EP0295456A1 - Alarmabschalteinrichtung, insbesondere für Wecker- oder Terminuhren - Google Patents

Alarmabschalteinrichtung, insbesondere für Wecker- oder Terminuhren Download PDF

Info

Publication number
EP0295456A1
EP0295456A1 EP88108105A EP88108105A EP0295456A1 EP 0295456 A1 EP0295456 A1 EP 0295456A1 EP 88108105 A EP88108105 A EP 88108105A EP 88108105 A EP88108105 A EP 88108105A EP 0295456 A1 EP0295456 A1 EP 0295456A1
Authority
EP
European Patent Office
Prior art keywords
signal
alarm
shutdown device
output
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88108105A
Other languages
English (en)
French (fr)
Other versions
EP0295456B1 (de
Inventor
Lothar PÄCHER
Heinz Schiebelhuth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Braun GmbH
Original Assignee
Braun GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6329252&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0295456(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Braun GmbH filed Critical Braun GmbH
Priority to AT88108105T priority Critical patent/ATE62350T1/de
Priority to DE8817240U priority patent/DE8817240U1/de
Publication of EP0295456A1 publication Critical patent/EP0295456A1/de
Application granted granted Critical
Publication of EP0295456B1 publication Critical patent/EP0295456B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C21/00Producing acoustic time signals by electrical means
    • G04C21/16Producing acoustic time signals by electrical means producing the signals at adjustable fixed times
    • GPHYSICS
    • G04HOROLOGY
    • G04GELECTRONIC TIME-PIECES
    • G04G13/00Producing acoustic time signals
    • G04G13/02Producing acoustic time signals at preselected times, e.g. alarm clocks
    • G04G13/021Details

Definitions

  • the invention relates to an alarm shutdown device, in particular for alarm clocks or appointment clocks.
  • the alarm devices which emit an acoustic alarm signal and are contained in alarm clocks or time clocks are usually switched off by the user of the clock by means of a movable switching element which can be actuated by hand, for example a button or a rocker.
  • a movable switching element which can be actuated by hand, for example a button or a rocker.
  • an alarm clock is known from DE-GM 78 27 708, in which a switching rocker extending almost over its entire width is attached to the top of the housing.
  • the switching device for interrupting the alarm signal no longer contains a movable switching element, but only has two so-called sensors, when they are touched simultaneously, for example with a fingertip, the alarm signal is interrupted.
  • the touch sensors can be simple metal wires or - as described in DE-GM 83 12 662 - only consist of a conductive lacquer layer applied to the housing.
  • the user of the clock must also at least touch the alarm clock here in order to achieve the desired interruption of the alarm signal.
  • the user of the watch can interrupt the alarm signal by means of an acoustic signal formed by the human voice or can finally switch it off, so that touching the alarm device is no longer required.
  • the acoustic signal formed by the human voice is received in this alarm device by a microphone, a filter and amplifier unit and a rectifier having reception and signal shaping circuit, the output of which is connected to the input of a monostable multivibrator, which, when the signal level is high enough astable state passes. With this transition, the signal changes at an input of an integrated clock circuit, whereupon this interrupts the transmission of the driver signal for an alarm signal converter.
  • both the microphone and the filter and amplifier unit are therefore connected to their voltage supply only after the start of the alarm signal.
  • a disadvantage of this alarm device is that despite an expansion of the circuit by a high and low pass, which practically only amplifies frequencies around 1000 Hz (range of the fundamental tone of the human voice), external noises caused by various sound sources lead to the alarm signal being switched off before the sleeping person is woken up.
  • Another disadvantage of this alarm device is that the acoustic signal emitted by the user of the watch can inadvertently wake up other people present.
  • a contactless switch which works with an IR transmitter and receiver.
  • the known transmission / reception device designed as a reflection light barrier cannot be used as an alarm shutdown device for a watch, because numerous objects such as, in particular, in the area of action of such an alarm shutdown device a pillow or the sleeper itself is present, which can lead to self-shutdown.
  • this known non-contact switch for an alarm clock or appointment clock all objects with a noticeable reflection of infrared rays would therefore have to be removed from the range of action of the transmitting and receiving device or the clock would have to be set up in an appropriate place.
  • the object of the invention is achieved for an alarm clock according to the preamble of claim 1 by the features contained in the characterizing part.
  • the reception and waveform circuit of the alarm shutdown device is designed as an infrared motion detector. This can, for example, detect the heat radiation emanating from the hand of the user via a receiver or can be designed as a transceiver, in which a transmitter transmitting at a specific frequency is provided, the infrared radiation of which is reflected, for example, by the hand of the user. If a transmitter is provided, the alarm shutdown device works as a reflection motion detector. According to the invention, the alarm switch-off device responds only to a movement within the reception area and points next to one Filter amplifier, a threshold switching stage also a rectifier and differentiating stage.
  • an ultrasonic transmitter and receiver can also be used instead of an infrared receiver or instead of an infrared receiver together with the transmitter.
  • a frequency shift between the transmitted and received signals caused by the Doppler effect can also be evaluated in an ultrasound receiver, since in contrast to the infrared radiation area, the frequency shift due to moving body parts is no longer only negligibly small in the ultrasound range.
  • the differentiating stage is preferably followed by a signal delay stage on the output side or in parallel.
  • the signal delay stage has the effect that the person to be woken up does not interrupt its further transmission when the wake-up signal sounds, by uncontrolled movements which are still half-asleep.
  • the delay period is therefore dimensioned such that a wake-up signal of such a duration is emitted that the person to be woken up is put into an awake state with sufficient certainty.
  • the alarm shutdown device thus only becomes fully operational after a certain delay period.
  • the dynamic modulation range of the filter amplifier can be enlarged by an advantageous dimensioning of the rectifier and differentiating stage so that an additional, automatic gain control is no longer necessary.
  • time-constant reflection signals are, as appropriate tests have shown, by means of this development of the invention of the filter amplifier only fully controlled in the rarest of cases by stationary objects.
  • the arrangement of a signal delay device within the filter amplifier would require complex gain control.
  • Fig. 1 shows a block diagram of an appointment or alarm clock, which is equipped with an alarm shutdown device according to the invention.
  • the modules shown in Fig. 1 partly have the same function as in the alarm shutdown device known from DE-PS 34 04 252.
  • the alarm shutdown device according to the invention works as a motion detector and not as a speech-sensitive switching device. The mode of operation of the alarm shutdown device is described below in connection with the pulse diagram shown in FIG. 2.
  • Reference number 1 denotes a non-stationary reflector for infrared rays emitted by a transmitter 2, for example the moving hand of an awakened person.
  • the full battery voltage is present at connection U. From the connection U, the battery voltage reaches a clockwork 14, a signal generator 12, a lamp driver 9 and a monoflop 8. Ob although the battery voltage is present on all modules 8, 9, 12, 14, only the clockwork 14 is in the active state and consequently requires battery power.
  • a manually operated switch 18 is closed, an automatic wake-up device contained in the circuit of the clockwork 14 is in the ready position. If the time held in the movement 14 reaches the set wake-up time, a second switch (not shown) is closed in this, which is in series with the switch 18.
  • an integrated circuit likewise not shown, in the clockwork 14 is activated, which supplies the signal generator 12 with a wake-up signal A.
  • the signal generator 12 converts the wake-up signal A into an acoustic signal A 'which is intended to wake the sleeping person.
  • the wake-up signal A or acoustic signal A ' consists of a short pulse train of individual pulses with a frequency in the audible range. After a short pause, the first pulse train is followed by a second pulse train. The pulse trains are emitted until the awakened person triggers the alarm shutdown device or the integrated circuit interrupts the wake-up signal by self-shutdown, for example after 128 seconds.
  • the wake-up signal A is fed via a zener diode 19 and a diode 20 to an ON / OFF control stage 13, the circuit diagram of which is shown in FIG. 4.
  • an ON signal is formed, which has the charging curve of the capacitor 41 corresponding to "t" at time t 1 and reaches its maximum voltage value until time t 2.
  • the voltage value reached at time t2 causes transistor 64 (see FIG. 4) to switch on (output signal C).
  • the transistor 38 which belongs to a switch-off element 11, is still blocked and, as described below, is only activated from the later point in time t4.
  • the output signal C which is fed via a resistor 43 to a series transistor 44 of a switching stage 15, causes the series transistor 44 to switch on the battery voltage U at time t2. Consequently, the modules 2, 3, 4, 5, 6 and 7 are only supplied with the signal D (switched-through battery voltage U) from the time t2. From this point on, the transmitter 2 therefore emits transmission pulses which are reflected, for example, by the pillow or the sleeping person themselves and are detected by a receiver 3 (output signal E).
  • the detected signal E passes via a filter amplifier 4, whose pass band is matched to the transmission pulse frequency, as signal M to a rectifier and differentiator stage 5. In its rectifier stage, a DC voltage which also increases in intensity is formed from the AC transmission signal.
  • the rectifier and differentiating stage 5 is shown in FIG. 3 together with a signal delay stage 6 and a threshold switching stage 7.
  • the signal M passes through a capacitor 27 to two diodes 28, 29.
  • the two diodes 28, 29 work together with the capacitors 27, 31 as a voltage doubler circuit and rectify the signal M.
  • the rectified signal M charges a capacitor 31 which can be discharged again via a parallel resistor 30.
  • the rectifier stage is followed by a differentiation stage, consisting of the capacitor 32 and the resistor 33.
  • the differentiating stage causes the alarm shutdown device not to respond to the intensity of the received signal E, but to its change over time.
  • the signal P at the output of the rectifier and differentiator stage 5 is a function of the speed of movement of the reflector 1, and the limit frequency of the differentiator 32, 33 determines the minimum approach speed of the reflector 1 towards the clock in which the transmitting and receiving device are housed.
  • the large dynamic modulation range means that a static reflector that may be present at the amplifier input only rarely produces an input voltage that drives the amplifier to saturation. An automatic gain control is therefore not necessary.
  • the pulse of the signal P derived from the signal E could be used without a time delay to interrupt the transmission of the acoustic wake-up signal A ', which is already emitted from time t1. According to the invention, however, a signal delay is provided for the signal P for two reasons, which causes pulses of the signal P to switch off the wake-up signal A only after a certain dead time.
  • a person who is asleep can move due to the wake-up signal during the transition from the sleep state to the awake state, e.g. turn around in bed. Such a movement could result in the alarm shutdown device being switched off before the person has reached a sufficient waking state. As a result, no further wake-up sounds would be given and the person to be woken up would fall back to sleep.
  • the capacitor 31 (cf. FIG. 3) is uncharged when the battery voltage D is switched on at the time t1.
  • the charging current surge occurring at the start of charging would be sufficient to generate a pulse on the differentiating element 32, 33 - acting in the same way as the signal P - which actuates the alarm shutdown device and interrupts the output of the wake-up signal A. Therefore, the signal delay stage 6 is provided, which provides a sufficient dead time so that the capacitor 31 can be charged on the one hand and on the other hand a minimum number of wake-up pulse trains are emitted, which lead to a safe wake-up of the sleeping person.
  • the signal delay stage 6 is exemplarily connected in series in the signal processing chain from the modules 3, 4, 5, 7, 8. 2, the signal delay stage 6 is only switched through at time t3 (signal F). The delay or dead time thus results from t3 - t2.
  • the threshold switching stage 7 downstream of the signal delay stage 6 can only further process interrupt signals for the wake-up signal A arriving at time t3.
  • the temporally active operating range of the alarm shutdown device thus arises according to signal G from time t3.
  • the person now woken up by the wake-up signal A wants to interrupt the delivery of further wake-up signals A, they only have to briefly move the hand acting as the reflector 1 into the range of action of the transmission pulses emitted by the transmitter 2.
  • An exact grasping of the clock and actuation of the switch 18 is not necessary since the radiation field of the transmission impulses extends to the person lying in bed.
  • a short pulse H arises at the point in time t4 at the output of the threshold value switching stage 7.
  • the threshold value switching stage 7 is necessary so that a specific received signal value can be determined from which the wake-up signal A is interrupted.
  • the output pulse H of the threshold switching stage 7 arrives at a monoflop 8, which toggles into its unstable state at the time t4.
  • the delivery of the wake-up signal A is interrupted, since the output signal I of the monoflop 8 in addition to the modules 9 and 11 is also fed to the integrated circuit in the clockwork 14, which emits the drive pulses for generating the acoustic signal A 'in the signal generator 12 interrupts.
  • a lamp 10, which illuminates the dial of the clock is switched on via the lamp driver 9 (output signal K).
  • the lamp 10 is switched on simultaneously at the time t4 with the tilting of the monoflop 8.
  • the lamp 10 is switched off again.
  • the lamp burning time is thus determined according to the unstable state duration of the monoflop 10, which ranges from t4 to t6.
  • the signal I is also supplied to the switch-off element 11.
  • the switch-off element 11 consists of the transistor 38, a base resistor 40 and a collector resistor 39.
  • the transistor 38 connected in the emitter circuit lies in the base-emitter circuit of the transistor 64 of the ON / OFF control stage 13.
  • the rising edge of signal I at time t4 causes transistor 38 to turn on.
  • transistor 38 turns on a capacitor 41 discharges through collector resistor 39.
  • the voltage value of signal B has dropped to a low value that transistor 64 and consequently transistor 44 block simultaneously.
  • the battery voltage D is thus separated from the modules 2, 3, 4, 5, 6, 7 at the time t5.
  • the switching on of the switching stage 15 is effected via the signal B (time t2) and the switching off via the signal L, which is derived from the signal I, at the time t5.
  • the alarm shutdown device is thus in the idle state and is put into operation again when the switch 18 is closed by switching the battery voltage D in the manner described above, the full functionality only being achieved after the delay or dead time t3-t2.
  • a new wake-up process (snooze) takes place after a few minutes by the integrated circuit in the clockwork 14 by emitting the wake-up signal A.
  • the alarm shutdown device is only finally switched off when the switch 18 is opened.
  • FIG 3 shows, in addition to the rectifier and differentiating stage 5, an exemplary embodiment for the signal delay stage 6 and the threshold switching stage 7, the most important component of which is a comparator 21 and 22, respectively.
  • the operating voltage D is fed to the comparators 21, 22.
  • the supply voltage N applied to the filter amplifier 4 is smoothed by the series resistor 17 and a capacitor (not shown) contained in the filter amplifier 4.
  • the operation of the signal delay stage 6 is that the comparator 21 at the plus input the voltage of the Wi derstands 25, 23 formed voltage divider is supplied.
  • the minus input of the comparator 21 is connected to a divider which is formed from a series connection of a capacitor 26 and a resistor 24.
  • the capacitor 26 is connected to the voltage N and the resistor 24 to ground.
  • the negative input is at the center connection of capacitor 26 and resistor 24.
  • voltage N is applied at time t2
  • the negative input is more positive than the positive input.
  • the output of the comparator 21 is thus at zero potential, which is why undesired pulses of the signal M are short-circuited to ground via the capacitor 32.
  • the capacitor 26 After the delay time or dead time t3-t2, the capacitor 26 has been charged via the resistor 24 to such an extent that the negative input is now more negative than the positive input.
  • the comparator output then switches off and the Q output becomes high-impedance or ineffective because it is an operational amplifier (LM 393) with an OPEN collector output.
  • the time-determining element which determines the delay time or dead time, represents the series connection of the capacitor 26 and the resistor 24. The changeover point also depends on the level of the voltage value set on the resistor 23.
  • the delay stage 6 according to FIG. 3 is designed as lying parallel to the rectifier and differentiator stage 5, which is why it is switched on during the delay time and is subsequently inactive.
  • the threshold switching stage 7 consists of the resistors 34 and 35 forming a voltage divider, the tapping point of which is connected to the minus input of the comparator 22.
  • the plus input of the comparator 22 is connected to the output of the differentiating element 32, 33 and the output Q of the comparator 21.
  • the comparator 22 On the output side, the comparator 22 has a diode 37 which is connected to the Input of the monoflop 8 is connected, and a resistor 36 which is connected to the battery voltage D. If the voltage jump supplied via the capacitor 32 exceeds the reference voltage formed by the voltage divider 34, 35, the comparator output switches from zero to the battery voltage D. This output pulse at the comparator 22 causes the monoflop 8 to tilt at time t4 via the diode 37.
  • the transmitter 2 shows an exemplary embodiment of the transmitter 2 and the receiver 3.
  • the voltage D or the input signal 0 is supplied to the transmitter 2 via a resistor 16. Together with a capacitor 45, the resistor 16 decouples the transmitter 2 and the receiver 3 so that there are no transmission pulse-shaped operating voltage fluctuations in the receiver 3.
  • the transmitter 2 consists of two complementary transistors 50, 51, which together with the resistors 46, 48, 49, 52 and a capacitor 47 form an astable multivibrator.
  • the pulse repetition frequency is determined by the capacitor 47 and the resistor 46.
  • the pulse width results from the dimensioning of capacitor 47 and resistor 48.
  • An infrared diode 55 is used as the transmitting element, the anode of which lies on the connecting line between a resistor 54 and a charging capacitor 56.
  • the cathode of the diode is connected to the collector of transistor 51 via a resistor 53.
  • capacitor 56 is charged via resistor 54 and discharged via diode 55 when transistor 51 turns on.
  • Resistor 53 limits the diode current. Pulse operation relieves the battery because the battery capacity is limited.
  • the pulse repetition frequency is preferably 500 Hz.
  • the infrared rays emitted by the diode 55 are reflected on the reflector 1 and reach the receiving element, one in infrared-sensitive diode 56, which is connected to the battery voltage N with the cathode. Together with a resistor 57, the diode 56 forms a voltage divider, to the connection of which a capacitor 58 is connected, which supplies the transmission pulses received by the diode and converted into current pulses to the filter amplifier 4.
  • the receiving and transmitting elements 55, 56 are preferably formed at a distance from one another on the upper edge of the front of the watch case 60.
  • inlet and outlet openings 59 are provided for the transmission and reception signals.
  • the main radiation direction X (or reception direction) defined by the radiation characteristic of the receiving and transmitting element can be inclined upwards or downwards relative to the horizontal Y, depending on the application.
  • the main radiation direction is preferably inclined upward by an angle ⁇ of 20 ° to 25 °.
  • the choice of a main radiation direction which is not perpendicular to the dial 61 represents, in addition to the working point of the threshold switching stage 7 determined by the dimensioning of the capacitor 31 and the resistor 30, a further possibility of adapting the response sensitivity of the alarm shutdown device to practical requirements.
  • the inclination of the main radiation X by 20 ° to 25 ° upwards serves in particular to suppress static reflectors, such as a lamp, books or the like, as far as possible, which can be located directly in front of the clock.
  • the responsiveness of the alarm shutdown device can also be also adapt to the practical circumstances by dimensioning the filter amplifier 4.
  • an infrared radiation emitting transmitter can be dispensed with if the receiving diode 55 is provided by a passive infrared detector is replaced, which has such a sensitivity that it can detect the heat radiation emitted by the user of the watch itself.
  • the invention is not limited to exemplary embodiments that work with a filter amplifier. Rather, frequency discriminators or sample and hold circuits can also be formed in the signal chain from the receiver 3 to the monoflop 8. In addition, the invention can be designed so that it also responds to moving the reflector away from the clock in addition to approximations.
  • Fig. 7 shows an embodiment of an alarm shutdown device which has an ultrasound receiver 3 'instead of an infrared-sensitive receiver, which is coupled via a capacitor 58 to the filter amplifier 4.
  • An essential part of the ultrasonic receiver 3 ' are two npn transistors 63, 64, the operating points of which are set with the aid of resistors 65, 67, 68 and 98.
  • An Ultra is used to record ultrasonic waves sound transducer 62, for example a piezoceramic transducer, which is connected in series with the resistor 65.
  • the resistor 65 together with the resistor 98 defines the operating point for the transistor 63, while the ultrasonic transducer 62 in the base-emitter branch of the transistor 63 serves as a signal source for the filter amplifier.
  • the signals emitted by an ultrasound transmitter are detected by the ultrasound converter 62 and converted into voltage changes, which are amplified as AC voltage signals and fed to the downstream transistor 64 via a capacitor 66.
  • the amplified signal is tapped at the collector of transistor 64 and processed further in the downstream modules in the manner described above.
  • Fig. 8 shows an exemplary embodiment of an ultrasonic transmitter 2 ', which emits pulses as an astable multivibrator preferably at a frequency between 30-40 KHz, which are detected by the receiver 3' shown in Fig. 7.
  • the ultrasonic transducer 62 is located across a series resistor 77 in the collector branch of a transistor 71.
  • the ultrasonic transducer 62 according to FIG. 8 now converts voltage changes at the collector of the transistor 71 into ultrasonic vibrations which, as described above, are transmitted by the receiver 3 '. be converted back into voltage changes.
  • the resistors 69, 74, 75, 76 in turn serve to set the operating point of the two transistors 70 and 71.
  • FIG. 9 shows an exemplary embodiment in which - in contrast to FIGS. 7 and 8 - the transmitter and receiver are in one assembly are summarized, ie that the assembly shown in Fig. 9 works simultaneously as a transmitter and receiver.
  • the two transistors 80, 81 are connected here to form an emitter-coupled astable multivibrator, the two emitters being coupled by the ultrasound transducer 62, which rotates the phase by 180 ° when resonating.
  • the resistor 87 serves to decouple the output signal from the oscillation pulses.
  • the capacitor 78 together with the resistor 88 forms a sieve element in order to decouple the supply voltage from the oscillation pulses.
  • resistors 82, 84, 83 and 85 serve to set the operating point of transistors 80, 81, while the degree of feedback is set with the voltage divider consisting of resistors 86 and 87. Since the transistor 80 operates in the base circuit, the base is short-circuited to "zero" via the capacitor 79 for decoupling between the input and output signals.
  • the sound waves emitted by the ultrasonic transducer 62 are reflected, they return to the latter and are then converted back into voltage pulses. That is, the sound waves generated overlap with the reflected sound waves, with the ultrasound transducer 62 simultaneously converting voltage values into emitted sound waves and, conversely, converting the reflected sound waves into voltage values. This is possible because the ultrasound transducer can work reversibly. Accordingly, the voltage values at the emitter of the transistor 81 are also superimposed, with only the change in the reflection of the ultrasound waves from a moving object, for example a hand, being evaluated in the downstream stages, as described above. If ultrasonic waves are simultaneously reflected from stationary and moving objects, the Doppler effect creates a beat with a frequency that depends on the speed of movement.
  • Fig. 10 shows a second embodiment of an assembly that works simultaneously as a receiver and transmitter.
  • An essential component of the circuit according to FIG. 10 is an npn / pnp transistor pair 90, 91 in a complementary circuit.
  • a capacitor 93 is provided as the feedback element.
  • the ultrasonic transducer 62 is connected in series with a potentiometer 96 in the emitter branch of the transistor 91.
  • the series circuit comprising the resistor 96 and the transducer 62, which, because of the capacitive effect of the transducer 62, only allows an AC voltage flow, is connected in parallel with an emitter resistor 97 to maintain the emitter current flow.
  • the voltage level of the feedback pulses which are fed to transistor 90 via capacitor 93, can be set by means of potentiometer 96.
  • the resistors 89, 92, 94, 95 in turn are used to set the operating point, and the resistors 94, 95 (shown in dashed lines) can also be omitted in certain applications.

Abstract

Es wird eine Alarmabschalteinrichtung für eine Wecker- oder Terminuhr angegeben, die es ermöglicht, ein von der Uhr abgegebenes Signal dadurch zu unterbrechen oder auch endgültig abzuschalten, daß der Benutzer der Uhr sich dieser nähert oder auch nur einen Körperteil beispielsweise seine Hand, auf diese zubewegt. Vorzugsweise wird die Uhr mit einem Infrarotstrahlung oder Ultraschallwellen abgegebenen Sender 2, 2' und einem entsprechenden Empfänger 3, 3' ausgestattet, der die von dem bewegten Körperteil 1 reflektierte Infrarotstrahlung bzw. die Ultraschallwellen detektiert. In einem Signalformschaltkreis 4, 5 und 6 wird die zeitliche Änderung der Intensität ermittelt, die in einer Schwellwertschaltstufe 7 mit einem festlegbaren Wert verglichen wird, bei dessen Überschreiten das Alarmsignal A abgestellt wird.

Description

  • Die Erfindung betrifft eine Alarmabschalteinrichtung, insbesonde­re für Wecker- oder Terminuhren.
  • Üblicherweise werden die in Wecker- oder Teminuhren enthaltenen, ein akustisches Alarmsignal abgebenden Alarmeinrichtungen vom Be­nutzer der Uhr durch ein von Hand zu betätigendes, bewegliches Schaltorgan, beispielsweise einer Taste oder einer Wippe, abge­schaltet. So ist beispielsweise aus der DE-GM 78 27 708 eine Weckeruhr bekannt, bei der auf der Oberseite des Gehäuses eine nahezu über dessen gesamte Breite sich erstreckende Schaltwippe angebracht ist.
  • Aus der DE-GM 83 12 662 ist bereits eine Weckeruhr bekannt, deren Schalteinrichtung zur Unterbrechung des Alarmsignals kein beweg­liches Schaltorgan mehr enthält, sondern lediglich zwei sogenann­te Sensoren aufweist, bei deren gleichzeitigem Berühren, bei­spielsweise mit einer Fingerkuppe, das Alarmsignal unterbrochen wird. Die Berührungssensoren können dabei einfache Metalldrähte sein oder - wie in dem DE-GM 83 12 662 beschrieben - lediglich aus einer auf das Gehäuse aufgebrachten, leitfähigen Lackschicht bestehen. Der Benutzer der Uhr muß aber auch hier zumindest die Weckeruhr berühren, um die gewünschte Unterbrechung des Alarmsig­nals zu erreichen.
  • Bei der in der DE-PS 34 04 252 beschriebenen, batteriebetriebenen Alarmeinrichtung kann der Benutzer der Uhr das Alarmsignal durch ein durch die menschliche Stimme gebildetes, akustisches Signal unterbrechen oder auch endgültig abstellen, so daß ein Berühren der Alarmeinrichtung nicht mehr erforderlich ist. Das von der menschlichen Stimme gebildete, akustische Signal wird bei dieser Alarmeinrichtung von einem ein Mikrofon, eine Filter- und Ver­stärkereinheit und einen Gleichrichter aufweisenden Empfangs- und Signalformschaltkreis aufgenommen, dessen Ausgang auf den Eingang einer monostabilen Kippstufe gelegt wird, die bei entsprechender Signalhöhe in ihren astabilen Zustand übergeht. Mit diesem Über­gang ändert sich das Signal an einem Eingang eines integrierten Uhrschaltkreises, worauf dieser die Aussendung des Treibersignals für einen Alarmsignalwandler unterbricht. Sowohl das Mikrofon als auch die Filter- und Verstärkereinheit werden daher zur Einspa­rung von Strom erst nach dem Beginn der Alarmsignalabgabe mit ihrer Spannungsversorgung verbunden.
  • Ein Nachteil dieser Alarmeinrichtung besteht darin, daß trotz einer Erweiterung der Schaltung um einen Hoch- und Tiefpaß, wo­durch praktisch nur noch Frequenzen um 1000 Hz (Bereich des Grundtons der menschlichen Stimme) verstärkt werden, durch ver­schiedene Schallquellen verursachte Fremdgeräusche zu einer Ab­schaltung des Wecksignals führen können, bevor die schlafende Person geweckt wurde.
  • Ein weiterer Nachteil dieser Alarmeinrichtung besteht darin, daß durch das vom Benutzer der Uhr abgegebene akustische Signal wei­tere anwesende Personen unbeabsichtigt geweckt werden können.
  • Aus der DE-OS 30 40 751 ist ein berührungsloser Schalter bekannt, der mit einer IR-Sende- und Empfangseinrichtung arbeitet. Die be­kannte, als Reflexionslichtschranke ausgebildete Sende-/Empfangs­einrichtung ist aber nicht als eine Alarmabschalteinrichtung für eine Uhr verwendbar, weil insbesondere im Wirkungsbereich einer derartigen Alarmabschalteinrichtung zahlreiche Gegenstände, wie ein Kopfkissen oder der Schläfer selbst vorhanden sind, was zu einer Selbstabschaltung führen kann. Bei Verwendung dieses be­kannten berührungslosen Schalters für eine Wecker- oder Terminuhr müßten daher entweder samtliche Gegenstände mit merklicher Re­flexion von Infrastrahlen aus dem Wirkungsbereich der Sende- und Empfangseinrichtung entfernt oder die Uhr an einen entsprechenden Platz aufgestellt werden.
  • Es ist deshalb Aufgabe der Erfindung, eine nicht von Hand zu be­dienende Alarmabschalteinrichtung für eine Wecker- bzw. Terminuhr zu schaffen, die unter Beibehaltung eines geringen Stromver­brauchs störsicher arbeitet, die auch ohne besondere Auswahl des Aufstellungsortes der Uhr voll gebrauchstauglich ist und bei der weitere, im Raum anwesende Personen nicht unbeabsichtigt durch die zur Abschaltung des Alarmsignals notwendigen Maßnahmen ge­weckt bzw. gestört werden können.
  • Die Aufgabe der Erfindung wird für eine Weckeruhr nach dem Ober­begriff des Patentanspruchs 1 durch die in dessen kennzeichnenden Teil enthaltenen Merkmale gelöst.
  • Gemäß der Erfindung wird dazu der Empfangs- und Signalformschalt­kreis der Alarmabschalteinrichtung als Infrarot-Bewegungsmelder ausgebildet. Dieser kann über einen Empfänger beispielsweise die von der Hand des Benutzers ausgehende Wärmestrahlung detektieren oder als Sende- Empfangseinrichtung ausgebildet sein, bei der ein auf einer bestimmten Frequenz sendender Sender vorgesehen ist, dessen Infrarotstrahlung beispielsweise von der Hand des Benut­zers reflektiert wird. Ist ein Sender vorgesehen, arbeitet die Alarmabschalteinrichtung als Reflexions-Bewegungsmelder. Nach der Erfindung spricht die Alarmabschalteinrichtung nur auf eine Be­wegung innerhalb des Empfangsbereiches an und weist neben einem Filterverstärker, einer Schwellwertschaltstufe auch eine Gleich­richter- und Differenzierstufe auf.
  • In der erfindungsgemäßen Alarmabschalteinrichtung kann anstelle eines Infrarotempfängers oder anstelle eines Infrarotempfängers samt Sender auch ein Ultraschallsender und -empfänger verwendet werden. Neben der Intensitätsänderung der reflektierten Ultra­schallwellen kann in einem Ultraschallempfanger auch eine durch den Dopplereffekt eintretende Frequenzverschiebung zwischen Sen­de- und Empfangssignal ausgewertet werden, da im Ultraschallwel­lenbereich die durch bewegte Körperteile eintretende Frequenzver­schiebung im Gegensatz zum Infrarotstrahlungsbereich nicht mehr nur vernachlässigbar klein ist.
  • Vorzugsweise ist der Differenzierstufe eine Signalverzögerungs­stufe ausgangsseitig nach- oder parallelgeschaltet. Die Signal­verzögerungsstufe bewirkt, daß die zu weckende Person beim Er­tönen des Wecksignals dessen weitere Aussendung nicht bereits durch noch im Halbschlaf ausgeführte, unkontrollierte Bewegungen unterbricht. Die Verzögerungsdauer ist daher so bemessen, daß ein Wecksignal von solcher Dauer abgegeben wird, daß die zu weckende Person mit ausreichender Sicherheit in einen wachen Zustand ver­setzt wird. Somit erlangt die Alarmabschalteinrichtung ihr volle Betriebsbereitschaft erst nach Ablauf einer bestimmten Verzöge­rungsdauer.
  • Dadurch, daß die Signalverzögerungsstufe vom Filterverstärker ge­trennt angeordnet ist, läßt sich der dynamische Aussteuerungsbe­reich des Filterverstärkers durch eine vorteilhafte Dimensionie­rung der Gleichrichter- und Differenzierstufe so weit vergrößern, daß eine zusätzliche, automatische Verstärkungsregelung nicht mehr erforderlich ist. Trotz des von ruhenden Gegenständen her­ rührenden, zeitlich konstanten Reflexionssiqnals wird, wie ent­sprechende Versuche zeigten, durch diese Weiterbildung der Erfin­dung der Filterverstärker nämlich nur in den allerseltensten Fäl­len bereits von ruhenden Gegenstanden voll ausgesteuert. Die An­ordnung einer Signalverzögerungseinrichtung innerhalb des Filter­verstärkers würde hingegen eine aufwendige Verstärkungsregelung erfordern.
  • Weitere vorteilhafte Ausgestaltungen der erfindungsgemäßen Alarm­abschalteinrichtung sind den Unteransprüchen zu entnehmen.
  • Ausführungsbeispiele der Erfindung werden nachfolgend anhand der Zeichnungen näher erläutert. Es zeigen:
    • Fig. 1 ein Ausführungsbeispiel einer Alarmabschalteinrichtung nach der Erfindung anhand eines Blockschaltbildes;
    • Fig. 2 ein Impulsdiagramm, das die Wirkungsweise der Alarmab­schalteinrichtung aus Fig. 1 erläutert:
    • Fig. 3 Ausführungsbeispiele einer Gleichrichter-/Differenzier­stufe, einer Signalverzögerungsstufe und einer Schwell­wertschaltstufe nach Fig. 1;
    • Fig. 4 Ausführungsbeispiele einer Schaltstufe, einer EIN/AUS-­Steuerstufe und eines Ausschaltgliedes aus Fig. 1;
    • Fig. 5 Ausführungsbeispiele einer Sende- und Empfangsstufe aus Fig. 1,
    • Fig. 6 ein Gehäuseausschnitt einer Uhr, die mit einer Alarmab­schalteinrichtung nach der Erfindung ausgestattet ist,
    • Fig. 7 ein Ausführungsbeispiel eines Ultraschallempfängers zur Verwendung in der erfindungsgemäßen Alarmabschaltein­richtung,
    • Fig. 8 ein Ausfuhrungsbeispiel eines Ultraschallsenders, der mit dem Ultraschallempfanger nach Fig. 7 zusammenwirkt,
    • Fig. 9 ein erstes Ausfuhrungsbeispiel einer Baugruppe, die gleichzeitig als Ultraschallempfänger und -sender arbeitet und
    • Fig. 10 ein zweites Ausführungsbeispiel einer Baugruppe, die gleichzeitig als Ultraschallempfanger und -sender arbeitet.
  • Fig. 1 zeigt ein Blockschaltbild einer Termin- oder Weckeruhr, die mit einer Alarmabschalteinrichtung nach der Erfindung ausge­stattet ist. Die in Fig. 1 dargestellten Baugruppen haben zum Teil die gleiche Funktion wie in der aus der DE-PS 34 04 252 be­kannten Alarmabschalteinrichtung. Jedoch arbeitet die Alarmab­schalteinrichtung nach der Erfindung als Bewegungsmelder und nicht als sprachempfindliche Schaltvorrichtung. Die Wirkungsweise der Alarmabschalteinrichtung wird nachfolgend in Verbindung mit dem in Fig. 2 dargestellten Impulsdiagramm beschrieben.
  • Mit dem Bezugszeichen 1 ist ein nicht ortsfester Reflektor für von einem Sender 2 ausgestrahlte Infrarotstrahlen, beispielsweise die sich bewegende Hand einer geweckten Person, gekennzeichnet. An dem Anschluß U liegt die volle Batteriespannung an. Vom An­schluß U gelangt die Batteriespannung zu einem Uhrwerk 14, einem Signalgeber 12, einem Lampentreiber 9 und einem Monoflop 8. Ob­ wohl die Batteriespannung an allen Baugruppen 8, 9, 12, 14 an­liegt, befindet sich nur das Uhrwerk 14 im aktiven Zustand und benötigt demzufolge Batteriestrom. Wenn ein manuell betätigbarer Schalter 18 geschlossen ist, befindet sich eine im Schaltkreis des Uhrwerks 14 enthaltene Weckautomatik in Bereitschaftsstel­lung. Erreicht die im Uhrwerk 14 gehaltene Uhrzeit die einge­stellte Weckzeit, wird in diesem ein zweiter Schalter (nicht dar­gestellt) geschlossen, der zu dem Schalter 18 in Reihe liegt. Mit dem Schließen des zweiten Schalters (Zeitpunkt t₁ in Fig. 2) wird ein ebenfalls nicht dargestellter, integrierter Schaltkreis im Uhrwerk 14 aktiviert, der dem Signalgeber 12 ein Wecksignal A zuführt. Der Signalgeber 12 wandelt das Wecksignal A in ein aku­stisches Signal A′ um, das den Schlafenden wecken soll. Das Weck­signal A bzw. akustische Signal A′ besteht aus einem kurzen Im­pulszug aus Einzelimpulsen mit einer im hörbaren Bereich liegen­den Frequenz. Auf den ersten Impulszug folgt nach einer kurzen Pause ein zweiter Impulszug. Die Impulszüge werden solange abge­geben, bis die geweckte Person die Alarmabschalteeinrichtung aus­löst, oder der integrierte Schaltkreis das Wecksignal durch Selbstabschaltung beispielsweise nach 128 sec. selbst abbricht.
  • Das Wecksignal A wird zur Aktivierung der Alarmabschalteeinrich­tung über eine Zenerdiode 19 und eine Diode 20 einer EIN/AUS­Steuerstufe 13 zugeführt, deren Schaltbild in Fig. 4 dargestellt ist. In der Steuerstufe 13 wird mittels einer weiteren Zenerdiode 42 und einem Ladekondensator 41 ein EIN-Signal gebildet, welches der Ladekurve des Kondensators 41 entsprechend zum Zeitpunkt t₁ den Wert "Null" aufweist und bis zum Zeitpunkt t2 seinen maxima­len Spannungswert erreicht. Der im Zeitpunkt t2 erreichte Span­nungswert bewirkt, daß der Transistor 64 (vgl. Fig. 4) durch­schaltet (Ausgangssignal C). Der Transistor 38, der zu einem Aus­schaltglied 11 gehört, ist noch gesperrt und wird, wie nachfol­gend beschrieben, erst ab dem späteren Zeitpunkt t4 aktiviert.
  • Das Ausgangssignal C, das über einen Widerstand 43 einem Längs­transistor 44 einer Schaltstufe 15 zugeführt wird, bewirkt, daß der Längstransistor 44 zum Zeitpunkt t2 die Batteriespannung U durchschaltet. Folglich werden die Baugruppen 2, 3, 4, 5, 6 und 7 erst ab dem Zeitpunkt t2 mit dem Signal D (durchgeschaltete Bat­teriespannung U) versorgt. Der Sender 2 gibt daher von diesem Zeitpunkt an Sendeimpulse ab, die beispielsweise vom Kopfkissen oder dem Schlafenden selbst reflektiert und von einem Empfänger 3 detektiert werden (Ausgangssignal E). Das detektierte Signal E gelangt über einen Filterverstärker 4, dessen Durchlaßbereich auf die Sendeimpulsfrequenz abgestimmt ist, als Signal M zu einer Gleichrichter- und Differenzierstufe 5. In deren Gleichrichter­stufe wird aus dem Wechselspannungssendesignal eine mit dessen Intensität ebenfalls zunehmende Gleichspannung gebildet.
  • Die Gleichrichter- und Differenzierstufe 5 ist in Fig. 3 zusammen mit einer Signalverzögerungsstufe 6 und einer Schwellwertschalt­stufe 7 dargestellt. Das Signal M gelangt über einen Kondensator 27 zu zwei Dioden 28, 29. Die beiden Dioden 28, 29 arbeiten zu­sammen mit den Kondensatoren 27, 31 als Spannungsverdopplerschal­tung und richten das Signal M gleich. Das gleichgerichtete Signal M lädt einen Kondensator 31 auf, der sich über einen Parallel­widerstand 30 wieder entladen kann. Der Gleichrichterstufe ist eine Differenzierstufe, bestehend aus dem Kondensator 32 und dem Widerstand 33, nachgeschaltet. Die Differenzierstufe bewirkt, daß die Alarmabschalteinrichtung nicht auf die Intensität des empfan­genen Signals E, sondern auf dessen zeitliche Änderung anspricht. D.h., das Signal P am Ausgang der Gleichrichter- und Differen­zierstufe 5 ist eine Funktion der Bewegungsgeschwindigkeit des Reflektors 1, und die Grenzfrequenz des Differenziergliedes 32, 33 bestimmt die Mindestannäherungsgeschwindigkeit des Reflektors 1 in Richtung auf die Uhr, in der die Sende- und Empfangseinrich­tung untergebracht sind.
  • Durch die erfindungsgemaße Abstimmung der Bauteile des Filterver­stärkers 4 und der Gleichrichter- und Differenzierstufe 5 ist es möglich, eine Erweiterung des dynamischen Bereichs bei der Ver­stärkung des Signals E und dem daraus abgeleiteten Signal P zu erreichen. Der große dynamische Aussteuerungsbereich bewirkt, daß ein möglicherweise vorhandener, statischer Reflektor am Verstär­kereingang nur in den seltensten Fällen bereits eine Eingangs­spannung hervorruft, die den Verstärker in die Sattigung treibt. Eine automatische Verstärkungsregelung ist daher nicht erfor­derlich.
  • Im folgenden werden zur Erläuterung der Ursache für die vorteil­hafte Ausdehnung des Aussteuerungsbereich folgende Größen einge­führt:
    Ue:      Eingangsimpulshöhe des Filterverstärkers 4 (Signal E)
    Ua:      Ausgangsimpulshöhe des Filterverstärkers 4 (Signal M)
    T:      Ausgangsimpulsbreite des Signals M
    Ta:      Aufladezeitkonstante des Kondensators 31 (Fig.3)
    Te:      Entladezeitkonstante des Kondensators 31
    To:      Impulsperiode des Senders 2
    N:      Anzahl der Sendeimpulse des Senders 2
    Uc:      Gleichrichtspannung am Kondensator 31.
  • Der zeitabhängige Momentanwert Uc (t) folgt der Funktion:
        Uc (t) = UaX(1 - exp T N(t)/Ta )
    Für den Fall Ta, Te ≧ To ergibt sich im stationären Zu­stand der arithmetische Mittelwert <Uc> der Gleich­richtspannung Uc zu:
        <Uc> = Ua T/To
    Daraus ergibt sich, daß <Uc> auch bei bereits eingetretener Begrenzung der Ausgangsimpulshöhe Ua (Sättigung des Filterver­stärkers 4) noch zunehmen kann und zwar aufgrund einer Zunahme der Ausgangsimpulsbreite T. Eine derartige Zunahme der Ausgangs­impulsbreite T liegt hier vor, da der Filterverstärker 4 eine differenzierende Wirkung aufweist und daher die Ausgangsimpuls­breite mit zunehmender Eingangsimpulshöhe zunimmt. Diese Zunahme tritt auch dann noch ein, wenn der Filterverstärker 4 bereits voll ausgesteuert ist und daher die Ausgangsimpulshöhe Ua nicht mehr zunehmen kann.
  • Der aus dem Signal E abgeleitete Impuls des Signals P könnte ohne zeitliche Verzögerung dazu benutzt werden, um das Aussenden des akustischen Wecksignals A′, das bereits ab dem Zeitpunkt t1 abge­geben wird, zu unterbrechen. Nach der Erfindung ist aus zwei Gründen aber eine Signalverzögerung für das Signal P vorgesehen, die bewirkt, daß erst nach einer bestimmten Totzeit Impulse des Signals P zu einer Abschaltung des Wecksignals A führen.
  • Einerseits kann sich eine im Schlaf befindliche Person aufgrund des Wecksignals beim Übergang von dem Schlafzustand in den Wach­zustand bewegen, Z.B. im Bett herumdrehen. Eine derartige Bewe­gung könnte zu einem Abschalten der Alarmabschalteinrichtung füh­ren, bevor die Person einen ausreichenden Wachzustand erreicht hat. Folglich würden keine weiteren Wecktöne mehr abgegeben wer­den, und die zu weckende Person würde in den Schlafzustand zu­rückfallen.
  • Andererseits ist zu berücksichtigen, daß der Kondensator 31 (vgl. Fig. 3) beim Durchschalten der Batteriespannung D zum Zeitpunkt t1 ungeladen ist. Der bei Beginn der Aufladung auftretende Lade­stromstoß würde ausreichen, um an dem Differenzierglied 32, 33 - ­gleichwirkend dem Signal P - einen Impuls zu erzeugen, der die Alarmabschalteinrichtung betätigt und die Abgabe des Wecksignals A unterbricht. Deshalb ist die Signalverzögerungsstufe 6 vorge­sehen, die eine ausreichende Totzeit liefert, damit sich zum einen der Kondensator 31 aufladen kann und zum anderen eine Min­destzahl von Weckimpulszügen abgegeben wird, die zu einem siche­ren Aufwachen des Schlafenden führen.
  • In Fig. 1 ist die Signalverzögerungsstufe 6 beispielhaft in Reihe in die Signalverarbeitungskette aus den Baugruppen 3, 4, 5, 7, 8 geschaltet. Nach Fig. 2 wird die Signalverzögerungsstufe 6 erst zum Zeitpunkt t3 durchgeschaltet (Signal F). Die Verzögerungs- ­bzw. Totzeit ergibt sich damit aus t3 - t2. Ebenso kann die der Signalverzögerungsstufe 6 nachgeschaltete Schwellwertschaltstufe 7 erst zum Zeitpunkt t3 ankommende Unterbrechungssignale für das Wecksignal A weiterverarbeiten. Der zeitlich aktive Betriebsbe­reich des Alarmabschalteinrichtung ergibt sich somit nach Signal G ab dem Zeitpunkt t3.
  • Will die inzwischen durch das Wecksignal A geweckte Person die Abgabe von weiteren Wecksignalen A unterbrechen, muß sie nur kurz die als Reflektor 1 wirkende Hand in den Wirkungsbereich der vom Sender 2 abgestrahlten Sendeimpulse bewegen. Ein genaues Greifen der Uhr und Betätigen des Schalters 18 ist nicht erforderlich, da das Strahlungsfeld der Sendeimpulse bis zu der im Bett liegenden Person reicht. Mit der Bewegung des Reflektors 1 entsteht zum Zeitpunkt t4 am Ausgang der Schwellwertschaltstufe 7 ein kurzer Impuls H. Die Schwellwertschaltstufe 7 ist notwendig, damit ein bestimmter Empfangssignalwert festgelegt werden kann, ab dem das Wecksignal A unterbrochen wird. Der Ausgangsimpuls H der Schwell­wertschaltstufe 7 gelangt zu einem Monoflop 8, das zum Zeitpunkt t4 in seinen unstabilen Zustand kippt. Mit dem Kippen des Mono­flops 8 wird die Abgabe des Wecksignals A unterbrochen, da das Ausgangssignal I des Monoflops 8 neben den Baugruppen 9 und 11 auch dem integrierten Schaltkreis im Uhrwerk 14 zugeführt wird, der die Abgabe der Ansteuerimpulse zum Erzeugen des akustischen Signals A′ in dem Signalgeber 12 unterbricht. Eine Lampe 10, die das Zifferblatt der Uhr beleuchtet, wird über den Lampentreiber 9 (Ausgangssignal K) eingeschaltet. Das Einschalten der Lampe 10 erfolgt gleichzeitig zum Zeitpunkt t4 mit dem Kippen des Mono­flops 8. Wenn das Monoflop 8 zum Zeitpunkt t6 in seinen stabilen Zustand zurückkippt, wird die Lampe 10 wieder ausgeschaltet. Die Lampenbrenndauer bestimmt sich somit nach der instabilen Zu­standsdauer des Monoflops 10, die von t4 bis t6 reicht.
  • Wie in Fig. 1 und 4 dargestellt, wird das Signal I auch dem Aus­schaltglied 11 zugeführt. Das Ausschaltglied 11 besteht aus dem Transistor 38, einem Basiswiderstand 40 und einem Kollektorwider­stand 39. Der in Emitterschaltung geschaltete Transistor 38 liegt in dem Basis-Emitterkreis des Transistors 64 der EIN/AUS-Steuer­ stufe 13. Die Anstiegsflanke des Signals I zum Zeitpunkt t4 be­wirkt das Durchschalten des Transistors 38. Mit dem Durchschalten des Transistors 38 entlädt sich ein Kondensator 41 über den Kol­lektorwiderstand 39. Zum Zeitpunkt t5 ist der Spannungswert des Signals B auf einen niedrigen Wert abgefallen, so daß der Tran­sistor 64 und infolgedessen gleichzeitig der Transistor 44 sper­ren. Damit wird zum Zeitpunkt t5 die Batteriespannung D von den Baugruppen 2, 3, 4, 5, 6, 7 abgetrennt. D.h., das Einschalten der Schaltstufe 15 wird über das Signal B (Zeitpunkt t2) und das Aus­schalten über das Signal L, das aus dem Signal I abgeleitet wird, zum Zeitpunkt t5 bewirkt. Die Alarmabschalteinrichtung befindet sich somit im Ruhezustand und wird bei geschlossenem Schalter 18 wieder in der zuvor beschriebenen Weise durch das Durchschalten der Batteriespannung D in Betrieb gesetzt, wobei die volle Funk­tionsfähigkeit erst nach der Verzögerungs- oder Totzeit t3 - t2 erreicht wird. Bis zum Öffnen des Schalters 18 erfolgt nach eini­gen Minuten ein neuer Nachweckvorgang (snooze) durch den inte­grierten Schaltkreis im Uhrwerk 14 mittels Abgabe des Wecksignals A. In bekannter Weise ist die Alarmabschalteinrichtung erst dann endgültig abgeschaltet, wenn der Schalter 18 geöffnet wird.
  • Fig. 3 zeigt neben der Gleichrichter- und Differenzierstufe 5 ein Ausführungsbeispiel für die Signalverzögerungsstufe 6 und die Schwellwertschaltstufe 7, deren wichtigster Bestandteil jeweils ein Komparator 21 bzw. 22 ist. Die Betriebsspannung D wird den Komparatoren 21, 22 zugeführt. Die an den Filterverstärker 4 an­gelegte Versorgungsspannung N wird durch den Vorwiderstand 17 und einen im Filterverstärker 4 enthaltenen Kondensator (nicht darge­stellt) geglättet.
  • Die Arbeitsweise der Signalverzögerungsstufe 6 besteht darin, daß dem Komparator 21 an dem Pluseingang die Spannung des aus den Wi­ derständen 25, 23 gebildeten Spannungsteiler zugeführt wird. Der Minuseingang des Komparators 21 ist an einen Teiler angeschlos­sen, der aus einer Reihenschaltung aus einem Kondensator 26 und einem Widerstand 24 gebildet wird. Der Kondensator 26 liegt an der Spannung N und der Widerstand 24 an Masse. Der Minuseingang liegt an dem Mittenanschluß von Kondensator 26 und Widerstand 24. Beim Anlegen der Spannung N zum Zeitpunkt t2 ist der Minuseingang positiver als der Pluseingang. Der Ausgang des Komparators 21 be­findet sich somit auf Nullpotential, weshalb unerwünschte Impulse des Signals M über den Kondensator 32 gegen Masse kurzgeschlossen werden. Nach der Verzögerungszeit oder Totzeit t3-t2 hat sich der Kondensator 26 über den Widerstand 24 soweit aufgeladen, daß der Minuseingang nunmehr negativer als der Pluseingang ist. Hierauf schaltet der Komparatorausgang ab, und der Ausgang Q wird hoch­ohmig oder unwirksam, weil es sich um einen Operationsverstärker (LM 393) mit einem OPEN-Kollektor-Ausgang handelt. Das zeitbe­stimmende Glied, das die Verzögerungszeit- bzw. Totzeit bestimmt, stellt die Reihenschaltung aus dem Kondensator 26 und dem Wider­stand 24 dar. Der Umschaltpunkt hängt zeitlich auch von der Höhe des an dem Widerstand 23 eingestellten Spannungswertes ab. Im Ge­gensatz zu Fig. 1, gemäß der die Signalverzögerungsstufe 6 in Reihe in der Übertragungskette liegt, ist die Verzögerungsstufe 6 nach Fig. 3 als parallel zur Gleichrichter- und Differenzierstufe 5 liegend ausgebildet, weshalb sie während der Verzögerungszeit eingeschaltet und anschließend inaktiv ist.
  • Die Schwellwertschaltstufe 7 besteht aus den einen Spannungs­teiler bildenden Widerständen 34 und 35, dessen Abgreifpunkt mit dem Minuseingang des Komparators 22 verbunden ist. Der Plusein­gang des Komparators 22 ist mit dem Ausgang des Differenzier­gliedes 32, 33 und dem Ausgang Q des Komparators 21 verbunden. Ausgangsseitig weist der Komparator 22 eine Diode 37, die an den Eingang des Monoflops 8 angeschlossen ist, und einen Widerstand 36 auf, der an der Batteriespannung D liegt. Übersteigt der über den Kondensator 32 zugeführte Spannungssprung die durch den Span­nungsteiler 34, 35 gebildete Referenzspannung, so schaltet der Komparatorausgang von Null auf die Batteriespannung D um. Dieser Ausgangsimpuls am Komparator 22 bewirkt über die Diode 37 das Kippen des Monoflop 8 zum Zeitpunkt t4.
  • Fig. 5 zeigt ein Ausführungsbeispiel des Senders 2 und des Em­pfängers 3. Dem Sender 2 wird über einen Widerstand 16 die Span­nung D bzw. das Eingangssignal 0 zugeführt. Zusammen mit einem Kondensator 45 bewirkt der Widerstand 16 eine Entkopplung zwi­schen Sender 2 und Empfanger 3, damit keine sendeimpulsförmigen Betriebsspannungsschwankungen im Empfänger 3 auftreten. Weiter besteht der Sender 2 aus zwei komplementären Transistoren 50, 51, die zusammen mit den Widerständen 46, 48, 49, 52 und einem Kon­densator 47 einen astabilen Multivibrator bilden. Die Impuls­folgefrequenz wird durch den Kondensator 47 und den Widerstand 46 bestimmt. Die Impulsbreite ergibt sich aus der Dimensionierung von Kondensator 47 und Widerstand 48. Als Sendeelement wird eine Infrarotdiode 55 verwendet, deren Anode an der Verbindungsleitung zwischen einem Widerstand 54 und einem Ladekondensator 56 liegt. Die Kathode der Diode liegt über einen Widerstand 53 an dem Kol­lektor des Transistors 51. Im gesperrten Zustand des Transistors 51 wird der Kondensator 56 über den Widerstand 54 aufgeladen und über die Diode 55 entladen, wenn der Transistor 51 durchschaltet. Der Widerstand 53 begrenzt den Diodenstrom. Der Pulsbetrieb ent­lastet die Batterie, da die Batteriekapazität begrenzt ist. Die Impulsfolgefrequenz beträgt vorzugsweise 500 Hz.
  • Die von der Diode 55 ausgesendeten Infrarotstrahlen werden am Re­flektor 1 reflektiert und gelangen zum Empfangselement, einer in­ frarotempfindlichen Diode 56, die mit der Kathode an der Batte­riespannung N liegt. Zusammen mit einem Widerstand 57 bildet die Diode 56 einen Spannungsteiler, an dessen Anschluß ein Kondensa­tor 58 angeschlossen ist, der die von der Diode empfangenen und in Stromimpulse umgesetzten Sendeimpulse dem Filterverstärker 4 zuführt.
  • In Fig. 6 ist eine Seitenansicht eines teilweise aufgebrochenen Uhrengehäuses 60 mit Zifferblatt 61 dargestellt. Die Empfangs­und Sendeelemente 55, 56 werden vorzugsweise mit einem Abstand zueinander an der Oberkante der Vorderseite des Uhrengehäuses 60 ausgebildet. In der Wandung des Gehäuses 60 sind je nach der An­zahl der Sende- und Empfangselemente 55, 56 Ein- bzw. Austritts­öffnungen 59 für die Sende- und Empfangssignale vorgesehen. Die durch die Strahlungscharakteristik des Empfangs- und Sendeele­ments festgelegte Hauptstrahlungsrichtung X (bzw. Empfangsrich­tung) kann gegenüber der Waagrechten Y je nach Anwendungsfall nach oben oder unten geneigt sein. Vorzugsweise ist die Haupt­strahlungsrichtung um einen Winkel α von 20° bis 25° nach oben geneigt.
  • Die Wahl einer nicht senkrecht zum Zifferblatt 61 verlaufenden Hauptstrahlungsrichtung stellt neben dem durch die Dimensionie­rung des Kondensators 31 und des Widerstands 30 bestimmten Ar­beitspunkt der Schwellwertschaltstufe 7 eine weitere Möglichkeit dar, die Ansprechempfindlichkeit der Alarmabschalteinrichtung den Erfordernissen der Praxis anzupassen. Die Neigung der Hauptstrah­lung X um 20° bis 25° nach oben dient namlich zu einer möglichst weitgehenden Ausblendung von statischen Reflektoren, wie Z.B. einer Lampe, Büchern oder dergleichen, die sich unmittelbar vor der Uhr befinden können. Selbstverständlich läßt sich die An­sprechempfindlichkeit der Alarmabschalteinrichtung darüber hinaus auch noch durch die Dimensionierung des Filterverstärkers 4 den praktischen Gegebenheiten anpassen.
  • Obwohl die erfindungsgemäße Alarmabschalteinrichtung bisher nur anhand von Ausführungsbeispielen mit einem Infrarotsender und -empfänger beschrieben wird, der die durch die Bewegung des Reflektors 1 verursachte Intensitätsänderung des empfangenen Sig­nals auswertet, kann auf einen Infrarotstrahlung abgebenden Sen­der verzichtet werden, wenn die Empfangsdiode 55 durch einen pas­siven Infrarotdetektor ersetzt wird, der eine derartige Empfind­lichkeit aufweist, daß er die vom Benutzer der Uhr selbst abge­gebene Wärmestrahlung detektieren kann.
  • Weiter ist die Erfindung nicht nur auf Ausführungsbeispiele be­schränkt, die mit einem Filterverstärker arbeiten. Vielmehr kön­nen auch Frequenzdiskriminatoren oder Abtast- und Halteschaltun­gen in der Signalkette vom Empfänger 3 bis zum Monoflop 8 ausge­bildet sein. Daneben kann die Erfindung so ausgelegt werden, daß sie neben Annäherungen auch auf ein Wegbewegen des Reflektors von der Uhr anspricht.
  • Fig. 7 zeigt ein Ausführungsbeispiel einer Alarmabschalteinrich­tung, die anstelle eines infrarotempfindlichen Empfängers einen Ultraschallempfängers 3′ aufweist, der über einen Kondensator 58 an den Filterverstärker 4 gekoppelt ist. Für die Wirkungsweise der dem Ultraschallempfanger 3′ nachgeschalteten Baugruppen gilt der entsprechende Teil der Beschreibung der Fig. 1 bis 6 glei­chermaßen, so daß nachfolgend auf die Wirkungsweise dieser Bau­gruppen nicht mehr eingegangen wird. Wesentlicher Bestandteil des Ultraschallempfänger 3′ sind zwei npn-Transistoren 63, 64, deren Arbeitspunkte mit Hilfe von Widerständen 65, 67, 68 und 98 einge­stellt wird. Zur Aufnahme von Ultraschallwellen dient ein Ultra­ schallwandler 62, z.B. ein Piezokeramikwandler, der in Reihe mit dem Widerstand 65 geschaltet ist. Der Widerstand 65 legt zusammen mit dem Widerstand 98 den Arbeitspunkt für den Transistor 63 fest, während der Ultraschallwandler 62 im Basis-Emitter-Zweig des Transistors 63 als Signalquelle für den Filterverstärker dient. Die von einem Ultraschallsender ausgesendeten Signale wer­den von dem Ultraschallwandler 62 detektiert und in Spannungsän­derungen umgesetzt, die als Wechselspannungssignale verstärkt und über einen Kondensator 66 dem nachgeschalteten Transistor 64 zu­geführt werden. Ausgangsseitig wird das verstärkte Signal an dem Kollektor des Transistors 64 abgegriffen und in der zuvor be­schriebenen Weise in den nachgeschalteten Baugruppen weiterverar­beitet.
  • Fig. 8 zeigt ein Ausfuhrungsbeispiel eines Ultraschallsenders 2′, der als astabiler Multivibrator Impulse vorzugsweise mit einer Frequenz zwischen 30-40 KHz aussendet, die von dem in Fig. 7 dar­gestellten Empfänger 3′ detektiert werden. Der Ultraschallwandler 62 liegt dabei über einem Reihenwiderstand 77 im Kollektorzweig eines Transistors 71. Abweichend von Fig. 7 wandelt der Ultra­schallwandler 62 gemäß Fig. 8 nunmehr Spannungsänderungen am Kol­lektor des Transistors 71 in Ultraschallschwingungen um, die, wie zuvor beschrieben, von dem Empfanger 3′ in Spannungsänderungen zurückgewandelt werden. Wesentlicher Bestandteil des Ultraschall­senders 2′ sind zwei npn-Transistoren 70, 71, wobei zwei Konden­satoren 72, 73 als Rückkopplungsglieder bei der Erzeugung der Schwingungen dienen. Die Widerstande 69, 74, 75, 76 dienen wie­derum zur Arbeitspunkteinstellung der beiden Transistoren 70 und 71.
  • Fig. 9 zeigt ein Ausführungsbeispiel, bei dem - abweichend von den Fig. 7 und 8 - Sender und Empfänger in einer Baugruppe zu­ sammengefaßt sind, d.h., daß die in Fig. 9 gezeigte Baugruppe gleichzeitig als Sender und Empfänger arbeitet. Die beiden Tran­sistoren 80, 81 sind hier zu einem emittergekoppelten astabilen Multivibrator geschaltet, wobei die beiden Emitter durch den Ul­traschallwandler 62, der bei Resonanz die Phase um 180° dreht, gekoppelt sind. Der Widerstand 87 dient zum Entkoppeln des Aus­gangssignals von den Schwingungsimpulsen. Der Kondensator 78 bil­det zusammen mit dem Widerstand 88 ein Siebglied, um die Versor­gungsspannung von den Schwingungsimpulsen zu entkoppeln. Wiederum dienen die Widerstände 82, 84, 83 und 85 zur Arbeitspunkteinstel­lung der Transistoren 80, 81, während mit dem aus den Widerstän­den 86 und 87 bestehenden Spannungsteiler der Rückkopplungsgrad eingestellt wird. Da der Transistor 80 in Basisschaltung arbei­tet, wird die Basis zur Entkoppelung zwischen Ein- und Aus­gangssignal über den Kondensator 79 gegen "Null" kurzgeschlossen.
  • Werden die von dem Ultraschallwandler 62 ausgesendeten Schall­wellen reflektiert, gelangen sie wieder zu diesem zurück und wer­den dann wieder in Spannungsimpulse umgesetzt. D.h., die erzeug­ten Schallwellen überlagern sich mit den zurückgeworfenen Schall­wellen, wobei innerhalb des Ultraschallwandlers 62 gleichzeitig eine Umsetzung von Spannungswerten in ausgesendete Schallwellen und umgekehrt eine Umsetzung der reflektierten Schallwellen in Spannungswerte erfolgt. Dies ist möglich, weil der Ultraschall­wandler reversibel arbeiten kann. Dementsprechend überlagern sich auch die Spannungswerte am Emitter des Transistors 81, wobei in den nachgeschalteten Stufen, wie zuvor beschrieben, nur die Ände­rung der Reflexion der Ultraschallwellen durch ein bewegtes Ob­jekt, z.B. einer Hand, ausgewertet wird. Werden Ultraschallwellen gleichzeitig von ruhenden und bewegten Objekten reflektiert, ent­steht aufgrund des Dopplereffekts eine Schwebung mit einer von der Bewegungsgeschwindigkeit abhängigen Frequenz.
  • Fig. 10 zeigt ein zweites Ausführungsbeispiel einer Baugruppe, die gleichzeitig als Empfanger und Sender arbeitet. Wesentlicher Bestandteil der Schaltung nach Fig. 10 ist ein npn/pnp-Tran­sistor-Paar 90, 91 in Komplementärschaltung. Als Rückkopplungs­element ist ein Kondensator 93 vorgesehen. Der Ultraschallwandler 62 liegt in Reihe mit einem Potentiometer 96 im Emitterzweig des Transistors 91. Der Reihenschaltung aus Widerstand 96 und Wandler 62, die aufgrund der kapazitiven Wirkung des Wandlers 62 nur einen Wechselspannungsstromfluß ermöglicht, ist zum Aufrechter­halten des Emitterstromflusses ein Emitterwiderstand 97 parallel­geschaltet. Mittels des Potentiometers 96 ist die Spannungshöhe der Rückkopplungsimpulse einstellbar, die dem Transistor 90 über den Kondensator 93 zugeführt werden. Die Widerstände 89, 92, 94, 95 dienen wiederum zur Arbeitspunkteinstellung, wobei die Wider­stände 94, 95 (gestrichelt dargestellt) in bestimmten Anwendungs­fällen auch entfallen können.

Claims (20)

1. Alarmabschalteinrichtung, insbesondere für eine Wecker- oder Terminuhr, mit einem Uhrwerk, welches einen integrierten Schaltkreis enthält, der bei Übereinstimmung zwischen Uhr- ­und Alarmzeit ein Wecksignal an einen vorzugsweise als elek­troakustischen Wandler ausgebildeten Signalgeber abgibt, mit einem Empfangs- und Signalformschaltkreis, der zur Aufnahme und Weiterverarbeitung eines vom Benutzer der Uhr herrühren­den Abschaltsignals einen Empfänger, einen Filterverstärker, eine Gleichrichterschaltung und eine Schwellwertschaltstufe aufweist und der erst nach Aussendung des Wecksignals an sei­ne Spannungsversorgung gelegt wird und dann das Abschaltsig­nal so verarbeitet, daß bei dessen Anlegen an einen Eingang des integrierten Schaltkreises dieser die Aussendung des Wecksignals unterbricht,
dadurch gekennzeichnet,
daß der Empfangs- und Signalformschaltkreis einen im infraro­ten Strahlungsbereich oder im Ultraschallbereich empfind­lichen Empfänger (3, 3′) und in einer Gleichrichter- und Dif­ferenzierstufe (5) ein der Gleichrichterschaltung (27-31) nachgeschaltetes Differenzierglied (32, 33) aufweist, deren Ausgangssignal (P) durch die zeitliche Änderung der vom Em­pfänger (3, 3′) detektierten Infrarotstrahlung bestimmt wird.
2. Alarmabschalteinrichtung nach Anspruch 1,
dadurch gekennzeichnet,
daß diese einen Infrarotstrahlung oder Ultraschallwellen ab­gebenden Sender (2, 2′) aufweist, dessen Signale vom Benutzer der Uhr reflektiert und vom Empfänger (3, 3′) detektiert wer­den.
3. Alarmabschalteinrichtung nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
daß zwischen dem Ausgang der Schwellwertschaltstufe (7) und dem Eingang des integrierten Schaltkreises ein Monoflop (8) geschaltet ist, dessen Ausgang mit dem Eingang des integrier­ten Schaltkreises verbunden ist und welches in seinen astabi­len Zustand versetzt wird, wenn an dem mit seinem Eingang verbundenen Ausgang der Schwellwertschaltstufe (7) ein Aus­gangssignal (H) auftritt.
4. Alarmabschalteinrichtung nach Anspruch 3,
dadurch gekennzeichnet,
daß die Gleichrichter- und Differenzierstufe (5) zwei in Rei­he geschaltete Baugruppen aufweist, von denen die als Gleich­richter wirkende Baugruppe aus einer zwei Dioden (28, 29) und zwei Kondensatoren (27, 31) aufweisenden Spannungsverdoppler­schaltung besteht, während die als Differenzierglied wirkende Baugruppe aus einer Reihenschaltung eines Kondensators (32) und eines Widerstands (33) besteht.
5. Alarmabschalteinrichtung nach Anspruch 4,
dadurch gekennzeichnet,
daß der Empfangs- und Signalformschaltkreis eine vor der Schwellwertschaltstufe (7) angeordnete Signalverzögerungs­stufe (6) aufweist, die nach Abgabe des Wecksignals (A) ihr Ausgangssignal (Q) gegenüber ihrem Eingangssignal (P) so lan­ge (t₃-t₂) verzögert, daß der akustische Signalgeber (12) zumindest für eine bestimmbare Zeitspanne (t₃-t₁) ein Alarmsignal (A′) abgibt.
6. Alarmabschalteinrichtung nach Anspruch 5,
dadurch gekennzeichnet,
daß die Signalverzögerungsstufe (6) der Gleichrichter- und Differenzierstufe (5) parallel geschaltet ist und einen Kom­parator (21) mit einem OPEN-Kollektor aufweist, dessen Aus­gang mit dem Ausgang des Differenziergliedes (32, 33) der Differenzierstufe (5) verbunden ist und daß die Verzögerungs­zeit (t₃-t₂) durch eine Reihenschaltung aus einem Konden­sator (26) und einem Widerstand (24) bestimmt wird.
7. Alarmabschalteinrichtung nach Anspruch 6,
dadurch gekennzeichnet,
daß die Schwellwertschaltstufe (7) einen Komparator (22) auf­weist, dessen erstem Eingang eine Referenzspannung zugeführt wird und dessen zweiter Eingang sowohl mit dem Ausgang (P) des Differenziergliedes (32, 33) der Gleichrichter- und Dif­ferenzierstufe (5) als auch mit dem Ausgang (Q) des Kompara­tors (21) der Signalverzögerungsstufe (6) verbunden ist.
8. Alarmabschalteinrichtung nach Anspruch 3,
dadurch gekennzeichnet,
daß das Wecksignal (A) neben dem Signalgeber (12) über eine Reihenschaltung aus einer Zenerdiode (19) und einer Diode (20) auch einem ersten Eingang (B) einer AUS/EIN-Steuerstufe (13) zugeführt wird, welche über eine Schaltstufe (15) sowohl den Empfangs- und Signalformschaltkreis (3, 4, 5, 6, 7) als auch den Sender (2) mit ihrer Versorgungsspannung (D, O) ver­bindet.
9. Alarmabschalteinrichtung nach Anspruch 8,
dadurch gekennzeichnet,
daß aus dem am Ausgang der Diode (20) anliegenden Signal (B) in der EIN/AUS-Steuerstufe (13) durch eine Parallelschaltung einer Zenerdiode (42) und eines Ladekondensators (41) ein EIN-Signal gebildet wird, welches mit einer bestimmbaren Zeitverzögerungs (t₂-t₁) einen Ausgangstransistor (64) durchschaltet, der seinerseits einen in der Schaltstufe (15) vorhandenen Längstransistor (44) durchschaltet.
10. Alarmabschalteinrichtung nach Anspruch 8,
dadurch gekennzeichnet,
daß das Ausgangssignal (I) des Monoflops über ein Ausschalt­glied (11) auch einem zweiten Eingang (L) der EIN/AUS-Steuer­stufe (13) zugeführt wird, deren Ausgangssignal (C) über die Schaltstufe (15) den Empfangs- und Signalformschaltkreis (3, 4, 5, 6, 7) und den Sender (2) nach dem Übergang des Mono­flops (8) in seine astabile Lage von ihrer Versorgungsspan­nung (D, O) trennen.
11. Alarmabschalteinrichtung nach Anspruch 9 und 10,
dadurch gekennzeichnet,
daß das Ausschaltglied (11) aus einem in der Emitterschaltung geschalteten Transistor (38) besteht, der im Basis-Emitter­kreis des Ausgangstransistors (64) der EIN/AUS-Steuerstufe (11) liegt und an dessen Basis das Ausgangssignal (I) des Mo­noflops (8) liegt.
12. Alarmabschalteinrichtung nach Anspruch 2,
dadurch gekennzeichnet,
daß der Sender (2) eine Infrarotdiode (55) aufweist, die im Pulsbetrieb Infrarotstrahlung aussendet, wobei die Impulsfol­gefrequenz bzw.die Impulsbreite durch die Dimensionierung eines Kondensators (47) und jeweils eines Widerstandes (46 bzw. 48) bestimmt wird, die zusammen mit zwei weiteren Wider­standen (49, 52) einen astabilen Multivibrator bilden.
13. Alarmabschalteinrichtung nach Anspruch 12,
dadurch gekennzeichnet,
daß die Impulsfolgefrequenz des Senders (2) bei Infrarotbe­trieb vorzugsweise etwa 500 Hz beträgt.
14. Alarmabschalteinrichtung nach Anspruch 2,
dadurch gekennzeichnet,
daß der Empfänger (3) eine infrarotempfindliche Diode (56) aufweist, die mit ihrer Kathode an einer von der Batterie­spannung (U) abgeleiteten Spannung (N) liegt und die zusammen mit einem Widerstand (57) einen Spannungsteiler bildet, an dessen Abgreifpunkt ein Kondensator (58) angeschlossen ist, der die von der Diode (56) empfangenen Signale dem Filterver­stärker (4) zuführt.
15. Alarmabschalteinrichtung nach Anspruch 2,
dadurch gekennzeichnet,
daß der Empfänger (3, 3′) und der Sender (2, 2′) an der Ober­kante der Vorderseite des Uhrengehäuses (60) mit Abstand zu­einander angeordnet sind und daß die Hauptstrahlung- bzw. Hauptempfangsrichtung X des Sendesignals bzw. Empfangssignals gegenuber der Waagrechten Y um einen Winkel von vorzugsweise 20° bis 25° nach oben geneigt ist.
16. Alarmabschalteinrichtung nach Anspruch 3,
dadurch gekennzeichnet,
daß das Ausgangssignal (I) des Monoflops (8) auch auf den Eingang eines Lampentreibers (9) gelegt wird, dessen Aus­gangssignals (K) solange von Null verschieden ist, wie sich das Monoflop (8) in seinem astabilen Zustand befindet.
17. Alarmabschalteinrichtung nach Anspruch 2,
dadurch gekennzeichnet,
daß Empfänger (3′) und Sender (2′) im Ultraschallwellenbe­reich arbeiten und eine gemeinsame Sende- und Empfangsbau­gruppe bilden, die einen astabilen Multivibrator mit zwei emittergekoppelten Transistoren (80, 81) aufweist und bei der der Ultraschallwandler (62) das Rückkopplungselement zum Er­zeugen des Schwingverhaltens bildet.
18. Alarmabschalteinrichtung nach Anspruch 17,
dadurch gekennzeichnet,
daß der Ultraschallwandler (62) über einen Entkopplungswider­stand (87) im Emitterzweig der beiden Transistoren (80, 81) an den Ausgang der Sende-/und Empfangsbaugruppe geschaltet ist, wobei der Entkopplungswiderstand (87) in Reihe zu einem Emitterwiderstand (86) liegt.
19. Alarmabschalteinrichtung nach Anspruch 2,
dadurch gekennzeichnet,
daß Empfänger (3′) und Sender (2′) im Ultraschallwellenbe­reich arbeiten und eine gemeinsame Sende- und Empfangsbau­gruppe bilden, die einen astabilen Multivibrator mit zwei miteinander in Komplementär-Schaltung verbundenen Transisto­ren (90, 91) aufweist, daß der Ultraschallwandler (62) in Reihe zu einem Widerstand (96) in den Emitterzweig des aus­gangsseitigen Transistors (91) geschaltet ist und daß der Reihenschaltung aus dem Ultraschallwandler (62) und dem Wi­derstand (96) ein Emitterwiderstand (97) parallelgeschaltet ist.
20. Alarmabschalteinrichtung nach Anspruch 19,
dadurch gekennzeichnet,
daß der Widerstand (96) ein Potentiometer ist.
EP88108105A 1987-06-06 1988-05-20 Alarmabschalteinrichtung, insbesondere für Wecker- oder Terminuhren Expired - Lifetime EP0295456B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AT88108105T ATE62350T1 (de) 1987-06-06 1988-05-20 Alarmabschalteinrichtung, insbesondere fuer wecker- oder terminuhren.
DE8817240U DE8817240U1 (de) 1987-06-06 1988-05-20 Alarmabschalteinrichtung für batteriebetriebene Wecker- oder Terminuhren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3719087 1987-06-06
DE3719087A DE3719087C2 (de) 1987-06-06 1987-06-06 Alarmabschalteinrichtung für eine Wecker- oder Terminuhr

Publications (2)

Publication Number Publication Date
EP0295456A1 true EP0295456A1 (de) 1988-12-21
EP0295456B1 EP0295456B1 (de) 1991-04-03

Family

ID=6329252

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88108105A Expired - Lifetime EP0295456B1 (de) 1987-06-06 1988-05-20 Alarmabschalteinrichtung, insbesondere für Wecker- oder Terminuhren

Country Status (9)

Country Link
US (1) US4894813A (de)
EP (1) EP0295456B1 (de)
JP (2) JPS63313090A (de)
KR (1) KR910004438B1 (de)
AT (1) ATE62350T1 (de)
DE (2) DE3719087C2 (de)
ES (1) ES2021410B3 (de)
HK (1) HK57192A (de)
SG (1) SG56992G (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10217175A1 (de) * 2002-04-18 2003-10-30 Braun Gmbh Uhr mit Zeitansage

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2062156T3 (es) * 1989-11-16 1994-12-16 Braun Ag Reloj despertador o radio, con una disposicion de circuito.
FR2660769B1 (fr) * 1990-04-06 1994-09-23 Neiman Sa Circuit de reveil d'alimentation de microprocesseur, notamment pour une carte d'identification d'un ensemble de telecommande d'automobile.
DE4018096A1 (de) * 1990-06-06 1991-12-12 Fremmer Hans Kilian Wecker
US5708627A (en) * 1994-08-30 1998-01-13 Gormley; Stuart G. Electronic clock and calendar apparatus with audio message recording and playback
DE29506724U1 (de) * 1995-04-20 1995-06-29 Ebert Gerd Radiowecker
WO1996036960A1 (en) * 1995-05-19 1996-11-21 Intelligent Devices, L.L.C. Non-contact user interface for data processing system
US6665233B2 (en) 2001-09-17 2003-12-16 Chris Cosgrove Electronic timekeeping and broadcasting device and method of use
US6838994B2 (en) * 2001-10-26 2005-01-04 Koninklijke Philips Electronics N.V. Adaptive alarm system
US20030142591A1 (en) * 2002-01-31 2003-07-31 International Business Machines Corporation Interactive alarm clock and method
DE10220667C1 (de) * 2002-05-10 2003-05-15 Insta Elektro Gmbh Passiv-Infrarot-Bewegungsmelder
US20050015122A1 (en) * 2003-06-03 2005-01-20 Mott Christopher Grey System and method for control of a subject's circadian cycle
EP1507389A1 (de) * 2003-08-13 2005-02-16 Sony Ericsson Mobile Communications AB Mobiltelefon mit einer Einrichtung zur Alarmfernabschaltung
US20080112271A1 (en) * 2006-11-09 2008-05-15 Idt-Lcd Holdings (Bvi) Limited Time projection clock
WO2008144908A1 (en) * 2007-05-29 2008-12-04 Christopher Mott Methods and systems for circadian physiology predictions
US8781796B2 (en) 2007-10-25 2014-07-15 Trustees Of The Univ. Of Pennsylvania Systems and methods for individualized alertness predictions
US8794976B2 (en) * 2009-05-07 2014-08-05 Trustees Of The Univ. Of Pennsylvania Systems and methods for evaluating neurobehavioural performance from reaction time tests
US8521439B2 (en) * 2009-05-08 2013-08-27 Pulsar Informatics, Inc. Method of using a calibration system to generate a latency value
KR102017700B1 (ko) * 2013-03-15 2019-09-03 엘지전자 주식회사 단말기 및 그 제어 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3498047A (en) 1967-04-26 1970-03-03 Sunbeam Corp Alarm terminating means
DE3040751A1 (de) * 1980-10-29 1982-05-27 Wilhelm Ruf KG, 8000 München Beruehrungsloser schalter
EP0152823A2 (de) * 1984-02-07 1985-08-28 Braun Aktiengesellschaft Alarmeinrichtung, insbesondere für Wecker- oder Terminuhren
DE3411995A1 (de) * 1984-03-31 1985-10-03 Kulzer & Co Gmbh, 6380 Bad Homburg Lichtschranke als schalter in einer aufnahmevorrichtung fuer ein handgeraet

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50139766A (de) * 1974-04-24 1975-11-08
CH621460B (fr) * 1977-12-23 Ebauches Electroniques Sa Piece d'horlogerie electronique avec transducteur electroacoustique.
DE7827708U1 (de) * 1978-09-18 1979-02-01 Braun Ag, 6000 Frankfurt Zeitmeßgerät, insbesondere Reise- oder Tischweckuhr mit einer Bedientaste zum Ein- und Ausschalten der Weckeinrichtung
JPS5729891U (de) * 1980-07-28 1982-02-17
US4468131A (en) * 1982-05-03 1984-08-28 Asulab S.A. Electronic watch having a non-moving means of control
JPS5945592U (ja) * 1982-09-20 1984-03-26 株式会社堀場製作所 目覚し時計
DE8312662U1 (de) * 1983-04-29 1983-09-29 Braun Ag, 6000 Frankfurt Elektrisch betriebenes kleingeraet mit beruehrungssensor
DE3510861C2 (de) * 1984-11-09 1986-09-25 Gebrüder Junghans GmbH, 7230 Schramberg Anzeigestellungs-Detektionseinrichtung für eine Uhr, insbesondere eine Funkuhr
US4764910A (en) * 1985-03-08 1988-08-16 Citizen Watch Co., Ltd. Electronic timepiece
JPH0239274Y2 (de) * 1985-09-12 1990-10-22
DE3640028C1 (de) * 1986-11-24 1987-10-01 Heraeus Gmbh W C Saures Bad fuer das stromlose Abscheiden von Goldschichten

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3498047A (en) 1967-04-26 1970-03-03 Sunbeam Corp Alarm terminating means
DE3040751A1 (de) * 1980-10-29 1982-05-27 Wilhelm Ruf KG, 8000 München Beruehrungsloser schalter
EP0152823A2 (de) * 1984-02-07 1985-08-28 Braun Aktiengesellschaft Alarmeinrichtung, insbesondere für Wecker- oder Terminuhren
DE3411995A1 (de) * 1984-03-31 1985-10-03 Kulzer & Co Gmbh, 6380 Bad Homburg Lichtschranke als schalter in einer aufnahmevorrichtung fuer ein handgeraet

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TOUTE L'ELECTRONIQUE, Nr. 438, Dezember 1978, Seite 57, Paris, FR; "Emetteur et récepteur 'ultrasons'" *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10217175A1 (de) * 2002-04-18 2003-10-30 Braun Gmbh Uhr mit Zeitansage

Also Published As

Publication number Publication date
HK57192A (en) 1992-08-07
EP0295456B1 (de) 1991-04-03
JPS63313090A (ja) 1988-12-21
ES2021410B3 (es) 1991-11-01
US4894813A (en) 1990-01-16
KR910004438B1 (ko) 1991-06-27
ATE62350T1 (de) 1991-04-15
JPH084638Y2 (ja) 1996-02-07
SG56992G (en) 1993-02-19
JPH078798U (ja) 1995-02-07
KR890000878A (ko) 1989-03-17
DE3719087C2 (de) 1993-11-18
DE3862244D1 (de) 1991-05-08
DE3719087C1 (de) 1988-09-08

Similar Documents

Publication Publication Date Title
EP0295456B1 (de) Alarmabschalteinrichtung, insbesondere für Wecker- oder Terminuhren
EP0168895B1 (de) Hörgerät
EP0152823B1 (de) Alarmeinrichtung, insbesondere für Wecker- oder Terminuhren
CH618763A5 (de)
DE2853422A1 (de) Elektronische uhr
DE2945183A1 (de) Verfahren zur erkennung eines in einen geschuetzten bereich eindringenden objektes
US3748496A (en) Sound activated controller
US2866100A (en) Counting tube circuit
DE2803847C2 (de) Einrichtung zum drahtlosen Ferneinschalten und Fernausschalten von elektrischen Geräten
DE2742338A1 (de) Rauchdetektor
EP0093810A1 (de) Überwachung des Auftretens menschlicher Aktivität in einer Umgebung
DE4428751A1 (de) Wecker- oder Terminuhr mit einer Alarmabschalteinrichtung
DE4127295C2 (de)
DE3411995A1 (de) Lichtschranke als schalter in einer aufnahmevorrichtung fuer ein handgeraet
US5184163A (en) Remote trigger method and apparatus for a camera shutter
DE1938631C3 (de) Signaleinrichtung für batteriegespeiste elektrische Weckeruhren
DE2850295C3 (de) Zeithaltendees Gerät, insbesondere Quarzgroßuhr mit elektronisch geregeltem Anzeigesystem
DE2500466A1 (de) Schaltungsanordnung zur steuerung der einschaltung eines elektrischen verbrauchers
EP0432345B1 (de) Wecker- oder Funkuhr mit einer Schaltungsanordnung zum Steuern derselben
JPS607437B2 (ja) 音波スイツチ
KR910001087Y1 (ko) 원격조정기 추적장치
FR2368179A1 (fr) Montage pour eliminer les impulsions parasites dans un recepteur a modulation d&#39;amplitude
DE2017413A1 (de) Akustischer Schalter
JPS6310796B2 (de)
DE2462687B1 (de) Lichtschranke

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19881107

17Q First examination report despatched

Effective date: 19900405

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 62350

Country of ref document: AT

Date of ref document: 19910415

Kind code of ref document: T

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3862244

Country of ref document: DE

Date of ref document: 19910508

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: JUNGHANS UHREN GMBH

Effective date: 19920103

NLR1 Nl: opposition has been filed with the epo

Opponent name: JUNGHANS UHREN GMBH.

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19930518

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19930519

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940403

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19940420

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940421

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19940511

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19940521

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940521

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19940531

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19940609

Year of fee payment: 7

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Free format text: BRAUN AKTIENGESELLSCHAFT

EUG Se: european patent has lapsed

Ref document number: 88108105.3

Effective date: 19941210

EUG Se: european patent has lapsed

Ref document number: 88108105.3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950502

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950520

Ref country code: AT

Effective date: 19950520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950531

Ref country code: BE

Effective date: 19950531

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: BRAUN AKTIENGESELLSCHAFT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Free format text: BRAUN AKTIENGESELLSCHAFT TRANSFER- BRAUN AKTIENGESELLSCHAFT

BERE Be: lapsed

Owner name: BRAUN A.G.

Effective date: 19950531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19951201

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: BRAUN AKTIENGESELLSCHAFT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950520

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19951201

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 19960223

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO