100524015C (zh) * 1995-06-22 2009-08-05 3Dv系统有限公司 生成距景物距离的图象的方法和装置
US7744122B2 (en) 1995-12-12 2010-06-29 Automotive Technologies International, Inc. Driver side aspirated airbags
JPH10222663A (ja) * 1997-01-31 1998-08-21 Yamaha Motor Co Ltd 画像認識システム及び装置
EP0970502A1 (de) 1997-03-07 2000-01-12 3DV Systems Ltd. Optischer verschluss
US6483094B1 (en) 1997-04-08 2002-11-19 3Dv Systems Ltd. Solid state optical shutter
JP2001517782A (ja) * 1997-09-24 2001-10-09 スリーディーヴィー システムズ リミテッド 音響画像形成システム
US9691188B2 (en) 1997-10-22 2017-06-27 Intelligent Technologies International, Inc. Tolling system and method using telecommunications
US8060308B2 (en) 1997-10-22 2011-11-15 Intelligent Technologies International, Inc. Weather monitoring techniques
US9053633B2 (en) 1997-10-22 2015-06-09 Intelligent Technologies International, Inc. Universal tolling system and method
US8209120B2 (en) 1997-10-22 2012-06-26 American Vehicular Sciences Llc Vehicular map database management techniques
US8965677B2 (en) 1998-10-22 2015-02-24 Intelligent Technologies International, Inc. Intra-vehicle information conveyance system and method
US9177476B2 (en) 1997-10-22 2015-11-03 American Vehicular Sciences Llc Method and system for guiding a person to a location
US8983771B2 (en) 1997-10-22 2015-03-17 Intelligent Technologies International, Inc. Inter-vehicle information conveyance system and method
US9595139B1 (en) 1997-10-22 2017-03-14 Intelligent Technologies International, Inc. Universal tolling system and method
US10358057B2 (en) 1997-10-22 2019-07-23 American Vehicular Sciences Llc In-vehicle signage techniques
EP1031047A1 (de) 1997-11-13 2000-08-30 3DV Systems Ltd. Dreidimensionales bildanzeigesystem durch trigonometrisches vermessungssystem mit zwei wellenlängen
EP1055146B1 (de) 1998-02-08 2003-01-22 3DV Ltd. Optischer verschluss mit grosser blendenöffnung
JP3868621B2 (ja) * 1998-03-17 2007-01-17 株式会社東芝 画像取得装置、画像取得方法、及び記録媒体
EP2416198B1 (de) * 1998-05-25 2013-05-01 Panasonic Corporation Entfernungsmesser und Kamera
JP4105801B2 (ja) * 1998-07-02 2008-06-25 ペンタックス株式会社 3次元画像入力装置
EP1515541A3 (de) 1998-09-28 2008-07-23 3DV Systems Ltd. Entfernungsmessung mittels einer Kamera
JP3840341B2 (ja) * 1998-10-15 2006-11-01 浜松ホトニクス株式会社 立体情報検出方法及び装置
US10240935B2 (en) 1998-10-22 2019-03-26 American Vehicular Sciences Llc Vehicle software upgrade techniques
US6876392B1 (en) * 1998-12-22 2005-04-05 Matsushita Electric Industrial Co., Ltd. Rangefinder for obtaining information from a three-dimensional object
JP2000221037A (ja) * 1999-01-29 2000-08-11 Topcon Corp 自動測量機と3次元測定方法
JP4303354B2 (ja) * 1999-04-13 2009-07-29 Hoya株式会社 3次元画像入力装置
JP4157223B2 (ja) 1999-04-13 2008-10-01 Hoya株式会社 3次元画像入力装置
US6982761B1 (en) 1999-06-09 2006-01-03 Pentax Corporation Device for capturing three-dimensional images with independently controllable groups of photoelectric conversion elements
US6822687B1 (en) * 1999-07-08 2004-11-23 Pentax Corporation Three-dimensional image capturing device and its laser emitting device
US6619406B1 (en) * 1999-07-14 2003-09-16 Cyra Technologies, Inc. Advanced applications for 3-D autoscanning LIDAR system
JP4070909B2 (ja) * 1999-07-15 2008-04-02 ペンタックス株式会社 電子カメラのホワイトバランス制御量算出装置
US6961092B1 (en) 1999-07-30 2005-11-01 Pentax Corporation Three-dimensional image capturing device
US6166811A (en) * 1999-08-12 2000-12-26 Perceptron, Inc. Robot-based gauging system for determining three-dimensional measurement data
AU5646299A (en) * 1999-09-08 2001-04-10 3Dv Systems Ltd. 3d imaging system
US7196390B1 (en) 1999-09-26 2007-03-27 3Dv Systems Ltd. Solid state image wavelength converter
JP3875817B2 (ja) 1999-09-27 2007-01-31 ペンタックス株式会社 測距装置の地図座標検出システム
JP3714063B2 (ja) * 1999-10-19 2005-11-09 富士ゼロックス株式会社 3次元形状計測装置
JP2001153624A (ja) 1999-11-24 2001-06-08 Asahi Optical Co Ltd 3次元画像入力装置
US6856355B1 (en) * 1999-11-30 2005-02-15 Eastman Kodak Company Method and apparatus for a color scannerless range image system
US6794628B2 (en) 2000-01-03 2004-09-21 3Dv Systems, Ltd. Solid state optical shutter
US6515737B2 (en) * 2000-01-04 2003-02-04 The Regents Of The University Of California High-resolution imaging and target designation through clouds or smoke
US6349174B1 (en) * 2000-05-17 2002-02-19 Eastman Kodak Company Method and apparatus for a color scannerless range imaging system
JP2001337166A (ja) 2000-05-26 2001-12-07 Minolta Co Ltd 3次元入力方法および3次元入力装置
US6834128B1 (en) * 2000-06-16 2004-12-21 Hewlett-Packard Development Company, L.P. Image mosaicing system and method adapted to mass-market hand-held digital cameras
EP1302066A1 (de) 2000-07-09 2003-04-16 3DV Systems Ltd. Kamera mit ttl bildelementbeleuchtungsvorrichtung
US6456793B1 (en) * 2000-08-03 2002-09-24 Eastman Kodak Company Method and apparatus for a color scannerless range imaging system
US6411871B1 (en) * 2000-08-05 2002-06-25 American Gnc Corporation Autonomous navigation, guidance and control using LDRI
US6535275B2 (en) * 2000-08-09 2003-03-18 Dialog Semiconductor Gmbh High resolution 3-D imaging range finder
US6410930B1 (en) * 2000-08-24 2002-06-25 Eastman Kodak Company Method and apparatus for aligning a color scannerless range imaging system
CN1227891C (zh) * 2000-09-13 2005-11-16 内克斯坦金公司 受监视或控制以确保所捕获文件真实性的成像系统
US6856407B2 (en) 2000-09-13 2005-02-15 Nextengine, Inc. Method for depth detection in 3D imaging providing a depth measurement for each unitary group of pixels
US7358986B1 (en) 2000-09-13 2008-04-15 Nextengine, Inc. Digital imaging system having distribution controlled over a distributed network
US6639684B1 (en) 2000-09-13 2003-10-28 Nextengine, Inc. Digitizer using intensity gradient to image features of three-dimensional objects
US6958777B1 (en) * 2000-09-29 2005-10-25 Ess Technology, Inc. Exposure control in electromechanical imaging devices
JP4533582B2 (ja) * 2000-12-11 2010-09-01 カネスタ インコーポレイテッド 量子効率変調を用いたcmosコンパチブルの三次元イメージセンシングのためのシステム
JP2002191554A (ja) 2000-12-26 2002-07-09 Asahi Optical Co Ltd 3次元画像検出装置を備えた電子内視鏡
US6999219B2 (en) 2001-01-30 2006-02-14 3Dv Systems, Ltd. Optical modulator
US7233351B1 (en) 2001-02-23 2007-06-19 Nextengine, Inc. Method for high resolution incremental imaging
US6480265B2 (en) * 2001-03-26 2002-11-12 Deep Optic Ltd. Active target distance measurement
JP4530571B2 (ja) 2001-04-16 2010-08-25 Hoya株式会社 3次元画像検出装置
JP3726699B2 (ja) * 2001-04-20 2005-12-14 日本ビクター株式会社 光学撮像装置、光学測距装置
CA2348212A1 (en) * 2001-05-24 2002-11-24 Will Bauer Automatic pan/tilt pointing device, luminaire follow-spot, and 6dof 3d position/orientation calculation information gathering system
JP4931288B2 (ja) 2001-06-08 2012-05-16 ペンタックスリコーイメージング株式会社 画像検出装置と絞り装置
US7160258B2 (en) * 2001-06-26 2007-01-09 Entrack, Inc. Capsule and method for treating or diagnosing the intestinal tract
DE10133126A1 (de) * 2001-07-07 2003-01-16 Philips Corp Intellectual Pty Richtungssensitives Audioaufnahmesystem mit Anzeige von Aufnahmegebiet und/oder Störquelle
EP1423731B1 (de) * 2001-08-06 2006-10-04 Siemens Aktiengesellschaft Verfahren und vorrichtung zur aufnahme eines dreidimensionalen abstandsbildes
JP2003149717A (ja) * 2001-11-19 2003-05-21 Mitsubishi Heavy Ind Ltd 撮像方法及び撮像装置
FR2832892B1 (fr) * 2001-11-27 2004-04-02 Thomson Licensing Sa Camera video d'effets speciaux
US20030147002A1 (en) * 2002-02-06 2003-08-07 Eastman Kodak Company Method and apparatus for a color sequential scannerless range imaging system
EP1335235A3 (de) * 2002-02-12 2003-09-17 MARICO s.a.s di Dallara Riccardo & C. Ein Anblicksystem mit Projektion der Abbildungen des Lichtes
JP3832441B2 (ja) 2002-04-08 2006-10-11 松下電工株式会社 強度変調光を用いた空間情報の検出装置
ES2391556T3 (es) 2002-05-03 2012-11-27 Donnelly Corporation Sistema de detección de objetos para vehículo
US9007197B2 (en) * 2002-05-20 2015-04-14 Intelligent Technologies International, Inc. Vehicular anticipatory sensor system
DE10223136C1 (de) * 2002-05-24 2003-12-24 Fraunhofer Ges Forschung Verfahren zur Anpassung und Einstellung des Tiefenmessbereichs einer Studiokamera
US20030235338A1 (en) * 2002-06-19 2003-12-25 Meetrix Corporation Transmission of independently compressed video objects over internet protocol
US7429996B2 (en) * 2002-07-16 2008-09-30 Intel Corporation Apparatus and method for sensing depth in every direction
US7161579B2 (en) * 2002-07-18 2007-01-09 Sony Computer Entertainment Inc. Hand-held computer interactive device
US7623115B2 (en) 2002-07-27 2009-11-24 Sony Computer Entertainment Inc. Method and apparatus for light input device
US7102615B2 (en) * 2002-07-27 2006-09-05 Sony Computer Entertainment Inc. Man-machine interface using a deformable device
US7646372B2 (en) * 2003-09-15 2010-01-12 Sony Computer Entertainment Inc. Methods and systems for enabling direction detection when interfacing with a computer program
US8947347B2 (en) * 2003-08-27 2015-02-03 Sony Computer Entertainment Inc. Controlling actions in a video game unit
US8797260B2 (en) * 2002-07-27 2014-08-05 Sony Computer Entertainment Inc. Inertially trackable hand-held controller
US7883415B2 (en) 2003-09-15 2011-02-08 Sony Computer Entertainment Inc. Method and apparatus for adjusting a view of a scene being displayed according to tracked head motion
US7918733B2 (en) * 2002-07-27 2011-04-05 Sony Computer Entertainment America Inc. Multi-input game control mixer
US8160269B2 (en) * 2003-08-27 2012-04-17 Sony Computer Entertainment Inc. Methods and apparatuses for adjusting a listening area for capturing sounds
US7627139B2 (en) * 2002-07-27 2009-12-01 Sony Computer Entertainment Inc. Computer image and audio processing of intensity and input devices for interfacing with a computer program
US9393487B2 (en) 2002-07-27 2016-07-19 Sony Interactive Entertainment Inc. Method for mapping movements of a hand-held controller to game commands
US8139793B2 (en) * 2003-08-27 2012-03-20 Sony Computer Entertainment Inc. Methods and apparatus for capturing audio signals based on a visual image
US7850526B2 (en) * 2002-07-27 2010-12-14 Sony Computer Entertainment America Inc. System for tracking user manipulations within an environment
US7854655B2 (en) * 2002-07-27 2010-12-21 Sony Computer Entertainment America Inc. Obtaining input for controlling execution of a game program
US9174119B2 (en) 2002-07-27 2015-11-03 Sony Computer Entertainement America, LLC Controller for providing inputs to control execution of a program when inputs are combined
US7760248B2 (en) 2002-07-27 2010-07-20 Sony Computer Entertainment Inc. Selective sound source listening in conjunction with computer interactive processing
US9474968B2 (en) 2002-07-27 2016-10-25 Sony Interactive Entertainment America Llc Method and system for applying gearing effects to visual tracking
US7803050B2 (en) * 2002-07-27 2010-09-28 Sony Computer Entertainment Inc. Tracking device with sound emitter for use in obtaining information for controlling game program execution
US8570378B2 (en) 2002-07-27 2013-10-29 Sony Computer Entertainment Inc. Method and apparatus for tracking three-dimensional movements of an object using a depth sensing camera
US8686939B2 (en) 2002-07-27 2014-04-01 Sony Computer Entertainment Inc. System, method, and apparatus for three-dimensional input control
US8313380B2 (en) 2002-07-27 2012-11-20 Sony Computer Entertainment America Llc Scheme for translating movements of a hand-held controller into inputs for a system
US8233642B2 (en) * 2003-08-27 2012-07-31 Sony Computer Entertainment Inc. Methods and apparatuses for capturing an audio signal based on a location of the signal
US9682319B2 (en) 2002-07-31 2017-06-20 Sony Interactive Entertainment Inc. Combiner method for altering game gearing
US9177387B2 (en) 2003-02-11 2015-11-03 Sony Computer Entertainment Inc. Method and apparatus for real time motion capture
US7186969B2 (en) * 2003-02-12 2007-03-06 Mitutoyo Corporation Optical configuration for imaging-type optical encoders
US7505862B2 (en) * 2003-03-07 2009-03-17 Salmon Technologies, Llc Apparatus and method for testing electronic systems
EP1418401A1 (de) * 2003-03-26 2004-05-12 Leica Geosystems AG Verfahren und Vorrichtung zur luft- oder raumgestützten Photogrammetrie
JP2004312249A (ja) 2003-04-04 2004-11-04 Olympus Corp カメラ
US6791673B1 (en) * 2003-04-07 2004-09-14 Robert E. Malm Ground surveillance system
NZ525241A (en) * 2003-04-08 2006-02-24 Univ Waikato Range sensing system with shuttered receiver.
US7316930B1 (en) 2003-04-21 2008-01-08 National Semiconductor Corporation Use of vertically stacked photodiodes in a gene chip system
WO2004107266A1 (en) * 2003-05-29 2004-12-09 Honda Motor Co., Ltd. Visual tracking using depth data
US8072470B2 (en) 2003-05-29 2011-12-06 Sony Computer Entertainment Inc. System and method for providing a real-time three-dimensional interactive environment
EP1631937B1 (de) * 2003-06-12 2018-03-28 Honda Motor Co., Ltd. Zielorientierungschätzung mittels verwendung von tiefenmesssystem
US7044908B1 (en) 2003-07-08 2006-05-16 National Semiconductor Corporation Method and system for dynamically adjusting field of view in a capsule endoscope
ITRM20030360A1 (it) * 2003-07-23 2005-01-24 Marcello Marzoli Procedimento di ricostruzione tridimensionale di immagini
US7191164B2 (en) * 2003-08-19 2007-03-13 Intel Corporation Searching for object images with reduced computation
US7399274B1 (en) 2003-08-19 2008-07-15 National Semiconductor Corporation Sensor configuration for a capsule endoscope
US20070223732A1 (en) * 2003-08-27 2007-09-27 Mao Xiao D Methods and apparatuses for adjusting a visual image based on an audio signal
US7874917B2 (en) 2003-09-15 2011-01-25 Sony Computer Entertainment Inc. Methods and systems for enabling depth and direction detection when interfacing with a computer program
US8287373B2 (en) 2008-12-05 2012-10-16 Sony Computer Entertainment Inc. Control device for communicating visual information
US10279254B2 (en) 2005-10-26 2019-05-07 Sony Interactive Entertainment Inc. Controller having visually trackable object for interfacing with a gaming system
US9573056B2 (en) 2005-10-26 2017-02-21 Sony Interactive Entertainment Inc. Expandable control device via hardware attachment
US8323106B2 (en) 2008-05-30 2012-12-04 Sony Computer Entertainment America Llc Determination of controller three-dimensional location using image analysis and ultrasonic communication
US7095487B2 (en) * 2003-10-09 2006-08-22 Honda Motor Co., Ltd. Systems and methods for determining depth using shuttered light pulses
US7110100B2 (en) * 2003-11-04 2006-09-19 Electronic Scripting Products, Inc. Apparatus and method for determining an inclination of an elongate object contacting a plane surface
US20050134608A1 (en) * 2003-12-19 2005-06-23 Texas Instruments Incorporated Method, and related system, for overlaying a graphics object on a digital picture
US7663689B2 (en) * 2004-01-16 2010-02-16 Sony Computer Entertainment Inc. Method and apparatus for optimizing capture device settings through depth information
DE102004009541A1 (de) * 2004-02-23 2005-09-15 Iris-Gmbh Infrared & Intelligent Sensors Benutzersteuerbares Erfassungssystem
US7023536B2 (en) * 2004-03-08 2006-04-04 Electronic Scripting Products, Inc. Apparatus and method for determining orientation parameters of an elongate object
DE102004014048B4 (de) * 2004-03-19 2008-10-30 Sirona Dental Systems Gmbh Vermessungseinrichtung und Verfahren nach dem Grundprinzip der konfokalen Mikroskopie
US7161664B2 (en) 2004-04-13 2007-01-09 Electronic Scripting Products, Inc. Apparatus and method for optical determination of intermediate distances
US7526103B2 (en) 2004-04-15 2009-04-28 Donnelly Corporation Imaging system for vehicle
US7711179B2 (en) 2004-04-21 2010-05-04 Nextengine, Inc. Hand held portable three dimensional scanner
US7319529B2 (en) 2004-06-17 2008-01-15 Cadent Ltd Method and apparatus for colour imaging a three-dimensional structure
JP4645177B2 (ja) * 2004-11-30 2011-03-09 パナソニック電工株式会社 計測装置
EP1771749B1 (de) * 2004-07-30 2011-08-24 Panasonic Electric Works Co., Ltd. Bildverarbeitungsvorrichtung
US7843488B2 (en) * 2004-08-09 2010-11-30 Stapleton John J Vision thermalization for sightless and visually impaired
US8547401B2 (en) 2004-08-19 2013-10-01 Sony Computer Entertainment Inc. Portable augmented reality device and method
JP4525253B2 (ja) * 2004-08-30 2010-08-18 オムロン株式会社 光センサおよび測距方法
US20060045174A1 (en) * 2004-08-31 2006-03-02 Ittiam Systems (P) Ltd. Method and apparatus for synchronizing a transmitter clock of an analog modem to a remote clock
CA2597589A1 (en) * 2005-02-17 2006-08-24 3 Dv Systems Ltd. Method and apparatus for imaging tissues
US9247215B1 (en) * 2005-04-22 2016-01-26 Custom Manufacturing & Engineering, Inc. Laser sensor system
RU2298223C2 (ru) * 2005-04-25 2007-04-27 Самсунг Электроникс Ко., Лтд. Система и способ коррекции темных оттенков на цифровых фотографиях
US8294809B2 (en) 2005-05-10 2012-10-23 Advanced Scientific Concepts, Inc. Dimensioning system
US7991242B2 (en) 2005-05-11 2011-08-02 Optosecurity Inc. Apparatus, method and system for screening receptacles and persons, having image distortion correction functionality
CA2608119A1 (en) 2005-05-11 2006-11-16 Optosecurity Inc. Method and system for screening luggage items, cargo containers or persons
JP2006337286A (ja) * 2005-06-03 2006-12-14 Ricoh Co Ltd 形状計測装置
JP2007214527A (ja) * 2006-01-13 2007-08-23 Ihi Corp レーザアニール方法およびレーザアニール装置
US7995834B1 (en) 2006-01-20 2011-08-09 Nextengine, Inc. Multiple laser scanner
US20110014981A1 (en) * 2006-05-08 2011-01-20 Sony Computer Entertainment Inc. Tracking device with sound emitter for use in obtaining information for controlling game program execution
US7899232B2 (en) 2006-05-11 2011-03-01 Optosecurity Inc. Method and apparatus for providing threat image projection (TIP) in a luggage screening system, and luggage screening system implementing same
JP4395150B2 (ja) * 2006-06-28 2010-01-06 富士フイルム株式会社 距離画像センサ
US7835221B2 (en) * 2006-07-06 2010-11-16 Westerngeco L.L.C. Optical methods and systems in marine seismic surveying
US8494210B2 (en) 2007-03-30 2013-07-23 Optosecurity Inc. User interface for use in security screening providing image enhancement capabilities and apparatus for implementing same
WO2008024639A2 (en) 2006-08-11 2008-02-28 Donnelly Corporation Automatic headlamp control system
JP4440239B2 (ja) 2006-08-18 2010-03-24 富士フイルム株式会社 距離画像作成方法及び距離画像センサ、及び撮影装置
CN100592127C (zh) * 2006-09-06 2010-02-24 鸿富锦精密工业(深圳)有限公司 相机模组
USRE48417E1 (en) 2006-09-28 2021-02-02 Sony Interactive Entertainment Inc. Object direction using video input combined with tilt angle information
US8781151B2 (en) 2006-09-28 2014-07-15 Sony Computer Entertainment Inc. Object detection using video input combined with tilt angle information
US8310656B2 (en) 2006-09-28 2012-11-13 Sony Computer Entertainment America Llc Mapping movements of a hand-held controller to the two-dimensional image plane of a display screen
US7891818B2 (en) 2006-12-12 2011-02-22 Evans & Sutherland Computer Corporation System and method for aligning RGB light in a single modulator projector
US8208129B2 (en) * 2007-01-14 2012-06-26 Microsoft International Holdings B.V. Method, device and system for imaging
US20080231835A1 (en) * 2007-03-23 2008-09-25 Keigo Iizuka Divergence ratio distance mapping camera
US8542907B2 (en) 2007-12-17 2013-09-24 Sony Computer Entertainment America Llc Dynamic three-dimensional object mapping for user-defined control device
EP2235563A1 (de) * 2007-12-19 2010-10-06 Microsoft International Holdings B.V. 3d-kamera und verfahren zu ihrem gating
US8149210B2 (en) * 2007-12-31 2012-04-03 Microsoft International Holdings B.V. Pointing device and method
JP5684577B2 (ja) * 2008-02-27 2015-03-11 ソニー コンピュータ エンタテインメント アメリカ リミテッド ライアビリテイ カンパニー シーンの深度データをキャプチャし、コンピュータのアクションを適用する方法
US8121351B2 (en) 2008-03-09 2012-02-21 Microsoft International Holdings B.V. Identification of objects in a 3D video using non/over reflective clothing
US8368753B2 (en) 2008-03-17 2013-02-05 Sony Computer Entertainment America Llc Controller with an integrated depth camera
JP2009276248A (ja) * 2008-05-15 2009-11-26 Mitsubishi Electric Corp レーザレーダ装置
US8358317B2 (en) 2008-05-23 2013-01-22 Evans & Sutherland Computer Corporation System and method for displaying a planar image on a curved surface
US8187097B1 (en) 2008-06-04 2012-05-29 Zhang Evan Y W Measurement and segment of participant's motion in game play
US8702248B1 (en) 2008-06-11 2014-04-22 Evans & Sutherland Computer Corporation Projection method for reducing interpixel gaps on a viewing surface
US8227965B2 (en) 2008-06-20 2012-07-24 Arradiance, Inc. Microchannel plate devices with tunable resistive films
JP5647118B2 (ja) * 2008-07-29 2014-12-24 マイクロソフト インターナショナル ホールディングス ビイ.ヴイ. 撮像システム
US8682522B2 (en) * 2008-08-18 2014-03-25 Raytheon Company Systems and methods for triaging a plurality of targets with a robotic vehicle
US8133119B2 (en) * 2008-10-01 2012-03-13 Microsoft Corporation Adaptation for alternate gaming input devices
DE102008052064B4 (de) * 2008-10-17 2010-09-09 Diehl Bgt Defence Gmbh & Co. Kg Vorrichtung zur Aufnahme von Bildern einer Objektszene
US8077378B1 (en) 2008-11-12 2011-12-13 Evans & Sutherland Computer Corporation Calibration system and method for light modulation device
CN102292980B (zh) * 2008-11-25 2015-04-01 泰特拉维公司 高分辨率三维成像的系统和方法
US8961313B2 (en) * 2009-05-29 2015-02-24 Sony Computer Entertainment America Llc Multi-positional three-dimensional controller
ES2402832T3 (es) * 2008-12-19 2013-05-09 Saab Ab Procedimiento y disposición para la estimación de al menos un parámetro de un intruso
US8681321B2 (en) * 2009-01-04 2014-03-25 Microsoft International Holdings B.V. Gated 3D camera
JP5230456B2 (ja) * 2009-01-09 2013-07-10 キヤノン株式会社 画像処理装置および画像処理方法
US8866821B2 (en) * 2009-01-30 2014-10-21 Microsoft Corporation Depth map movement tracking via optical flow and velocity prediction
US9652030B2 (en) 2009-01-30 2017-05-16 Microsoft Technology Licensing, Llc Navigation of a virtual plane using a zone of restriction for canceling noise
US8294767B2 (en) * 2009-01-30 2012-10-23 Microsoft Corporation Body scan
US8295546B2 (en) 2009-01-30 2012-10-23 Microsoft Corporation Pose tracking pipeline
US8773355B2 (en) * 2009-03-16 2014-07-08 Microsoft Corporation Adaptive cursor sizing
US8988437B2 (en) * 2009-03-20 2015-03-24 Microsoft Technology Licensing, Llc Chaining animations
US9256282B2 (en) * 2009-03-20 2016-02-09 Microsoft Technology Licensing, Llc Virtual object manipulation
US8527657B2 (en) 2009-03-20 2013-09-03 Sony Computer Entertainment America Llc Methods and systems for dynamically adjusting update rates in multi-player network gaming
EP2236980B1 (de) * 2009-03-31 2018-05-02 Alcatel Lucent Verfahren zur Bestimmung der relativen Position einer ersten und einer zweiten Bildgebungsvorrichtung und Vorrichtungen dafür
US8342963B2 (en) * 2009-04-10 2013-01-01 Sony Computer Entertainment America Inc. Methods and systems for enabling control of artificial intelligence game characters
US8649554B2 (en) 2009-05-01 2014-02-11 Microsoft Corporation Method to control perspective for a camera-controlled computer
US20100277470A1 (en) * 2009-05-01 2010-11-04 Microsoft Corporation Systems And Methods For Applying Model Tracking To Motion Capture
US8181123B2 (en) 2009-05-01 2012-05-15 Microsoft Corporation Managing virtual port associations to users in a gesture-based computing environment
US9377857B2 (en) * 2009-05-01 2016-06-28 Microsoft Technology Licensing, Llc Show body position
US8638985B2 (en) 2009-05-01 2014-01-28 Microsoft Corporation Human body pose estimation
US8253746B2 (en) * 2009-05-01 2012-08-28 Microsoft Corporation Determine intended motions
US8503720B2 (en) 2009-05-01 2013-08-06 Microsoft Corporation Human body pose estimation
US8942428B2 (en) 2009-05-01 2015-01-27 Microsoft Corporation Isolate extraneous motions
US9498718B2 (en) * 2009-05-01 2016-11-22 Microsoft Technology Licensing, Llc Altering a view perspective within a display environment
US9015638B2 (en) * 2009-05-01 2015-04-21 Microsoft Technology Licensing, Llc Binding users to a gesture based system and providing feedback to the users
US8340432B2 (en) 2009-05-01 2012-12-25 Microsoft Corporation Systems and methods for detecting a tilt angle from a depth image
US9898675B2 (en) * 2009-05-01 2018-02-20 Microsoft Technology Licensing, Llc User movement tracking feedback to improve tracking
US8393964B2 (en) 2009-05-08 2013-03-12 Sony Computer Entertainment America Llc Base station for position location
US8142288B2 (en) 2009-05-08 2012-03-27 Sony Computer Entertainment America Llc Base station movement detection and compensation
US20100302376A1 (en) * 2009-05-27 2010-12-02 Pierre Benoit Boulanger System and method for high-quality real-time foreground/background separation in tele-conferencing using self-registered color/infrared input images and closed-form natural image matting techniques
WO2010136924A1 (en) 2009-05-28 2010-12-02 Ben Gurion University Of The Negev Research And Development Authority Balance perturbation system and trainer
US8856691B2 (en) * 2009-05-29 2014-10-07 Microsoft Corporation Gesture tool
US8145594B2 (en) * 2009-05-29 2012-03-27 Microsoft Corporation Localized gesture aggregation
US8418085B2 (en) * 2009-05-29 2013-04-09 Microsoft Corporation Gesture coach
US8744121B2 (en) 2009-05-29 2014-06-03 Microsoft Corporation Device for identifying and tracking multiple humans over time
US9400559B2 (en) 2009-05-29 2016-07-26 Microsoft Technology Licensing, Llc Gesture shortcuts
US20100306685A1 (en) * 2009-05-29 2010-12-02 Microsoft Corporation User movement feedback via on-screen avatars
US9383823B2 (en) * 2009-05-29 2016-07-05 Microsoft Technology Licensing, Llc Combining gestures beyond skeletal
US8379101B2 (en) * 2009-05-29 2013-02-19 Microsoft Corporation Environment and/or target segmentation
US8625837B2 (en) * 2009-05-29 2014-01-07 Microsoft Corporation Protocol and format for communicating an image from a camera to a computing environment
US8803889B2 (en) * 2009-05-29 2014-08-12 Microsoft Corporation Systems and methods for applying animations or motions to a character
US20100302365A1 (en) * 2009-05-29 2010-12-02 Microsoft Corporation Depth Image Noise Reduction
US8176442B2 (en) * 2009-05-29 2012-05-08 Microsoft Corporation Living cursor control mechanics
US8320619B2 (en) 2009-05-29 2012-11-27 Microsoft Corporation Systems and methods for tracking a model
US9182814B2 (en) * 2009-05-29 2015-11-10 Microsoft Technology Licensing, Llc Systems and methods for estimating a non-visible or occluded body part
US20100306716A1 (en) * 2009-05-29 2010-12-02 Microsoft Corporation Extending standard gestures
US20100302138A1 (en) * 2009-05-29 2010-12-02 Microsoft Corporation Methods and systems for defining or modifying a visual representation
US8509479B2 (en) 2009-05-29 2013-08-13 Microsoft Corporation Virtual object
US8542252B2 (en) * 2009-05-29 2013-09-24 Microsoft Corporation Target digitization, extraction, and tracking
US7914344B2 (en) * 2009-06-03 2011-03-29 Microsoft Corporation Dual-barrel, connector jack and plug assemblies
US8390680B2 (en) 2009-07-09 2013-03-05 Microsoft Corporation Visual representation expression based on player expression
US9159151B2 (en) * 2009-07-13 2015-10-13 Microsoft Technology Licensing, Llc Bringing a visual representation to life via learned input from the user
US20110025689A1 (en) * 2009-07-29 2011-02-03 Microsoft Corporation Auto-Generating A Visual Representation
US9141193B2 (en) * 2009-08-31 2015-09-22 Microsoft Technology Licensing, Llc Techniques for using human gestures to control gesture unaware programs
US9014546B2 (en) 2009-09-23 2015-04-21 Rovi Guides, Inc. Systems and methods for automatically detecting users within detection regions of media devices
US20110109617A1 (en) * 2009-11-12 2011-05-12 Microsoft Corporation Visualizing Depth
KR101675112B1 (ko) * 2010-01-21 2016-11-22 삼성전자주식회사 거리 정보 추출 방법 및 상기 방법을 채용한 광학 장치
US8134719B2 (en) * 2010-03-19 2012-03-13 Carestream Health, Inc. 3-D imaging using telecentric defocus
JP5519381B2 (ja) * 2010-04-09 2014-06-11 トヨタ自動車株式会社 スペクトル測定装置
DE102010028949A1 (de) * 2010-05-12 2011-11-17 Osram Gesellschaft mit beschränkter Haftung Scheinwerfermodul
US8384770B2 (en) * 2010-06-02 2013-02-26 Nintendo Co., Ltd. Image display system, image display apparatus, and image display method
US11640672B2 (en) 2010-06-08 2023-05-02 Styku Llc Method and system for wireless ultra-low footprint body scanning
US11244223B2 (en) 2010-06-08 2022-02-08 Iva Sareen Online garment design and collaboration system and method
US10628666B2 (en) 2010-06-08 2020-04-21 Styku, LLC Cloud server body scan data system
US10628729B2 (en) 2010-06-08 2020-04-21 Styku, LLC System and method for body scanning and avatar creation
EP2395768B1 (de) 2010-06-11 2015-02-25 Nintendo Co., Ltd. Bildanzeigeprogramm, Bildanzeigesystem und Bildanzeigeverfahren
TWI540312B (zh) * 2010-06-15 2016-07-01 原相科技股份有限公司 可提高測量精確度、省電及/或能提高移動偵測效率的時差測距系統及其方法
CN102346020B (zh) * 2010-08-04 2013-10-23 原相科技股份有限公司 用于互动介面的三维信息产生装置与三维信息产生方法
KR101753312B1 (ko) * 2010-09-17 2017-07-03 삼성전자주식회사 뎁스 영상 생성 장치 및 방법
JP5739674B2 (ja) 2010-09-27 2015-06-24 任天堂株式会社 情報処理プログラム、情報処理装置、情報処理システム、および、情報処理方法
US8681255B2 (en) 2010-09-28 2014-03-25 Microsoft Corporation Integrated low power depth camera and projection device
US9319578B2 (en) * 2012-10-24 2016-04-19 Alcatel Lucent Resolution and focus enhancement
US9344736B2 (en) 2010-09-30 2016-05-17 Alcatel Lucent Systems and methods for compressive sense imaging
US9484065B2 (en) 2010-10-15 2016-11-01 Microsoft Technology Licensing, Llc Intelligent determination of replays based on event identification
US8667519B2 (en) 2010-11-12 2014-03-04 Microsoft Corporation Automatic passive and anonymous feedback system
JP5574927B2 (ja) * 2010-11-19 2014-08-20 キヤノン株式会社 測定装置
KR101798063B1 (ko) 2010-12-14 2017-11-15 삼성전자주식회사 조명 광학계 및 이를 포함하는 3차원 영상 획득 장치
KR101691156B1 (ko) * 2010-12-14 2016-12-30 삼성전자주식회사 조명 광학계와 결상 광학계가 통합된 광학계 및 이를 포함하는 3차원 영상 획득 장치
US20120154535A1 (en) * 2010-12-15 2012-06-21 Microsoft Corporation Capturing gated and ungated light in the same frame on the same photosurface
GB2486467A (en) 2010-12-16 2012-06-20 Thermo Electron Mfg Ltd Hybrid electrical/optical cable uses transparent insulating material as optical waveguide
KR101722641B1 (ko) 2010-12-23 2017-04-04 삼성전자주식회사 3차원 영상 획득 장치 및 상기 3차원 영상 획득 장치에서 깊이 정보를 추출하는 방법
DE102011010334B4 (de) * 2011-02-04 2014-08-28 Eads Deutschland Gmbh Kamerasystem und Verfahren zur Beobachtung von Objekten in großer Entfernung, insbesondere zur Überwachung von Zielobjekten bei Nacht, Dunst, Staub oder Regen
US8942917B2 (en) 2011-02-14 2015-01-27 Microsoft Corporation Change invariant scene recognition by an agent
CN103492835B (zh) * 2011-02-15 2016-08-17 巴斯夫欧洲公司 用于光学检测至少一种物体的检测器
US8620113B2 (en) 2011-04-25 2013-12-31 Microsoft Corporation Laser diode modes
US8921748B2 (en) * 2011-05-19 2014-12-30 Lockheed Martin Corporation Optical window and detection system employing the same
US8760395B2 (en) 2011-05-31 2014-06-24 Microsoft Corporation Gesture recognition techniques
US10007330B2 (en) 2011-06-21 2018-06-26 Microsoft Technology Licensing, Llc Region of interest segmentation
US8672838B2 (en) * 2011-08-12 2014-03-18 Intuitive Surgical Operations, Inc. Image capture unit in a surgical instrument
US8734328B2 (en) 2011-08-12 2014-05-27 Intuitive Surgical Operations, Inc. Increased resolution and dynamic range image capture unit in a surgical instrument and method
CA2849398C (en) 2011-09-07 2020-12-29 Rapiscan Systems, Inc. X-ray inspection system that integrates manifest data with imaging/detection processing
CN103037173B (zh) * 2011-09-28 2015-07-08 原相科技股份有限公司 影像系统
TWI526706B (zh) * 2011-10-05 2016-03-21 原相科技股份有限公司 影像系統
US9641826B1 (en) 2011-10-06 2017-05-02 Evans & Sutherland Computer Corporation System and method for displaying distant 3-D stereo on a dome surface
KR101854188B1 (ko) * 2011-10-25 2018-05-08 삼성전자주식회사 3차원 영상 획득 장치 및 3차원 영상 획득 장치에서 깊이 정보 산출 방법
JP5896702B2 (ja) * 2011-11-30 2016-03-30 オリンパス株式会社 光音響顕微鏡
US8635637B2 (en) 2011-12-02 2014-01-21 Microsoft Corporation User interface presenting an animated avatar performing a media reaction
US9100685B2 (en) 2011-12-09 2015-08-04 Microsoft Technology Licensing, Llc Determining audience state or interest using passive sensor data
JP5576851B2 (ja) * 2011-12-27 2014-08-20 本田技研工業株式会社 測距システム及び測距方法
IL217361A0 (en) * 2012-01-04 2012-03-29 Rafael Advanced Defense Sys Device & method providing combined video camera and range finder functionality
KR101955334B1 (ko) 2012-02-07 2019-03-07 삼성전자주식회사 3차원 영상 획득 장치 및 상기 3차원 영상 획득 장치에서 깊이 정보를 추출하는 방법
US8898687B2 (en) 2012-04-04 2014-11-25 Microsoft Corporation Controlling a media program based on a media reaction
US9723233B2 (en) 2012-04-18 2017-08-01 Brightway Vision Ltd. Controllable gated sensor
US9046363B2 (en) * 2012-04-27 2015-06-02 SATOP GmbH Using multispectral satellite data to determine littoral water depths despite varying water turbidity
CA2775700C (en) 2012-05-04 2013-07-23 Microsoft Corporation Determining a future portion of a currently presented media program
JP6011040B2 (ja) * 2012-06-07 2016-10-19 オムロン株式会社 光電センサ
TWM446323U (zh) * 2012-08-03 2013-02-01 Ind Tech Res Inst 開口率量測感知裝置、開口距離感知裝置及光感測模組
US9071763B1 (en) * 2012-09-26 2015-06-30 Google Inc. Uniform illumination image capture
KR20140064478A (ko) 2012-11-20 2014-05-28 삼성디스플레이 주식회사 영상 감지 유닛, 3d 영상 처리 장치, 3d 카메라 시스템, 3d 영상 처리 방법
US9857470B2 (en) 2012-12-28 2018-01-02 Microsoft Technology Licensing, Llc Using photometric stereo for 3D environment modeling
JP6384762B2 (ja) * 2013-01-31 2018-09-05 パナソニックIpマネジメント株式会社 測距方法および測距システム
US9940553B2 (en) 2013-02-22 2018-04-10 Microsoft Technology Licensing, Llc Camera/object pose from predicted coordinates
KR102040152B1 (ko) 2013-04-08 2019-12-05 삼성전자주식회사 3차원 영상 획득 장치 및 3차원 영상 획득 장치에서의 깊이 영상 생성 방법
KR102056904B1 (ko) * 2013-05-22 2019-12-18 삼성전자주식회사 3차원 영상 획득 장치 및 그 구동 방법
CN109521397B (zh) * 2013-06-13 2023-03-28 巴斯夫欧洲公司 用于光学地检测至少一个对象的检测器
IL227265A0 (en) * 2013-06-30 2013-12-31 Brightway Vision Ltd Smart flash for the camera
US9674563B2 (en) 2013-11-04 2017-06-06 Rovi Guides, Inc. Systems and methods for recommending content
US10203399B2 (en) 2013-11-12 2019-02-12 Big Sky Financial Corporation Methods and apparatus for array based LiDAR systems with reduced interference
US9568280B1 (en) 2013-11-25 2017-02-14 Lockheed Martin Corporation Solid nose cone and related components
KR102138522B1 (ko) * 2013-12-18 2020-07-28 엘지전자 주식회사 레이저 거리 측정 장치 및 제어방법
EP2894491B1 (de) * 2013-12-18 2020-05-27 LG Electronics Inc. Distanzmessvorrichtung und Verfahren dafür
WO2015144973A1 (en) * 2014-03-28 2015-10-01 Nokia Technologies Oy Digital imaging with pulsed illumination to generate a depth map
US9360554B2 (en) 2014-04-11 2016-06-07 Facet Technology Corp. Methods and apparatus for object detection and identification in a multiple detector lidar array
US10104365B2 (en) 2014-04-26 2018-10-16 Tetravue, Inc. Method and system for robust and extended illumination waveforms for depth sensing in 3D imaging
US9256944B2 (en) 2014-05-19 2016-02-09 Rockwell Automation Technologies, Inc. Integration of optical area monitoring with industrial machine control
US11243294B2 (en) 2014-05-19 2022-02-08 Rockwell Automation Technologies, Inc. Waveform reconstruction in a time-of-flight sensor
US9921300B2 (en) 2014-05-19 2018-03-20 Rockwell Automation Technologies, Inc. Waveform reconstruction in a time-of-flight sensor
US20150334371A1 (en) * 2014-05-19 2015-11-19 Rockwell Automation Technologies, Inc. Optical safety monitoring with selective pixel array analysis
US9696424B2 (en) 2014-05-19 2017-07-04 Rockwell Automation Technologies, Inc. Optical area monitoring with spot matrix illumination
US9534868B1 (en) 2014-06-03 2017-01-03 Lockheed Martin Corporation Aerodynamic conformal nose cone and scanning mechanism
US9291447B2 (en) 2014-07-09 2016-03-22 Mitutoyo Corporation Method for controlling motion of a coordinate measuring machine
KR102194237B1 (ko) 2014-08-29 2020-12-22 삼성전자주식회사 깊이 영상 촬영 장치 및 깊이 정보 획득 방법
US9625108B2 (en) 2014-10-08 2017-04-18 Rockwell Automation Technologies, Inc. Auxiliary light source associated with an industrial application
US10578741B2 (en) * 2014-11-11 2020-03-03 Panasonic Intellectual Property Management Co., Ltd. Distance detection device and distance detection method
CN111337936A (zh) 2015-01-20 2020-06-26 托里派因斯洛基股份有限责任公司 单孔激光测距仪
EP3059608B1 (de) * 2015-02-20 2016-11-30 Sick Ag Optoelektronischer sensor und verfahren zur erfassung von objekten
EP3265871B1 (de) 2015-03-02 2020-11-25 Northwestern University Elektroabsorptionsmodulator für tiefenbildgebung und andere anwendungen
US10036801B2 (en) 2015-03-05 2018-07-31 Big Sky Financial Corporation Methods and apparatus for increased precision and improved range in a multiple detector LiDAR array
US10145942B2 (en) * 2015-03-27 2018-12-04 Intel Corporation Techniques for spatio-temporal compressed time of flight imaging
US9864048B2 (en) * 2015-05-17 2018-01-09 Microsoft Technology Licensing, Llc. Gated time of flight camera
US10866083B2 (en) 2015-07-30 2020-12-15 Trumpf Photonic Components Gmbh Laser sensor for particle density detection
WO2017020196A1 (zh) * 2015-07-31 2017-02-09 深圳市大疆创新科技有限公司 探测装置、探测系统、探测方法,以及可移动设备
CN108141579B (zh) * 2015-09-14 2020-06-12 特里纳米克斯股份有限公司 3d相机
EP3159711A1 (de) 2015-10-23 2017-04-26 Xenomatix NV System und verfahren zur bestimmung einer distanz zu einem objekt
KR102610830B1 (ko) 2015-12-24 2023-12-06 삼성전자주식회사 거리 정보를 획득하는 방법 및 디바이스
US10349038B2 (en) * 2016-01-04 2019-07-09 Facebook Technologies, Llc Dynamic control over structured illumination intensity
CN108474843B (zh) * 2016-01-29 2022-06-28 松下知识产权经营株式会社 距离测量装置
WO2017146930A1 (en) 2016-02-22 2017-08-31 Rapiscan Systems, Inc. Systems and methods for detecting threats and contraband in cargo
US11037320B1 (en) 2016-03-01 2021-06-15 AI Incorporated Method for estimating distance using point measurement and color depth
US10311590B1 (en) * 2016-03-01 2019-06-04 Al Incorporated Method for estimating distance using point measurement and color depth
US9866816B2 (en) 2016-03-03 2018-01-09 4D Intellectual Properties, Llc Methods and apparatus for an active pulsed 4D camera for image acquisition and analysis
US10761195B2 (en) 2016-04-22 2020-09-01 OPSYS Tech Ltd. Multi-wavelength LIDAR system
KR20180016120A (ko) * 2016-08-05 2018-02-14 삼성전자주식회사 3차원 깊이 센서 및 이를 이용한 거리 측정 방법
KR20180021509A (ko) 2016-08-22 2018-03-05 삼성전자주식회사 거리 정보를 획득하는 방법 및 디바이스
US10066986B2 (en) * 2016-08-31 2018-09-04 GM Global Technology Operations LLC Light emitting sensor having a plurality of secondary lenses of a moveable control structure for controlling the passage of light between a plurality of light emitters and a primary lens
JP6754706B2 (ja) * 2017-02-14 2020-09-16 京セラ株式会社 電磁波検出装置、プログラム、および情報取得システム
WO2018151226A1 (ja) * 2017-02-15 2018-08-23 パイオニア株式会社 光走査装置及び制御方法
DE102017103660B4 (de) 2017-02-22 2021-11-11 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Verfahren zum betrieb einer lichtquelle für eine kamera, lichtquelle, kamera
JP7037830B2 (ja) 2017-03-13 2022-03-17 オプシス テック リミテッド 眼安全性走査lidarシステム
US10366294B2 (en) * 2017-03-23 2019-07-30 Aptiv Technologies Limited Transparency-characteristic based object classification for automated vehicle
US10645367B2 (en) * 2017-04-20 2020-05-05 Wisconsin Alumni Research Foundation Systems, methods, and media for encoding and decoding signals used in time of flight imaging
US10739447B2 (en) * 2017-04-20 2020-08-11 Wisconsin Alumni Research Foundation Systems, methods, and media for encoding and decoding signals used in time of flight imaging
US11948057B2 (en) * 2017-06-22 2024-04-02 Iva Sareen Online garment design and collaboration system and method
US10754033B2 (en) 2017-06-30 2020-08-25 Waymo Llc Light detection and ranging (LIDAR) device range aliasing resilience by multiple hypotheses
CN110914702B (zh) 2017-07-28 2022-06-28 欧普赛斯技术有限公司 具有小角发散度的vcsel阵列lidar发送器
CN107678038A (zh) * 2017-09-27 2018-02-09 上海有个机器人有限公司 机器人防碰撞方法、机器人以及存储介质
KR102364531B1 (ko) 2017-11-15 2022-02-23 옵시스 테크 엘티디 잡음 적응형 솔리드-스테이트 lidar 시스템
US11340339B2 (en) 2017-12-22 2022-05-24 Waymo Llc Systems and methods for adaptive range coverage using LIDAR
JP7025940B2 (ja) 2018-01-26 2022-02-25 京セラ株式会社 電磁波検出装置および情報取得システム
WO2019181518A1 (ja) * 2018-03-20 2019-09-26 パナソニックIpマネジメント株式会社 距離測定装置、距離測定システム、距離測定方法、及びプログラム
US11906663B2 (en) 2018-04-01 2024-02-20 OPSYS Tech Ltd. Noise adaptive solid-state LIDAR system
JP7126123B2 (ja) * 2018-05-14 2022-08-26 パナソニックIpマネジメント株式会社 学習装置、学習方法及びプログラム
CN108563084B (zh) * 2018-05-25 2020-10-23 深圳新亮智能技术有限公司 多结构光图案三维传感系统
CN109269427A (zh) * 2018-10-31 2019-01-25 贵州电网有限责任公司 一种输电线路覆冰厚度精确测量系统及其测量方法
DE102018221083A1 (de) * 2018-12-06 2020-06-10 Robert Bosch Gmbh LiDAR-System sowie Kraftfahrzeug
CN109470143B (zh) * 2018-12-07 2020-07-28 哈尔滨工业大学 外部光源高分辨力立体视觉测量系统与方法
JP2020125983A (ja) * 2019-02-05 2020-08-20 Jnc株式会社 測距装置及び測距方法
KR102634887B1 (ko) 2019-04-09 2024-02-08 옵시스 테크 엘티디 레이저 제어를 갖는 솔리드-스테이트 lidar 송신기
JP2020173165A (ja) * 2019-04-10 2020-10-22 パイオニア株式会社 距離算出装置
US11846728B2 (en) 2019-05-30 2023-12-19 OPSYS Tech Ltd. Eye-safe long-range LIDAR system using actuator
JP7438564B2 (ja) 2019-06-10 2024-02-27 オプシス テック リミテッド 眼に安全な長距離固体lidarシステム
JP7401201B2 (ja) * 2019-06-17 2023-12-19 株式会社フジタ 水底形状測定装置
CN110275098B (zh) * 2019-06-28 2021-07-09 杭州赫太克科技有限公司 紫外成像仪
JP7314659B2 (ja) * 2019-07-04 2023-07-26 株式会社リコー 測距装置および撮影装置
JPWO2021015208A1 (de) * 2019-07-22 2021-01-28
CN111856091B (zh) * 2020-08-04 2021-09-24 河南大学 一种精准推进探针的方法
JP7037609B2 (ja) * 2020-08-24 2022-03-16 京セラ株式会社 電磁波検出装置およびプログラム

Family Cites Families (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3634725A (en) * 1967-09-28 1972-01-11 Polaroid Corp Modulated electronic flash control
US3571493A (en) * 1967-10-20 1971-03-16 Texas Instruments Inc Intensity modulated laser imagery display
US3629796A (en) * 1968-12-11 1971-12-21 Atlantic Richfield Co Seismic holography
US3734625A (en) * 1969-09-12 1973-05-22 Honeywell Inc Readout system for a magneto-optic memory
US3834816A (en) * 1970-12-10 1974-09-10 Hughes Aircraft Co Colinear heterodyne frequency modulator
US3886303A (en) * 1972-12-21 1975-05-27 Gen Electric Automatic ranging in an active television system
US3895388A (en) * 1973-10-25 1975-07-15 Ibm Adaptive illuminator
DE2453077B2 (de) * 1974-11-08 1976-09-02 Precitronic Gesellschaft für Feinmechanik und Electronic mbH, 2000 Hamburg Empfangs-sendeeinrichtung fuer die informationsuebermittlung mittels gebuendelter, modulierter lichtstrahlen
JPS5443493A (en) * 1977-09-12 1979-04-06 Toshiba Corp Radar device
JPS5596475A (en) * 1979-01-19 1980-07-22 Nissan Motor Co Ltd Obstacle detector for vehicle
DE3021448A1 (de) * 1980-06-06 1981-12-24 Siemens AG, 1000 Berlin und 8000 München Verfahren und anordnung zur erfassung raeumlicher abweichungen von einer glatten ebene an oberflaechen von gegenstaenden
US4769700A (en) * 1981-11-20 1988-09-06 Diffracto Ltd. Robot tractors
JPS57193183A (en) * 1981-05-25 1982-11-27 Mitsubishi Electric Corp Image pickup device
US4408263A (en) * 1981-12-14 1983-10-04 Wonder Corporation Of America Disposable flashlight
JPS59198378A (ja) * 1983-04-27 1984-11-10 Nissan Motor Co Ltd 光レ−ダ装置
DE3404396A1 (de) * 1984-02-08 1985-08-14 Dornier Gmbh, 7990 Friedrichshafen Vorrichtung und verfahren zur aufnahme von entfernungsbildern
US4734735A (en) * 1985-08-23 1988-03-29 Konishiroku Photo Industry Co., Ltd. Image apparatus having a color separation function
US4687326A (en) * 1985-11-12 1987-08-18 General Electric Company Integrated range and luminance camera
US5255087A (en) * 1986-11-29 1993-10-19 Olympus Optical Co., Ltd. Imaging apparatus and endoscope apparatus using the same
US4971413A (en) * 1987-05-13 1990-11-20 Nikon Corporation Laser beam depicting apparatus
US5081530A (en) * 1987-06-26 1992-01-14 Antonio Medina Three dimensional camera and range finder
US4734733A (en) * 1987-09-21 1988-03-29 Polaroid Corporation Camera with two position strobe
JPH01100492A (ja) * 1987-10-14 1989-04-18 Matsushita Electric Ind Co Ltd レーザ視覚センサ
CH674675A5 (de) * 1987-10-23 1990-06-29 Kern & Co Ag
US4959726A (en) * 1988-03-10 1990-09-25 Fuji Photo Film Co., Ltd. Automatic focusing adjusting device
US4780732A (en) * 1988-03-21 1988-10-25 Xerox Corporation Dual interaction TIR modulator
EP0424409A4 (en) * 1988-06-20 1992-01-15 Kemal Ajay Range finding device
US5013917A (en) * 1988-07-07 1991-05-07 Kaman Aerospace Corporation Imaging lidar system using non-visible light
US4991953A (en) * 1989-02-09 1991-02-12 Eye Research Institute Of Retina Foundation Scanning laser vitreous camera
US5009502A (en) * 1989-04-20 1991-04-23 Hughes Aircraft Company System of holographic optical elements for testing laser range finders
JPH032582A (ja) * 1989-05-30 1991-01-08 Hamamatsu Photonics Kk 物体検知装置
US4935616A (en) * 1989-08-14 1990-06-19 The United States Of America As Represented By The Department Of Energy Range imaging laser radar
US5343391A (en) * 1990-04-10 1994-08-30 Mushabac David R Device for obtaining three dimensional contour data and for operating on a patient and related method
US5056914A (en) * 1990-07-12 1991-10-15 Ball Corporation Charge integration range detector
US5090803A (en) * 1990-09-21 1992-02-25 Lockheed Missiles & Space Company, Inc. Optical coordinate transfer assembly
US5198877A (en) * 1990-10-15 1993-03-30 Pixsys, Inc. Method and apparatus for three-dimensional non-contact shape sensing
US5200793A (en) * 1990-10-24 1993-04-06 Kaman Aerospace Corporation Range finding array camera
JPH04169805A (ja) * 1990-11-01 1992-06-17 Matsushita Electric Ind Co Ltd 三次元画像測定装置
US5253033A (en) * 1990-12-03 1993-10-12 Raytheon Company Laser radar system with phased-array beam steerer
US5164823A (en) * 1990-12-21 1992-11-17 Kaman Aerospace Corporation Imaging lidar system employing multipulse single and multiple gating for single and stacked frames
US5157451A (en) * 1991-04-01 1992-10-20 John Taboada Laser imaging and ranging system using two cameras
DE69204886T2 (de) * 1991-04-23 1996-04-04 Nec Corp Messgerät für bewegte Körper.
US5257085A (en) * 1991-04-24 1993-10-26 Kaman Aerospace Corporation Spectrally dispersive imaging lidar system
JP3217386B2 (ja) * 1991-04-24 2001-10-09 オリンパス光学工業株式会社 診断システム
US5216259A (en) * 1991-05-10 1993-06-01 Robotic Vision System, Inc. Apparatus and method for improved determination of the spatial location of object surface points
US5200931A (en) * 1991-06-18 1993-04-06 Alliant Techsystems Inc. Volumetric and terrain imaging sonar
US5243553A (en) * 1991-07-02 1993-09-07 Loral Vought Systems Corporation Gate array pulse capture device
US5110203A (en) * 1991-08-28 1992-05-05 The United States Of America As Represented By The Secretary Of The Navy Three dimensional range imaging system
DE4129912C1 (de) * 1991-09-09 1992-10-22 Dornier Luftfahrt Gmbh, 8031 Wessling, De
US5265327A (en) * 1991-09-13 1993-11-30 Faris Sadeg M Microchannel plate technology
US5220164A (en) * 1992-02-05 1993-06-15 General Atomics Integrated imaging and ranging lidar receiver with ranging information pickoff circuit
US5408263A (en) * 1992-06-16 1995-04-18 Olympus Optical Co., Ltd. Electronic endoscope apparatus
JPH0659038A (ja) * 1992-08-07 1994-03-04 Nissan Motor Co Ltd 車両用レーザレーダ
US5434612A (en) * 1992-09-25 1995-07-18 The United States Of America As Represented By The Secretary Of The Army Duo-frame normalization technique
US5334848A (en) * 1993-04-09 1994-08-02 Trw Inc. Spacecraft docking sensor system
JPH07110381A (ja) * 1993-10-07 1995-04-25 Wacom Co Ltd 距離カメラ装置
JPH07142761A (ja) * 1993-11-18 1995-06-02 Mitsubishi Electric Corp 受光素子ならびに受光素子アレイおよび画像検出装置ならびに画像検出方法
JPH0832855A (ja) * 1994-07-11 1996-02-02 Fuji Photo Film Co Ltd 電子スチル・カメラ,画像合成装置および画像抽出装置
IL114278A (en) * 1995-06-22 2010-06-16 Microsoft Internat Holdings B Camera and method
CN100524015C (zh) * 1995-06-22 2009-08-05 3Dv系统有限公司 生成距景物距离的图象的方法和装置

Also Published As

Publication number Publication date
JP4808684B2 (ja) 2011-11-02
AU6135996A (en) 1997-01-22
CN1437063A (zh) 2003-08-20
DE69635858D1 (de) 2006-04-27
CN100524015C (zh) 2009-08-05
WO1997001112B1 (en) 2001-04-05
CN1253636A (zh) 2000-05-17
JP2009122119A (ja) 2009-06-04
JP5688722B2 (ja) 2015-03-25
JP5180535B2 (ja) 2013-04-10
AU6136096A (en) 1997-01-22
JP2007333746A (ja) 2007-12-27
JP3869005B2 (ja) 2007-01-17
WO1997001111A2 (en) 1997-01-09
WO1997001112A2 (en) 1997-01-09
EP0886790A4 (de) 1999-01-07
CN1101056C (zh) 2003-02-05
DE69635891D1 (de) 2006-05-04
US6091905A (en) 2000-07-18
CN1194056A (zh) 1998-09-23
EP0835460A4 (de) 1999-01-13
JP2008003099A (ja) 2008-01-10
JP2011039076A (ja) 2011-02-24
JP2008014955A (ja) 2008-01-24
EP0886790B1 (de) 2006-03-01
WO1997001111A3 (en) 1997-02-27
JP5180534B2 (ja) 2013-04-10
JPH11508371A (ja) 1999-07-21
WO1997001112A3 (en) 1997-03-13
JPH11508359A (ja) 1999-07-21
JP2008047925A (ja) 2008-02-28
EP0835460B1 (de) 2006-03-08
EP0886790A2 (de) 1998-12-30
US6057909A (en) 2000-05-02
DE69635891T2 (de) 2006-12-14
EP0835460A2 (de) 1998-04-15

Similar Documents

Publication Publication Date Title
DE69635858T2 (de) Telezentrische 3d kamera und zugehöriges verfahren
AT412028B (de) Einrichtung zur aufnahme eines objektraumes
DE60125683T2 (de) Anordnung und Verfahren zur Entfernungsmessung
DE102008052064B4 (de) Vorrichtung zur Aufnahme von Bildern einer Objektszene
DE112017000127T5 (de) 2D Lidar-Scannen mit hoher Präzision mit einem drehbaren konkaven Spiegel und einer Strahllenkvorrichtung
DE3731037A1 (de) Laser-abbildungssystem mit detektorzeile
DE60124647T2 (de) Vorrichtung und Verfahren zur Abstandsmessung
EP0253017B1 (de) Vermessungssystem und Vermessungsverfahren
DE2500458A1 (de) Vorrichtung zur bestimmung eines oberflaechenprofils
EP0578129A2 (de) Bilderfassende Sensoreinheit
DE3642051A1 (de) Verfahren zur dreidimensionalen informationsverarbeitung und vorrichtung zum erhalten einer dreidimensionalen information ueber ein objekt
DE10130763A1 (de) Vorrichtung zur optischen Distanzmessung über einen grossen Messbereich
DE69814591T2 (de) Vorrichtung und verfahren zum nachweis eines objektes
DE3930632A1 (de) Verfahren zur direkten phasenmessung von strahlung, insbesondere lichtstrahlung, und vorrichtung zur durchfuehrung dieses verfahrens
DE2333281C3 (de) Verfahren zur Ermittlung der Fokussierung eines auf ein Objekt ausgesandten kohärenten Lichtstrahls
EP3500872A1 (de) Optische vorrichtung
WO2021239408A1 (de) Vorrichtung und verfahren zur scannenden messung des abstands zu einem objekt
DE3141448A1 (de) Scanner mit fliegendem lichtpunkt
DE112016000842T5 (de) Gekreuzte-Strahlen-Abbildung mittels Mehrfachstrahl- und Konvergentes-Licht-Beleuchtung
DE4129912C1 (de)
DE3116671A1 (de) Instrument zum automatischen bestimmen der kennwerte eines optischen systems
DE102018211913B4 (de) Vorrichtung und Verfahren zum Erfassen einer Objektoberfläche mittels elektromagnetischer Strahlung
DE102008021465A1 (de) Entfernungsmesssystem
DE3203788C2 (de)
DE4419900A1 (de) Verfahren und Anordnung zum Abbilden eines Objekts mit Licht

Legal Events

Date Code Title Description
8364 No opposition during term of opposition
8327 Change in the person/name/address of the patent owner

Owner name: MICROSOFT INTERNATIONAL HOLDINGS B.V., AMSTERD, NL