EP0074295B1 - Duplexeur d'ondes électromagnétiques passif à semi-conducteur - Google Patents

Duplexeur d'ondes électromagnétiques passif à semi-conducteur Download PDF

Info

Publication number
EP0074295B1
EP0074295B1 EP82401518A EP82401518A EP0074295B1 EP 0074295 B1 EP0074295 B1 EP 0074295B1 EP 82401518 A EP82401518 A EP 82401518A EP 82401518 A EP82401518 A EP 82401518A EP 0074295 B1 EP0074295 B1 EP 0074295B1
Authority
EP
European Patent Office
Prior art keywords
duplexer according
duplexer
grid
resonant slots
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82401518A
Other languages
German (de)
English (en)
Other versions
EP0074295A1 (fr
Inventor
Gilles Sillard
Michel Baril
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Priority to AT82401518T priority Critical patent/ATE16332T1/de
Publication of EP0074295A1 publication Critical patent/EP0074295A1/fr
Application granted granted Critical
Publication of EP0074295B1 publication Critical patent/EP0074295B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/007Antennas or antenna systems providing at least two radiating patterns using two or more primary active elements in the focal region of a focusing device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures

Definitions

  • the invention relates to a passive semiconductor electromagnetic wave duplexer.
  • the duplexer therefore plays the role of a switch isolating the receiver during transmission or of a neighboring powerful transmission and opening the way when weak signals are received by the antenna.
  • a first type of duplexer represented in FIG. 1 consists of two identical limiters 1 inserted between two 3dB couplers 21, 22, each limiter 1 being on for weak signals but reflecting for high power signals.
  • the first coupler 21 is connected, at the input, on the one hand to the transmitter 3 and on the other hand to the antenna 4, while its outputs each lead to one of the two limiters 1. They themselves are connected to the inputs of the second coupler 22, the outputs of which are connected respectively to the radar receiver 5 and to a dissipating load 6.
  • the limiters 1 send it back to the antenna 4 while they pass weak signals received at reception.
  • a second type of duplexer comprising a non-reciprocal ferrite device, operates on the following principle: the signal from the transmitter is directed to the antenna. and any signal received by the antenna must be directed to the receiver, whatever its power.
  • FIG. 2a shows such a duplexer comprising two devices with differential phase shift 74 and 75, the operation of which is as follows: for an initial signal coming from the transmitter 7 and passing through a coupler 71 causing a phase difference of 111/2 between channels 72 and 73, the ferrite device with differential phase shift 74 out of 11/2 + ⁇ pu the signal from channel 72 while the other ferrite device 75 out of ⁇ the signal from channel 73.
  • FIG. 2b it shows a duplexer where the non-reciprocal device is a three-way circulator 8.
  • the non-reciprocal device is a three-way circulator 8.
  • this type of duplexer an additional limiting cell in the reception channel, this cell being constituted either by a gas TR tube, the lifetime of which is fairly limited, or by ferrite or diode devices.
  • duplexers do not work well with millimeter waves, because the limitation cells described either do not exist for such waves, this is the case for TR tubes, or n ' do not have a good power handling, this is the case of existing diodes mounted in conventional structures.
  • the aim of the present invention is to solve these difficulties by producing a passive semiconductor duplexer for electromagnetic waves, comprising a first horn, connected to the radar transmitter and with the axis of propagation ⁇ 1 a plane circular grid, reflecting or transparent as a function of the power of the incident signals and inclined at 45 ° relative to the axis ⁇ 1 , and a second horn connected to the receiver and of propagation axis 2 orthogonal to the axis ⁇ 1 .
  • the grid consists of a metallized dielectric or semiconductor disc on one side, comprising a network of resonant slots provided with at least one diode, this grid being transparent for weak signals and reflective for high power signals.
  • the duplexer according to the invention comprises several parallel grids.
  • FIG. 3 shows the diagram of a duplexer according to the invention. It includes a first horn 9 associated with the radar transmitter 10, sending millimeter electromagnetic waves on a grid 11, a circular plane whose diameter is compatible with millimeter wave operation, and inclined at 45 ° relative to the axis ⁇ 1 , for propagation of the horn 9. It also includes a second horn 12 associated with the radar receiver 13, the propagation axis A 2 of which is orthogonal to the axis ⁇ 1 , and by a transmitter-receiver antenna 14.
  • the flat grid 11 (FIG. 4) has a reflecting or transparent power depending on the power of the incident signals, in other words, it is completely reflective for the signals of high power emitted by the transmitter 10 and completely transparent for the weak signals received by the antenna 14. It consists of a disc either dielectric or semiconductor, but in both cases metallized on one side 15. The metallization of this face creates a network of resonant slots 16, as shown in FIG. 4, each provided with at least one diode 17. When the disk is in dielectric, the diodes are transferred and then connected to the two opposite edges of the slot. When the disc is made of semiconductor material, the diodes 17 are produced directly on the disc.
  • the duplexer thus produced operates in the following manner: the radar transmitter 10 sends a high energy radar signal, via the horn 9 which directs it to the grid 11. Receiving this strong signal, the diodes 17 behave like a short-circuit and the slot-diode assembly is out of tune, thus making the grid 11 reflective. The grid 11 therefore sends the radar signal to the antenna 14 which in turn reflects it towards space, completely protecting the radar receiver 13.
  • the antenna 14 when the antenna 14 receives a low power signal, it directs it towards the gate 11.
  • the diodes 17 are equivalent to capacitances and the slot-diode assembly is adapted to resonate at frequencies of use. So that the network of resonant slots which constitutes the grid 11 is passing for the low level signal, which is well received by the radar receiver 13 via the horn 12.
  • the shape of the resonant slots 17 can be rectangular (FIG. 5a), oval (FIG. 5b) or even have a constriction 18 in its middle (FIG. 5c).
  • the power of the microwave signal distributed over the entire grid by means of the horn 9 or the antenna 14, is relatively low on each slot, therefore on each diode, making it possible to obtain good power handling.
  • This behavior can also be considerably improved by connecting, between the two edges of each slot, at least one pair of diode 19, of the same polarity mounted in shunt head to tail in the same plane as shown in Figures 6a, 6b and 6c.
  • it is either one or the other diode 19 which conducts, protecting the other diode by limiting the voltage applied to its terminals.
  • FIG. 6 shows such an arrangement in the form of the resonant slots 16.
  • a network of resonant slots 20 in the form of a cross is produced as shown in FIG. 7, each arm 22 and 23 acting like a simple slot for one of the two polarizations.
  • the diodes 21 are placed two by two head to tail, but not entirely in the same plane, since they are separated by the width of the other arm.
  • a final improvement relating to the width of the bandwidth of the system, can be made by placing several grids, identical to that already described, parallel to each other so as to constitute a response filter by Tchebischeff or Butterworth for example. .
  • the diameter of the grid, the number and the shape of the resonant slots are determined by the characteristics of the diodes, the polarization and the power of the microwave signal to be processed.
  • the duplexer which has just been described, the duplexing and the protection of the radar receiver against all the high power microwave signals are ensured, these signals being situated in the millimeter wave range.
  • This device has the advantage of being passive and of having good power handling because it is entirely distributed over a large number of diodes, which are moreover easily achievable and can be integrated into the grid.

Description

  • L'invention est relative à un duplexeur d'ondes électromagnétiques passif à semi-conducteur.
  • Dans un système radar, il est tout à fait nécessaire de protéger le récepteur radar à la fois contre l'énergie à haut niveau envoyée par l'émetteur et contre l'énergie provenant d'émetteurs radar voisins. Mais il est hautement souhaitable que toute l'énergie recueillie par l'antenne en provenance d'une cible éclairée par le rayonnement émis soit transmise sans perte au récepteur. Le duplexeur joue donc le rôle d'un commutateur isolant le récepteur lors de l'émission ou d'une émission voisine puissante et ouvrant la voie lors de la réception de signaux faibles par l'antenne.
  • Il existe à l'heure actuelle différents types de duplexeurs qui vont être décrits dans ce qui suit, mais qui présentent l'inconvénient de ne pas ou très mal fonctionner avec des ondes millimétriques. Un premier type de duplexeur représenté sur la figure 1 est constitué par deux limiteurs identiques 1 insérés entre deux coupleurs 3dB 21, 22, chaque limiteur 1 étant passant pour les signaux faibles mais réfléchissant pour les signaux de forte puissance. Le premier coupleur 21 est relié, en entrée, d'une part à l'émetteur 3 et d'autre part à l'antenne 4, tandis que ses sorties aboutissent chacune à un des deux limiteurs 1. Eux-mêmes sont reliés aux entrées du second coupleur 22, dont les sorties sont connectées respectivement au récepteur radar 5 et à une charge dissipatrice 6. Lors de l'émission du signal radar par l'émetteur 3, les limiteurs 1 le renvoient vers l'antenne 4 tandis qu'ils laissent passer, à la réception, les faibles signaux reçus.
  • Un second type de duplexeur (figures 2a et 2b), comportant un dispositif à ferrite non réciproque, fonctionne suivant le principe suivant : le signal provenant de l'émetteur est dirigé vers l'antenne. et tout signal reçu par l'antenne est obligatoirement dirigé vers le récepteur, quelle que soit sa puissance. La figure 2a montre un tel duplexeur comportant deux dispositifs à déphasage différentiel 74 et 75, dont le fonctionnement est le suivant : pour un signal initial venant de l'émetteur 7 et passant par un coupleur 71 provoquant une différence de phase de 111/2 entre les voies 72 et 73, le dispositif à ferrite à déphasage différentiel 74 déphase de 11/2 + <pu le signal de la voie 72 tandis que l'autre dispositif à ferrite 75 déphase de ϕν le signal de la voie 73. Les deux signaux dont les déphasages respectifs sont ϕo + π/2 et ϕo aboutissent à un Té magique 76 à la sortie duquel ils se retrouvent en phase vers la voie antenne 77. Si on considère maintenant un signal venant de l'antenne 77, quelle que soit sa puissance, il est déphasé de ϕo par le dispositif à ferrite 74 et de ϕo + π/2 par le dispositif à ferrite 75, de sorte que les signaux sortant respectivement des dispositifs 74 et 75 se retrouvent en phase, dans le récepteur, après passage dans le coupleur 71.
  • Quant à la figure 2b, elle montre un duplexeur où le dispositif non réciproque est un circulateur à trois voies 8. Pour assurer la protection du récepteur radar contre les émissions à forte puissance des émetteurs radar voisins arrivant par l'antenne, on ajoute à ce type de duplexeur une cellule de limitation supplémentaire dans la voie réception, cette cellule étant constituée soit par un tube TR à gaz, dont la durée de vie est assez limitée, soit par des dispositifs à ferrites ou à diodes.
  • Comme on l'a dit précédemment, ces duplexeurs n'ont pas un bon fonctionnement avec des ondes millimétriques, car les cellules de limitations décrites soit n'existent pas pour de telles ondes, c'est le cas des tubes TR, soit n'ont pas une bonnne tenue en puissance, c'est le cas des diodes existantes montées dans des structures classiques.
  • Le but de la présente invention est de résoudre ces difficultés en réalisant un duplexeur passif à semi-conducteur pour ondes électromagnétiques, comportant un premier cornet, connecté à l'émetteur radar et d'axe de propagation Δ1 une grille circulaire plane, réfléchissante ou transparente en fonction de la puissance des signaux incidents et inclinée à 45° par rapport à l'axe Δ1, et un second cornet connecté au récepteur et d'axe de propagation 2 orthogonal à l'axe Δ1.
  • Selon une caractéristique de l'invention, la grille est constituée par un disque diélectrique ou semi-conducteur, métallisé.sur une face, comportant un réseau de fentes résonnantes munies d'au moins une diode, cette grille étant transparente pour les signaux faibles et réfléchissante pour les signaux de forte puissance.
  • Selon une autre caractéristique, le duplexeur selon l'invention comporte plusieurs grilles parallèles.
  • D'autres caractéristiques et avantages de l'invention apparaîtront dans la description, illustrée par les figures suivantes qui, outre les figures 1 et 2 déjà décrites, représentent :
    • la figure 3 un schéma du duplexeur réalisé selon l'invention ;
    • la figure 4 une vue de face d'une grille utilisée dans un tel duplexeur ;
    • les figures 5, 6 et 7 différentes formes de fentes résonnantes utilisées dans un tel duplexeur.
  • La figure 3 montre le schéma d'un duplexeur selon l'invention. Il comprend un premier cornet 9 associé à l'émetteur radar 10, envoyant des ondes électromagnétiques millimétriques sur une grille 11, circulaire plane dont le diamètre est compatible avec un fonctionnement en ondes millimétriques, et inclinée à 45° par rapport à l'axe Δ1, de propagation du cornet 9. Il comprend également un second cornet 12 associé au récepteur radar 13, dont l'axe A2 de propagation est orthogonal à l'axe Δ1, et par une antenne 14 émettrice-réceptrice.
  • La grille 11 plane (figure 4) a un pouvoir réfléchissant ou transparent fonction de la puissance des signaux incidents, autrement dit, elle est totalement réfléchissante pour les signaux de forte puissance émis par l'émetteur 10 et totalement transparente pour les signaux faibles reçus par l'antenne 14. Elle est constituée par un disque soit diélectrique, soit semi-conducteur, mais dans les deux cas métallisé sur une face 15. La métallisation de cette face réalise un réseau de fentes résonnantes 16, comme le montre la figure 4, munies chacune d'au moins une diode 17. Lorsque le disque est en diélectrique, les diodes sont reportées puis connectées aux deux bords opposés de la fente. Lorsque le disque est en matériau semi-conducteur, les diodes 17 sont directement élaborées sur le disque.
  • Le duplexeur ainsi réalisé fonctionne de la manière suivante : l'émetteur radar 10 envoie un signal radar à haute énergie, par l'intermédiaire du cornet 9 qui le dirige sur la grille 11. Recevant ce signal fort, les diodes 17 se comportent comme un court-circuit et l'ensemble fente-diode, est désaccordé rendant ainsi la grille 11 réfléchissante. La grille 11 envoie donc le signal radar vers l'antenne 14 qui le réfléchit à son tour vers l'espace, protégeant totalement le récepteur radar 13.
  • Inversement, lorsque l'antenne 14 reçoit un signal de faible puissance, elle le dirige vers la grille 11. Or, pour les faibles signaux, les diodes 17 sont équivalentes à des capacités et l'ensemble fente-diode est adapté pour résonner aux fréquences d'utilisation. De sorte que le réseau de fentes résonnantes qui constitue la grille 11 est passant pour le signal à bas niveau, qui est bien reçu par le récepteur radar 13 par l'intermédiaire du cornet 12.
  • Enfin, si un émetteur voisin de celui considéré 10, envoie des signaux hyperfréquence de forte puissance, qui sont captés par l'antenne 14, vers la grille 11, celle-ci redevient réfléchissante, protégeant le récepteur 13.
  • La forme des fentes résonnantes 17 peut être rectangulaire (figure 5a), ovale (figure 5b) ou bien encore présenter un étranglement 18 dans son milieu (figure 5c).
  • Etant donné le nombre de fentes 16 du réseau, la puissance du signal hyperfréquence, répartie sur toute la grille au moyen du cornet 9 ou de l'antenne 14, est relativement faible sur chaque fente donc sur chaque diode, permettant d'obtenir une bonne tenue en puissance. Cette tenue peut d'ailleurs être considérablement améliorée en connectant, entre les deux bords de chaque fente, au moins une paire de diode 19, de même polarité montées en shunt tête-bêche dans un même plan comme le montre les figures 6a, 6b et 6c. Dans ce cas, selon la polarité du signal hyperfréquence incident, c'est soit l'une, soit l'autre diode 19 qui conduit, protégeant l'autre diode en limitant la tension appliquée à ses bornes. La figure 6 montre un tel montage suivant la forme des fentes résonnantes 16.
  • Pour améliorer encore le duplexeur selon l'invention, notamment lorsque le signal hyperfréquence arrivant sur la grille est polarisé selon deux directions, on réalise un réseau de fentes résonnantes 20 en forme de croix comme le montre la figure 7, chaque bras 22 et 23 agissant comme une fente simple pour une des deux polarisations. Pour chaque bras, les diodes 21 sont placées deux à deux tête-bêche, mais pas tout à fait dans le même plan, puisqu'elles sont séparées par la largeur de l'autre bras.
  • Enfin, une dernière amélioration, portant sur la largeur de la bande passante du système, peut être apportée en plaçant plusieurs grilles, identiques à celle déjà décrite, parallèlement les unes aux autres de façon à constituer un filtre à réponse de Tchebischeff ou Butterworth par exemple.
  • Pour tout ce qui vient d'être décrit, le diamètre de la grille, le nombre et la forme des fentes résonnantes sont déterminés par les caractéristiques des diodes, la polarisation et la puissance du signal hyperfréquence à traiter.
  • Grâce au duplexeur qui vient d'être décrit, le duplexage et la protection du récepteur radar contre tous les signaux hyperfréquence à forte puissance sont assurés, ces signaux se situant dans la gamme des ondes millimétriques. Ce dispositif présente l'avantage d'être passif et d'avoir une bonne tenue en puissance car celle-ci est entièrement répartie sur un grand nombre de diodes, d'ailleurs facilement réalisables et intégrables dans la grille.

Claims (10)

  1. . ' 1. Duplexeur d'ondes électromagnétiques passif à semi-conducteur, dans un système radar comportant un émetteur (10) illuminant une antenne (14) qui renvoie elle-même à un récepteur (13) les signaux électromagnétiques émis par une cible, caractérisé en ce que l'émetteur et le récepteur fonctionnant dans la gamme des ondes millimétriques, il comporte un premier cornet (9), connecté à l'émetteur (10) et d'axe de propagation (A,), une grille (11) circulaire plane, réfléchissante ou transparente en fonction de la puissance des signaux incidents et inclinée à 45° par rapport à l'axe (Â1) et un second cornet (12), connecté au récepteur (13) et d'axe de propagation (à2) orthogonal à l'axe (41) du premier cornet (9).
  2. 2. Duplexeur selon la revendication 1, caractérisé en ce que la grille (11) est totalement transparente pour les signaux électromagnétiques de faible puissance et totalement réfléchissante pour les signaux de forte puissance.
  3. 3. Duplexeur selon la revendication 2, caractérisé en ce que la grille (11) est constituée par un disque diélectrique métallisé sur une face (15) comportant un réseau de fentes (16) résonnantes munies chacune d'au moins une diode (17).
  4. 4. Duplexeur selon la revendication 2, caractérisé en ce que la grille (11) est constituée par un disque semi-conducteur, métallisé sur une face (15) comportant un réseau de fentes (16) résonnantes munies d'au moins une diode (17) directement élaborée sur le semi-conducteur.
  5. 5. Duplexeur selon l'une des revendications 3 ou 4, caractérisé en ce que les fentes résonnantes (16) sont munies d'au moins une paire de diodes (19) de même polarité, montées en shunt tête-bêche dans un même plan.
  6. 6. Duplexeur selon l'une des revendications 1 à 5, caractérisé en ce que les fentes résonnantes (16) ont une forme rectangulaire adaptée à la polarisation du signal radar à traiter.
  7. 7. Duplexeur selon l'une des revendications 1 à 5, caractérisé en ce que les fentes résonnantes (16) ont une forme ovale.
  8. 8. Duplexeur selon les revendications 1 à 5, caractérisé en ce que les fentes résonnantes (16) présentent un étranglement (18) dans leurs milieux.
  9. 9. Duplexeur selon l'une des revendications 1 à 5, caractérisé en ce que les fentes résonnantes 20 ont une forme de croix, et sont munies de quatre diodes 21 placées tête-bêche deux à deux.
  10. 10. Duplexeur selon l'une des revendications 1 à 9, caractérisé en ce qu'il comporte au moins deux grilles parallèles, séparées par une distance telle que leur ensemble constitue un filtre à réponse de Tchebischeff ou Butterworth.
EP82401518A 1981-08-28 1982-08-10 Duplexeur d'ondes électromagnétiques passif à semi-conducteur Expired EP0074295B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT82401518T ATE16332T1 (de) 1981-08-28 1982-08-10 Passiver mikrowellenduplexer mit halbleitern.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8116467 1981-08-28
FR8116467A FR2512281B1 (fr) 1981-08-28 1981-08-28

Publications (2)

Publication Number Publication Date
EP0074295A1 EP0074295A1 (fr) 1983-03-16
EP0074295B1 true EP0074295B1 (fr) 1985-10-30

Family

ID=9261748

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82401518A Expired EP0074295B1 (fr) 1981-08-28 1982-08-10 Duplexeur d'ondes électromagnétiques passif à semi-conducteur

Country Status (7)

Country Link
US (1) US4574288A (fr)
EP (1) EP0074295B1 (fr)
JP (1) JPS5843601A (fr)
AT (1) ATE16332T1 (fr)
CA (1) CA1202105A (fr)
DE (1) DE3267174D1 (fr)
FR (1) FR2512281B1 (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5245352A (en) * 1982-09-30 1993-09-14 The Boeing Company Threshold sensitive low visibility reflecting surface
US4684954A (en) * 1985-08-19 1987-08-04 Radant Technologies, Inc. Electromagnetic energy shield
US6747607B1 (en) * 1988-02-12 2004-06-08 The Directv Group, Inc. Radiation power limiter
JPH0711002Y2 (ja) * 1988-08-10 1995-03-15 株式会社ユニシアジェックス 液体ポンプの流量制御弁
US5990837A (en) * 1994-09-07 1999-11-23 Asi Rugged gas tube RF cellular antenna
US5594456A (en) * 1994-09-07 1997-01-14 Patriot Scientific Corporation Gas tube RF antenna
US5592186A (en) * 1995-03-02 1997-01-07 Northrop Grumman Corporation Sectional filter assembly
JPH0951293A (ja) * 1995-05-30 1997-02-18 Matsushita Electric Ind Co Ltd 室内無線通信システム
US6812895B2 (en) 2000-04-05 2004-11-02 Markland Technologies, Inc. Reconfigurable electromagnetic plasma waveguide used as a phase shifter and a horn antenna
US6369763B1 (en) 2000-04-05 2002-04-09 Asi Technology Corporation Reconfigurable plasma antenna
US6624719B1 (en) 2000-04-05 2003-09-23 Asi Technology Corporation Reconfigurable electromagnetic waveguide
US6876330B2 (en) * 2002-07-17 2005-04-05 Markland Technologies, Inc. Reconfigurable antennas
US6710746B1 (en) 2002-09-30 2004-03-23 Markland Technologies, Inc. Antenna having reconfigurable length
US11424525B2 (en) 2020-10-19 2022-08-23 Wi-LAN Research Inc. Duplexers and related devices for 5G/6G and subsequent protocols and for mm-wave and terahertz applications

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2761137A (en) * 1946-01-05 1956-08-28 Lester C Van Atta Solid dielectric waveguide with metal plating
GB756381A (en) * 1953-12-09 1956-09-05 Emi Ltd Improvements in or relating to slot aerials
US2982960A (en) * 1958-08-29 1961-05-02 Hughes Aircraft Co Arbitrarily polarized slot radiator
GB1047471A (fr) * 1962-05-03 1900-01-01
US3274601A (en) * 1962-12-12 1966-09-20 Blass Antenna Electronics Corp Antenna system with electronic scanning means
US3245008A (en) * 1963-02-27 1966-04-05 Gen Electric Gas tube reflective surface ionizable by high energy electromagnetic waves
US3484784A (en) * 1963-11-05 1969-12-16 Raytheon Co Antenna array duplexing system
US3317860A (en) * 1964-04-20 1967-05-02 Robert V Garver Diode limiter
FR2133169A5 (fr) * 1971-04-09 1972-11-24 Thomson Csf
US3969729A (en) * 1975-03-17 1976-07-13 International Telephone And Telegraph Corporation Network-fed phased array antenna system with intrinsic RF phase shift capability
FR2458153A1 (fr) * 1979-05-31 1980-12-26 Thomson Csf Limiteur passif d'ondes electromagnetiques et duplexeur constitue a l'aide d'un tel limiteur

Also Published As

Publication number Publication date
FR2512281B1 (fr) 1983-10-28
FR2512281A1 (fr) 1983-03-04
CA1202105A (fr) 1986-03-18
US4574288A (en) 1986-03-04
EP0074295A1 (fr) 1983-03-16
JPS5843601A (ja) 1983-03-14
DE3267174D1 (en) 1985-12-05
ATE16332T1 (de) 1985-11-15
JPH0249561B2 (fr) 1990-10-30

Similar Documents

Publication Publication Date Title
EP0074295B1 (fr) Duplexeur d&#39;ondes électromagnétiques passif à semi-conducteur
EP0045682B1 (fr) Transducteur d&#39;antenne pour antenne d&#39;émission-réception
EP0403910A1 (fr) Elément rayonnant diplexant
CA2267536A1 (fr) Dispositif de radiocommunication et antenne bifrequence realisee selon la technique des microrubans
EP2195877B1 (fr) Coupleur-separateur d&#39;emission-reception multibande a large bande de type omt pour antennes de telecommunications hyperfrequences
CH615534A5 (fr)
EP0023873B1 (fr) Limiteur passif de puissance à semi-conducteurs réalisé sur des lignes à structure plane, et circuit hyperfréquence utilisant un tel limiteur
EP1941580A1 (fr) Antenne d&#39;emission/reception a diversite de rayonnement
CA2759537C (fr) Dispositif d&#39;amplification de puissance a encombrement reduit
EP0295688B1 (fr) Tête hyperfréquence d&#39;émission-réception duplexées à polarisations orthoganales
EP0243888B1 (fr) Dispositif à joint tournant hyperfréquence
FR2458819A1 (fr) Tete hyperfrequence d&#39;emission et de reception simultanees, emetteur-recepteur en ondes millimetriques et radar utilisant une telle tete
EP0377155A1 (fr) Dispositif rayonnant bifréquence
EP0174250B1 (fr) Dispositif de réception de signaux hyperfréquences à double polarisation
EP0073165B1 (fr) Commutateur d&#39;ondes électromagnétiques
EP0020235A1 (fr) Limiteur passif d&#39;ondes électromagnétiques et duplexeur constitué à l&#39;aide d&#39;un tel limiteur
FR2818444A1 (fr) Dispositif de separation de signaux d&#39;emission et de reception
EP3249823B1 (fr) Excitateur radiofréquence compact bi-polarisation et multi-fréquences pour source primaire d&#39;antenne et une source primaire d&#39;antenne equipée d&#39;un tel excitateur radiofréquence
EP0128798B1 (fr) Dispositif sélectif accordable à ondes magnétostatiques de volume
EP0192186B1 (fr) Duplexeur de polarisations
EP0083885A1 (fr) Dispositif sélectif accordable à ondes magnétostatiques de volume
FR3090218A1 (fr) Panneau de conversion de polarisation
EP1431772B1 (fr) Limiteur de puissance pour radar
FR2632780A1 (fr) Radome d&#39;antenne eliminant l&#39;effet d&#39;une perturbation du type couche de glace
FR2619254A1 (fr) Source primaire a deux acces et a deux elements rayonnants

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19830722

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 16332

Country of ref document: AT

Date of ref document: 19851115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3267174

Country of ref document: DE

Date of ref document: 19851205

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19860829

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19860831

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19890425

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19890810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19890831

Ref country code: CH

Effective date: 19890831

Ref country code: BE

Effective date: 19890831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19890831

Year of fee payment: 8

BERE Be: lapsed

Owner name: THOMSON-CSF

Effective date: 19890831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19910301

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920711

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19920713

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920717

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920828

Year of fee payment: 11

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930811

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940503

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 82401518.4

Effective date: 19940310