EP0075709A2 - Spectrometer for detecting secondary electrons produced by an electron probe from a target - Google Patents

Spectrometer for detecting secondary electrons produced by an electron probe from a target Download PDF

Info

Publication number
EP0075709A2
EP0075709A2 EP82107490A EP82107490A EP0075709A2 EP 0075709 A2 EP0075709 A2 EP 0075709A2 EP 82107490 A EP82107490 A EP 82107490A EP 82107490 A EP82107490 A EP 82107490A EP 0075709 A2 EP0075709 A2 EP 0075709A2
Authority
EP
European Patent Office
Prior art keywords
secondary electrons
spectrometer
sample
electron spectrometer
secondary electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP82107490A
Other languages
German (de)
French (fr)
Other versions
EP0075709A3 (en
EP0075709B1 (en
Inventor
Hans-Peter Dipl.-Phys. Feuerbaum
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0075709A2 publication Critical patent/EP0075709A2/en
Publication of EP0075709A3 publication Critical patent/EP0075709A3/en
Application granted granted Critical
Publication of EP0075709B1 publication Critical patent/EP0075709B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/08Electron sources, e.g. for generating photo-electrons, secondary electrons or Auger electrons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/44Energy spectrometers, e.g. alpha-, beta-spectrometers

Definitions

  • the invention relates to an improved secondary electron spectrometer according to the preamble of claim 1.
  • the potential measurement on a sample with an electron probe requires a spectrometer, which is used to measure the secondary electron energy.
  • the spectrometer arrangement previously used is described in the literature (H.P. Feuerbaum, "VLSI Testing Using The Electron Probe", SEM / 1979, SEM Inc.AMF O'HARE IL 60666, 285-296).
  • the secondary electrons released on the sample pass through a suction field and are then braked in a homogeneous opposing field.
  • This known counterfield spectrometer delivers an integral energy distribution.
  • the angular distribution of the secondary electrons is not taken into account.
  • this angular distribution can be changed by electrostatic micro-fields on the sample surface, i.e. If the potential at the measuring point changes, so does the local microfield on the sample surface and thus also the angular distribution of the secondary electrons. Since the secondary electron spectrometer does not see the change in the angular distribution of the secondary electrons, measurement errors of approximately 5-10% occur in the known arrangement.
  • the present invention is based on the object of specifying a secondary electron spectrometer of the type mentioned at the outset which is improved in terms of measuring accuracy.
  • the measuring sensitivity is also improved with a secondary electron spectrometer arrangement according to the invention.
  • the figure shows a secondary electron spectrometer arrangement according to the invention.
  • the secondary electron spectrometer shown in the figure and designed according to the invention takes into account the angular distribution of the secondary electrons.
  • the improvement according to the invention can be carried out on a secondary electron spectrometer of an electron beam measuring device, as described in the above-mentioned publication by HB Feuerbaum.
  • the secondary electrons are extracted from a suction field A1 having a high field strength of. aspirated the sample PR.
  • This suction field A1 is located between the grid G1 and the sample PR.
  • the measuring points on the sample PR are usually in the non-activated state at the potential 0, while, as is also known from the cited literature reference, the grid G1 is at a high potential, e.g. B. 600 V.
  • the secondary electrons After passing through the suction field A1, the secondary electrons pass through a braking opposing field BF between the two gates G1 and G2.
  • the grid G2 is again at approximately the same potential as the measuring points on the sample PR in the non-activated state.
  • the braking opposing field BF between the grids G1 and G2 is such that it only cancels the previous acceleration of the suction field A1. All secondary electrons SE can thus pass through the grid G2 and then have an angular distribution which is identical to the angular distribution of the secondary electrons SE on the sample surface.
  • the energy distribution of the secondary electrons SE can then be error-free with a spherically symmetrical (isotropic) arrangement G3, i. H. can be measured taking into account the angular distribution.
  • the spherically symmetrical grating G3 is approximately at -7 V.
  • the secondary electrons SE in the suction field A2 are then accelerated to the detector via a further grating arrangement G4.
  • the grid arrangement G4 is operated at approximately the same voltage as in the secondary electron spectrometer described in the cited reference.
  • the secondary electron spectrometer is also provided with an AB shield.
  • the primary electron beam PE impinges on the sample PR and generates secondary electrons SE with a certain angular distribution that depends on the potential at the measuring point on the sample surface.
  • Equipotential lines AL within the secondary electron spectrometer arrangement are shown in dotted lines.
  • the invention is particularly suitable for quantitative potential measurement on integrated circuits with an electron probe.
  • Essential to the invention is first in the embodiment of the invention shown in the figure, the projection of the angular distribution of the secondary electrons SE present on the sample surface, which depends on the potential of the measuring point on the sample surface, onto the plane of the grid G2, the secondary electrons SE essentially the same three-dimensional impulse ver have division as at the measuring point on the sample surface at the time of generation of the secondary electrons SE by the primary electron beam PE. It is also essential for the invention that the secondary electrons SE are accelerated with this three-dimensional pulse distribution after passing through the grating G2 so that a change in the angular distribution due to a change in potential at the measuring point on the sample surface does not falsify the measurement of the energy distribution of the secondary electrons SE in the detector .
  • the secondary electrons SE are braked only as a function of their energy, regardless of their direction of speed.
  • the voltage of approximately -7 V: the spherically symmetrical, isotropic grating G3 is selected such that at a voltage Vp of the measuring points (conductor tracks) on the sample PR, these measuring points are in the activated state of approximately 8 V (measuring points in the non-activated state) secondary electrons SE coming from such activated measuring points at potential 0), regardless of their direction of speed, can just reach the suction field A2 and then finally via a further grid arrangement G4 to the detector.
  • Every secondary electron spectrometer which determines the energy distribution of the secondary electrons SE independently of the angular distribution of these secondary electrons SE on the sample surface is included in this invention.
  • the effects of the grids G1, G2, G3 can also be achieved by only two grids shaped in a certain way, the first grille being designed as a suction grille and the second grille as a brake grille.

Abstract

Bei einem Sekundärelektronen-Spektrometer für die Potentialmessung an einer Probe mit einer Elektronensonde soll die Meßgenauigkeit verbessert werden. Erfindungsgemäß wird ein Sekundärelektronen-Spektrometer mit einer Vorrichtung (G3) zur Messung der Energieverteilung der Sekundärelektronen (SE) unabhängig von der Winkelverteilung dieser Sekundärelektronen (SE) am Meßpunkt auf der Probe (PR) versehen. Weist ein Sekundärelektronen-Spektrometer eine Absaugelektrode (G1) und eine Bremselektrode (G2) auf, so ist die Vorrichtung (G3) kugelsymmetrisch ausgestaltet. Die Erfindung eignet sich insbesondere für die quantitative Potentialmessung an integrierten Schaltungen mit einer Elektronensonde.In the case of a secondary electron spectrometer for the potential measurement on a sample with an electron probe, the measurement accuracy is to be improved. According to the invention, a secondary electron spectrometer is provided with a device (G3) for measuring the energy distribution of the secondary electrons (SE) regardless of the angular distribution of these secondary electrons (SE) at the measuring point on the sample (PR). If a secondary electron spectrometer has a suction electrode (G1) and a brake electrode (G2), the device (G3) is designed spherically symmetrical. The invention is particularly suitable for quantitative potential measurement on integrated circuits with an electron probe.

Description

Die Erfindung betrifft ein verbessertes Sekundärelektronen-Spektrometer nach dem Oberbegriff des Anspruchs 1.The invention relates to an improved secondary electron spectrometer according to the preamble of claim 1.

Die Potentialmessung an einer Probe mit einer Elektronensonde erfordert ein Spektrometer, das zur Messung der Sekundärelektronen-Energie verwendet wird.The potential measurement on a sample with an electron probe requires a spectrometer, which is used to measure the secondary electron energy.

Die bisher verwendete Spektrometeranordnung ist in der Literatur beschrieben (H.P. Feuerbaum, "VLSI Testing Using The Electron Probe", SEM/1979, SEM Inc. AMF O'HARE IL 60666, 285 - 296). Die an der Probe ausgelösten Sekundärelektronen durchlaufen dabei ein Absaugfeld und werden anschließend in einem homogenen Gegenfeld gebremst. Dieses bekannte Gegenfeldspektrometer liefert eine integrale Energieverteilung. Dabei wird jedoch die Winkelverteilung der Sekundärelektronen nicht berücksichtigt. Diese Winkelverteilung kann jedoch durch elektrostatische Mikrofelder an der Probenoberfläche verändert werden, d.h. ändert sich das Potential am Meßpunkt, so ändert sich auch das lokale Mikrofeld an der Probenoberfläche und damit auch die Winkelverteilung der Sekundärelektronen. Da das Sekundärelektronen -Spektrometer die Änderung der Winkelverteilung der Sekundärelektronen nicht sieht, treten bei der bekannten Anordnung Meßfehler von ca. 5-10 % auf.The spectrometer arrangement previously used is described in the literature (H.P. Feuerbaum, "VLSI Testing Using The Electron Probe", SEM / 1979, SEM Inc.AMF O'HARE IL 60666, 285-296). The secondary electrons released on the sample pass through a suction field and are then braked in a homogeneous opposing field. This known counterfield spectrometer delivers an integral energy distribution. However, the angular distribution of the secondary electrons is not taken into account. However, this angular distribution can be changed by electrostatic micro-fields on the sample surface, i.e. If the potential at the measuring point changes, so does the local microfield on the sample surface and thus also the angular distribution of the secondary electrons. Since the secondary electron spectrometer does not see the change in the angular distribution of the secondary electrons, measurement errors of approximately 5-10% occur in the known arrangement.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein bezüglich der Meßgenauigkeit verbessertes Sekundärelektronen-Spektrometer der eingangs genannten Art anzugeben.The present invention is based on the object of specifying a secondary electron spectrometer of the type mentioned at the outset which is improved in terms of measuring accuracy.

Diese Aufgabe wird erfindungsgemäß durchein Sekundärelektronen-Spektrometer der eingangs genannten Art gelöst, welches die kennzeichnenden Merkmale des Anspruchs 1 aufweist.This object is achieved according to the invention by a secondary electron spectrometer of the type mentioned at the outset, which has the characterizing features of claim 1.

Außer einer erhöhten Meßgenauigkeit wird mit einer erffndungsgemäßen Sekundärelektronen-Spektrometeranordnung auch die Meßempfindlichkeit verbessert.In addition to increased measuring accuracy, the measuring sensitivity is also improved with a secondary electron spectrometer arrangement according to the invention.

Ausgestaltungen und Vorteile der Erfindung sind in den Unteransprüchen, der Beschreibung und der Zeichnung dargestellt. ,Embodiments and advantages of the invention are shown in the subclaims, the description and the drawing. ,

Die Figur zeigt eine erfindungsgemäße Sekundärelektronen-Spektrometeranordnung.The figure shows a secondary electron spectrometer arrangement according to the invention.

Das in der Figur gezeigte, erfindungsgemäß konzipierte Sekundärelektronen-Spektrometer.berücksichtigt die Winkelverteilung der Sekundärelektronen.Die erfindungsgemäße Verbesserung kann an einem Sekundärelektronen-Spektrometer eines Elektronenstrahl-Meßgeräts vorgenommen werden, wie es in der genannten Veröffentlichung von H.B. Feuerbaum beschrieben ist. Die Sekundärelektronen werden bei einem erfindungsgemäßen Sekundärelektronen-Spektrometer von einem Absaugfeld A1 hoher Feldstärke von. der Probe PR abgesaugt. Dieses Absaugfeld A1 befindet sich zwischen dem Gitter G1 und der Probe PR. Die Meßpunkte auf der Probe PR befinden sich im nicht aktivierten Zustand üblicherweise auf dem Potential 0, während, wie ebenfalls aus der genannten Literaturstelle bekannt ist, das Gitter G1 auf einem hohen Potential liegt, z. B. 600 V. Nach Durchlaufen des Absaugfeldes A1 durchlaufen die Sekundärelektronen zwischen den beiden Gittem G1 und G2 ein bremsendes Gegenfeld BF. Das Gitter G2 liegt, wie ebenfalls aus der genannten Literaturstelle bekannt ist, wiederum in etwa auf demselben Potential wie die Meßpunkte auf der Probe PR im nicht aktivierten Zustand.The secondary electron spectrometer shown in the figure and designed according to the invention takes into account the angular distribution of the secondary electrons. The improvement according to the invention can be carried out on a secondary electron spectrometer of an electron beam measuring device, as described in the above-mentioned publication by HB Feuerbaum. In a secondary electron spectrometer according to the invention, the secondary electrons are extracted from a suction field A1 having a high field strength of. aspirated the sample PR. This suction field A1 is located between the grid G1 and the sample PR. The measuring points on the sample PR are usually in the non-activated state at the potential 0, while, as is also known from the cited literature reference, the grid G1 is at a high potential, e.g. B. 600 V. After passing through the suction field A1, the secondary electrons pass through a braking opposing field BF between the two gates G1 and G2. As is also known from the cited literature reference, the grid G2 is again at approximately the same potential as the measuring points on the sample PR in the non-activated state.

Das bremsende Gegenfeld BF zwischen den Gittern G1 und G2 ist so beschaffen, daß es nur die vorhergehende Beschleunigung des Absaugfeldes A1 in etwa aufhebt. Alle Sekundärelektronen SE können damit das Gitter G2 durchlaufen und haben dann eine Winkelverteilung, die mit der Winkelverteilung der Sekundärelektronen SE an der Probenoberfläche identisch ist. Die Energieverteilung der Sekundärelektronen SE kann dann mit einer kugelsymmetrischen (isotropen) Anordnung G3 fehlerfrei, d. h. mit Berücksichtigung der Winkelverteilung gemessen werden. Das kugelsymmetrische Gitter G3 liegt bei dem in der Figur gezeigten Ausführungsbeispiel der Erfindung etwa auf -7 V. Über eine weitere Gitteranordnung G4 werden die Sekundärelektronen SE im Absaugfeld A2 sodann zum Detektor beschleunigt. Die Gitteranordnung G4 wird in etwa mit derselben Spannung betrieben wie bei dem in der genannten Literaturstelle beschriebenen Sekundärelektronen-Spektrometer. Das Sekundärelektronen-Spektrometer ist noch mit einer Abschirmung AB versehen. Der Primärelektronenstrahl PE trifft auf die Probe PR auf und erzeugt Sekundärelektronen SE mit einer vom Potential am Meßpunkt auf der Probenoberfläche abhängigen bestimmten Winkelverteilung. Äquipotentiallinien AL innerhalb der Sekundärelektronen-Spektrometeranordnung sind punktiert gezeichnet.The braking opposing field BF between the grids G1 and G2 is such that it only cancels the previous acceleration of the suction field A1. All secondary electrons SE can thus pass through the grid G2 and then have an angular distribution which is identical to the angular distribution of the secondary electrons SE on the sample surface. The energy distribution of the secondary electrons SE can then be error-free with a spherically symmetrical (isotropic) arrangement G3, i. H. can be measured taking into account the angular distribution. In the exemplary embodiment of the invention shown in the figure, the spherically symmetrical grating G3 is approximately at -7 V. The secondary electrons SE in the suction field A2 are then accelerated to the detector via a further grating arrangement G4. The grid arrangement G4 is operated at approximately the same voltage as in the secondary electron spectrometer described in the cited reference. The secondary electron spectrometer is also provided with an AB shield. The primary electron beam PE impinges on the sample PR and generates secondary electrons SE with a certain angular distribution that depends on the potential at the measuring point on the sample surface. Equipotential lines AL within the secondary electron spectrometer arrangement are shown in dotted lines.

Die Erfindung -eignet sich besonders für die quantitative Potentialmessung an integrierten Schaltungen mit einer Elektronensonde.The invention is particularly suitable for quantitative potential measurement on integrated circuits with an electron probe.

Wesentlich für die Erfindung ist zuerst bei dem in der Figur dargestellten Ausführungsbeispiel der Erfindung die Projektion der an der Probenoberfläche vorliegenden Winkelverteilung der Sekundärelektronen SE, welche vom Potential des Meßpunktes an der Probenoberfläche abhängt, auf die Ebene des Gitters G2, wobei die Sekundärelektronen SE im wesentlichen dieselbe dreidimensionale Impulsverteilung aufweisen wie am Meßpunkt auf der Probenoberfläche zur Zeit der Erzeugung der Sekundärelektronen SE durch den Primärelektronenstrahl PE. Ebenso wesentlich für die Erfindung ist, daß die Sekundärelektronen SE mit dieser dreidimensionalen Impulsverteilung nach Durchlaufen des Gitters G2 so beschleunigt werden, daß eine Änderung der Winkelverteilung durch eine Potential- änderung am Meßpunkt auf der Probenoberfläche die Messung der Energieverteilung der Sekundärelektronen SE im Detektor nicht verfälscht. Im Gegenfeld GF zwischen dem Gitter G2 und dem kugelsymmetrischen, isotropen Gitter G3 werden die Sekundärelektronen SE unabhängig von ihrer Geschwindigkeitsrichtung nur in Abhängigkeit von ihrer Energie abgebremst. Die Spannung von etwa -7 V:des kugelsymmetrischen, isotropen Gitters G3 ist so gewählt, daß bei einer Spannung Vp der auf der Probe PR befindlichen Meßpunkte (Leiterbahnen) im-aktivierten Zustand dieser Meßpunkte von etwa 8 V (Meßpunkte im nicht aktivierten Zustand auf dem Potential 0) von solchen aktivierten -Meßpunkten kommende Sekundärelektronen SE unabhängig von ihrer Geschwindigkeitsrichtung gerade noch zum Absaugfeld A2 und sodann über eine weitere Gitteranordnung G4 schließlich zum Detektor gelangen können.Essential to the invention is first in the embodiment of the invention shown in the figure, the projection of the angular distribution of the secondary electrons SE present on the sample surface, which depends on the potential of the measuring point on the sample surface, onto the plane of the grid G2, the secondary electrons SE essentially the same three-dimensional impulse ver have division as at the measuring point on the sample surface at the time of generation of the secondary electrons SE by the primary electron beam PE. It is also essential for the invention that the secondary electrons SE are accelerated with this three-dimensional pulse distribution after passing through the grating G2 so that a change in the angular distribution due to a change in potential at the measuring point on the sample surface does not falsify the measurement of the energy distribution of the secondary electrons SE in the detector . In the opposing field GF between the grid G2 and the spherically symmetrical, isotropic grid G3, the secondary electrons SE are braked only as a function of their energy, regardless of their direction of speed. The voltage of approximately -7 V: the spherically symmetrical, isotropic grating G3 is selected such that at a voltage Vp of the measuring points (conductor tracks) on the sample PR, these measuring points are in the activated state of approximately 8 V (measuring points in the non-activated state) secondary electrons SE coming from such activated measuring points at potential 0), regardless of their direction of speed, can just reach the suction field A2 and then finally via a further grid arrangement G4 to the detector.

Die Erfindung ist-selbstverständlich nicht auf die in der Figur gezeigte Ausführungsanordnung beschränkt. Jedes Sekundärelektronen-Spektrometer, welches die Energieverteilung der Sekundärelektronen SE unabhängig von der Winkelverteilung dieser Sekundärelektrönen SE auf der Probenoberfläche bestimmt, ist von dieser Erfindung eingeschlossen. Beispielsweise können die Wirkungen der Gitter G1, G2, G3 auch durch lediglich zwei in bestimmter Weise geformte Gitter erzielt werden, wobei das erste Gitter als Absauggitter und das zweite Gitter als Bremsgitter ausgestaltet sind.The invention is of course not limited to the embodiment shown in the figure. Every secondary electron spectrometer which determines the energy distribution of the secondary electrons SE independently of the angular distribution of these secondary electrons SE on the sample surface is included in this invention. For example, the effects of the grids G1, G2, G3 can also be achieved by only two grids shaped in a certain way, the first grille being designed as a suction grille and the second grille as a brake grille.

Claims (3)

1. Sekundärelektronen-Spektrometer, gekennzeichnet durch eine Vorrichtung (G3) zur Messung der Energieverteilung der Sekundärelektronen (SE) unabhängig von der Winkelverteilung dieser Sekundärelektronen (SE) am Meßpunkt auf der Probe (PR).1. Secondary electron spectrometer, characterized by a device (G3) for measuring the energy distribution of the secondary electrons (SE) regardless of the angular distribution of these secondary electrons (SE) at the measuring point on the sample (PR). 2. Sekundärelektronen-Spektrometer.nach Anspruch 1, gekennzeichnet durch eine Absaugelektrode (G1), eine Bremselektrode (G2) und eine kugelsymmetrischen elektrodenanordnung (G3) zum isotropen Abbremsen der Sekundärelektronen (SE).2. Secondary electron spectrometer. According to claim 1, characterized by a suction electrode (G1), a brake electrode (G2) and a spherically symmetrical electrode arrangement (G3) for isotropically braking the secondary electrons (SE). 3.Sekundärelektronen-Spektrometer nach Anspruch 1 oder 2, gekennzeichnet durch eine weitere Elektroden-anordnung (G4) zur Beschleunigung der Sekundärelektronen (SE) zum Detektor.3.Secondary electron spectrometer according to claim 1 or 2, characterized by a further electrode arrangement (G4) for accelerating the secondary electrons (SE) to the detector.
EP82107490A 1981-09-30 1982-08-17 Spectrometer for detecting secondary electrons produced by an electron probe from a target Expired EP0075709B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3138929 1981-09-30
DE19813138929 DE3138929A1 (en) 1981-09-30 1981-09-30 IMPROVED SECONDARY ELECTRON SPECTROMETER FOR POTENTIAL MEASUREMENT ON A SAMPLE WITH AN ELECTRON PROBE

Publications (3)

Publication Number Publication Date
EP0075709A2 true EP0075709A2 (en) 1983-04-06
EP0075709A3 EP0075709A3 (en) 1983-06-29
EP0075709B1 EP0075709B1 (en) 1987-04-08

Family

ID=6143065

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82107490A Expired EP0075709B1 (en) 1981-09-30 1982-08-17 Spectrometer for detecting secondary electrons produced by an electron probe from a target

Country Status (4)

Country Link
US (1) US4514682A (en)
EP (1) EP0075709B1 (en)
JP (1) JPS5871542A (en)
DE (2) DE3138929A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0268232A2 (en) * 1986-11-14 1988-05-25 Shimadzu Corporation Charged particle analyzer

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59211953A (en) * 1983-05-17 1984-11-30 Univ Osaka Secondary electron spectral device
GB8327737D0 (en) * 1983-10-17 1983-11-16 Texas Instruments Ltd Electron detector
DE3638682A1 (en) * 1986-11-13 1988-05-19 Siemens Ag SPECTROMETER LENS FOR CARPUSULAR BEAM MEASUREMENT TECHNOLOGY
JP2696216B2 (en) * 1988-01-11 1998-01-14 セイコーインスツルメンツ株式会社 Ion beam processing equipment
JPH03101041A (en) * 1989-09-14 1991-04-25 Hitachi Ltd Voltage measuring device by use of electron beam
US6359451B1 (en) 2000-02-11 2002-03-19 Image Graphics Incorporated System for contactless testing of printed circuit boards
AU3354401A (en) 2000-02-14 2001-08-20 Eco 3 Max Inc. Process for removing volatile organic compounds from an air stream and apparatustherefor
WO2016047538A1 (en) * 2014-09-24 2016-03-31 国立研究開発法人物質・材料研究機構 Energy-discrimination electron detector and scanning electron microscope in which same is used
EP3330998B1 (en) * 2016-01-21 2021-10-13 Japan Synchrotron Radiation Research Institute Retarding potential type energy analyzer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3764898A (en) * 1971-07-28 1973-10-09 Ibm Methods of testing the continuity of an electrical conductor by use of an electron beam
US4169244A (en) * 1978-02-03 1979-09-25 Plows Graham S Electron probe testing, analysis and fault diagnosis in electronic circuits

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2946002A (en) * 1958-02-17 1960-07-19 Kingston Electronic Corp Signal-pickup test probe
US3445708A (en) * 1967-02-06 1969-05-20 Gen Electric Electron diffraction unit
US3531716A (en) * 1967-06-16 1970-09-29 Agency Ind Science Techn Method of testing an electronic device by use of an electron beam
US3448377A (en) * 1967-10-12 1969-06-03 Atomic Energy Commission Method utilizing an electron beam for nondestructively measuring the dielectric properties of a sample
US3549999A (en) * 1968-06-05 1970-12-22 Gen Electric Method and apparatus for testing circuits by measuring secondary emission electrons generated by electron beam bombardment of the pulsed circuit
DE1946931A1 (en) * 1969-09-17 1971-03-18 Gen Electric Method for testing circuits and devices for carrying out the method
DE2151167C3 (en) * 1971-10-14 1974-05-09 Siemens Ag, 1000 Berlin Und 8000 Muenchen Electron beam micro analyzer with Auger electron detection
US3796947A (en) * 1973-02-27 1974-03-12 Bell Telephone Labor Inc Electron beam testing of film integrated circuits
DE2814049A1 (en) * 1978-03-31 1979-10-18 Siemens Ag METHOD FOR CONTACTLESS MEASUREMENT OF THE POTENTIAL DEVELOPMENT IN AN ELECTRONIC COMPONENT AND ARRANGEMENT FOR PERFORMING THE METHOD
DE2823642A1 (en) * 1978-05-30 1980-01-03 Siemens Ag METHOD FOR CONTACTLESS POTENTIAL MEASUREMENT ON AN ELECTRONIC COMPONENT
US4179604A (en) * 1978-09-29 1979-12-18 The United States Of America As Represented By The Secretary Of The Navy Electron collector for forming low-loss electron images
JPS55156867A (en) * 1979-05-28 1980-12-06 Hitachi Ltd Potential measuring device
US4417203A (en) * 1981-05-26 1983-11-22 International Business Machines Corporation System for contactless electrical property testing of multi-layer ceramics

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3764898A (en) * 1971-07-28 1973-10-09 Ibm Methods of testing the continuity of an electrical conductor by use of an electron beam
US4169244A (en) * 1978-02-03 1979-09-25 Plows Graham S Electron probe testing, analysis and fault diagnosis in electronic circuits

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Scanning Electron Microscopy", 1971/1, p.285-296 (SEM/nc, AMF O'Hare, USA) *
"TECHNISCHES MESSEN TM", 48 Jahrgang 1981, Heft 1, R. Oldenbourg Verlag GmbH, München. P. FAZEKAS: "Elektronenstrahl pruft elektrische Potentiale in integrierten Schaltungen", Seiten 29-35 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0268232A2 (en) * 1986-11-14 1988-05-25 Shimadzu Corporation Charged particle analyzer
EP0268232A3 (en) * 1986-11-14 1989-10-18 Shimadzu Corporation Charged particle analyzer

Also Published As

Publication number Publication date
JPS6352428B2 (en) 1988-10-19
DE3138929A1 (en) 1983-04-14
EP0075709A3 (en) 1983-06-29
US4514682A (en) 1985-04-30
JPS5871542A (en) 1983-04-28
EP0075709B1 (en) 1987-04-08
DE3276035D1 (en) 1987-05-14

Similar Documents

Publication Publication Date Title
DE4019005C2 (en) Devices for analyzing high mass ions
EP0205184B1 (en) Low aberration spectrometer objective with a high secondary electrons acceptance
EP0104577A1 (en) Method for the contactless testing of an object, especially of microwirings, with a particle radiation probe
EP0189777A1 (en) Particle beam measuring method for the contactless testing of circuit networks
DE3532781A1 (en) ARRANGEMENT FOR DETECTING SECONDARY AND / OR BACKFLOW ELECTRONES IN AN ELECTRON BEAM
DE4134905A1 (en) TANDEM MASS SPECTROMETER BASED ON FLIGHT TIME ANALYSIS
EP1801844B1 (en) Method and apparatus for distance measurement
EP0013876B1 (en) Device for contactless potential measurement
EP0194570A2 (en) Scanning corpuscular microscope with reduced Boersch effect
EP0075709B1 (en) Spectrometer for detecting secondary electrons produced by an electron probe from a target
EP0048857B1 (en) Arrangement for the stroboscopic measuring of a potential with an electron beam measuring apparatus, and method of operating such an apparatus
DE19635645C2 (en) Method for the high-resolution spectral recording of analyte ions in a linear time-of-flight mass spectrometer
EP0105440A2 (en) Spectrometer objective for particle-beam measuring techniques
DE2011193C3 (en) Device for scanning electron microscopy and electron beam microanalysis
EP0613171A1 (en) Mass spectrometer for mass discrimination according to the time of flight
EP0217464B1 (en) Method for determining photoattenuation in a domain of a test object, and arrangement for carrying out the method
DE102014212563A1 (en) Scanning particle microscope and method for determining a change in position of a particle beam of the scanning particle microscope
EP0472938B1 (en) Device for testing and repairing an integrated circuit
EP0172477A2 (en) Method and apparatus for recording particles or quantums using a detector
DE2706629C3 (en) Device for monitoring the position and spatial distribution of a high-energy electron beam
DE2414221C3 (en) Ion-optical device for examining the surface of a sample by ion bombardment and analyzing the ions emanating from the bombarded surface area
EP0232790A1 (en) Process and arrangement for measuring time-dependent signals with a corpuscular beam probe
EP0185789B1 (en) Charged-particles analyser
EP0087152A2 (en) Secondary electron spectrometer and method of using the same
EP0262365A2 (en) Spectrometer-detector arrangement for quantitative potential measurements

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): DE FR GB NL

17P Request for examination filed

Effective date: 19831128

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

REF Corresponds to:

Ref document number: 3276035

Country of ref document: DE

Date of ref document: 19870514

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19870831

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19880817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19890301

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19890428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19890503

GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST