EP0286932B1 - Filteranordnung zum Entfernen von Russpartikeln aus Abgasen einer Verbrennungskraftmaschine - Google Patents

Filteranordnung zum Entfernen von Russpartikeln aus Abgasen einer Verbrennungskraftmaschine Download PDF

Info

Publication number
EP0286932B1
EP0286932B1 EP88105338A EP88105338A EP0286932B1 EP 0286932 B1 EP0286932 B1 EP 0286932B1 EP 88105338 A EP88105338 A EP 88105338A EP 88105338 A EP88105338 A EP 88105338A EP 0286932 B1 EP0286932 B1 EP 0286932B1
Authority
EP
European Patent Office
Prior art keywords
filter
heating elements
resistance heating
grooves
arrangement according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88105338A
Other languages
English (en)
French (fr)
Other versions
EP0286932A2 (de
EP0286932A3 (en
Inventor
Gerhard Dr.-Ing. Lepperhoff
Georg Dipl.-Ing. Hüthwohl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FEV Europe GmbH
Original Assignee
FEV Motorentechnik GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FEV Motorentechnik GmbH and Co KG filed Critical FEV Motorentechnik GmbH and Co KG
Priority to AT88105338T priority Critical patent/ATE77441T1/de
Publication of EP0286932A2 publication Critical patent/EP0286932A2/de
Publication of EP0286932A3 publication Critical patent/EP0286932A3/de
Application granted granted Critical
Publication of EP0286932B1 publication Critical patent/EP0286932B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/027Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Definitions

  • the invention relates to a filter arrangement for removing soot particles from the exhaust gases of an internal combustion engine, in particular a diesel engine, with at least one filter body made of a porous filter material formed by honeycomb-arranged filter channels, wherein in the area of the inlet openings of the filter channels open on the gas inlet side, electrical resistance heating elements are arranged, which are arranged via a The supply line and a discharge line are connected to a power supply, and the electrical resistance heating elements, which are each assigned in the area of the inlet openings of the filter channels as several inlet openings and protrude in the form of loops into the filter channels.
  • Exhaust gas aftertreatment systems are known for reducing particle emissions, particularly in diesel engines. These usually consist of filter systems that retain and collect the particles present in the exhaust gas. The soot particles retained in the filter lead to an increase in the flow resistance in the exhaust system, so that the exhaust gas back pressure of the engine increases. This leads to an increase in fuel consumption and, in extreme cases, to engine shutdown. It is therefore necessary to remove the particles that have accumulated in the filter, for example by oxidation at high temperatures.
  • honeycomb filters made of a porous ceramic material have proven to be useful as filter bodies for the retention of the soot particles. These honeycomb filters are formed by a large number of parallel filter channels, which are alternately on the gas inlet side and are closed on the gas outlet side so that the exhaust gases flow through the porous filter walls and the soot particles are deposited on the walls of the filter channels. The filter can be regenerated by burning off the collected particles.
  • the temperatures required to ignite the soot particles in the exhaust gas are often not reached frequently enough by diesel engines, so that regeneration is not ensured. Forced regeneration can be achieved by adding additional energy.
  • a particularly energy-efficient regeneration can be achieved if the soot layer deposited on the filter body is ignited point by point in the inlet area of the filter channels by a brief supply of energy. The release of energy during the soot combustion that then begins leads to self-supporting soot combustion in the filter body.
  • the soot layer can be ignited by loop-shaped resistance wires inserted into the opening of the filter channels, as described, for example, in US Pat. No. 4,373,330.
  • This document describes a filter arrangement for removing soot particles from exhaust gases of an internal combustion engine, in particular a diesel engine, with at least one filter body made of a porous filter material formed by honeycomb-arranged filter channels, whereby electrical resistance heating elements are arranged in the area of the inlet openings of the filter channels open on the gas inlet side
  • the supply line and a discharge line are connected to a power supply, and the electrical resistance heating elements, which are each assigned in the area of the inlet openings of the filter channels as several inlet openings and protrude in the form of loops into the filter channels.
  • a loop of the heating conductor must be inserted into as many filter channels of the honeycomb filter as possible for the regeneration to be as complete as possible.
  • the number of filter channels that can be provided with loops of a heating conductor is limited by the electrical resistance of the heating conductor.
  • the heating conductor length is approximately 15 to 25 cm, from which 10 to 15 loops can be bent.
  • Ceramic honeycomb filters have around 1000 channels that need to be heated. A large number of individual heating wires bent into loops must therefore be used and connected in parallel for the filter to be heated as completely as possible.
  • a high heating output is required, which cannot be applied by the vehicle's electrical system. The heating power can therefore only be applied by sequential regeneration of individual sections of the filter. This is e.g. known from US-A-4 427 418.
  • the loop-shaped heating conductors In order to be able to carry out sequential regeneration, the loop-shaped heating conductors have to be connected to small groups.
  • the individual groups are electrically isolated from each other and connected to the vehicle's supply voltage so that they are switched on independently of one another can be.
  • the distance between the individual connections, which must be electrically insulated from each other, is very narrow due to the small channel cross sections of approx. 2 x 2 mm. A mutual touch of the individual connections would lead to a short circuit during operation of the vehicle or to simultaneous switching on of several areas with high power consumption for the vehicle electrical system.
  • individual loops can also be bridged. As a result, the electrical resistance of the heating conductor drops, as a result of which the heating conductor temperature rises and the wire burns out.
  • the invention has for its object to provide a regeneration arrangement for diesel particulate filter of the type mentioned, that is, for honeycomb filters, in which a secure fixation of the heating loops in the honeycomb body is ensured in a thermally favorable and production-technically simple manner and short circuits are avoided.
  • the grooves in the end face of the filter body are alternately formed in opposite directions, so that the resistance heating elements can be hooked in for fixing. Also, at least some of the grooves in the filter channels can be closed upwards after the resistance heating elements have been inserted, and it can be advantageous for the resistance heating elements to be covered with a material before the grooves are closed, which material burns or evaporates when the resistance heating elements are heated, so that there is no non-positive connection between the resistance heating elements and the filter.
  • a gas-permeable cover plate is arranged in the flow direction of the exhaust gases in front of the resistance heating elements.
  • the cover plate is preferably made of a material with low thermal conductivity and it can be formed by a lattice structure which forms flow channels, but it can also consist of open-pore ceramic foam.
  • the resistance heating elements and / or their connections can be accommodated in grooves of the filter body made of porous filter material, but they can also be accommodated in grooves in the cover plate or at the same time arranged in grooves in both the filter body and the cover plate.
  • the resistance heating elements and / or their connections are guided over the end plugs of filter outlet channels, and the resistance heating elements and / or their connections can be arranged in a meandering shape on the input side of the filter body, whereby they can have a rectangular cross-section.
  • a filter arrangement with the end face on the filter body arranged heating elements, in particular with heating elements arranged in individual heating zones, is provided in an advantageous embodiment of the invention that the free ends of the heating conductor are each connected via a connecting element to a supply line or discharge line which is guided at a distance from the end face.
  • a stable heating element is formed from each of a plurality of heating wires running parallel to one another with the inlets and outlets running transversely to the end region in each case, which enables reliable positioning of the heating wires, even if the filter arrangement, such as in a motor vehicle, is exposed to vibrations.
  • the connecting element consists of a pipe made of electrically conductive material parallel to the direction of flow against the end face of the filter body, one end of which is firmly connected to the supply line or discharge line and the other end of which is firmly connected to the free heating wire end.
  • connection between the connection piece and the pipe guided against the filter end face can be made in a simple embodiment by pressing in the heating conductor.
  • the loops between the rigid connection pieces are additionally fixed at least at certain intervals.
  • there is a firm connection e.g. would arise when gluing the heat conductor with ceramic glue, not possible.
  • the heating conductor should also not be clamped firmly, as this could lead to material abrasion of the heating conductor in the long term due to the vibrations.
  • a firm connection between the heating conductor and filter material leads to poorer heat transfer at this point, which would cause the wire to overheat locally.
  • the heating conductors on the filter end face are led at least in part through openings which are closed at the top. These openings are designed so that the heating conductor can move with a certain amount of play in it, so that mechanical stress due to the action of force is largely avoided.
  • the heat transfer to the environment is not limited by the insulating effect of the ceramic, so that the heating conductor temperature in the opening does not rise.
  • the openings can be formed by grooves made in the filter face in the running direction or perpendicular to the running direction of the heating loops, in which grooves the heating conductors are inserted.
  • the grooves are largely closed at the top in terms of production. A possible lateral migration is counteracted by the oblique groove prevented in the further course.
  • the groove is inserted vertically, it can be closed at the top after inserting the heating conductor. This can be done by the gas-permeable cover arranged on the filter face. The cover is drilled in the area of the connection ends of the heating conductors. It is therefore also possible to close only part of the groove length in the case of grooves in the direction of the heating conductor or part of the groove in the case of grooves transverse to the direction of the heating conductor approximately in the middle between the connection ends at the top.
  • the resistance heating element essentially consists of a loop-shaped heating wire 1, the loops of which are inserted into the inlet openings of filter channels 2 of a filter body 3 designed as a honeycomb filter. It is also possible to design the heating wire in such a way that only the loops arranged in the channel consist of heating conductor material, while the connections between the individual heating conductors consist of material of lower electrical resistance.
  • the exhaust gas flow flows through the filter channels 2 in the direction of arrow 18.
  • the loops of the heating wire 1 are inserted diagonally into the filter channels 2 having a square cross-section, so that a piece of heating wire, as also shown in FIG. 2, covers several filter channels 2 lying next to one another. To fix the heating wire 1 in the individual filter channels 2, it is bent so that it lies against the wall 4 of the filter channel 2 in question.
  • the ends 5 and 6 of the heating wire 1 are led out of the inlet opening of the respective filter channel and are connected above the end face 7 of the filter body 3 via connecting pieces 8, 9 to a feed line 17 or a corresponding discharge line (not shown here).
  • the connectors 8, 9 are designed so that they fix the heating wire ends 5 and 6 in the filter channels.
  • connecting lines 10 and 11 are made of a dimensionally stable, electrically conductive material, for example a thin-walled tube.
  • the feed line 17 and correspondingly also the associated discharge line are then passed through the wall of the filter housing 12, in which the filter body 3 is fixed by means of a packing mat 13.
  • an insulation 14 made of ceramic material is used.
  • connecting pieces 8, 9 forming lines are thin-walled Pieces of pipe are into which the free ends 5 and 6 of the heating wire are inserted and connected to them, it is also ensured that contact with the adjacent connection 15 of a resistance heating element 16 forming another heating zone is avoided.
  • the length of the heating wire can not be chosen arbitrarily, but is determined by the specific resistance of the material, the cross section and by the surface power required to achieve the ignition temperature and by the electrical energy available.
  • the number of filter channels 2 covered by a heating wire element is constant, so that, as shown in FIG. 2, the entire end face of the filter body is divided into several separate heating zones in view of the electrical power available.
  • FIG. 2 shows the end face 20 of a ceramic honeycomb filter body with inlet channels 22 and the filter plug 23 closing off the filter outlet channels to the inlet side.
  • a heating wire 25 with its loops each covers nine inlet channels 22. Eight to ten heating wires 25 are in each case interconnected via power connection 28 and ground connections 27 to form a heating zone 26. The mass 27 is common to all heating zones 26, while the power supply for each heating zone 26 can be switched on individually (not shown).
  • the individual resistance heating elements are designed such that the end face of the filter body 3 is divided into triangular and quadrangular, preferably rectangular, heating zones. Since the individual heating zones adjoin one another, all inlet channels 22 are connected to a heating element.
  • the heating zones 26, each with eight to ten heating wires 25, cover almost all filter channels in the embodiment shown, so that the filter can be regenerated by sequential power supply to the individual heating zones.
  • the resistance heating wires 1 are arranged in grooves 51, which are formed perpendicular to the running direction of the heating wires 1 in the end face of the filter.
  • the grooves 51 are so wide that the walls of the filter channels 2 are cut and the heating wires 1 can be inserted into the filter, as can be seen from FIG. 4.
  • the advantage of guiding the grooves 51 perpendicular to the running direction of the heating wires 1 is that the mechanical processing of the filter end face takes place predominantly in the area of the filter plug.
  • the grooves 51 are worked into the filter end face so deep that the heating wires 1 do not protrude beyond the end face.
  • a cover 52 made of a heat-resistant, gas-permeable, electrically non-conductive material, e.g. ceramic foam, attached to the filter face.
  • the cover 52 need not cover the entire filter face. It is sufficient if the heating wires 1 are additionally held in the filter material at some points in order to avoid migration.
  • the grooves 53 made in the filter face perpendicular to the running direction of the heating wires, as shown in FIGS. 5 and 6, can also be closed at the top with electrically conductive rails 54, to which the individual heating loops 1 are attached.
  • a low electrical resistance in the area of the transitions between the heating loops is particularly advantageous here, as a result of which the heat generated is particularly low here.
  • the heating conductors are held in the filter material by the rails fixed in the ceramic material.
  • the rails 54 do not need to cover the entire filter face. It is sufficient if the heating conductors 1 are additionally held in some places in the filter material with some rails in order to avoid migration.
  • a corresponding mounting of the heating conductors 1 on the filter end face is achieved if grooves 55, as shown in Fig. 7, in a cover 56 made of a heat-resistant, gas-permeable, electrically non-conductive material, e.g. ceramic foam.
  • the main advantage of this embodiment lies in the easier production of the grooves 55, in particular when the cover 56 is produced by a casting process. The grooves 55 can then already be taken into account when casting the cover 56, so that subsequent processing is not necessary.
  • the filter body 3 is provided on the end face 20 with grooves 47, 48 arranged alternately in opposite directions, which are expediently incorporated into the stopper 31 closing the outlet channels.
  • FIG. 8 shows a first longitudinal section
  • FIG. 9 is a second longitudinal section that is laterally displaced in the filter end face compared to FIG. 8.
  • the advantage of this measure is that the resistance heating wire 1 is accommodated in alternately inclined grooves 47 and 48, so that it is, as it were, "hooked in” and requires no further fixation.
  • FIG. 10 shows a further embodiment and arrangement of the resistance heating elements on the filter end face.
  • the filter channels 32a, 32b are shown in an exaggerated size.
  • a heating wire 34a, 34b which is curved in a meandering manner in the plane of the end face 33, is arranged running across the filter plug 31.
  • the heating wire 34a, 34b has a rectangular cross section, and it is arranged upright on the end face 33.
  • Other cross-sectional shapes for the heating wire with a large heat transfer area are also possible.
  • resistance heating conductors with heat transfer fins can be provided. It is also possible to arrange several heating wires with a round cross section one above the other.
  • a gas-permeable ceramic cover plate 35 is arranged above the heating wire 34 in a lattice structure defining flow channels, which radiates the radiation of the heating wire 34a directed against the exhaust gas flow. 34b absorbed and fed back to the heating area by convective heat transfer with the exhaust gas mass flow, represented by arrows 36 and 39.
  • the cover plate 35 can, however, also be formed from another material with a different structure, for example from open-pore, that is to say gas-permeable, ceramic foam. However, it is essential that the material is radiation absorbing.
  • the cover plate 35 and the filter body 30 are inserted into the filter housing 37 with a packing mat 38.
  • the cover plate 35 can be designed so that it mechanically fixes the heating wire 34a, 34b on the end face 33 by pressing.
  • the side of the cover plate 35 facing the heating wire 34a, 34b can be provided with a groove contour adapted to the meandering shape, which fixes the exact alignment of the heating wire 34a, 34b to the filter body 30.
  • the exhaust gas mass flow can flow past the heating wire 34a, 34b into the filter channels 32a in the arrangement shown with low flow resistance.
  • the heating wire 34a, 34b is connected to a current source E via a switching device (not shown). This will remove the soot in the contact area ignited between the filter body 30 and the heating wire 34a, 34b, so that the soot deposit then burns off into the fitting channels 32a automatically.
  • how the supervision acc. 12 shows a plurality of resistance heating elements 40 defining different heating zones arranged on the end face 41 of a filter body 42.
  • the cover plate 35 shown in FIG. 11 has been removed.
  • the heating zone in each case acted upon by a resistance heating element is larger in this embodiment because of the larger cross section of the heating wire and therefore comprises the arrangement of rectangular and triangular heating zones 45 and 46 shown in FIG. 12.
  • the resistance heating elements are designed in such a way that the triangular heating zones 46 have half the size of the rectangular heating zones 45, so that two successive heating elements covering a triangular heating zone 46 have the same electrical resistance as a heating element covering a rectangular heating zone 45.
  • the individual heating elements can be switched on and off individually to the power supply via a switching device (not shown), so that the entire filter surface can be regenerated by successively switching the individual heating elements on and off.

Description

  • Die Erfindung betrifft eine Filteranordnung zum Entfernen von Rußpartikeln aus Abgasen einer Verbrennungkraftmaschine, insbesondere eines Dieselmotors, mit wenigstens einem durch wabenförmig zueinander angeordnete Filterkanäle gebildeten Filterkörper aus einem porösen Filtermaterial, wobei im Bereich der Eintrittsöffnungen der gaseintrittsseitig offenen Filterkanäle elektrische Widerstandsheizelemente angeordnet sind, die über eine Zuleitung und eine Ableitung mit einer Stromversorgung verbunden sind, und die jeweils im Bereich der Eintrittsöffnungen der Filterkanäle als mehreren Eintrittsöffnungen zugeordnete, schlaufenförmig in die Filterkanäle hineinragende elektrische Widerstandsheizelemente ausgebildet sind.
  • Zur Verminderung der Partikelemission insbesondere bei Dieselmotoren sind Abgasnachbehandlungssysteme bekannt. Diese bestehen in der Regel aus Filtersystemen, die die im Abgas vorhandenen Partikel zurückhalten und sammeln. Die im Filter zurückgehaltenen Rußpartikel führen zu einer Erhöhung des Strömungswiderstandes im Abgassystem, so daß der Abgasgegendruck des Motores ansteigt. Dies führt zu einer Erhöhung des Brennstoffverbrauchs und im Extremfall zum Motorstillstand. Deshalb ist es notwendig, die im Filter angesammelten Partikel zu beseitigen, beispielsweise durch Oxidation bei hohen Temperaturen.
  • Als Filterkörper für den Rückhalt der Rußpartikel haben sich Wabenfilter aus einem porösen keramischen Material als zweckmäßig erwiesen. Diese Wabenfilter werden durch eine Vielzahl paralleler Filterkanäle gebildet, die wechselweise gaseintrittsseitig und gasaustrittsseitig verschlossen sind, so daß die Abgase durch die porösen Filterwände strömen und sich hierbei die Rußpartikel auf den Wandungen der Filterkanäle abscheiden. Eine Regeneration des Filters ist durch Abbrennen der gesammelten Partikel möglich.
  • Die zur Entzündung der Rußpartikel im Abgas notwendigen Temperaturen werden von Dieselmotoren oft nicht ausreichend häufig erreicht, so daß eine Regeneration nicht sichergestellt ist. Eine zwangsweise Regeneration kann durch Zufuhr von Zusatzenergie erreicht werden. Eine besonders energiegünstige Regeneration kann erreicht werden, wenn die am Filterkörper abgelagerte Rußschicht im Eintrittsbereich der Filterkanäle durch eine kurzzeitige Energiezufuhr punktweise entzündet wird. Die Energiefreisetzung bei der dann einsetzenden Rußverbrennung führt zu einem selbsttragenden Rußabbrand im Filterkörper. Die Entzündung der Rußschicht kann durch in die Öffnung der Filterkanäle eingesetzte schlaufenförmige Widerstandsdrähte erfolgen, wie es beispielsweise in US-A-4 373 330 beschrieben ist.
  • Diese Schrift beschreibt eine Filteranordnung zum Entfernen von Rußpartikeln aus Abgasen einer Verbrennungskraftmaschine, insbesondere eines Dieselmotors, mit wenigstens einem durch wabenförmig zueinander angeordnete Filterkanäle gebildeten Filterkörper aus einem porösen Filtermaterial, wobei im Bereich der Eintrittsöffnungen der gaseintrittsseitig offenen Filterkanäle elektrische Widerstandsheizelemente angeordnet sind, die über eine Zuleitung und eine Ableitung mit einer Stromversorgung verbunden sind, und die jeweils im Bereich der Eintrittsöffnungen der Filterkanäle als mehreren Eintrittsöffnungen zugeordnete, schlaufenförmig in die Filterkanäle hineinragende elektrische Widerstandsheizelemente ausgebildet sind.
  • Bei Filteranordnungen dieser Art tritt jedoch der Nachteil auf, daß durch Vibrationen und thermische Effekte die Schlaufen nicht in den Kanälen bleiben, sondern nach mehr oder weniger langer Betriebsdauer aus den Kanälen herauswandern. Daher sind Maßnahmen erforderlich, um die Heizleiter in der vorgegebenen Position zu halten, wobei jedoch die thermische Wirksamkeit und die freie Beweglichkeit der Heizelemente möglichst wenig beeinträchtigt werden sollen.
  • Diese Forderung wird durch die in US-A-4 512 786 beschriebene Anordnung nicht erfüllt, da dort die Heizelemente durch den für die Funktion des Filters notwendigen Stopfen auf der Einlaßseite in den Auslaßkanal geschoben sind. Durch die Einbettung der Heizleiter in die Stopfen wird sowohl ihre thermische Wirksamkeit als auch ihre Beweglichkeit erheblich beeinträchtigt.
  • Für eine möglichst vollständige Regeneration muß in möglichst viele Filterkanäle des Wabenfilters eine Schlaufe des Heizleiters eingesetzt werden. Die Anzahl der Filterkanäle, die so mit Schlaufen eines Heizleiters versehen werden kann, ist durch den elektrischen Widerstand des Heizleiters beschränkt.
  • Bei einer bei Kraftfahrzeugen üblichen Versorgungsspannung von 12 V beträgt die Heizleiterlänge etwa 15 bis 25 cm, aus der 10 bis 15 Schlaufen gebogen werden können. Keramische Wabenfilter besitzen etwa 1000 Kanäle, die zu beheizen sind. Es muß für eine möglichst vollständige Beheizung des Filters daher eine große Anzahl einzelner zu Schlaufen gebogener Heizdrähte parallel eingesetzt und angeschlossen werden. Zur gleichzeitigen Regeneration des gesamten Filters ist eine hohe Heizleistung erforderlich, die nicht von dem elektrischen Bordsystem des Fahrzeugs aufgebracht werden kann. Die Heizleistung kann daher nur durch sequentielle Regeneration einzelner Teilbereiche des Filters aufgebracht werden. Dies ist z.B. aus US-A-4 427 418 bekannt.
  • Die schlaufenförmig gebogenen Heizleiter müssen, um eine sequentielle Regeneration durchführen zu können, zu kleinen Gruppen zusammengeschaltet werden. Die einzelnen Gruppen sind elektrisch voneinander getrennt so an die Versorgungsspannung des Fahrzeugs angeschlossen, daß sie unabhängig voneinander eingeschaltet werden können. Der Abstand zwischen den einzelnen Anschlüssen, die elektrisch voneinander isoliert sein müssen, ist infolge der geringen Kanalquerschnitte von ca. 2 x 2 mm sehr eng. Ein gegenseitiges Berühren der einzelnen Anschlüsse würde beim Betrieb des Fahrzeugs zu einem Kurzschluß oder zu einem gleichzeitigen Einschalten mehrerer Bereiche mit für das Bordnetz des Fahrzeugs zu hohem Stromverbrauch führen. Bei einem Auswandern der Drähte kann es auch zu einer Überbrückung einzelner Schlaufen kommen. Als Folge sinkt der elektrische Widerstand des Heizleiters, wodurch die Heizleitertemperatur ansteigt und ein Durchbrennen des Drahtes eintritt.
  • Maßnahmen zur Regeneration von Abgasfiltern sind auch in US-A-4 456 457 bei Schaumkeramikfiltern beschrieben. Hier werden jedoch keine schlaufenförmigen Heizelemente, sondern mehr oder weniger geradlinige Heizleiter verwendet, die zur Verbesserung der Wärmeübertragung in Nuten verlaufen, wobei die Nuten zur Vermeidung von Wärmeabstrahlung einzeln oder insgesamt durch Schließkörper verschlossen sind. Eine Übertragung von Maßnahmen dieser Art auf Wabenfilter stößt daher vor allem auf Fertigungsprobleme.
  • Der Erfindung liegt die Aufgabe zugrunde, eine Regenerationsanordnung für Dieselpartikelfilter der eingangs bezeichneten Art, also für Wabenfilter, zu schaffen, bei der in thermisch günstiger und fertigungstechnisch einfacher Art eine sichere Fixierung der Heizschlaufen im Wabenkörper gewährleistet ist und Kurzschlüsse vermieden werden.
  • Diese Aufgabe wird bei einer Filteranordnung der eingangs bezeichneten Art dadurch gelöst, daß die elektrischen Verbindungen der Schlaufen der Widerstandsheizelemente zwischen den einzelnen Filterkanälen in Nuten des Filterkörpers oder einer Abdeckung eingesetzt sind. Vorzugsweise sind die Verbindungen der Widerstandsheizelemente in Nuten fest untergebracht, während die Widerstandsheizelemente frei beweglich sind.
  • Gemäß einer weiteren bevorzugten Ausführungsform ist vorgesehen, daß die Nuten in der Stirnfläche des Filterkörpers abwechselnd gegenläufig schräg ausgebildet sind, so daß die Widerstandsheizelemente zur Fixierung eingehakt werden können. Auch kann zumindest ein Teil der Nuten in den Filterkanälen nach dem Einsetzen der Widerstandsheizelemente nach oben verschlossen sein, und es kann vorteilhaft sein, daß die Widerstandsheizelemente vor dem Verschließen der Nuten mit einem Material ummantelt sind, das bei Erhitzen der Widerstandsheizelemente abbrennt oder verdampft, so daß keine kraftschlüssige Verbindung zwischen den Widerstandsheizelementen und dem Filter besteht.
  • Im Zusammenhang mit der beschriebenen Aufgabe ist es dabei vorteilhaft, daß in Strömungsrichtung der Abgase vor den Widerstandsheizelementen eine gasdurchlässige Abdeckplatte angeordnet ist. Vorzugsweise besteht die Abdeckplatte aus einem Material mit geringer Wärmeleitfähigkeit, und sie kann durch eine Gitterstruktur gebildet sein, die Strömungskanäle bildet, jedoch kann sie auch aus offenporigem keramischen Schaum bestehen.
  • Die Widerstandsheizelemente und/oder ihre Verbindungen können in Nuten des Filterkörpers aus porösem Filtermaterial untergebracht sein, jedoch können sie auch in Nuten der Abdeckplatte untergebracht sein oder zugleich in Nuten sowohl des Filterkörpers als auch der Abdeckplatte angeordnet sein.
  • Dabei ist es vorteilhaft, daß die Widerstandsheizelemente und/oder ihre Verbindungen über die Endstopfen von Filterauslaßkanälen geführt sind, und die Widerstandsheizelemente und/oder ihre Verbindungen können auf der Eingangsseite des Filterkörpers mäanderförmig gebogen angeordnet sein, wobei sie Rechteckquerschnitt haben können.
  • Für eine Filteranordnung mit stirnseitig am Filterkörper angeordneten Heizelementen, insbesondere mit in einzelnen Heizzonen angeordneten Heizelementen, ist in vorteilhafter Ausgestaltung der Erfindung vorgesehen, daß die freien Enden des Heizleiters über ein Anschlußelement jeweils mit einer mit Abstand über die Stirnfläche geführten Zuleitung bzw. Ableitung verbunden sind. Eine derartige Ausgestaltung hat den Vorteil, daß die aus jeweils mehreren parallel zueinander verlaufenden Heizdrähten mit den jeweils im Endbereich quer hierzu verlaufenden Zu- bzw. Ableitungen ein stabiles Heizelement gebildet wird, das eine zuverlässige Positionierung der Heizdrähte ermöglicht, auch dann, wenn die Filteranordnung, wie beispielsweise in einem Kraftfahrzeug, Erschütterungen ausgesetzt ist.
  • In zweckmäßiger Ausgestaltung ist vorgesehen, daß das Anschlußelement jeweils durch ein parallel zur Strömungsrichtung gegen die Stirnfläche des Filterkörpers geführtes Rohr aus elektrisch leitendem Material besteht, dessen eines Ende fest mit der Zuleitung bzw. Ableitung und dessen anderes Ende fest mit dem freien Heizdrahtende verbunden ist. Hierdurch ist es möglich, ein aus Zuleitung bzw. Ableitung und Anschlußelement gebildetes starres Bauteil zu schaffen, das unmittelbar bis an die Stirnfläche des Filterkörpers herangeführt werden kann und so zu einer Verbesserung der Fixierung der schlaufenförmig gebogenen Heizdrahtstücke in den Filterkanälen führt. Mit dem so geschaffenen starren Anschlußstück wird der Anschluß eng beieinander liegender Heizleiter verschiedener Bereiche ohne die Gefahr eines Kurzschlusses durch Verbiegen der Anschlußstücke bei Erhitzen ermöglicht.
  • Die Verbindung zwischen dem Anschlußstück und dem gegen die Filterstirnfläche geführten Rohr kann in einfacher Ausgestaltung durch Einpressen des Heizleiters erfolgen. Eine hohe thermische Belastung an der mechanisch durch Schwingungen stark belasteten Einspannstelle bei der Fertigung, wie es bei einem Anschweißen des Heizleiters auftreten kann, wird so vermieden. Auch ist ein Einlöten von der Oberseite des Filters her möglich.
  • Um ein Auswandern der Heizschlaufen zwischen den Anschlußstellen sicher zu vermeiden, werden die Schlaufen zwischen den starren Anschlußstücken zumindest in gewissen Abständen zusätzlich fixiert. Infolge der unterschiedlichen Wärmedehnkoeffizienten des Heizleitermaterials und der Filterkeramik ist eine feste Verbindung, wie sie z.B. beim Kleben des Heizleiters mit keramischen Klebern entstehen würde, nicht möglich. Der Heizleiter sollte auch nicht fest eingespannt werden, da dies infolge der Vibrationen langfristig zu einem Materialabrieb des Heizleiters führen könnte. Zudem führt eine feste Verbindung zwischen Heizleiter und Filtermaterial zu einem an dieser Stelle schlechteren Wärmeübergang, wodurch der Draht örtlich überhitzt würde.
  • In Ausgestaltung der Erfindung ist daher vorgesehen, die Heizleiter auf der Filterstirnfläche zumindest zu einem Teil durch Öffnungen, die nach oben verschlossen sind, zu führen. Diese Öffnungen sind so gestaltet, daß sich der Heizleiter mit einem gewissen Spiel darin bewegen kann, so daß eine mechanische Beanspruchung durch Krafteinwirkung weitgehend vermieden wird. Der Wärmeübergang an die Umgebung wird nicht durch die isolierende Wirkung der Keramik begrenzt, so daß die Heizleitertemperatur in der Öffnung nicht ansteigt.
  • Die Öffnungen können durch in Laufrichtung oder senkrecht zur Laufrichtung der Heizschlaufen in die Filterstirnfläche eingebrachte Nuten gebildet sein, in die die Heizleiter eingelegt sind.
  • Werden in Laufrichtung der Heizleiter mehrere kurze Nuten schräg in die Filterstirnfläche eingebracht, so sind die Nuten fertigungsmäßig weitgehend oben geschlossen. Ein mögliches seitliches Auswandern wird durch die jeweils gegenläufig schräge Nut im weiteren Verlauf verhindert. Bei senkrechtem Einbringen der Nut kann diese nach Einsetzen des Heizleiters oben verschlossen werden. Dies kann durch die auf der Filterstirnfläche angeordnete gasdurchlässige Abdeckung erfolgen. Im Bereich der Anschlußenden der Heizleiter wird die Abdeckung durchbohrt. Es ist daher auch möglich, nur einen Teil der Nutlänge bei Nuten in Richtung der Heizleiter bzw. einen Teil der Nuten bei Nuten quer zur Richtung der Heizleiter etwa in der Mitte zwischen den Anschlußenden oben zu verschließen. Dann ist es ausreichend, einige Stege aus gasdurchlässigen Platten quer zur Laufrichtung der Heizleiter auf der Filterstirnfläche z.B. durch Festkitten auf den Stopfen des Wabenfilters zu fixieren. Auch ist es dann möglich, einige dünne Stege aus keramischem gasundurchlässigen Material, z.B. dünne Röhrchen, die mit ihrem Querschnitt die Filterkanäle nicht wesentlich verschließen, quer zur Laufrichtung der Heizleiter auf den Stopfen der Wabenstruktur zu führen, so daß wiederum die Nuten zu einem Teil verschlossen sind.
  • Dieselbe Ausbildung der Öffnungen kann aber auch durch entsprechend in der Abdeckplatte bzw. in den Stegen angeordnete Nuten bei unbearbeiteter Filterstirnfläche erzeugt werden. Die Erfindung wird anhand der Zeichnungen näher erläutert.
  • Fig. 1
    zeigt einen Längsschnitt durch eine Filteranordnung.
    Fig. 2
    zeigt eine Teilaufsicht auf den Filterkörper in der Ausführungsform Gemäß Fig. 1
    Fig. 3
    zeigt einen Längsschnitt durch eine Filteranordnung mit Nuten in der Stirnfläche des Filterkörpers quer zur Laufrichtung der Heizleiter und poröser Abdeckung.
    Fig. 4
    zeigt eine Teilaufsicht auf den Filterkörper in der Ausführungsform gemäß Fig. 3
    Fig. 5
    zeigt einen Längsschnitt durch eine weitere Ausführungsform einer Filteranordnung mit Nuten in der Stirnfläche des Filterkörpers quer zur Laufrichtung der Heizleiter und elektrisch leitenden Schienen in den Nuten.
    Fig. 6
    zeigt eine Teilaufsicht auf den Filterkörper in der Ausführungsform gemäß Fig. 5.
    Fig. 7
    zeigt einen Längsschnitt durch eine Filteranordnung mit poröser Abdeckung auf der Stirnfläche des Filterkörpers und Nuten in der Abdeckung.
    Fig. 8
    zeigt einen ersten Längsschnitt durch eine Filteranordnung mit abwechselnd gegenläufig schräg angeordneten Nuten.
    Fig. 9
    zeigt einen weiteren Längsschnitt durch eine Filteranordnung mit abwechselnd gegenläufig schräg angeordneten Nuten entsprechend Fig. 8, wobei der Schnitt seitlich verschoben ist.
    Fig. 10
    zeigt einen Längsschnitt durch eine Filteranordnung mit Nuten in der porösen Abdeckung des Filterkörpers.
    Fig. 11
    zeigt eine Aufsicht auf den Filterkörper in der Ausführungsform gemäß Fig. 10.
    Fig. 12
    zeigt eine Teilaufsicht auf eine in mehrere Heizzonen unterteilte Filteranordnung.
  • In Fig. 1 ist die Unterbringung und Befestigung eines Widerstandsheizelements in einer Filteranordnung der eingangs bezeichneten Art erkennbar. Das Widerstandsheizelement besteht im wesentlichen aus einem schlaufenförmig gebogenen Heizdraht 1, dessen Schlaufen in die Eintrittsöffnungen von Filterkanälen 2 eines als Wabenfilter ausgebildeten Filterkörpers 3 eingesteckt sind. Es ist auch möglich, den Heizdraht so zu gestalten, daß nur die im Kanal angeordneten Schlaufen aus Heizleitermaterial bestehen, während die Verbindungen zwischen den einzelnen Heizleitern aus Material geringeren elektrischen Widerstandes bestehen. Die Filterkanäle 2 werden vom Abgasstrom in Richtung von Pfeil 18 durchströmt. Die Schlaufen des Heizdrahtes 1 sind, wie Fig. 2 erkennen läßt, diagonal in die einen quadratischen Querschnitt aufweisenden Filterkanäle 2 eingesteckt, so daß ein Heizdrahtstück, wie Fig. 2 ebenfalls zeigt, mehrere nebeneinanderliegende Filterkanäle 2 überdeckt. Zur Fixierung des Heizdrahtes 1 in den einzelnen Filterkanälen 2 ist er so gebogen, daß er jeweils an der Wand 4 des betreffenden Filterkanals 2 anliegt.
  • Die Enden 5 und 6 des Heizdrahtes 1 werden aus der Eintrittsöffnung des jeweiligen Filterkanals herausgeführt und sind oberhalb der Stirnfläche 7 des Filterkörpers 3 über Anschlußstücke 8, 9 mit einer Zuleitung 17 bzw. einer entsprechenden Ableitung (hier nicht dargestellt) verbunden. Die Anschlußstücke 8, 9 sind hierbei so gestaltet, daß sie die Heizdrahtenden 5 und 6 in den Filterkanälen fixieren. Zu diesem Zweck sind Anschlußleitungen 10 und 11 aus einem formstabilen, elektrisch leitenden Material, beispielsweise einem dünnwandigen Rohr, hergestellt. Die Zuleitung 17 und entsprechend auch die zugehörige Ableitung wird dann jeweils durch die Wand des Filtergehäuses 12 hindurchgeführt, in dem der Filterkörper 3 mittels einer Einpackmatte 13 festgesetzt ist. Zur Vermeidung eines elektrischen Kontaktes zwischen der Zuleitung 17 und dem (geerdeten) Filtergehäuse 12 ist eine Isolierung 14 aus keramischem Material eingesetzt. Da die die Anschlußstücke 8, 9 bildenden Leitungen dünnwandige Rohrstücke sind, in die die freien Enden 5 und 6 des Heizdrahtes eingesteckt und mit ihnen verbunden sind, ist zudem sichergestellt, daß ein Kontakt mit dem benachbarten Anschluß 15 eines eine andere Heizzone bildenden Widerstandsheizelementes 16 vermieden ist.
  • Die Länge des Heizdrahtes ist nicht beliebig wählbar, sondern durch den spezifischen Widerstand des Materials, den Querschnitt und durch die für die Erzielung der Zündtemperatur erforderliche Oberflächenleistung sowie durch die zur Verfügung stehende elektrische Energie bestimmt. Somit ist die Anzahl der durch ein Heizdrahtelement überdeckten Filterkanäle 2 konstant, so daß, wie Fig. 2 zeigt, die gesamte Stirnfläche des Filterkörpers mit Rücksicht auf die zur Verfügung stehende elektrische Leistung in mehrere getrennte Heizzonen unterteilt ist.
  • In einer Teilaufsicht zeigt Fig. 2 die Stirnfläche 20 eines keramischen Wabenfilterkörpers mit Eintrittskanälen 22 und den die Filteraustrittskanäle zur Einlaßseite hin abschliessenden Filterstopfen 23. Bei der dargestellten Ausführungsform überdeckt jeweils ein Heizdraht 25 mit seinen Schlaufen neun Eintrittskanäle 22. Jeweils acht bis zehn Heizdrähte 25 sind über Stromanschluß 28 und Masseanschlüsse 27 zu einer Heizzone 26 zusammengeschaltet. Die Masse 27 ist allen Heizzonen 26 gemeinsam, während die Stromzufuhr für jede Heizzone 26 einzeln einschaltbar ist (nicht dargestellt). Die einzelnen Widerstandsheizelemente sind so ausgebildet, daß die Stirnfläche des Filterkörpers 3 in dreieckige und viereckige, vorzugsweise rechteckige, Heizzonen aufgeteilt ist. Da die einzelnen Heizzonen aneinandergrenzen, stehen alle Eintrittskanäle 22 mit einem Heizelement in Verbindung. Die Heizzonen 26 mit jeweils acht bis zehn Heizdrähten 25 decken bei der gezeigten Ausführungsform nahezu alle Filterkanäle ab, so daß der Filter durch sequentielle Stromzufuhr zu den einzelnen Heizzonen regeneriert werden kann.
  • In der in Fig. 3 dargestellten Ausführungsform sind die Widerstandsheizdrähte 1 in Nuten 51, die senkrecht zur Laufrichtung der Heizdrähte 1 in der Stirnfläche des Filters ausgebildet sind, angeordnet. Die Nuten 51 sind dabei so breit, daß die Wände der Filterkanäle 2 angeschnitten werden und die Heizdrähte 1 in das Filter eingelassen werden können, wie aus Fig. 4 zu ersehen ist. Der Vorteil der Führung der Nuten 51 senkrecht zur Laufrichtung der Heizdrähte 1 ist, daß die mechanische Bearbeitung der Filterstirnfläche überwiegend im Bereich der Filterstopfen erfolgt. Die Nuten 51 werden so tief in die Filterstirnfläche eingearbeitet, daß die Heizdrähte 1 nicht über die Stirnfläche hinausragen. Zur Fixierung der Heizdrähte 1 in den Nuten 51 wird oberhalb der Heizdrähte 1 eine Abdeckung 52 aus einem wärmebeständigen, gasdurchlässigen elektrisch nicht leitenden Material, z.B. keramischem Schaum, auf der Filterstirnfläche angebracht. Die Abdeckung 52 braucht nicht die gesamte Filterstirnfläche zu überdecken. Es ist ausreichend, wenn die Heizdrähte 1 an einigen Stellen zusätzlich im Filtermaterial festgehalten werden, um ein Auswandern zu vermeiden.
  • Die in die Filterstirnfläche senkrecht zur Laufrichtung der Heizdrähte eingebrachten Nuten 53 entsprechend der Darstellung in den Fig. 5 und 6 können auch mit elektrisch leitenden Schienen 54, an denen die einzelnen Heizschlaufen 1 angebracht sind, nach oben verschlossen werden. Besonders vorteilhaft ist hier ein geringer elektrischer Widerstand im Bereich der Übergänge zwischen den Heizschlaufen, wodurch die erzeugte Wärme hier besonders gering ist. Durch die im Keramikmaterial fixierten Schienen werden die Heizleiter im Filtermaterial festgehalten. Die Schienen 54 brauchen nicht die gesamte Filterstirnfläche zu überdecken. Es ist ausreichend, wenn die Heizleiter 1 mit einigen Schienen an einigen Stellen zusätzlich im Filtermaterial festgehalten werden, um ein Auswandern zu vermeiden.
  • Eine entsprechende Halterung der Heizleiter 1 auf der Filterstirnfläche wird erreicht, wenn Nuten 55, wie in Fig. 7 dargestellt, in eine Abdeckung 56 aus einem wärmebeständigen, gasdurchlässigen, elektrisch nicht leitenden Material, z.B. keramischem Schaum, eingebracht werden. Der wesentliche Vorteil bei dieser Ausführungsform liegt in der leichteren Herstellung der Nuten 55, insbesondere wenn die Abdeckung 56 durch ein gießtechnisches Verfahren hergestellt wird. Die Nuten 55 können dann schon beim Gießen der Abdeckung 56 berücksichtigt werden, so daß eine nachträgliche Bearbeitung entfällt.
  • Bei der in den Figuren 8 und 9 dargestellten Ausführungsform ist der Filterkörper 3 an der Stirnfläche 20 mit abwechselnd gegenläufig schräg angeordneten Nuten 47, 48 versehen, die zweckmäßigerweise in die die Austrittskanäle verschließenden Stopfen 31 eingearbeitet sind. Fig. 8 zeigt dabei einen ersten Längsschnitt, während Fig. 9 ein zweiter Längsschnitt ist, der gegenüber Fig. 8 in der Filterstirnfläche seitlich verschoben ist. Der Vorteil dieser Maßnahme ist, daß der Widerstandsheizdraht 1 jeweils in abwechselnd geneigten Nuten 47 und 48 untergebracht ist, so daß er gleichsam "eingehakt" ist und keine weitere Fixierung benötigt.
  • In Fig. 10 ist eine weitere Ausführungsform und Anordnung der Widerstandsheizelemente auf der Filterstirnfläche dargestellt. Zur besseren Darstellung der Anordnung sind die Filterkanäle 32a, 32b übertrieben groß dargestellt. In Fig. 10 und der zugehörigen Stirnansicht in Fig. 11 ist daher nur eine Heizzone schematisch dargestellt.
  • Auf der Stirnfläche 33 des als Wabenfilter ausgebildeten keramischen Filterkörpers 30 ist quer über die Filterstopfen 31 verlaufend ein in der Ebene der Stirnfläche 33 mäanderförmig gebogener Heizdraht 34a, 34b angeordnet. Um einen geringen Strömungswiderstand bei großer wärmeübertragender Fläche zu erreichen, hat der Heizdraht 34a, 34b einen rechteckigen Querschnitt, und er ist hochkant auf der Stirnfläche 33 angeordnet. Auch andere Querschnittsformen für den Heizdraht mit großer Wärmeübertragungsfläche sind möglich. Beispielsweise können Widerstandsheizleiter mit Wärmeübertragungsrippen vorgesehen werden. Auch ist es möglich, mehrere Heizdrähte mit rundem Querschnitt übereinander anzuordnen. Um Wärmeverluste des Heizdrahtes 34a, 34b an das Filtergehäuse 37 und hier nicht eingezeichnete benachbarte Filterbereiche durch Wärmestrahlung zu vermeiden, ist oberhalb des Heizdrahtes 34 eine gasdurchlässige keramische Abdeckplatte 35 in einer Strömungskanäle definierenden Gitterstruktur angeordnet, die die gegen die Abgasströmung gerichtete Strahlung des Heizdrahtes 34a, 34b absorbiert und durch konvektiven Wärmeübergang mit dem Abgasmassenstrom, dargestellt durch die Pfeile 36 und 39, dem Heizbereich wieder zuführt. Die Abdeckplatte 35 kann aber auch aus anderem Material mit anderer Struktur, beispielsweise aus offenporigem, also gasdurchlässigem keramischen Schaum, gebildet sein. Wesentlich ist jedoch, daß das Material strahlungsabsorbierend ist. Die Abdeckplatte 35 und der Filterkörper 30 sind mit einer Einpackmatte 38 in das Filtergehäuse 37 eingesetzt. Die Abdeckplatte 35 kann so ausgeführt sein, daß sie gleichzeitig den Heizdraht 34a, 34b mechanisch auf der Stirnfläche 33 durch Pressung fixiert. Zusätzlich kann die dem Heizdraht 34a, 34b zugekehrte Seite der Abdeckplatte 35 mit einer der Mäanderform angepaßten Nutkontur versehen sein, die die exakte Ausrichtung des Heizdrahtes 34a, 34b zum Filterkörper 30 fixiert.
  • Der Abgasmassenstrom, dargestellt durch die Pfeile 36 und 39, kann bei der gezeigten Anordnung mit geringem Strömungswiderstand an dem Heizdraht 34a, 34b vorbei in die Filterkanäle 32a strömen. Zur Filterregeneration wird der Heizdraht 34a, 34b über eine nicht dargestellte Schalteinrichtung an eine Stromquelle E angeschlossen. Hierdurch wird der Ruß im Kontakbereich zwischen dem Filterkörper 30 und dem Heizdraht 34a, 34b gezündet, so daß anschließend die Rußablagerung in die Fitlerkanäle 32a hinein selbsttätig abbrennt.
  • Auch bei dieser Ausführungsform ist es wieder notwending, daß zur Erzeugung der Zündtemperatur erforderliche elektrische Energie an die über die Fahrzeuglichtanlage zur Verfügung stehende elektrische Leistung angepaßt ist. Dementsprechend sind auch hier, wie die Aufsicht gem. Fig. 12 zeigt, mehrere unterschiedliche Heizzonen definierende Widerstandsheizelemente 40 auf der Stirnfläche 41 eines Filterkörpers 42 angeordnet. Die in Fig. 11 dargestellte Abdeckplatte 35 ist hierbei abgenommen. Die jeweils mit einem Widerstandsheizelement beaufschlagte Heizzone ist wegen des größeren Querschnittes des Heizdrahtes bei dieser Ausführungsform größer und umfaßt daher die in Fig. 12 gezeigte Anordnung von rechteckigen und dreieckigen Heizzonen 45 bzw. 46. Die Widerstandsheizelemente sind hierbei so ausgelegt, daß die dreieckigen Heizzonen 46 die halbe Größe der rechteckigen Heizzonen 45 aufweisen, so daß je zwei hintereinander geschaltete, eine dreieckige Heizzone 46 überdeckende Heizelemente den gleichen elektrischen Widerstand aufweisen, wie ein eine rechteckige Heizzone 45 überdeckendes Heizelement. Auch bei dieser Anordnung sind die einzelnen Heizelemente über eine nicht dargestellte Schalteinrichtung einzeln an die Stromzufuhr zu und abschaltbar, so daß die gesamte Filterfläche durch nacheinanderfolgendes Zu- und Abschalten der einzelnen Heizelemente regeneriert werden kann.
  • Die in die Beschreibung, die Ansprüche und die Zusammenfassung gegenwärtig oder in einem späteren Zeitpunkt eingesetzten Bezugsziffern dienen ausschließlich der Erleichterung der Lesbarkeit. Sie sollen keinesfalls in irgendeiner Weise den Schutzumfang einschränken.

Claims (18)

  1. Filteranordnung zum Entfernen von Rußpartikeln aus Abgasen einer Verbrennungskraftmaschine, insbesondere eines Dieselmotors, mit wenigstens einem durch wabenförmig zueinander angeordnete Filterkanäle (2) gebildeten Filterkörper (3) aus einem porösen Filtermaterial, wobei im Bereich der Eintrittsöffnungen (22) der gaseintrittsseitig offenen Filterkanäle (2) elektrische Widerstandsheizelemente (1) angeordnet sind, die über eine Zuleitung (17) und eine Ableitung mit einer Stromversorgung (SW) verbunden sind, und die jeweils im Bereich der Eintrittsöffnungen (22) der Filterkanäle (2) als mehreren Eintrittsöffnungen (22) zugeordnete, schlaufenförmig in die Filterkanäle (2) hineinragende elektrische Widerstandsheizelemente (1) ausgebildet sind, dadurch gekennnzeichnet, daß die elektrischen Verbindungen der Schlaufen der Widerstandsheizelemente (1) zwischen den einzelnen Filterkanälen (2) in Nuten (51, 53, 55, 47, 48) des Filterkörpers (3) oder einer gasdurchlässigen Abdeckung (56) eingesetzt sind.
  2. Filteranordnung nach Anspruch 1, dadurch gekennzeichnet, daß die Verbindungen der Widerstandsheizelemente (1) in Nuten (51, 53, 55, 47, 48) fest untergebracht sind, während die Widerstandsheizelemente (1) frei beweglich sind.
  3. Filteranordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Nuten (47, 48) in der Filterstirnfläche (20) abwechselnd gegenläufig schräg ausgebildet sind, so daß die Widerstandsheizelemente (1) zur Fixierung eingehakt werden können.
  4. Filteranordnung nach einem der Ansprüche 1-3, dadurch gekennzeichnet, daß zumindest ein Teil der Nuten (47, 48) in den Filterkanälen (2) nach dem Einsetzen der Widerstandsheizelemente (1) nach oben verschlossen ist.
  5. Filteranordnung nach Anspruch 4, dadurch gekennzeichnet, daß die Widerstandsheizelemente (1) vor dem Verschließen der Nuten (47, 48) mit einem Material ummantelt sind, das bei Erhitzen der Widerstandsheizelemente (1) abbrennt oder verdampft, so daß keine kraftschlüssige Verbindung zwischen den Widerstandsheizelementen (1) und dem Filter besteht.
  6. Filteranordnung nach einem der Ansprüche 1-5, dadurch gekennzeichnet, daß in Strömungsrichtung (36, 39) der Abgase vor den Widerstandsheizelementen (1) eine gasdurchlässige Abdeckplatte (35) angeordnet ist.
  7. Filteranordnung nach Anspruch 6, dadurch gekennzeichnet, daß die Abdeckplatte (35) aus einem Material mit geringer Wärmeleitfähigkeit besteht.
  8. Filteranordnung nach einem der Ansprüche 6 oder 7, dadurch gekennzeichnet, daß die Abdeckplatte (35) durch eine Strömungskanäle definierende Gitterstruktur gebildet ist.
  9. Filteranordnung nach einem der Ansprüche 6 oder 7, dadurch gekenzeichnet, daß die Abdeckplatte (35) aus offenporigem keramischen Schaum besteht.
  10. Filteranordnung nach einem der Ansprüche 1-9, dadurch gekennzeichnet, daß die Widerstandsheizelemente (1) und/oder ihre Verbindungen in Nuten (51, 53, 47, 48) des Filterkörpers (3) aus porösem Filtermaterial untergebracht sind.
  11. Filteranordnung nach einem der Ansprüche 1-10, dadurch gekennzeichnet, daß die Widerstandsheizelemente (1) und/oder ihre Verbindungen in Nuten (55) der Abdeckplatte (35) untergebracht sind.
  12. Filteranordnung nach einem der Ansprüche 1-11, dadurch gekennzeichnet, daß die Widerstandsheizelemente (1) und/oder ihre Verbindungen über die Endstopfen (31) von Filterauslaßkanälen geführt sind.
  13. Filteranordnung nach einem der Ansprüche 1-12, dadurch gekennzeichnet, daß die Widerstandsheizelemente (1) und/oder ihre Verbindungen auf der Eingangsseite des Filterkörpers (3) mäanderförmig gebogen sind.
  14. Filteranordnung nach einem der Ansprüche 1-13, dadurch gekennzeichnet, daß die Widerstandsheizelemente (1) und/oder ihre Verbindungen Rechteckquerschnitt haben.
  15. Filteranordnung nach einem der Ansprüche 1-14, dadurch gekennzeichnet, daß die Nuten (51, 53, 55, 47, 48) quer zur Laufrichtung der Widerstandsheizelemente (1) verlaufen und mit elektrisch leitendem Material ausgefüllt sind, so daß der elektrische Widerstand der Widerstandsheizelemente (1) im Bereich der Nuten (51, 53, 55, 47, 48) gegenüber dem Bereich der Filterkanäle geringer ist.
  16. Filteranordnung nach einem der Ansprüche 6-15, dadurch gekennzeichnet, daß auf der Filterstirnfläche (7) die zumindest einen Teil der Verbindungen der Widerstandsheizelemente (1) in den Kanälen (2) überdeckende gasdurchlässige Abdeckung (35) so mit Nuten (55) versehen ist, daß die elektrischen Verbindungen zwischen den Schlaufen der Widerstandsheizelemente (1) zwischen den einzelnen Kanälen (2) in den Nuten (55) der gasdurchlässigen Abdeckung (35) auf der Stirnfläche (7) des Filterkörpers (3) liegen.
  17. Filteranordnung nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, daß die freien Enden (5, 6) der Widerstandsheizelemente (1) über ein Anschlußelement (8, 9, 10, 11) jeweils mit einer mit Abstand über die Stirnfläche (7) des Filterkörpers (3) geführten Zuleitung (17) bzw. Ableitung verbunden sind.
  18. Filteranordnung nach Anspruch 17, dadurch gekennzeichnet, daß das Anschlußelement durch ein parallel zur Strömungsrichtung (18) gegen die Stirnfläche (7) des Filterkörpers (3) geführtes Rohr (10, 11) aus elektrisch leitendem Material gebildet ist, dessen eines Ende fest mit der Zuleitung (17) bzw. Ableitung und dessen anderes Ende fest mit dem freien Heizdrahtende (5, 6) des Widerstandsheizelementes (1) verbunden ist.
EP88105338A 1987-04-11 1988-04-02 Filteranordnung zum Entfernen von Russpartikeln aus Abgasen einer Verbrennungskraftmaschine Expired - Lifetime EP0286932B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88105338T ATE77441T1 (de) 1987-04-11 1988-04-02 Filteranordnung zum entfernen von russpartikeln aus abgasen einer verbrennungskraftmaschine.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3712333 1987-04-11
DE19873712333 DE3712333A1 (de) 1987-04-11 1987-04-11 Regenerierbare filteranordnung zum entfernen von russpartikeln aus abgasen

Publications (3)

Publication Number Publication Date
EP0286932A2 EP0286932A2 (de) 1988-10-19
EP0286932A3 EP0286932A3 (en) 1989-01-11
EP0286932B1 true EP0286932B1 (de) 1992-06-17

Family

ID=6325434

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88105338A Expired - Lifetime EP0286932B1 (de) 1987-04-11 1988-04-02 Filteranordnung zum Entfernen von Russpartikeln aus Abgasen einer Verbrennungskraftmaschine

Country Status (4)

Country Link
US (1) US4872889A (de)
EP (1) EP0286932B1 (de)
AT (1) ATE77441T1 (de)
DE (2) DE3712333A1 (de)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4979364A (en) * 1988-03-11 1990-12-25 Fleck Carl M Diesel fuel exhaust gas filter
DE3830977A1 (de) * 1988-09-12 1990-03-15 Fev Motorentech Gmbh & Co Kg Filteranordnung zum entfernen von russpartikeln aus abgasen einer verbrennungskraftmaschine
DE3838589C1 (de) * 1988-11-14 1989-12-28 Voest-Alpine Automotive Ges.M.B.H., Linz, At
DE3914758A1 (de) * 1989-05-05 1990-11-08 Mann & Hummel Filter Russfilter zur reinigung des abgastroms einer brennkraftmaschine
JP3147372B2 (ja) * 1990-10-10 2001-03-19 株式会社日本自動車部品総合研究所 排気ガス微粒子捕集用フィルタ
JPH04179818A (ja) * 1990-11-14 1992-06-26 Nippon Soken Inc 排気ガス微粒子浄化装置
JP3000750B2 (ja) * 1991-09-20 2000-01-17 株式会社デンソー 自己発熱型フィルタ
US5228891A (en) * 1992-01-07 1993-07-20 Pall Corporation Regenerable diesel exhaust filter
US5470364A (en) * 1992-01-07 1995-11-28 Pall Corporation Regenerable diesel exhaust filter
US5457945A (en) * 1992-01-07 1995-10-17 Pall Corporation Regenerable diesel exhaust filter and heater
US5250094A (en) 1992-03-16 1993-10-05 Donaldson Company, Inc. Ceramic filter construction and method
DE4209213A1 (de) * 1992-03-21 1993-09-23 Fev Motorentech Gmbh & Co Kg Filteranordnung zum entfernen von russpartikeln aus abgasen einer verbrennungskraftmaschine
US5224973A (en) * 1992-04-20 1993-07-06 Donaldson Company, Inc. Filter cartridge for trap apparatus
SE470136B (sv) * 1992-04-22 1993-11-15 Sandvik Ab Anordning vid katalysatorenhet för förbränningsmotor innefattande en elektriskt värmd metalltråd
DE4230667C1 (de) * 1992-09-14 1994-03-31 Energietechnik Bremen Gmbh Partikelfilter für eine Gasströmung
US5655212A (en) * 1993-03-12 1997-08-05 Micropyretics Heaters International, Inc. Porous membranes
JPH0949421A (ja) * 1995-05-30 1997-02-18 Sumitomo Electric Ind Ltd ディーゼルエンジン用パティキュレートトラップ
DE19530749A1 (de) * 1995-08-22 1997-03-06 Hjs Fahrzeugtechnik Gmbh & Co Vorrichtung zum Entfernen von Rußpartikeln aus Abgasen
FR2760531B1 (fr) * 1997-03-07 1999-04-16 Inst Francais Du Petrole Dispositif destine a detecter l'encrassement et a chauffer localement un milieu isolant
EP1113154A3 (de) * 1999-12-30 2003-12-03 Faurecia Abgastechnik GmbH Russfilter für Dieselfahrzeuge
DE10029978A1 (de) * 2000-06-26 2002-01-10 Zeuna Staerker Kg Vorrichtung zur Nachbehandlung von Dieselabgasen
DE10127223A1 (de) * 2001-05-22 2003-01-23 Ego Elektro Geraetebau Gmbh Heizungseinrichtung für Filterelemente eines Partikelfilters und Partikelfilter
US20020179523A1 (en) * 2001-05-29 2002-12-05 Quackenbush Mark S. Burping filter
DE10151425A1 (de) * 2001-10-18 2003-04-30 Opel Adam Ag Partikelfilter zum Reinigen von motorischen Abgasen
DE10210950A1 (de) * 2002-03-13 2003-09-25 Opel Adam Ag Rußfilter mit Umkehr der Abgasströmungsrichtung
DE10300717A1 (de) * 2003-01-08 2004-07-22 E.G.O. Elektro-Gerätebau GmbH Halterung für einen dünnen Rohrheizkörper in einem Filter
DE10300718A1 (de) * 2003-01-08 2004-07-22 E.G.O. Elektro-Gerätebau GmbH Heizungseinrichtung für einen Filter, insbesondere einen Dieselrußfilter
DE10308675A1 (de) * 2003-02-28 2004-09-09 Adam Opel Ag Regenerierbares Partikelfilter
DE10321975A1 (de) * 2003-05-15 2004-12-02 BSH Bosch und Siemens Hausgeräte GmbH Reinigungsgerät, insbesondere Staubsauger, mit einer Keramikfiltereinrichtung
JP2007283755A (ja) * 2006-03-23 2007-11-01 Ngk Insulators Ltd 目封止ハニカム構造体の製造方法及び目封止ハニカム構造体
JP4023514B1 (ja) * 2006-09-07 2007-12-19 日新電機株式会社 粒子状物質除去装置
US7862635B2 (en) * 2007-02-12 2011-01-04 Gm Global Technology Operations, Inc. Shielded regeneration heating element for a particulate filter
US7931715B2 (en) * 2007-02-12 2011-04-26 Gm Global Technology Operations, Inc. DPF heater attachment mechanisms
US8484953B2 (en) * 2007-06-15 2013-07-16 GM Global Technology Operations LLC Electrically heated particulate filter using catalyst striping
US8763378B2 (en) * 2007-06-15 2014-07-01 GM Global Technology Operations LLC Electrically heated particulate filter embedded heater design
US8291694B2 (en) * 2007-06-15 2012-10-23 GM Global Technology Operations LLC Electrically heated particulate filter enhanced ignition strategy
US8388741B2 (en) * 2007-08-14 2013-03-05 GM Global Technology Operations LLC Electrically heated particulate filter with reduced stress
US8112990B2 (en) 2007-09-14 2012-02-14 GM Global Technology Operations LLC Low exhaust temperature electrically heated particulate matter filter system
US8156737B2 (en) * 2007-09-18 2012-04-17 GM Global Technology Operations LLC Elevated exhaust temperature, zoned, electrically-heated particulate matter filter
DE102008050019B4 (de) 2007-10-04 2020-07-09 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) System und Verfahren zur variablen Leistungsverteilung für zonenweise Regeneration eines elektrisch beheizten Partikelfilters
US8146350B2 (en) 2007-10-04 2012-04-03 GM Global Technology Operations LLC Variable power distribution for zoned regeneration of an electrically heated particulate filter
DE102008039589B4 (de) * 2007-10-22 2013-05-29 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Auslegung eines elektrisch beheizten Katalysators mit eingebetteter Heizvorrichtung
US20100095657A1 (en) * 2008-10-21 2010-04-22 Gm Global Technology Operations, Inc. Electrically heated diesel particulate filter (dpf)
EP3195929B1 (de) * 2009-02-27 2019-09-25 Inventys Thermal Technologies Inc. Fluidkontaktor mit paralleler durchflussstruktur
EP3153223A1 (de) 2010-08-27 2017-04-12 Inventys Thermal Technologies Inc. Adsorptive gastrennung mit einer wärmeleitenden struktur
US10315159B2 (en) 2010-08-27 2019-06-11 Inventys Thermal Technoogies Inc. Method of adsorptive gas separation using thermally conductive contactor structure
DE102011050443A1 (de) 2011-05-17 2012-11-22 Fev Gmbh Regeneration eines Filters zur Behandlung von Verbrennungsabgas
AU2012278892B2 (en) 2011-07-02 2017-10-26 Inventys Thermal Technologies Inc. System and method for integrated adsorptive gas separation of combustion gases
US10174943B2 (en) 2012-12-31 2019-01-08 Inventys Thermal Technologies Inc. System and method for integrated carbon dioxide gas separation from combustion gases
US10087799B2 (en) * 2015-07-01 2018-10-02 Denso International America, Inc. Exhaust device and method of manufacturing an exhaust device with a thermally enhanced substrate
FR3065029B1 (fr) * 2017-04-07 2019-06-21 Faurecia Systemes D'echappement Dispositif de purification de gaz d'echappement, procede de pilotage correspondant
FR3086973B1 (fr) * 2018-10-05 2021-01-22 Faurecia Systemes Dechappement Dispositif de chauffage de gaz d'echappement, notamment pour un moteur a combustion, comprenant une grille parcourue par du courant electrique
CN113357132B (zh) * 2021-05-13 2023-05-09 沧州达峰化学有限公司 一种具有呼吸模拟进气结构的空压机

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5698517A (en) * 1980-01-09 1981-08-08 Toyota Motor Corp Apparatus for removing fine particles contained in exhaust gas of internal combustion engine
US4276066A (en) * 1980-02-25 1981-06-30 General Motors Corporation Monolith diesel exhaust filter with self-regeneration
JPS6053165B2 (ja) * 1981-03-16 1985-11-25 株式会社豊田中央研究所 内燃機関排気吐煙の捕集装置
US4456457A (en) * 1981-04-28 1984-06-26 Nippon Soken, Inc. Exhaust gas cleaning device for diesel engine
US4373330A (en) * 1981-06-29 1983-02-15 General Motors Corporation Diesel engine dual path exhaust cleaner and burner system
JPS5823187A (ja) * 1981-08-03 1983-02-10 株式会社日本自動車部品総合研究所 セラミツク構造体およびその製造方法
US4505107A (en) * 1981-10-26 1985-03-19 Nippondenso Co., Ltd. Exhaust gas cleaning apparatus
US4512786A (en) * 1982-04-21 1985-04-23 Mazda Motor Corporation Exhaust gas purifying device
JPS58210310A (ja) * 1982-06-01 1983-12-07 Nippon Denso Co Ltd 内燃機関のカ−ボン微粒子浄化装置
JPS5928010A (ja) * 1982-08-05 1984-02-14 Nippon Denso Co Ltd 排気ガス浄化用構造物
US4455823A (en) * 1982-10-20 1984-06-26 General Motors Corporation Diesel exhaust particulate trap with pleated filter
US4548625A (en) * 1984-07-11 1985-10-22 Toyota Jidosha Kabushiki Kaisha Exhaust gas cleaning device for diesel engines
US4695429A (en) * 1985-03-20 1987-09-22 Casco Products Corporation Engine exhaust particulate ignitor construction
DE3529684A1 (de) * 1985-08-20 1987-02-26 Wengenrodt Fa Russfilter fuer dieselmotore

Also Published As

Publication number Publication date
EP0286932A2 (de) 1988-10-19
US4872889A (en) 1989-10-10
EP0286932A3 (en) 1989-01-11
ATE77441T1 (de) 1992-07-15
DE3872025D1 (de) 1992-07-23
DE3712333A1 (de) 1988-10-20

Similar Documents

Publication Publication Date Title
EP0286932B1 (de) Filteranordnung zum Entfernen von Russpartikeln aus Abgasen einer Verbrennungskraftmaschine
DE10027556C1 (de) Leiterplattensteckverbinder
EP0605479B1 (de) Abgaskatalysator
EP0585432B1 (de) Filteranordnung zum entfernen von russpartikeln aus abgasen einer verbrennungskraftmaschine
DE3800723C2 (de)
DE20016803U1 (de) Filtereinrichtung
EP0774055B1 (de) Katalysator
EP0543075A1 (de) Elektrisches Heizelement eines Russfilters
DE3830977A1 (de) Filteranordnung zum entfernen von russpartikeln aus abgasen einer verbrennungskraftmaschine
DE3705979C2 (de)
DE19530749A1 (de) Vorrichtung zum Entfernen von Rußpartikeln aus Abgasen
EP0369985A1 (de) Regenerierbares Partikelfilter für Abgase
EP1375851A1 (de) Plasmareaktor, Verfahren zu dessen Herstellung und Einrichtung zur Behandlung von Abgasen in Verbrennungsmotoren
DE4103653C1 (en) Smoke-burning filter for Diesel engine - has channels with walls made of porous material and electrodes for HV ignition system
EP1225311A2 (de) Filtereinrichtung, insbesondere als Russfilter für Dieselmotorabgase
DE112020006038T5 (de) Wabensubstrat mit einer Elektrode
DE2855382A1 (de) Elektrische heizvorrichtung
DE1139556B (de) Einrichtung zur moeglichst dichten Montage elektrischer Bauelemente in den OEffnungen eines Blocks aus Isoliermaterial
EP1195187B1 (de) Filtereinrichtung
DE4002649A1 (de) Verfahren zum verschliessen einzelner kanaele eines keramischen wabenkoerpers
DE10009938B4 (de) Vorrichtung zum Reinigen von Abgas
DE102019211144A1 (de) Heizvorrichtung für einen Tank für Abgasnachbehandlungsmittel, Tankvorrichtung
DE102018127092A1 (de) Katalysatorkörper, elektrisch beheizbarer Katalysator und Kraftfahrzeug mit einem Katalysator
DE3539881A1 (de) Elektrischer strahlheizkoerper zur beheizung von heizflaechen sowie verfahren und vorrichtung zu seiner herstellung
DE19923228A1 (de) Heizelement zum Beheizen strömender Gase

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT DE FR GB IT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT DE FR GB IT SE

17P Request for examination filed

Effective date: 19890614

17Q First examination report despatched

Effective date: 19891228

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO ROMA S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FR GB IT SE

REF Corresponds to:

Ref document number: 77441

Country of ref document: AT

Date of ref document: 19920715

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3872025

Country of ref document: DE

Date of ref document: 19920723

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ITTA It: last paid annual fee
26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 88105338.3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19970422

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19970429

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980403

EUG Se: european patent has lapsed

Ref document number: 88105338.3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010321

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010406

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010417

Year of fee payment: 14

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021231

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050402