EP0168582A2 - Process and apparatus for conditioning synthetic fibre material - Google Patents

Process and apparatus for conditioning synthetic fibre material Download PDF

Info

Publication number
EP0168582A2
EP0168582A2 EP85105890A EP85105890A EP0168582A2 EP 0168582 A2 EP0168582 A2 EP 0168582A2 EP 85105890 A EP85105890 A EP 85105890A EP 85105890 A EP85105890 A EP 85105890A EP 0168582 A2 EP0168582 A2 EP 0168582A2
Authority
EP
European Patent Office
Prior art keywords
steam
zone
conditioning
conditioning device
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP85105890A
Other languages
German (de)
French (fr)
Other versions
EP0168582B1 (en
EP0168582A3 (en
Inventor
Ulrich Dr. Reinehr
Rolf-Burkhard Dipl.-Ing. Hirsch
Wolfram Dr. Wagner
Erich Dipl.-Ing. Hilgeroth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Publication of EP0168582A2 publication Critical patent/EP0168582A2/en
Publication of EP0168582A3 publication Critical patent/EP0168582A3/en
Application granted granted Critical
Publication of EP0168582B1 publication Critical patent/EP0168582B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06CFINISHING, DRESSING, TENTERING OR STRETCHING TEXTILE FABRICS
    • D06C7/00Heating or cooling textile fabrics

Definitions

  • the invention relates to a method and an apparatus for conditioning cables or nonwovens made of synthetic fibers with the aid of steam, in particular threads and fibers made of acrylonitrile polymers with at least 40% by weight of acrylonitrile units, optionally after previous crimping.
  • Devices for steaming continuously conveyed synthetic fiber material are preferably screen drum and screen belt dampers (for example in DE-OS 2 060 941 or GB-PS 1 208 792).
  • Steam pipes, tunnels and U-shaped steaming boots cf. eg international textile practice Dec. 1981, page 1410 or man-made fibers / textile industry Nov. 1981, page 821 or Feb. 1982, page 96.
  • Combinations of crimping devices with a subsequent fixing chamber (for example US Pat. No. 2,865,080) are also described in a wide variety of shapes and designs, in particular for texturing and fixing processes.
  • These steaming units are used for Drying and shrinking of fiber cables, as well as to stabilize crimp and spin dyeing of the fibers.
  • EP-OS 98 477 describes for the first time a continuously operating dry spinning process for acrylonitrile threads and fibers, in which the spinning cable of 100,000 dtex and more is prepared shortly before or immediately after leaving the spinning shafts, then stretched, crimped and then fixed without the cable comes into contact with an extraction liquid for the spinning solvent, such as water. The majority of the spinning solvent is already driven out in the spinning shafts in this process.
  • the solvent content of the threads is usually less than 10% by weight, based on the fiber solids content, but more than 1% by weight when leaving the spinning shafts.
  • the known conditioning devices are not suitable for this method. Either the amount of steam required was too high or raw clay damage or matting of the fiber cables occurred.
  • the object of the present invention was to provide a suitable conditioning device for the continuous dry spinning process, it being possible to integrate an upstream crimping process.
  • the conditioning device has to perform the tasks of stabilizing the crimp, reducing the shrinkage built up by the stretching process and removing the remaining portions of spinning solvent.
  • the method and device should be suitable for the conditioning of cables and nonwovens.
  • the object is achieved in that in a vapor-tight conditioning device the synthetic fiber material is exposed to at least two stages of superheated steam from 105 to 150 ° C. on a circulating wire belt and has a dwell time of over 3 minutes in the conditioning device.
  • the invention therefore relates to a method for conditioning synthetic fiber material, in particular synthetic fiber cables or nonwovens, characterized in that the synthetic fiber material is exposed in a vapor-tight conditioning device on a circulating screen belt to at least two stages of superheated steam from 105 to 150 ° C. and a dwell time in the conditioning device of over 3 minutes.
  • vapor-tight is understood to mean that the uncontrolled vapor losses at the inputs and outputs of the synthetic fiber material together are less than 1%. If a crimping device is integrated in the conditioning device in an absolutely vapor-tight manner, the entry into the crimp is considered to be the input for the synthetic fiber material. Stuffer box and blow curls are preferred.
  • the superheated steam is expediently conducted in countercurrent to the fiber material and the fibers in the individual treatment stages with the aid of fans material fed multiple times.
  • the superheated steam is preferably generated in the conditioning device into which saturated steam enters, which is overheated with the aid of heat exchangers.
  • the temperature of the superheated steam is preferably 120 to 140 ° C, the residence time is preferably 5 to 15 minutes.
  • the process works efficiently with a covering density of up to 15 kg / m 2 , preferably up to 10 kg / m 2 .
  • the document density can easily be calculated from the documentable surface of the sieve belt, the dwell time and the throughput (kg / h).
  • the process is particularly suitable for the conditioning of spun cables made of acrylic fibers with at least 40% by weight of acrylonitrile units, preferably at least 85% by weight of acrylonitrile units, which are obtained by a continuous dry spinning process in the course of which they are not mixed with an extraction liquid for the spinning solvent Have made contact.
  • Another object of the invention is a conditioning device in which the method according to the invention can be carried out.
  • the conditioning device is shown in FIGS. 1 to 3.
  • the device according to the invention consists of a sieve belt damper, which is closed in a vapor-tight manner and is divided into several zones A to D, the individual zones being separated from one another, zones B and C may occur several times, and zone A an inlet device and a suction device for solvent-laden steam , Zone B has a fan, a heat exchanger and a suction for solution-laden steam, Zone C has a fan, a heat exchanger and a steam supply and Zone D has a suction for solvent-laden steam.
  • zone E there is a zone E in which the synthetic fiber material is cooled before it is passed on for further use, storage, packaging or cutting.
  • a stuffer box crimp (1) is integrated in the conditioning device (2).
  • the crimped fiber cable (5) is paneled onto a conveyor belt (6), for example a perforated or sieve belt, via the closed channel (3) and a traversing device (4).
  • a conveyor belt (6) for example a perforated or sieve belt
  • live steam is introduced at (10) into the steaming zone (C) via a heat exchanger (11) so that the steam temperature is at least 105 ° C.
  • the process steam flows through the folded fiber cable and is then sucked off by means of fans (8), reheated via the heat exchanger (10) and sent again through the fiber cable.
  • a partial flow of the steam from the steam zone (C) reaches the steam zone (B) in the opposite direction to the direction of the fiber cable.
  • the steam is again passed through fans (8) via heat exchangers (12), led through the fiber cable and a partial stream loaded with residual spinning solvent is removed via the suction (13).
  • Belt seals in the form of sliding sealing flaps (7) at the level of the folded fiber cable and sealing strips (14) of the surrounding sieve belt (6) largely prevent steam from escaping.
  • the amounts of steam that nevertheless escape through the sealing flaps (7) and sealing strips (14) are in the inlet zone (A) and the outlet zone (D) via suction devices (13), which are provided with adjustable throttle valves, not shown in the figure, led away.
  • the folded fiber cable is then sent through a cooling zone (E). Air from room temperature is blown through the cooling zone by means of a fan (15).
  • the fiber cable is then fed to a cutting device and further processed into staple fibers or paneled in cardboard boxes as an endless belt.
  • FIGS. 2 and 3 show, on the basis of cross sections through the steaming zones B and C, the path of the process steam through the conditioning device.
  • the live steam which enters the steaming zone (C) via the entry point (10), flows through the heat exchanger (11) and experiences overheating.
  • the steam then flows through the paneled fiber cable (5) and is fed back to the heat exchanger for renewed circulation via an intake duct (16) by means of fans (8) via a pressure duct (17).
  • a partial stream of the steam passes from the steaming zone (C) into the circulated amount of steam in the steaming zone (B), where the steam is circulated as in the steaming zone (C), reheated via the heat exchanger (12) and removed as a partial stream via the suction (13).
  • a crimping process can be combined with the conditioning.
  • a stuffer box (1) is connected directly to the conditioning device via a closed channel (3) according to FIG. 1.
  • a blow nozzle crimp which is analogously coupled to the conditioning device, especially at high production speeds, has proven to be very cheap.
  • the 30% by weight spinning solution of an acrylonitrile copolymer composed of 93.6% acrylonitrile, 5.7% methyl acrylate and 0.7% sodium methallylsulfonate with a K value of 81 (Fikentscher, Cellulosechemie 13, (1932), page 58) in dimethylformamide was obtained from Dry spun 1264-hole nozzles with a 0.2 mm nozzle hole diameter at a take-off speed of 60 m / min on a 20-shaft spinning system.
  • the dwell time of the spun threads in the spinning shafts was 4 seconds.
  • the shaft temperature was 210 ° C and the air temperature was 380 ° C.
  • the throughput of air was 40 m 3 / h for each shaft, which was blown in at the head of the shaft in the longitudinal directions to the threads.
  • the preparation was dosed via gear pumps.
  • the warm cable was then sent over a pair of rollers heated inductively to 150 ° C, with a contact time of approx. 2 seconds being achieved by looping several times over a feed roller.
  • the cable took a tape temperature of 112 ° C, measured the radiation thermometer KT 15 (manufacturer: Heimann GmbH, Wiesbaden, Germany).
  • the cable was stretched by 450%, with a stretch septet with coolable rollers serving as the second clamping point.
  • the strip temperature after the stretching process was 61 ° C.
  • the cable was mechanically crimped in a stuffer box (1), which was connected to the conditioning device (2) by a closed channel (3), and paneled onto a continuous endless sieve belt (6) via a traversing device (4).
  • the crimping speed was 270 m / min.
  • the folded, crimped fiber cable After passing through the entrance zone (A), the folded, crimped fiber cable entered the damping zones (B) and (C), each 1 m long and 0.4 m wide. Both steam zones were separated from each other by baffles and equipped with circulation fans (8). At the same time, live steam, the quantity of which was regulated by a valve, came into the steaming zone (C) in counterflow to the fiber cable direction via the steam entry point (10). The amount of steam fed in was 48 kg / h with a calculated fiber cable throughput of 96.1 kg / h, so that a specific steam consumption of 0.5 kg steam per kg fiber cable was established.
  • the acrylic fibers produced in this way in a continuous process are shrink-free and have a single fiber final titer of 3.3 dtex.
  • the fiber strength is 2.9 cN / dtex and the elongation is 39%.
  • the residual solvent content in the staple fiber is 0.62% by weight.
  • Yarns made from the fibers on a high-performance card at 120 m / min with a yarn count of 278 dtex have a yarn strength of 15.3 RKM, an elongation of 18.9% and a yarn boiling shrinkage of 2.4%.
  • the following table shows 267,000 dtex for spinning cables with the same total titer. which had different residual solvent contents of dimethylformamide and passed through the conditioning device under different steaming conditions, tape presentation and running mode in the secondary spinning mill were assessed.
  • the different residual solvent contents in the fiber cable were achieved by varying the spinning air temperature and spinning air quantities under otherwise the same test conditions as in Example 1.
  • the damper temperature, the amount of steam passed through per kg of fiber cable and the dwell time in the conditioning device were varied.
  • part of the fiber cable according to Example 1 is fed to a blow nozzle instead of a stuffer box, which is also connected to the conditioning device by a closed channel (2).
  • the blow curl which is operated with superheated steam at 140.degree. C., is constructed in front of the conditioning device in such a way that the blowing nozzle outlet opening and the subsequent channel lead into the conditioning device without kinking. All other conditions correspond to the details of Example 1.
  • the acrylic fibers produced in this way in a continuous process have a single fiber final titer of 3.3 dtex.
  • the fiber strength is 2.8 cN / dtex and the elongation is 33%.
  • the residual solvent content in the staple fiber is 0.58% by weight.
  • the fibers were again shrink-free.
  • Yarns made from the fibers on a high-performance card at 140 m / min with a yarn count of 283 dtex have a yarn strength of 16.1 RKm, an elongation of 18.4% and a yarn boiling shrinkage of 2.4%.
  • a part of the fiber cable from Example 1 was crimped in a stuffer box with a rotor blade into staple fibers for 60 mm staple length and applied to the conditioning device via a feed roller.
  • the other conditions correspond again to the information from example 1.
  • the fiber fleece is blown via a funnel-shaped suction device using a fan and fed to a packing press.
  • Single fiber final titer 3.3 dtex; Fiber strength 2.5 cN / dtex; Elongation 34%.
  • the residual solvent content in the staple fiber is 0.43% by weight. Again, no fiber shrinkage was found.
  • Yarn values yarn tenacity 15.8 Rkm with a yarn count of 290 dtex; Elongation 18.1%; Yarn shrinkage 2.7%; Carding speed 120 m / min.

Abstract

Das Konditionieren von Synthesefasermaterial zu einwandfreien Produkten mit niedrigen Restlösungsmittelgehalten unter Verbrauch vergleichsweise geringer Dampfmengen gelingt in einer dampfdichten Konditioniervorrichtung aus mehreren Zonen mit einem umlaufenden Siebband unter Verwendung von überhitztem Dampf von 105 bis 150°C und einer Verweilzeit des Materials in der Vorrichtung von über 3 Minuten.The conditioning of synthetic fiber material to perfect products with low residual solvent contents using comparatively small amounts of steam is possible in a steam-tight conditioning device from several zones with a rotating sieve belt using superheated steam from 105 to 150 ° C and a residence time of the material in the device of over 3 minutes .

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Konditionieren von Kabeln oder Vliesen aus synthetischen Fasern mit Hilfe von Dampf, insbesondere Fäden und Fasern aus Acrylnitrilpolymerisaten mit mindestens 40 Gew.-% Acrylnitrileinheiten, gegebenenfalls nach vorhergehendem Kräuseln.The invention relates to a method and an apparatus for conditioning cables or nonwovens made of synthetic fibers with the aid of steam, in particular threads and fibers made of acrylonitrile polymers with at least 40% by weight of acrylonitrile units, optionally after previous crimping.

Einrichtungen zum Dämpfen von kontinuierlich gefördertem synthetischem Fasermaterial sind vorzugsweise Siebtrommel- und Siebbanddämpfer (z.B. in DE-OS 2 060 941 oder GB-PS 1 208 792). Ferner sind Dampfröhren, -tunnel und U-förmige Dämpfstiefel, vgl. z.B. Textilpraxis international Dez. 1981, Seite 1410 oder Chemiefasern/ Textilindustrie Nov. 1981, Seite 821 bzw. Febr. 1982, Seite 96 bekanntgeworden. Ebenso sind Kombinationen von Kräuselvorrichtungen mit anschließender Fixierkammer (z.B. US-PS 2 865 080) in vielfältigsten Formen und Ausführungen, namentlich für Texturier- und Fixierprozesse, beschrieben. Diese Dämpfaggregate dienen zum Trocknen und Schrumpfen von Faserkabeln, sowie zur Stabilisierung von Kräuselung und Spinnfärbung der Fasern.Devices for steaming continuously conveyed synthetic fiber material are preferably screen drum and screen belt dampers (for example in DE-OS 2 060 941 or GB-PS 1 208 792). Steam pipes, tunnels and U-shaped steaming boots, cf. eg international textile practice Dec. 1981, page 1410 or man-made fibers / textile industry Nov. 1981, page 821 or Feb. 1982, page 96. Combinations of crimping devices with a subsequent fixing chamber (for example US Pat. No. 2,865,080) are also described in a wide variety of shapes and designs, in particular for texturing and fixing processes. These steaming units are used for Drying and shrinking of fiber cables, as well as to stabilize crimp and spin dyeing of the fibers.

In der EP-OS 98 477 wird erstmals ein kontinuierlich arbeitendes Trockenspinnverfahren für Acrylnitrilfäden und -fasern beschrieben, bei dem das Spinnkabel von 100.000 dtex und mehr kurz vor oder direkt nach Verlassen der Spinnschächte präpariert, dann verstreckt, gekräuselt und anschließend fixiert wird, ohne daß das Kabel mit einer Extraktionsflüssigkeit für das Spinnlösungsmittel, wie beispielsweise Wasser, in Kontakt tritt. Der größte Teil des Spinnlösungsmittels wird bei diesem Verfahren bereits in den Spinnschächten ausgetrieben. Der Lösungsmittelgehalt der Fäden liegt bei Verlassen der Spinnschächte in der Regel unter 10 Gew.-%, bezogen auf den Faserfeststoffgehalt, jedoch über 1 Gew.-%.EP-OS 98 477 describes for the first time a continuously operating dry spinning process for acrylonitrile threads and fibers, in which the spinning cable of 100,000 dtex and more is prepared shortly before or immediately after leaving the spinning shafts, then stretched, crimped and then fixed without the cable comes into contact with an extraction liquid for the spinning solvent, such as water. The majority of the spinning solvent is already driven out in the spinning shafts in this process. The solvent content of the threads is usually less than 10% by weight, based on the fiber solids content, but more than 1% by weight when leaving the spinning shafts.

Für dieses Verfahren sind die bekannten Konditioniervorrichtungen nicht geeignet. Entweder waren die benötigten Dampfmengen zu hoch oder es traten Rohtonschädigungen oder Verfilzungen der Faserkabel auf.The known conditioning devices are not suitable for this method. Either the amount of steam required was too high or raw clay damage or matting of the fiber cables occurred.

Aufgabe der vorliegenden Erfindung war es, für das kontinuierliche Trockenspinnverfahren eine geeignete Konditioniervorrichtung zur Verfügung zu stellen, wobei ein vorgeschalteter Kräuselprozeß integriert werden kann. Die Konditioniervorrichtung hat dabei die Aufgaben zu erfüllen, die Kräuselung zu stabilisieren, den durch den Streckvorgang aufgebauten Schrumpf abzubauen und die restlichen Anteile an Spinnlösungsmittel zu entfernen. Dabei sollten Verfahren und Vorrichtung für die Konditionierung von Kabeln und Vliesen geeignet sein.The object of the present invention was to provide a suitable conditioning device for the continuous dry spinning process, it being possible to integrate an upstream crimping process. The conditioning device has to perform the tasks of stabilizing the crimp, reducing the shrinkage built up by the stretching process and removing the remaining portions of spinning solvent. The method and device should be suitable for the conditioning of cables and nonwovens.

Die Aufgabe wird dadurch gelöst, daß in einer dampfdichten Konditioniervorrichtung das Synthesefasermaterial auf einem umlaufenden Siebband mindestens zweistufig überhitztem Dampf von 105 bis 150°C ausgesetzt wird und in der Konditioniervorrichtung eine Verweilzeit von über 3 Minuten hat.The object is achieved in that in a vapor-tight conditioning device the synthetic fiber material is exposed to at least two stages of superheated steam from 105 to 150 ° C. on a circulating wire belt and has a dwell time of over 3 minutes in the conditioning device.

Gegenstand der Erfindung ist daher ein Verfahren zum Konditionieren von Synthesefasermaterial, insbesondere Synthesefaserkabeln oder -vliesen, dadurch gekennzeichnet, daß das Synthesefasermaterial in einer dampfdichten Konditioniervorrichtung auf einem umlaufenden Siebband mindestens zweistufig überhitztem Dampf von 105 bis 150°C ausgesetzt wird und in der Konditioniervorrichtung eine Verweilzeit von über 3 Minuten hat.The invention therefore relates to a method for conditioning synthetic fiber material, in particular synthetic fiber cables or nonwovens, characterized in that the synthetic fiber material is exposed in a vapor-tight conditioning device on a circulating screen belt to at least two stages of superheated steam from 105 to 150 ° C. and a dwell time in the conditioning device of over 3 minutes.

Unter dem Begriff "dampfdicht" wird verstanden, daß an den Ein- und Ausgängen des Synthesefasermaterials die unkontollierten Dampfverluste zusammen weniger als 1 % betragen. Ist eine Kräuselvorrichtung in die Konditioniervorrichtung absolut dampfdicht integriert, so gilt als Eingang für das Synthesefasermaterial der Eingang in die Kräusel. Dabei sind Stauchkammer- und Blaskräusel bevorzugt.The term “vapor-tight” is understood to mean that the uncontrolled vapor losses at the inputs and outputs of the synthetic fiber material together are less than 1%. If a crimping device is integrated in the conditioning device in an absolutely vapor-tight manner, the entry into the crimp is considered to be the input for the synthetic fiber material. Stuffer box and blow curls are preferred.

Der überhitzte Dampf wird zweckmäßigerweise im Gegenstrom zum Fasermaterial geführt und in den einzelnen Behandlungsstufen mit Hilfe von Ventilatoren dem Fasermaterial mehrfach zugeführt. Die Erzeugung des überhitzten Dampfes erfolgt vorzugsweise in der Konditioniervorrichtung, in die Sattdampf eintritt, der mit Hilfe von Wärmetauschern überhitzt wird.The superheated steam is expediently conducted in countercurrent to the fiber material and the fibers in the individual treatment stages with the aid of fans material fed multiple times. The superheated steam is preferably generated in the conditioning device into which saturated steam enters, which is overheated with the aid of heat exchangers.

Die Temperatur des überhitzten Dampfes beträgt vorzugsweise 120 bis 140°C, die Verweilzeit vorzugsweise 5 bis 15 Minuten. Bei einer Belegdichte des Siebbandes bis zu 15 kg/m2, vorzugsweise bis zu 10 kg/m2, arbeitet das Verfahren effizient. Die Belegdichte läßt sich leicht aus der belegbaren Oberfläche des Siebbandes, der Verweilzeit und dem Durchsatz (kg/h) berechnen.The temperature of the superheated steam is preferably 120 to 140 ° C, the residence time is preferably 5 to 15 minutes. The process works efficiently with a covering density of up to 15 kg / m 2 , preferably up to 10 kg / m 2 . The document density can easily be calculated from the documentable surface of the sieve belt, the dwell time and the throughput (kg / h).

Das Verfahren ist besonders für das Konditionieren von Spinnkabeln aus Acrylfasern mit mindestens 40 Gew.-% Acrylnitrileinheiten, vorzugsweise mindestens 85 Gew.-% Acrylnitrileinheiten geeignet, die nach einem kontinuierlichen Trockenspinnverfahren erhalten werden, in dessen Verlauf sie nicht mit einer Extraktionsflüssigkeit für das Spinnlösungsmittel in Kontakt getreten sind.The process is particularly suitable for the conditioning of spun cables made of acrylic fibers with at least 40% by weight of acrylonitrile units, preferably at least 85% by weight of acrylonitrile units, which are obtained by a continuous dry spinning process in the course of which they are not mixed with an extraction liquid for the spinning solvent Have made contact.

Bei deren Konditionierung wird nach dem erfindungsgemäßen Verfahren in der erfindungsgemäßen Vorrichtung eine stabile Kräuselung, ein Restlösungsmittelgehalt unter 1 Gew.-% und eine kochschrumpffreie Acrylfaser bei einem Dampfverbrauch erzeugt, der geringer als 1 kg pro kg durchgesetztes Fasermaterial ist.When they are conditioned, a stable crimp, a residual solvent content of less than 1% by weight and a cook-shrink-free acrylic fiber with steam consumption which is less than 1 kg per kg of fiber material produced are produced in the device according to the invention.

Ein weiterer Gegenstand der Erfindung ist eine Konditioniervorrichtung, in der das erfindungsgemäße Verfahren durchgeführt werden kann. Die Konditioniervorrichtung wird in den Fig. 1 bis 3 gezeigt.Another object of the invention is a conditioning device in which the method according to the invention can be carried out. The conditioning device is shown in FIGS. 1 to 3.

  • Fig. 1 zeigt einen Längsschnitt durch die VorrichtungFig. 1 shows a longitudinal section through the device
  • Fig. 2 zeigt einen Querschnitt durch die Vorrichtung in Höhe der Dämpfzone BFig. 2 shows a cross section through the device at the level of the damping zone B.
  • Fig. 3 zeigt einen Querschnitt durch die Vorrichtung in Höhe der Dämpfzone C.Fig. 3 shows a cross section through the device at the level of the damping zone C.

Die erfindungsgemäße Vorrichtung besteht aus einem Siebbanddämpfer, der dampfdicht verschlossen und in mehrere Zonen A bis D aufgeteilt ist, wobei die einzelnen Zonen voneinander abgetrennt sind, die Zonen B und C mehrfach vorkommen können, und die Zone A eine Einlaufvorrichtung und eine Absaugung für lösungsmittelbeladenen Dampf, die Zone B einen Ventilator, einen Wärmetauscher und eine Absaugung für lösungsbeladenen Dampf, die Zone C einen Ventilator, einen Wärmetauscher und eine Dampfzufuhr und die Zone D eine Absaugung für lösungsmittelbeladenen Dampf aufweisen.The device according to the invention consists of a sieve belt damper, which is closed in a vapor-tight manner and is divided into several zones A to D, the individual zones being separated from one another, zones B and C may occur several times, and zone A an inlet device and a suction device for solvent-laden steam , Zone B has a fan, a heat exchanger and a suction for solution-laden steam, Zone C has a fan, a heat exchanger and a steam supply and Zone D has a suction for solvent-laden steam.

Gegebenenfalls schließt sich eine Zone E an, in der das Synthesefasermaterial gekühlt wird, bevor es der weiteren Verwendung, der Ablage, der Verpackung oder der Schneide zugeführt wird.Optionally, there is a zone E in which the synthetic fiber material is cooled before it is passed on for further use, storage, packaging or cutting.

In Fig. 1 ist eine Stauchkammerkräusel (1) in die Konditioniervorrichtung (2) integriert. über den geschlossenen Kanal (3) und eine Changiervorrichtung (4) wird das gekräuselte Faserkabel (5) auf ein Förderband (6), beispielsweise ein Loch- oder Siebband, aufgetäfelt. Nach Durchlaufen der Eingangszone (A), in der keine zwangsweise Umwälzung des Dampfes erfolgt, gelangt das gefaltete Faserkabel durch die Abdichtklappe (7) in die Dampfzonen (B) und (C). Beide Zonen sind durch Leitbleche voneinander abgetrennt und mit Umwälzventilatoren (8) ausgerüstet. Gleichzeitig wird Frischdampf bei (10) in die Dämpfzone (C) über einen Wärmetauscher (11) eingeleitet, so daß die Dampftemperatur wenigstens 105°C beträgt. Der Prozeßdampf durchströmt das gefaltete Faserkabel und wird anschließend mittels Ventilatoren (8) abgesaugt, über den Wärmetauscher (10) wieder aufgewärmt und erneut durch das Faserkabel geschickt. Ein Teilstrom des Dampfes der Dampfzone (C) gelangt entgegengesetzt zur Laufrichtung des Faserkabels in die Dampfzone (B). Hier wird der Dampf erneut durch Ventilatoren (8) über Wärmetauscher (12) geschickt, durch das Faserkabel geführt und ein mit restlichem Spinnlösungsmittel beladener Teilstrom über die Absaugung (13) ausgekreist. Bandabdichtungen in Form von schleifenden Abdichtklappen (7) in Höhe des gefalteten Faserkabels und Abdichtstreifen (14) des umlaufenden Siebbandes (6) verhindern weitgehend einen Dampfaustritt. Die Dampfmengen, die dennoch durch die Abdichtklappen (7) und Abdichtstreifen (14) entweichen, werden in der Eingangszone (A) und der Austrittszone (D) über Absaugungen (13), die mit einstellbaren, in der Figur nicht gezeigten Drosselklappen versehen sind, weggeführt. Das gefaltete Faserkabel wird anschließend über eine Kühlzone (E) geschickt. Durch die Kühlzone wird Luft von Raumtemperatur mittels eines Ventilators (15) geblasen. Anschließend wird das Faserkabel einer Schneidvorrichtung zugeführt und zu Stapelfasern weiterverarbeitet bzw. als Endlosband in Kartons eingetäfelt.In Fig. 1 a stuffer box crimp (1) is integrated in the conditioning device (2). The crimped fiber cable (5) is paneled onto a conveyor belt (6), for example a perforated or sieve belt, via the closed channel (3) and a traversing device (4). After passing through the entrance zone (A), in which there is no forced circulation of the steam, this happens folded fiber cables through the sealing flap (7) into the steam zones (B) and (C). Both zones are separated from each other by baffles and equipped with circulation fans (8). At the same time, live steam is introduced at (10) into the steaming zone (C) via a heat exchanger (11) so that the steam temperature is at least 105 ° C. The process steam flows through the folded fiber cable and is then sucked off by means of fans (8), reheated via the heat exchanger (10) and sent again through the fiber cable. A partial flow of the steam from the steam zone (C) reaches the steam zone (B) in the opposite direction to the direction of the fiber cable. Here the steam is again passed through fans (8) via heat exchangers (12), led through the fiber cable and a partial stream loaded with residual spinning solvent is removed via the suction (13). Belt seals in the form of sliding sealing flaps (7) at the level of the folded fiber cable and sealing strips (14) of the surrounding sieve belt (6) largely prevent steam from escaping. The amounts of steam that nevertheless escape through the sealing flaps (7) and sealing strips (14) are in the inlet zone (A) and the outlet zone (D) via suction devices (13), which are provided with adjustable throttle valves, not shown in the figure, led away. The folded fiber cable is then sent through a cooling zone (E). Air from room temperature is blown through the cooling zone by means of a fan (15). The fiber cable is then fed to a cutting device and further processed into staple fibers or paneled in cardboard boxes as an endless belt.

Fig. 2 und Fig. 3 zeigen an Hand von Querschnitten durch die Dämpfzonen B und C den Weg des Prozeßdampfes durch die Konditioniervorrichtung. Der Frischdampf, der über die Eintrittsstelle (10) in Dämpfzone (C) gelangt, durchströmt den Wärmetauscher (11) und erfährt eine Uberhitzung. Anschließend durchströmt der Dampf das aufgetäfelte Faserkabel (5), wird über einen Ansaugkanal (16) mittels Ventilatoren (8) über einen Druckkanal (17) wieder dem Wärmetauscher zur erneuten Umwälzung zugeführt. Ein Teilstrom des Dampfes gelangt aus Dämpfzone (C) in die umgewälzte Dampfmenge der Dämpfzone (B), wo der Dampf wie in Dämpfzone (C) umgewälzt, über den Wärmetauscher (12) nacherhitzt und als Teilstrom über die Absaugung (13) ausgekreist wird.2 and 3 show, on the basis of cross sections through the steaming zones B and C, the path of the process steam through the conditioning device. The live steam, which enters the steaming zone (C) via the entry point (10), flows through the heat exchanger (11) and experiences overheating. The steam then flows through the paneled fiber cable (5) and is fed back to the heat exchanger for renewed circulation via an intake duct (16) by means of fans (8) via a pressure duct (17). A partial stream of the steam passes from the steaming zone (C) into the circulated amount of steam in the steaming zone (B), where the steam is circulated as in the steaming zone (C), reheated via the heat exchanger (12) and removed as a partial stream via the suction (13).

In weiterer Ausgestaltung der Erfindung kann ein Kräuselprozeß mit der Konditionierung verbunden werden.In a further embodiment of the invention, a crimping process can be combined with the conditioning.

Für eine kontinuierliche Faserherstellung hat sich die unmittelbare Kopplung von Kräusel- und Konditioniervorrichtung als äußerst vorteilhaft erwiesen. In einem besonders bevorzugten Falle wird eine Stauchkammer (1) direkt über einen geschlossenen Kanal (3) nach Fig. 1 direkt mit der Kontitioniervorrichtung verbunden. Neben einer Stauchkammer hat sich auch der Einsatz einer Blasdüsenkräusel, welche analog mit der Konditioniervorrichtung gekoppelt ist, namentlich bei hohen Produktionsgeschwindigkeiten, als sehr günstig herausgestellt.The direct coupling of the crimping and conditioning device has proven to be extremely advantageous for continuous fiber production. In a particularly preferred case, a stuffer box (1) is connected directly to the conditioning device via a closed channel (3) according to FIG. 1. In addition to a stuffer box, the use of a blow nozzle crimp, which is analogously coupled to the conditioning device, especially at high production speeds, has proven to be very cheap.

Beispiel 1example 1

Die 30 gew.-%ige Spinnlösung eines Acrylnitrilcopolymerisates aus 93,6 % Acrylnitril, 5,7 % Acrylsäuremethylester und 0,7 % Natriummethallylsulfonat vom K-Wert 81 (Fikentscher, Cellulosechemie 13, (1932), Seite 58) in Dimethylformamid wurde aus 1264-Lochdüsen mit 0,2 mm Düsenlochdurchmesser bei einer Abzugsgeschwindigkeit von 60 m/min an einer 20-schächtigen Spinnanlage trocken versponnen. Die Verweilzeit der Spinnfäden in den Spinnschächten betrug 4 Sekunden. Die Schachttemperatur lag bei 210°C und die Lufttemperatur betrug 380°C. Die durchgesetzte Luftmenge betrug 40 m3/h für jeden Schacht, die am Kopf des Schachtes in Längsrichtungen zu den Fäden eingeblasen wurde.The 30% by weight spinning solution of an acrylonitrile copolymer composed of 93.6% acrylonitrile, 5.7% methyl acrylate and 0.7% sodium methallylsulfonate with a K value of 81 (Fikentscher, Cellulosechemie 13, (1932), page 58) in dimethylformamide was obtained from Dry spun 1264-hole nozzles with a 0.2 mm nozzle hole diameter at a take-off speed of 60 m / min on a 20-shaft spinning system. The dwell time of the spun threads in the spinning shafts was 4 seconds. The shaft temperature was 210 ° C and the air temperature was 380 ° C. The throughput of air was 40 m 3 / h for each shaft, which was blown in at the head of the shaft in the longitudinal directions to the threads.

Das Spinngut vom Gesamttiter 267.000 dtex, welches noch einen Restlösungsmittelgehalt von 9,3 Gew.-%, bezogen auf den Feststoffgehalt, besaß, wurde unmittelbar vor Verlassen der Spinnschächte mit einer 80 bis 90°C warmen, wäßrigen, ölhaltigen, antistatischen Präparation derart benetzt, daß der ölgehalt der Fäden 0,25 Gew.-%, der Gehalt an Antistatikum 0,06 Gew.-% und die Feuchte 1,2 Gew.-%, bezogen auf den Feststoffgehalt, ausmachten. Die Dosierung der Präparation geschah über Zahnradpumpen. Dann wurde das warme Kabel über ein induktiv auf 150°C beheiztes Walzenpaar geschickt, wobei durch mehrfaches Umschlingen über eine Beilaufrolle eine Kontaktzeit von ca. 2 Sekunden erzielt wurde. Das Kabel nahm dabei eine Bandtemperatur von 112°C, gemessen mit dem Strahlungsthermometer KT 15 (Hersteller: Firma Heimann GmbH, Wiesbaden, BRD) an. Das Kabel wurde um 450 % verstreckt, wobei als zweiter Klemmpunkt ein Streckseptett mit kühlbaren Walzen diente. Die Bandtemperatur nach dem Streckvorgang betrug 61°C. Unmittelbar hierauf wurde das Kabel in einer Stauchkammer (1), welche mit der Konditioniervorrichtung (2) durch einen geschlossenen Kanal (3) verbunden war, mechanisch gekräuselt und über einer Changiervorrichtung (4) auf ein umlaufendes endloses Siebband (6) aufgetäfelt. Die Kräuselgeschwindigkeit betrug 270 m/min. Nach Durchlaufen der Eingangszone (A) gelangte das gefaltete, gekräuselte Faserkabel in die Dämpfzonen (B) und (C) von je 1 m Länge und 0,4 m Breite. Beide Dämpfzonen waren durch Leitbleche voneinander abgeschottet und mit Umwälzventilatoren (8) ausgerüstet. Gleichzeitig gelangte Frischdampf, der über ein Ventil in der Menge geregelt wurde, im Gegenstrom zur Faserkabelrichtung über die Dampfeintrittsstelle (10) in die Dämpfzone (C). Die eingespeiste Dampfmenge betrug 48 kg/h bei einem berechneten Faserkabeldurchsatz von 96,1 kg/h, so daß sich ein spezifischer Dampfverbrauch von 0,5 kg Dampf pro kg Faserkabel einstellte. Der eingeströmte Frischdampf und der umgewälzte Dampf, der über Wärmetauscher (11) bzw. (12) auf 135°C erhitzt wurde, durchströmte das gefaltete, gekräuselte Faserkabel und ein Teilstrom, der in die Dämpfzone (B) gelangte, wurde anschließend mittels Ventilatoren (8) über einen Ansaug- (16) und Druckkanal (17) abgesaugt, über Wärmetauscher nacherhitzt und erneut über das Faserkabel geschickt. Ein Teilstrom, der mit dem restlichen Spinnlösungsmittel Dimethylfomamid beladen war, wurde an der Dampfaustrittsstelle (13) der Dämpfzone (B) ausgekreist und einer Destillationskolonne zugeführt. Bandabdichtungen in Form von schleifenden Abdichtklappen (7) in Höhe des gefalteten Faserkabels und Abdichtstreifen (14) in Höhe des umlaufenden Siebbandes verhinderten weitgehend einen unnötigen Dampfaustritt. Kleinere Dampfmengen, die in der Eingangszone (A) und der Austrittszone (B) gelangten, wurden dort ebenfalls ausgekreist und der Destillationskolonne zugeführt. Die Verweilzeit des gefalteten Faserkabels in den Dämpfzonen (B + C) der Konditioniervorrichtung betrug 5,0 Minuten. Hieraus errechnete sich eine spezifische Belegdichte von ca. 10 kg/m2. Das Faserkabel wurde nach Verlassen der Konditioniervorrichtung zur Stabilisierung der Kräuselung über eine 1,5 m lange Kühlzone (E) geschickt. Durch die Kühlzone wird Luft von Raumtemperatur mittels eines Ventilators (15) geblasen. Anschließend wird das fertig ausgeschrumpfte Faserkabel zu Stapelfasern von 60 mm Schnittlänge geschnitten, verblasen und einer Packpresse zugeführt. Die auf diese Art und Weise in einem kontinuierlichen Prozeß hergestellten Acrylfasern sind schrumpffrei und haben einen Einzelfaserendtiter von 3,3 dtex. Die Faserfestigkeit beträgt 2,9 cN/dtex und die Dehnung 39 %. Der Gehalt an Restlösungsmitteln in der Spinnfaser liegt bei 0,62 Gew.-%. Aus den Fasern auf einer Hochleistungskarde mit 120 m/min hergestellte Garne besitzen bei einer Garnfeinheit von 278 dtex eine Garnfestigkeit von 15,3 RKM, eine Dehnung von 18,9 % und einen Garnkochschrumpf von 2,4 %.The spinning material with a total titre of 267,000 dtex, which still had a residual solvent content of 9.3% by weight, based on the solids content, was wetted in this way immediately before leaving the spinning shafts with an aqueous, oil-containing, antistatic preparation at 80 to 90 ° C. that the oil content of the threads was 0.25% by weight, the antistatic content was 0.06% by weight and the moisture was 1.2% by weight, based on the solids content. The preparation was dosed via gear pumps. The warm cable was then sent over a pair of rollers heated inductively to 150 ° C, with a contact time of approx. 2 seconds being achieved by looping several times over a feed roller. The cable took a tape temperature of 112 ° C, measured the radiation thermometer KT 15 (manufacturer: Heimann GmbH, Wiesbaden, Germany). The cable was stretched by 450%, with a stretch septet with coolable rollers serving as the second clamping point. The strip temperature after the stretching process was 61 ° C. Immediately afterwards, the cable was mechanically crimped in a stuffer box (1), which was connected to the conditioning device (2) by a closed channel (3), and paneled onto a continuous endless sieve belt (6) via a traversing device (4). The crimping speed was 270 m / min. After passing through the entrance zone (A), the folded, crimped fiber cable entered the damping zones (B) and (C), each 1 m long and 0.4 m wide. Both steam zones were separated from each other by baffles and equipped with circulation fans (8). At the same time, live steam, the quantity of which was regulated by a valve, came into the steaming zone (C) in counterflow to the fiber cable direction via the steam entry point (10). The amount of steam fed in was 48 kg / h with a calculated fiber cable throughput of 96.1 kg / h, so that a specific steam consumption of 0.5 kg steam per kg fiber cable was established. The incoming live steam and the circulated steam, which was heated to 135 ° C via heat exchangers (11) and (12), flowed through the folded, crimped fiber cable and a partial flow that came into the steaming zone (B) was then 8) suctioned off via an intake (16) and pressure channel (17), reheated via heat exchangers and again via the fiber cable cleverly. A partial stream, which was loaded with the remaining spinning solvent dimethylfomamide, was removed at the steam exit point (13) of the steaming zone (B) and fed to a distillation column. Belt seals in the form of abrasive sealing flaps (7) at the level of the folded fiber cable and sealing strips (14) at the level of the circulating sieve belt largely prevented unnecessary steam leakage. Smaller amounts of steam which reached the inlet zone (A) and the outlet zone (B) were also removed from the circuit there and fed to the distillation column. The residence time of the folded fiber cable in the steaming zones (B + C) of the conditioning device was 5.0 minutes. From this, a specific document density of approx. 10 kg / m2 was calculated. After leaving the conditioning device to stabilize the crimp, the fiber cable was sent over a 1.5 m long cooling zone (E). Air from room temperature is blown through the cooling zone by means of a fan (15). Then the fully shrunk fiber cable is cut into staple fibers with a cutting length of 60 mm, blown and fed to a packing press. The acrylic fibers produced in this way in a continuous process are shrink-free and have a single fiber final titer of 3.3 dtex. The fiber strength is 2.9 cN / dtex and the elongation is 39%. The residual solvent content in the staple fiber is 0.62% by weight. Yarns made from the fibers on a high-performance card at 120 m / min with a yarn count of 278 dtex have a yarn strength of 15.3 RKM, an elongation of 18.9% and a yarn boiling shrinkage of 2.4%.

In der folgenden Tabelle wird für Spinnkabel vom gleichen Gesamttiter 267.000 dtex. welches unterschiedliche Restlösungsmittelgehalte an Dimethylformamid aufwies und unter verschiedenen Dämpfbedingungen durch die Konditioniervorrichtung lief, Bandaufmachung und Laufweise in der Sekundärspinnerei beurteilt. Die unterschiedlichen Restlösungsmittelgehalte im Faserkabel wurden durch Variation der Spinnlufttemperatur und Spinnluftmengen bei sonst gleichen Versuchsbedingungen wie im Beispiel 1 erzielt. Variiert wurden die Dämpfertemperatur, die pro kg Faserkabel durchgesetzte Dampfmenge und die Verweilzeit in der Konditioniervorrichtung.The following table shows 267,000 dtex for spinning cables with the same total titer. which had different residual solvent contents of dimethylformamide and passed through the conditioning device under different steaming conditions, tape presentation and running mode in the secondary spinning mill were assessed. The different residual solvent contents in the fiber cable were achieved by varying the spinning air temperature and spinning air quantities under otherwise the same test conditions as in Example 1. The damper temperature, the amount of steam passed through per kg of fiber cable and the dwell time in the conditioning device were varied.

Wie aus der Tabelle hervorgeht, ist überhitzter Dampf bei Temperaturen bis 140°C wesentlich besser als Sattdampf unter sonst gleichen Bedingungen zur Restlösungsmittelentfernung aus dem Faserkabel geeignet. Je niedriger der Restlösungsmittelgehalt im Faserkabel vor der Konditioniervorrichtung ist, um so niedriger ist naturgemäß der Restlösungsmittelgehalt im Faserkabel nach Durchlaufen der Konditioniervorrichtung bei sonst gleichen Bedingungen. Ferner ist aus der Tabelle ersichtlich, daß bei Faserkabeln mit Lösungsmittelgehalten um 10 Gew.-% im allgemeinen Dampfmengen kleiner 1 kg pro kg Faserkabel völlig ausreichend sind, um den Restlösungsmittelgehalt bei Verweilzeiten von ca. 5 Minuten deutlich unter 1 Gew.-%, bezogen auf Faserkabel, abzusenken. Alle Fasern waren wiederum schrumpffrei. Bei höheren Lösungsmittelgehalten im Faserkabel kommt man durch entsprechende Anhebung der Dampfmenge und der Verweilzeit in der Konditioniervorrichtung ebenfalls zu niedrigen Restlösungsmittelgehalten. Wie die Versuche weiterhin zeigen, ist nur dann eine gute Verarbeitung in der Sekundärspinnerei gewährleistet, wenn keine unaufgelösten Schnittverbände infolge Bandstarre im Faserkabel auftreten. Diese Bandstarre, worunter man die teilweise Verbackung bzw. Verklebung von mehreren gekräuselten Einzelkapillaren zu einem verdichteten Kräuselpaket versteht, wird immer dann vermieden, wenn der Restlösungsmittelgehalt im Faserkabel unter 2 Gew.-% liegt.

Figure imgb0001
Figure imgb0002
As can be seen from the table, superheated steam at temperatures up to 140 ° C is much better than saturated steam under otherwise identical conditions for removing residual solvent from the fiber cable. The lower the residual solvent content in the fiber cable in front of the conditioning device, the lower the residual solvent content in the fiber cable after passing through the conditioning device under otherwise identical conditions. Furthermore, it can be seen from the table that, in the case of fiber cables with solvent contents of around 10% by weight, generally steam quantities of less than 1 kg per kg of fiber cable are completely sufficient to significantly reduce the residual solvent content with residence times of about 5 minutes, below 1% by weight on fiber cables. All fibers were again shrink-free. With higher solvent contents in the fiber cable, the amount of steam and the dwell can be increased accordingly time in the conditioning device is also kept at low residual solvent. As the tests also show, good processing in the secondary spinning mill can only be guaranteed if there are no undissolved cut bandages as a result of rigidity in the fiber cable. This rigidity, which is understood to mean the partial caking or bonding of several crimped individual capillaries to form a compressed crimp package, is always avoided if the residual solvent content in the fiber cable is below 2% by weight.
Figure imgb0001
Figure imgb0002

Beispiel 2Example 2

Ein Teil des Faserkabels nach Beispiel 1 wird nach dem Strecken anstelle einer Stauchkammer einer Blasdüse zugeführt, welche mit der Konditioniervorrichtung ebenfalls durch einen geschlossenen Kanal (2) verbunden ist. In Abänderung zur Fig. 1 ist die Blaskräusel, die mit überhitztem Dampf von 140°C betrieben wird, vor der Konditioniervorrichtung so aufgebaut, daß die Blasdüsenaustritts- öffnung und der anschließende Kanal ohne Knickung in die Konditioniervorrichtung führt. Alle übrigen Bedingungen entsprechen den Angaben von Beispiel 1. Die auf diese Art und Weise in einem kontinuierlichen Prozeß hergestellten Acrylfasern haben einen Einzelfaserendtiter von 3,3 dtex. Die Faserfestigkeit beträgt 2,8 cN/dtex und die Dehnung 33 %. Der Gehalt an Restlösungsmittel in der Spinnfaser liegt bei 0,58 Gew.-%. Die Fasern waren wiederum schrumpffrei. Aus den Fasern auf einer Hochleistungskarde mit 140 m/min hergestellte Garne besitzen bei einer Garnfeinheit von 283 dtex eine Garnfestigkeit von 16,1 RKm, eine Dehnung von 18,4 % und einen Garnkochschrumpf von 2,4 %.After stretching, part of the fiber cable according to Example 1 is fed to a blow nozzle instead of a stuffer box, which is also connected to the conditioning device by a closed channel (2). 1, the blow curl, which is operated with superheated steam at 140.degree. C., is constructed in front of the conditioning device in such a way that the blowing nozzle outlet opening and the subsequent channel lead into the conditioning device without kinking. All other conditions correspond to the details of Example 1. The acrylic fibers produced in this way in a continuous process have a single fiber final titer of 3.3 dtex. The fiber strength is 2.8 cN / dtex and the elongation is 33%. The residual solvent content in the staple fiber is 0.58% by weight. The fibers were again shrink-free. Yarns made from the fibers on a high-performance card at 140 m / min with a yarn count of 283 dtex have a yarn strength of 16.1 RKm, an elongation of 18.4% and a yarn boiling shrinkage of 2.4%.

Beispiel 3Example 3

Ein Teil des Faserkabels aus Beispiel 1 wurde nach dem Kräuseln in einer Stauchkammer mit einer Rotorschneide zu Stapelfasern für 60 mm Stapellänge geschnitten und über eine Einzugswalze auf die Konditioniervorrichtung aufgetragen. Die übrigen Bedingungen entsprechen wieder den Angaben aus Beispiel 1. Am Ende der Kühlzohne (E) wird das Faservlies über eine trichterförmige Absaugung mittels Ventilator verblasen und zu einer Packpresse geführt. Einzelfaserendtiter 3,3 dtex; Faserfestigkeit 2,5 cN/dtex; Dehnung 34 %. Der Gehalt an Restlösungsmitteln in der Spinnfaser liegt bei 0,43 Gew.-%. Es wurde wiederum kein Faserkochschrumpf festgestellt. Garnwerte: Garnfestigkeit 15,8 Rkm bei einer Garnfeinheit von 290 dtex; Dehnung 18,1 %; Garnkochschrumpf 2,7 %; Kardiergeschwindigkeit 120 m/min.A part of the fiber cable from Example 1 was crimped in a stuffer box with a rotor blade into staple fibers for 60 mm staple length and applied to the conditioning device via a feed roller. The other conditions correspond again to the information from example 1. At the end of the cooling teeth (E) the fiber fleece is blown via a funnel-shaped suction device using a fan and fed to a packing press. Single fiber final titer 3.3 dtex; Fiber strength 2.5 cN / dtex; Elongation 34%. The residual solvent content in the staple fiber is 0.43% by weight. Again, no fiber shrinkage was found. Yarn values: yarn tenacity 15.8 Rkm with a yarn count of 290 dtex; Elongation 18.1%; Yarn shrinkage 2.7%; Carding speed 120 m / min.

Claims (4)

1. Verfahren zum Konditionieren von Synthesefasermaterial, insbesondere Synthesefaserkabeln oder -vliesen, dadurch gekennzeichnet, daß das Synthesefasermaterial in einer dampfdichten Konditioniervorrichtung auf einem umlaufenden Siebband mindestens zweistufig überhitztem Dampf von 105 bis 150°C ausgesetzt wird und in der Konditioniervorrichtung eine Verweilzeit von über 3 Minuten hat.1. A method for conditioning synthetic fiber material, in particular synthetic fiber cables or nonwovens, characterized in that the synthetic fiber material is exposed in a steam-tight conditioning device on a circulating wire belt at least two-stage superheated steam from 105 to 150 ° C and in the conditioning device a dwell time of over 3 minutes Has. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Temperatur des überhitzten Dampfes 120 bis 140°C die Verweilzeit 5 bis 15 Minuten und die Belegdichte des Siebbandes bis 15 kg/m2 betragen.2. The method according to claim 1, characterized in that the temperature of the superheated steam 120 to 140 ° C, the residence time 5 to 15 minutes and the coverage of the sieve belt to 15 kg / m 2 . 3. Vorrichtung zur Konditionierung von Synthesefasermaterial, bestehend aus einem Siebbanddämpfer, der dampfdicht verschlossen und in mehreren Zonen A bis D aufgeteilt ist, wobei die einzelnen Zonen voneinander abgetrennt sind, die Zonen B und C mehrfach vorkommen können, und die Zone A eine Einlaufvorrichtung und eine Absaugung für lösungsmittelbeladenen Dampf, die Zone B einen Ventilator, einen Wärmetauscher und eine Absaugung für lösungsbeladenen Dampf, die Zone C einen Ventilator, einen Wärmetauscher und eine Dampfzufuhr und die Zone D eine Absaugung für lösungsmittelbeladenen Dampf aufweisen.3. Device for conditioning synthetic fiber material, consisting of a wire belt damper, which is closed in a vapor-tight manner and is divided into several zones A to D, the individual zones being separated from one another, zones B and C may occur several times, and zone A being an inlet device and a suction for solvent-laden steam, zone B has a fan, a heat exchanger and a suction for solution-laden steam, zone C has a fan, a heat exchanger and a steam supply and zone D has a suction for solvent-laden steam. 4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß eine Kräuselvorrichtung dampfdicht in die Konditioniervorrichtung integriert ist und sich eine Kühlzone E an die Konditioniervorrichtung anschließt.4. The device according to claim 3, characterized in that a crimping device is integrated in a vapor-tight manner in the conditioning device and a cooling zone E connects to the conditioning device.
EP85105890A 1984-05-22 1985-05-14 Process and apparatus for conditioning synthetic fibre material Expired - Lifetime EP0168582B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19843418942 DE3418942A1 (en) 1984-05-22 1984-05-22 METHOD AND DEVICE FOR CONDITIONING SYNTHESIS FIBER MATERIAL
DE3418942 1984-05-22

Publications (3)

Publication Number Publication Date
EP0168582A2 true EP0168582A2 (en) 1986-01-22
EP0168582A3 EP0168582A3 (en) 1989-02-08
EP0168582B1 EP0168582B1 (en) 1991-09-18

Family

ID=6236481

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85105890A Expired - Lifetime EP0168582B1 (en) 1984-05-22 1985-05-14 Process and apparatus for conditioning synthetic fibre material

Country Status (7)

Country Link
US (2) US4718257A (en)
EP (1) EP0168582B1 (en)
JP (1) JPS60252762A (en)
DE (2) DE3418942A1 (en)
ES (1) ES543344A0 (en)
IE (1) IE57427B1 (en)
PT (1) PT80449B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2594860A1 (en) * 1986-02-21 1987-08-28 Superba Sa Process for the continuous heat-setting of textile fibres
DE3634753A1 (en) * 1986-09-05 1988-03-17 Bayer Ag Continuous spinning processes for acrylonitrile filaments and fibres involving steaming of the spun material
DE3630244A1 (en) * 1986-09-05 1988-03-17 Bayer Ag Continuous dry-spinning and aftertreating process for highly shrinkable acrylonitrile filaments and fibres and such filaments and fibres

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2611755B1 (en) * 1987-03-06 1990-04-13 Superba Sa PROCESS AND PLANT FOR THE HEAT TREATMENT OF TEXTILE THREADS, PARTICULARLY THERMOFIXATION
JPH01239154A (en) * 1988-03-09 1989-09-25 Kanebo Ltd Steamer device
FR2650310B1 (en) * 1989-07-26 1992-02-28 Superba Sa CONTINUOUS HEAT TREATMENT PLANT FOR TEXTILE THREADS
FR2681341B1 (en) * 1991-09-18 1994-12-09 Superba Sa METHOD AND DEVICE FOR CRIMPING WIRES WITH PREVAPORIZATION.
US5361609A (en) * 1992-06-10 1994-11-08 Murata Kikai Kabushiki Kaisha Steam setting apparatus
JP4186015B2 (en) * 1998-01-27 2008-11-26 株式会社四国いずみ繊維 Dough stabilization method, dough stabilization apparatus and dough manufacturing method
US6425926B1 (en) * 1999-05-04 2002-07-30 Jakobus Hindriks Thermosol treatment of textiles carrying a dye
ATE343010T1 (en) * 1999-05-28 2006-11-15 Moenus Textilmaschinen Gmbh METHOD FOR CONTINUOUS TREATMENT OF A TEXTILE WEB WITH STEAM FOR FIXING REACTIVE DYE ON NATIVE FIBERS
DE102006011181A1 (en) * 2006-03-10 2007-09-13 Airmatic Gmbh Hot surface cooling method, involves adjusting defined ventilation slot in front covering wall over entire covering width by ventilation flaps, where flaps are arranged on entrance side of surface to be cooled
JP5087268B2 (en) * 2006-12-15 2012-12-05 株式会社フジシールインターナショナル Shrink film heat shrink device
DE102007053991A1 (en) * 2007-11-13 2009-05-14 Fleissner Gmbh Equipment treating material continuously with superheated steam, includes heat exchanger in extraction line for spent steam
DE102009007669A1 (en) * 2009-02-05 2010-08-12 Fleissner Gmbh Method and device for producing cotton wool products
DE102011054463B4 (en) * 2011-10-13 2014-04-10 Berning Maschinenfabrik Gmbh Method for shrinking a sleeve by means of superheated steam
NO336439B1 (en) 2011-12-16 2015-08-17 Nebb Engineering As Method and apparatus for heat curing and stabilizing textiles used in papermaking machines
TWI655136B (en) * 2014-06-27 2019-04-01 日商養樂多本社股份有限公司 Shrinking label heat shrinking device
DE102014011696A1 (en) * 2014-08-07 2016-02-11 Saurer Germany Gmbh & Co. Kg Apparatus for the thermal treatment of yarns
US10196757B1 (en) * 2015-03-23 2019-02-05 Uchicago Argonne, Llc Integrated system for nanofiber production

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1439284A (en) * 1965-04-16 1966-05-20 British Nylon Spinners Ltd Apparatus for treating textile materials
FR1531935A (en) * 1966-07-22 1968-07-05 Vepa Ag Installation and method for the treatment of textile materials
DE2217667A1 (en) * 1972-04-12 1973-10-18 Vepa Ag SEALING DEVICE FOR A TAPE DAMPER
FR2230779A1 (en) * 1973-05-23 1974-12-20 Montedison Fibre Spa Continuous heat-shrinkage - partic of a combed top of synthetic staple fibres
US4133636A (en) * 1977-06-30 1979-01-09 Blu-Surf, Inc. Tentor
GB2022158A (en) * 1978-05-31 1979-12-12 Sando Iron Works Co Wet heat treatment of textiles
FR2453928A1 (en) * 1979-04-11 1980-11-07 Superba Ets Textile yarn heat treatment appts. - has a pre-steaming chamber and a steam chamber, with cooling chambers and locks disposed between them
GB2051159A (en) * 1979-05-23 1981-01-14 Sando Iron Works Co Continuous Treatment of Cloth

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3045461A (en) * 1960-02-24 1962-07-24 Toho Rayon Kk Apparatus for acetylating cellulose fibers in gaseous phase
US3365752A (en) * 1963-02-20 1968-01-30 Farell Jaime Cirera Continuous processing machine for scouring, dyeing and carding wool fibers
US3320022A (en) * 1964-04-27 1967-05-16 Fmc Corp Method for the continuous vapor phase acetylation of cellulose fiber
DE2060941A1 (en) * 1970-12-11 1972-08-10 Bayer Ag Synthetic fibres treatment - during continuous conveyance
US3908410A (en) * 1972-05-16 1975-09-30 Iws Nominee Co Ltd Apparatus for the treatment of textile fibers and fabrics
JPS513827B2 (en) * 1972-06-27 1976-02-06
US4052796A (en) * 1972-09-27 1977-10-11 Arendt Hans F Process and apparatus for the continuous finishing of webs of textiles, artificial leather and the like
US3945225A (en) * 1973-05-25 1976-03-23 Mccoy Lyle E Continuous textile dyeing apparatus
AT341473B (en) * 1975-10-06 1978-02-10 Meyer Arnfried METHOD AND DEVICE FOR TREATING TEXTILE ROLLS
US4345385A (en) * 1979-06-14 1982-08-24 Sando Iron Works Method for continuous drying of a cloth and an apparatus therefor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1439284A (en) * 1965-04-16 1966-05-20 British Nylon Spinners Ltd Apparatus for treating textile materials
FR1531935A (en) * 1966-07-22 1968-07-05 Vepa Ag Installation and method for the treatment of textile materials
DE2217667A1 (en) * 1972-04-12 1973-10-18 Vepa Ag SEALING DEVICE FOR A TAPE DAMPER
FR2230779A1 (en) * 1973-05-23 1974-12-20 Montedison Fibre Spa Continuous heat-shrinkage - partic of a combed top of synthetic staple fibres
US4133636A (en) * 1977-06-30 1979-01-09 Blu-Surf, Inc. Tentor
GB2022158A (en) * 1978-05-31 1979-12-12 Sando Iron Works Co Wet heat treatment of textiles
FR2453928A1 (en) * 1979-04-11 1980-11-07 Superba Ets Textile yarn heat treatment appts. - has a pre-steaming chamber and a steam chamber, with cooling chambers and locks disposed between them
GB2051159A (en) * 1979-05-23 1981-01-14 Sando Iron Works Co Continuous Treatment of Cloth

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2594860A1 (en) * 1986-02-21 1987-08-28 Superba Sa Process for the continuous heat-setting of textile fibres
DE3634753A1 (en) * 1986-09-05 1988-03-17 Bayer Ag Continuous spinning processes for acrylonitrile filaments and fibres involving steaming of the spun material
DE3630244A1 (en) * 1986-09-05 1988-03-17 Bayer Ag Continuous dry-spinning and aftertreating process for highly shrinkable acrylonitrile filaments and fibres and such filaments and fibres

Also Published As

Publication number Publication date
EP0168582B1 (en) 1991-09-18
US4718257A (en) 1988-01-12
US4773109A (en) 1988-09-27
DE3418942A1 (en) 1985-11-28
JPS60252762A (en) 1985-12-13
IE57427B1 (en) 1992-09-09
EP0168582A3 (en) 1989-02-08
PT80449B (en) 1987-06-17
JPH0447066B2 (en) 1992-07-31
PT80449A (en) 1985-06-01
DE3584118D1 (en) 1991-10-24
ES8603969A1 (en) 1986-01-01
IE851267L (en) 1985-11-22
ES543344A0 (en) 1986-01-01

Similar Documents

Publication Publication Date Title
EP0168582B1 (en) Process and apparatus for conditioning synthetic fibre material
DE2065805A1 (en) METHOD OF MANUFACTURING A TEXTURED THERMOPLASTIC YARN WITH HIGH NERVOSITY
EP0098477B2 (en) Continuous process for dry-spinning acrylonitrile filaments and fibres
EP0119521B1 (en) Continuous process for the manufacture of polyacrylonitrile fibres and yarns
EP1520065B1 (en) Method and device for melt-spinning and cutting a tow
CH657156A5 (en) METHOD FOR THE PRODUCTION OF HIGH-STRENGTH TECHNICAL YARNS BY SPINNING STRETCHES AND YARNS PRODUCED BY THE METHOD, IN PARTICULAR FROM POLYAMIDE AND POLYESTER THREADS.
WO2008046794A2 (en) Method and device for treating a fibre cable
EP1221499A1 (en) Method for stretch-spinning melt-spun yarns
EP0458089B1 (en) Method and apparatus for sizing filament yarn
EP0276704B1 (en) Method and apparatus for the treatment of a fibre tow
DE10100330B4 (en) Method and device for drying a group of threads
DE971078C (en) Process for the production of crimped fibers from a tow made of polymeric ªŠ-caprolactam
EP0199239B1 (en) Method for the multistage post-treatment of continuously advancing fibre tows, and apparatuses required therefor
DE3609024C2 (en) Process for the continuous thermal shrinking of a strip of thermally shrinkable fibers
DE3630244C2 (en) Continuous dry spinning and post-treatment process of the spun material for highly shrinkable acrylonitrile threads and fibers and corresponding threads and fibers
DE3634753C2 (en)
AT267039B (en) Cooling device in devices for crimping textile yarns
DE2631519A1 (en) PROCESS FOR THE DRESSING OF IN PARTICULAR BLENDED STAPLE FIBER YARN MADE OF AT LEAST 30% POLYAETHYLENE TEREPHTHALATE ON WARP FIBER YARN
DE3241519A1 (en) Process and apparatus for the thermal treatment of textile materials
DE2122748A1 (en) Spin-drawing process for polyamide yarn
DE4116657A1 (en) Acrylic] yarn mfr. giving high quality yarn economically - utilises two stages to avoid material losses or emission in storage which involve washing, partially orientating and drawing
DE1410415A1 (en) Process for the production of bulky yarns and threads
DE1660160A1 (en) Frill stable fibers and methods of making the same
CH376219A (en) Apparatus for crimping and fixing fiber cables
WO1992014875A1 (en) Process for the production of drawn and set monofilaments

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19850514

AK Designated contracting states

Designated state(s): DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 19900702

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 3584118

Country of ref document: DE

Date of ref document: 19911024

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020514

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020521

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020718

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031202

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST