EP0302313A1 - Verfahren und Vorrichtung zum Behandeln von Gegenständen in einem geschlossenen Behälter mit Lösungsmittel - Google Patents

Verfahren und Vorrichtung zum Behandeln von Gegenständen in einem geschlossenen Behälter mit Lösungsmittel Download PDF

Info

Publication number
EP0302313A1
EP0302313A1 EP88111774A EP88111774A EP0302313A1 EP 0302313 A1 EP0302313 A1 EP 0302313A1 EP 88111774 A EP88111774 A EP 88111774A EP 88111774 A EP88111774 A EP 88111774A EP 0302313 A1 EP0302313 A1 EP 0302313A1
Authority
EP
European Patent Office
Prior art keywords
solvent
container
treatment
water
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88111774A
Other languages
English (en)
French (fr)
Other versions
EP0302313B1 (de
Inventor
Peter Weil
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AT88111774T priority Critical patent/ATE70315T1/de
Publication of EP0302313A1 publication Critical patent/EP0302313A1/de
Application granted granted Critical
Publication of EP0302313B1 publication Critical patent/EP0302313B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44DPAINTING OR ARTISTIC DRAWING, NOT OTHERWISE PROVIDED FOR; PRESERVING PAINTINGS; SURFACE TREATMENT TO OBTAIN SPECIAL ARTISTIC SURFACE EFFECTS OR FINISHES
    • B44D3/00Accessories or implements for use in connection with painting or artistic drawing, not otherwise provided for; Methods or devices for colour determination, selection, or synthesis, e.g. use of colour tables
    • B44D3/24Lamps for baking lacquers; Painters belts; Apparatus for dissolving dried paints, for heating paints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44DPAINTING OR ARTISTIC DRAWING, NOT OTHERWISE PROVIDED FOR; PRESERVING PAINTINGS; SURFACE TREATMENT TO OBTAIN SPECIAL ARTISTIC SURFACE EFFECTS OR FINISHES
    • B44D3/00Accessories or implements for use in connection with painting or artistic drawing, not otherwise provided for; Methods or devices for colour determination, selection, or synthesis, e.g. use of colour tables
    • B44D3/16Implements or apparatus for removing dry paint from surfaces, e.g. by scraping, by burning
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G5/00Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents
    • C23G5/02Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents using organic solvents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G5/00Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents
    • C23G5/02Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents using organic solvents
    • C23G5/028Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents using organic solvents containing halogenated hydrocarbons
    • C23G5/02806Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents using organic solvents containing halogenated hydrocarbons containing only chlorine as halogen atom

Definitions

  • the invention relates to a method and a device for treating objects in a closed container with solvent, the objects to be treated being treated at least temporarily by immersion in solvent and then sprayed off in a solvent-free area of the container.
  • DE-A-33 00 666 discloses a washing process for small parts, in which the small parts are passed through solvents in treatment baskets in a closed container and are sprayed off above the solvent level. This process is used as a washing process and has some advantages, but it is not suitable for stripping or stripping objects.
  • the paint residues contain chlorine-containing solvents, which means expensive destruction. Only a limited use of additives, such as phenols, cresols or the like, is also possible for health and environmental reasons. With a degree of silting of the immersion baths of about 50%, the entire system must be destroyed or replaced. Due to the higher requirements for environmental compatibility, this known technology has been replaced by other processes.
  • pyrolysis it is known to carry out pyrolysis by means of higher temperatures.
  • pyrolysis which can take place at temperatures around 400 ° C.
  • no temperature-sensitive parts such as wood, plastic, hardened metals, thin sheets, light and non-ferrous metals, soldered parts, magnetized metals, etc.
  • halogen compounds can occur in the hot exhaust gases if, for example, polyvenyl chloride or chlorinated rubber is carbonized. These acidic gases can be neutralized in so-called afterwashers the.
  • the combustion produces highly toxic dioxins (Seveso), which can then be found in the wash water or can be released into the environment via the fireplace.
  • Paint stripping by burning is no longer possible today for environmental reasons, otherwise it can only be used to a limited extent, if at all.
  • hot stripping in hot alkali solutions or acids for example hot sulfuric acid
  • This treatment is dangerous, the baths are enriched with heavy metals, complexing agents, surfactants, so that there can ultimately be a pollution of the environment, especially of the waste water.
  • extremely aggressive, corrosive vapors also have a negative impact on the environment and personnel and must be recorded and neutralized in a complex manner.
  • used pickling liquids have to be destroyed in a cost-intensive manner. The amount of waste thus increases considerably and puts a strain on the sewage treatment plants due to large amounts of salt.
  • the object of the invention is to provide a solution with which the disadvantages described above are avoided not only when stripping paint, but also during other stripping treatment of surfaces, in particular also solvents in the coating materials can be completely removed and kept in the treatment process, and materials can be easily disposed of and can be treated in an environmentally friendly manner.
  • the process has considerable advantages over known processes.
  • a treatment agent mixture of solvent and an excess proportion of water azeotropic methylene chloride / water 98.5 to 1.5%, here for example 80 to 20%
  • the closed circuit avoids polluting emissions such as pollution of air, soil and water. There is also no need for thermal removal of halogen coating materials, as a result of which there is no formation of dioxides, for example in the pyrolysis of PVC.
  • the treatment in the boiling treatment agent mixture which in the example of methylene chloride boils with water at 38.1 ° C., shortens the treatment times many times over, so that the throughput of such a treatment is also reduced System increased or the size can be reduced accordingly, the amount of substances to be used can be kept correspondingly low.
  • Another advantage is that the materials that have to be removed from the surface of the objects to be treated can be removed in comparatively large pieces, which are then e.g. are recyclable. A load on the treatment liquids by foreign substances, such as resins or the like, is thereby avoided or reduced over a long period of time, so that rare regeneration phases can be maintained.
  • the invention provides that circulated water is used to remove the solvent from the system and from the coating or lacquer residues, at least some of this water having previously been used as part of the treatment agent mixture.
  • the water in the system can therefore be reused very often, which also leads to a very economical procedure.
  • One embodiment of the invention is that after complete removal of the solvent from the system by boiling and recondensing, the parts in the treatment be hosed and removed from the container and / or that the solvent-free residues are collected and recycled.
  • the invention also provides that the vapor phase of the solvent condenses in the upper region of the immersion tank and the condensate can be used as a spray. This has the advantage that the entire process, as far as the solvent is concerned, can be recycled, i.e. the risk of polluting the environment is avoided.
  • additives are added to the spraying agent.
  • These additives can be of very different types, they can be corrosives, chemicals for passivation, if with an acidic medium, for example in a medium containing formic acid, has been stripped, it can be oily and / or aqueous additives and the like. More.
  • the invention can also be used in the same way, e.g. for degreasing surfaces with other solvents or treatment mixtures in the liquid or vapor phase.
  • the expulsion of such solvents or treatment mixtures can then again be azeotropic, e.g. by boiling with water, for example: trichlorethylene with water (ratio 93.4% tri to 6.6% H2O) or tetrachloroethene with water in a ratio of 87.1% tetrachloroethene to 15.9% water, here the principle the system displacement by the higher boiling substance is exploited in a completely closed procedure.
  • the environmentally harmful azeotrope component should be driven out in the system by the less or not at all polluting substance (here essentially H2O).
  • stripping agents are only present in the system as an intermediate stage, as in most extractive processes, and are removed from them after the stripping process, they do not cause any additional waste problems. (Cold paint removers with a content of approx. 50% paint are often destroyed due to silting up, i.e. doubling and additional pollution of the waste with environmentally harmful additives).
  • the dampened aggressiveness enables small surface changes compared to many raw materials by using inhibitors in the acidic as well as in the alkaline range. Strongly caustic processes are often used to remove extremely resistant layers from sensitive base materials. (Hot concentrated sulfuric acid, hot caustic soda, etc.). This doesn't just mean Surface changes, but also complex neutralization in the aftertreatment (over-salting of the waste water).
  • the invention also provides a system with an immersion tank that can be at least partially filled with a solvent mixture, this system being characterized in that the immersion tank with a heating device in its lower region and with a cooling device in the region of the above Lid is equipped.
  • the heating device With the heating device, it becomes possible to keep the super-azeotropic solvent / water mixture at the boiling point of this mixture during the treatment process.
  • the treatment process is complete and the solvent has been pumped out of the container. So ent neither water remaining in the container nor separately introduced water are heated, the solvent being expelled from the mixture and the coating materials first at the appropriate temperature of the azeotrope.
  • the cooling device in the area of the upper edge is able to condense the solvent vapors, so the solvent can be removed from the container. A further heating of the water via the heating device then ensures the evaporation of the water.
  • the condensate or. Cooling device in the head region of the container can be used to return the water to other parts of the system, which means that all vaporizable components can be removed from the container before opening the lid.
  • the cooling device in the head area of the immersion tank also has the task of forming a type of vapor barrier when the tank is open, but if solvent residues, for whatever reason, should remain in the open tank, their vapors can then be condensed without causing it to environmental pollution.
  • the invention provides that the immersion container, at least in its gas space, has a spray device for objects to be treated there de is equipped.
  • This spraying device can be installed in a stationary manner, but it can also be a spraying lance or the like which can be operated by hand, of course both options can also be provided at the same time.
  • the gas space is to be understood as both the space above a liquid level and the total space of the container when the treatment agent mixture has been pumped out.
  • the invention has the particular advantage of the completely closed mode of operation.
  • at least one collecting container for solvents, one collecting container for water and one collecting container for a further treatment agent, such as a neutralizing agent or the like are assigned to the immersion container.
  • a further treatment agent such as a neutralizing agent or the like
  • At least one of the collection containers for solvents can also be used as a collection container for the treatment agent mixture, i.e. e.g. for the mixture of methylene chloride with an excess of water based on the azeotropic mixture.
  • the immersion tank has an activated carbon filter and / or a pressure compensation is provided.
  • These system elements have the task of providing gas volume compensation when the container is closed and after flooding with the treatment agent mixture when the heating device begins to heat. The portion of the gas volume expanding over the treatment agent mixture is released into the environment via the activated carbon filter by increasing the volume compared to the gas space volume of the immersion tank, or it acts on the pressure compensation tank.
  • a simple further embodiment of the invention consists in that the cooling device is assigned a condensate collection channel with drain lines.
  • the drain lines can be feed lines to the corresponding collecting containers for the treatment agent mixture and / or for the solvent and / or for water, but it can also be a bypass line which returns the condensate directly to the treatment room.
  • the system generally designated 1 for the treatment, for example for stripping or stripping, of objects 2 consists essentially of a dip tank 3, which can be closed by a removable cover 4 on the top. Through the opening released by the lid 4, the immersion container 3 is loaded with the objects 2 to be treated, which are arranged, for example, in an immersed basket 5.
  • the immersion tank 3 is provided in the lower area with a heating device 6, in the upper area near the cover 4 with cooling coils 7, which are equipped with a condensate channel 8 underneath.
  • Storage tanks are provided for receiving treatment liquid and / or neutralizing agent and / or water or the like, such as the treating agent tank 9, the condensate / water tank 10 and the neutralizing agent tank 11, each of which is shown in the figure by additional tanks 9a, 9b or 10a and 11a are added to show that the type and size of the tanks are not important.
  • a relief line 12 is provided, which leads to an activated carbon plant 13 and to a pressure compensation tank 14. Via the activated carbon system 13, a gas volume can be released to the environment via the valve 15, which gas volume is formed by thermal expansion when heated.
  • the immersion container 3 is approximately half filled with liquid so that the container is divided into a liquid region 16 and a gas space 17.
  • spray devices are provided, e.g. a permanently installed spraying system 18 and a manual spraying system 19, the specific design of which is not important.
  • the container If the container is empty, it can be filled with the latter for the treatment of the objects 2.
  • the cover 4 is removed and the cooling runs over the cooling device 7.
  • the immersion container 5 which can be provided with an additional perforated plate 5 a on one of its undersides
  • the latter is introduced into the immersion container 3 from above.
  • the lid is closed and, for example, a mixture of methylene chloride and alcohols and other solvents, acids or alkali, such as, for example, armines or surfactants or the like, and water is introduced in an over-azeotropic ratio from the tank or tanks 9 or 9a, 9b.
  • the tanks 9, 9a, 9b can be arranged higher in the direction of gravity than the highest filling level of the container 3, so that an additional pumping is unnecessary when filling, but a complete pumping out of the mixture can be ensured when emptying.
  • the heating device After flooding, the heating device is turned on and the treatment agent mixture is heated, a mixture of methylene chloride / water azeotrope boiling at 38.1 ° C. in a ratio of 89.5 to 1.5%. Boiling or bubbling the liquid accelerates the reaction, the treatment time of the parts 2 to be treated can thus e.g. compared to a cold stripping process can be shortened by a multiple, approximately 10 to 20 times, which means a 10 to 20 times higher throughput of the system.
  • the gas mixture expanding in the gas space 17 is fed via the line 12, for example to the activated carbon filter system 13, and can be released into the environment via the valve 15.
  • a vapor of solvent and water which then forms in the gas space 17 is condensed on the cooling coils 6 and collected via the condensate collecting channel 8 and, for example via a bypass line 20, is fed directly back to the immersion container 3.
  • the heating is switched off.
  • methylene chloride as solvent, it settles down below after a short time, while the water floats up as a lighter medium.
  • the methylene chloride can now be pumped back into or into one of the containers 9 to 9b, and a water fraction is left in the immersion container 3.
  • the extraction phase begins, i.e. the heating is switched on again.
  • the methylene / water mixture boils again azeotropically at 38.1 ° C.
  • the gas phase is condensed again on the cooling coils and is now fed to the storage tank 9 via line 21. If the temperature rises above 38.1 ° C, the operator finds that all methylene chloride has been distilled out. Between this temperature and the boiling point of water there are further azeotropes of the other additives, such as alcohols, formic or acetic acids, esters and the like. Like. These can then be distilled out accordingly.
  • the lid can be removed. Solvents are now completely removed from the immersion container 3, there are only parts of lacquer or paint or plastics or other detached coating materials and possibly water in the container.
  • the parts When slowly extending the diving basket 5 NEN the parts are now hosed by the stationary or the hand-operated spraying systems 18 and 19, in such a way that the coatings, which generally peel off over a large area, collect in the lower perforated plate 5a.
  • additives may also be added to the water to be treated, such as anti-corrosion agents or the like. This also saves an external spraying place by spraying in the immersion tank.
  • the water-wet residues on the perforated plate can be dewatered via filter presses or the like and can be reused. With the appropriate procedure, the hosed and removed parts are still comparatively warm, so that they dry very quickly, which additionally reduces corrosion.
  • a solvent vapor treatment in the steam space 17 can also be carried out simultaneously, e.g. of objects that are not suitable for immersion treatment, e.g. Light metals and their alloys, non-ferrous metals, wood, plastics u. This procedure can e.g. also used for incorrectly painted parts from electronics, from aircraft construction, from automobile production, for example for light alloy high-speed rims. Like. more.
  • the system can work completely closed, a certain volume of gas is discharged in the upward process via the activated carbon filter system 13, it is the only emission to the environment, but this volume can also be collected in a pressure expansion tank 14, then the system is pressurized to a certain extent operated towards the environment.
  • degreasing processes or other treatment processes can also be carried out in the system, depending entirely on the liquid mixtures used or their over-azeotropic compositions.

Abstract

Bei einem Verfahren, insbesondere zum Entlacken und Entschichten von Gegenständen, sollen die Vorteile einer Lösungsmittelbehandlung beibehalten werden, ohne die Nachteile einer Umweltbelastung in Kauf zu nehmen. Dies wird im wesentlichen dadurch erreicht, daß in einem geschlossenen Behandlungsbehälter (1) ein Behandlungsgemisch mit wenigstens einem Hauptteil an Lösungsmittel mit einem Überschußanteil an Wasser zum azeotropen Gemisch (16) eingesetzt wird, die Behandlung unter Sieden des Behandlungsgemisches erfolgt und nach Entfernen des Behandlungsgemisches aus dem Behälter noch vorhandene Lösungsmittelbestandteile vor dem Öffnen des Behälters aus dem System mit Wasser azeotrop abdestilliert und entfernt werden.

Description

  • Die Erfindung richtet sich auf ein Verfahren und eine Vor­richtung zur Behandlung von Gegenständen in einem geschlos­nenen Behälter mit Lösungsmittel, wobei die zu behandeln­den Gegenstände wenigstens zeitweise durch Tauchen in Lö­sungsmittel behandelt und anschließend in einem lösungsmit­telfreien Bereich des Behälters abgespritzt werden.
  • Aus der DE-A-33 00 666 ist ein Waschverfahren für Klein­teile bekannt, bei denen die Kleinteile in Behandlungskör­ben in einem geschlossenen Behälter durch Lösungsmittel hindurchgeführt werden und oberhalb des Lösungsmittelspie­gels abgespritzt werden. Dieses Verfahren wird als Wasch­verfahren eingesetzt und hat schon einige Vorteile, es ist aber für die Entschichtung bzw. Entlackung von Gegenstän­den nicht geeignet.
  • Zum Entschichten oder Entlacken von zu behandelnden Gegen­ständen sind sogenannte Kaltentlackungsverfahren in großen offenen Wannen bekannt, die den großen Nachteil aufweisen, daß sie durch auftretende Dämpfe oberhalb und in der Umge­bung von Tauchbecken gesundheitsschädlich sind. Darüber hinaus können beim Entnehmen anhaftende Lösemittel freige­setzt werden. Die von den Teilen abtropfenden und ablaufen­den Lösemittel können in den Boden oder ins Grundwasser ge­ langen. Außerdem verdunstet Methylenchlorid sehr rasch und belastet somit zusätzlich die Luft.
  • Es kann im übrigen zur Verschleppung der Lösungsmittel durch die behandelten Teile kommen. In den Lackrückständen sind chlorhaltige Lösungsmittel, womit eine teure Vernich­tung verbunden ist. Es ist auch nur ein begrenzter Einsatz von Zusatzstoffen, wie Phenolen, Kresolen od. dgl., aus ge­sundheitlichen und umweltbelastenden Gründen möglich. Bei einem Verschlammungsgrad der Tauchbäder von etwa 50 % muß das gesamte System vernichtet bzw. ausgetauscht werden. Durch die höheren Anforderungen an Umweltverträglichkeit ist diese bekannte Technologie durch andere Verfahren er­setzt worden.
  • So ist es z.B. bekannt, durch höhere Temperaturen eine Py­rolyse durchzuführen. Für eine derartige Pyrolyse, die bei Temperaturen um 400°C stattfinden kann, sind natürliche Beschränkungen auf die zu behandelnden Gegenstände, was deren Material angeht, selbstverständlich. So dürfen z.B. keine temperaturempfindliche Teile, wie Holz, Kunststoff, gehärtete Metalle, dünne Bleche, Leicht- und Buntmetalle, gelötete Teile, magnetisierte Metalle u.s.w., behandelt werden. Im übrigen können in den heißen Abgasen Halo­genverbindungen vorkommen, wenn beispielsweise Polyvenyl­chlorid, Chlorkautschuk verschwelt werden. Diese sauren Ga­se können in sogenannten Nachwäschern neutralisiert wer­ den. In der Verbrennung entstehen jedoch hochtoxische Dio­xine (Seveso), die dann im Waschwasser zu finden sind oder über den Kamin in die Umwelt gelangen können.
  • Eine andere Technologie besteht in der kyrostatischen Ent­lackung bei Tiefsttemperaturen etwa bei -196°C in Flüs­sigstickstoff, was allerdings mit einem großen technischen Aufwand verbunden ist. Auch ist das Einsatzgebiet einge­schränkt, insbesondere bei elastischen und dünnen Lack­schichten. Es kann auch zu unerwünschten Spannungen, insbe­sondere im Bereich von Schweiß- und Lötstellen kommen.
  • Eine Entlackung durch Verbrennen ist heute schon aus Um­weltgründen nicht mehr möglich, im übrigen auch, wenn über­haupt, nur beschränkt einsetzbar.
  • Neben den oben beschriebenen Behandlungen ist auch eine so­genannte Heißentlackung in heißen Alkalilaugen oder Säu­ren, z.B. heiße Schwefelsäure, bekannt. Diese Behandlung ist gefährlich, die Bäder reichern sich mit Schwermetal­len, Komplexbildnern, Tensiden an, so daß es letztendlich zu einer Belastung der Umwelt, insbesondere der Abwässer kommen kann. Aber auch extrem aggressive ätzende Dämpfe be­lasten Umwelt und Personal und müssen aufwendig erfaßt und neutralisiert werden. Ferner müssen verbrauchte Beizflüs­sigkeiten kostenintensiv vernichtet werden. Die Abfallmen­ge erhöht sich somit erheblich und belastet die Klärwerke durch große Salzmengen.
  • Aufgabe der Erfindung ist die Schaffung einer Lösung, mit der die vorbeschriebenen Nachteile nicht nur beim Ent­lacken, sondern auch bei einer sonstigen Entschichtungsbe­handlung von Oberflächen vermieden werden, wobei insbeson­dere auch Lösungsmittel in den Beschichtungsmaterialien vollständig entfernt und im Behandlungsablauf gehalten wer­den können und Materialien leicht entsorgt und umweltscho­nend behandelt werden können.
  • Diese Aufgabe wird gemäß der Erfindung dadurch gelöst, daß das Verfahren zum Entlacken und Entschichten der Gegenstän­de eingesetzt wird und dabei wenigstens die folgenden Ver­fahrensschritte zusätzlich umfaßt:
    • a) als Lösungsmittel wird nach Schließen des Behandlungs­behälters ein Behandlungsmittelgemisch mit wenigstens einem Hauptanteil an Lösungsmittel, wie Methylenchlo­rid, mit einem Überschußanteil an Wasser zum azeotropen Gemisch eingesetzt,
    • b) das Behandlungsmittelgemisch wird auf Siedetemperatur des Gemisches erwärmt,
    • c) nach Beendigung der Behandlungszeit wird das sich ab­setzende und sich ggf. kondensierende Lösungsmittel aus dem Behandlungsbehälter entfernt,
    • d) Wasser wird im Behandlungsbehälter erhitzt und ver­dampft, wobei
    • e) das an oder in den Beschichtungs- bzw. Lackrückständen und den zu behandelnden Gegenständen befindliche Lö­sungsmittel wird vor dem Öffnen des Behälters aus dem System mit Wasser azeotrop abdestilliert und entfernt.
  • Das Verfahren hat ganz erhebliche Vorteile gegenüber be­kannten Verfahren. Durch den Einsatz eines Behandlungsmit­telgemisches aus Lösungsmittel und einem Überschußanteil an Wasser (azeotrop Methylenchlorid/Wasser 98,5 zu 1,5 %, hier z.B. 80 zu 20 %) können die Vorteile der azeotropen Destillation genutzt werden, die bei der Rückgewinnung des Lösungsmittels von besonderer Bedeutung sind.
  • Durch den geschlossenen Kreislauf werden umweltbelastende Emissionen, wie Verunreinigung von Luft, Boden und Wasser vermieden. Auch werden thermische Beseitigungen von haloge­nen Beschichtungsmaterilien entbehrlich, wodurch es nicht zu der Bildung von Dioxiden z.B. bei der Pyrolyse von PVC kommt. Die Behandlung im kochenden Behandlungsmittelge­misch, das beim Beispiel von Methylenchlorid mit Wasser bei 38,1°C kocht, verkürzt die Behandlungszeiten um ein Vielfaches, so daß auch der Durchsatz einer derartigen Anlage gesteigert bzw. die Baugröße entsprechend verrin­gert werden kann, wobei auch die einzusetzenden Stoffmen­gen entsprechend gering gehalten werden können.
  • Ein weiterer Vorteil besteht darin, daß die Materialien, die es von der Oberfläche der zu behandelnden Gegenstände zu entfernen gilt, in vergleichsweise großen Stücken ent­fernt werden können, die dann z.B. einem Recycling zuführ­bar sind. Auch wird eine Belastung der Behandlungsflüssig­keiten durch Fremdstoffe, wie Harze od. dgl., dadurch über längere Zeit vermieden bzw. verringert, so daß seltene Re­generationsphasen eingehalten werden können.
  • In Ausgestaltung sieht die Erfindung vor, daß zum Entfer­nen des Lösungsmittels aus dem System und aus den Beschich­tungs- bzw. Lackrückständen im Kreislauf geführtes Wasser eingesetzt wird, wobei wenigstens ein Teil dieses Wassers zuvor als Bestandteil des Behandlungsmittelgemisches einge­setzt wurde.
  • Das im System befindliche Wasser kann daher sehr oft wie­derwendet werden, auch dies führt zu einer sehr wirtschaft­lichen Verfahrensweise.
  • Eine Ausgestaltung der Erfindung besteht darin, daß nach vollständigem Entfernen des Lösungsmittel aus dem System durch Auskochen und Rückkondensieren die Teile im Behand­ lungsbehälter abgespritzt und aus dem Behälter entfernt werden und/oder daß die lösungsmittelfreien Rückstände ge­sammelt und einer Wiederverwendung zugeführt werden.
  • Vorteilhaft ist es, wenn nur ein Teil des Behandlungsbehäl­ters mit Lösungsmittel gefüllt und der Füllpegel des Lö­sungsmittels auf Abstand zu im Bereich des Behälterdeckels vorgesehenen Kühl- und Kondensierschlangen gehalten wird. Damit läßt sich ein Gasraum schaffen, der auch zur Behand­lung von Gegenständen geeignet ist, deren Behandlung nur von Behandlungsmittel-Dämpfen vorgenommen werden soll. Die Kühl- und Kondensierschlangen im Bereich des Behälter­deckels können auch ein ungewolltes Austreten von Behand­lungsdämpfen bei geöffnetem Behälterdeckel verhindern.
  • Die Erfindung sieht auch vor, daß die Dampfphase des Lö­sungsmittels im oberen Bereich des Tauchbehälters konden­siert und das Kondensat als Spritzmittel eingesetzt werden kann. Dies hat den Vorteil, daß der gesamte Prozeß, was das Lösungsmittel betrifft, im Kreislauf geführt werden kann, d.h. die Gefahr, daß die Umwelt belastet wird, wird vermieden.
  • Als besonders zweckmäßig hat sich erwiesen, wenn dem Spritzmittel Additive hinzugefügt werden. Diese Additive können sehr unterschiedlicher Art sein, es können Korro­sionsmittel sein, Chemikalien zur Passivierung, falls mit einem saurem Medium, z.B. in einem Ameisensäure enthalten­den Medium entlackt wurde, es können ölige und/oder wässri­ge Additive sein und dgl. mehr.
  • Neben der hier beschriebenen Verfahrensweise kann die Er­findung in gleicher Weise auch z.B. zum Entfetten von Ober­flächen mit anderen Lösungsmitteln oder Behandlungsgemi­schen in der Flüssig- oder Dampfphase vorgenommen werden. Das Austreiben derartiger Lösungsmittel oder Behandlungsge­mische kann dann wieder azeotrop, z.B. durch Auskochen mit Wasser, erfolgen, Beispiel: Trichloräthylen mit Wasser (Verhältnis 93,4 % Tri zu 6,6 % H₂O) oder Tetrachloräthen mit Wasser in einem Verhältnis von 87,1 % Tetrachloräthen zu 15,9 % Wasser, wobei hier das Prinzip der Systemver­drängung durch den höher siedenden Stoff in einer völlig geschlossenen Verfahrensweise ausgenutzt wird.
  • Grundsätzlich soll der umweltbelastende Azeotrop-Bestand­teil durch den weniger oder gar nicht umweltbelastenden Stoff (hier im wesentlichen H₂O) im System geschlossen ausgetrieben werden.
  • Neben den beschriebenen Vorteilen hat die erfindungsgemäße Verfahrensweise noch zusätzliche Vorteile. So z.B. die fol­genden:
  • Geringe Betriebskosten, da lediglich die niedrigen Behei­zungskosten, um mit warmen Entschichtungsmittel zu arbei­ten und später extraktiv zu destillieren, Energie erfor­dern. Thermische Behandlungen bedürfen Temperaturen von ca. 400°C gegenüber 38,1°C bzw. 100°.
  • Da die Entschichtungsmittel nur als Zwischenstufe, wie bei den meisten extraktiven Prozessen, lediglich eine gewisse Zeit im System vorhanden sind und nach dem Entschichtungs­prozeß daraus entfernt werden, entstehen durch sie keine zusätzlichen Abfallprobleme. (Kaltentlackungsmittel werden bei einem Gehalt von ca. 50 % Lackanteil wegen der Ver­schlammung häufig aufwendig vernichtet, d.h. Verdoppelung und zusätzliche Belastung des Abfalles mit umweltschädigen­den Zusatzstoffen).
  • Die anfallenden Rückstände können, da sie faktisch nur phy­sikalisch abgelöst wurden und sich chemisch kaum verändert haben, im Recyclingverfahren für sekundäre Beschichtungs­prozesse häufig wiederverwendet werden. (Entsprechend dem Gesetz zur Abfallvermeidung und Wiederverwendung von Roh­stoffen.)
  • Durch die verhältnismäßig niedrigen Bearbeitungstemperatu­ren (längere Zeit bei ca. 40°C während des Entschichtungs­vorganges und kurzzeitig bis maximal 100°C während der extraktiven Phase (Wasserdampfdestillation)) erfolgen kaum Veränderungen des Grundmateriales. Die thermischen Verfahren, z.B. Hochtemperatur, Pyrolyse und Salzschmelze, erfordern Temperaturen von 400°C und darüber Behandlungszeiten von bis zu 15 Stunden und mehr, wie beim diskontinierlichen Kammerverfahren. Dies führt zu strucktu­rellen Veränderungen des Grundmaterials, wie Erweichung von gehärteten Stoffen, z.B. Federstahl, geschmiedete Tei­le, wie z.B. Transport- und Hebeketten, Verwindung und Sta­bilitätsverlust legierter Materialien, wie Leichtmetalle, Verformung und Deformierung dünner, gestanzter, gezogener oder gegossener Teile. Keinerlei Anwendung ist bei organi­schen Materialen möglich. Bei Tieftemperatur, z.B. beim Tauchen in flüssigen Stickstoff bei -196°C kommt es zur Versprödung und Veränderung der Kristallstrukturen der zu behandelnden Teile. Die Folge ist eine Rißbildung bis zum Absprengen von Löt- oder Schweißnähten und Materialer­müdung. Eine Aufwendige mechanische Nachbehandlung durch Strahlen mit Stahlkorn etc. bei Oberflächenbeschädigung wird nötig.
  • Die gedämpfte Aggressivität ermöglicht durch Verwendung von Inhibitoren im saueren wie auch im alkalischen Bereich geringe Oberflächenveränderungen gegenüber vieler Grund­stoffe. Häufig werden stark ätzende Verfahren gewählt, um bei empfindlichem Grundmaterial extrem widerstandsfähige Schichten zu entfernen. (Heiße konzentrierte Schwefelsäu­re, heiße Ätznatronlauge etc.). Dies bedeutet nicht nur Oberflächenveränderungen, sondern auch aufwendige Neutrali­sation bei der Nachbehandlung (Übersalzung der Abwässer).
  • Die mechanische Belastung der Teile ist unbedeutend. Hoch­druckverfahren mit 800 bar Wasserstrahl erlauben nur die Entschichtung derber einheitlicher Teile, wie Gitterroste od. dgl.
  • Das schonende Entschichten bedeutet auch keine Beeinflu­ssung der Gesundheit des Personals, da die Chemikalien nur in der geschlossenen Anlage in Kontakt mit den zu ent­schichtenden Teilen kommen. Beim Öffnen werden nur ent­schichtete Teile und wassernasser Rückstand entnommen.
  • Zur Lösung der weiter oben formulierten Aufgabe sieht die Erfindung auch eine Anlage mit einem wenigstens teilweise mit einem Lösungsmittelgemisch füllbaren Tauchbehälter vor, wobei sich diese Anlage dadurch auszeichnet, daß der Tauchbehälter mit einer Heizeinrichtung in seinem unteren Bereich und mit einer Kühleinrichtung im Bereich des oben vorgesehenen Deckels ausgerüstet ist.
  • Mit der Heizeinrichtung wird es möglich, daß überazeotrope Lösungsmittel-/Wassergemisch zunächst während des Behand­lungsvorganges auf Siedetemperatur dieses Gemisches zu hal­ten. Ist der Behandlungsvorgang abgeschlossen und das Lö­sungsmittel aus dem Behälter abgepumpt worden. So kann ent­ weder im Behälter verbliebenes Wasser oder gesondert einge­brachtes Wasser erhitzt werden, wobei zunächst bei der ent­sprechenden Temperatur des Azeotrops das Lösungsmittel aus dem Gemisch und den Beschichtungsmaterialien ausgetrieben wird.
  • Die Kühleinrichtung im Bereich des oberen Randes vermag die Lösungsmitteldämpfe zu kondensieren, das Lösungsmittel kann so aus dem Behälter entfernt werden. Ein weiteres Er­hitzen des Wassers über die Heizeinrichtung sorgt dann für das Verdampfen des Wassers, auch hier kann die Kondensat-­bzw. Kühleinrichtung im Kopfbereich des Behälters zur Rück­führung des Wassers in andere Anlagenteile genutzt werden, das bedeutet, daß vor öffnen des Deckels alle verdampfba­ren Bestandteile aus dem Behälter entfernt werden können.
  • Die Kühleinrichtung im Kopfbereich des Tauchbehälters hat zudem die Aufgabe, bei geöffnetem Behälter hier eine Art Dampfsperre zu bilden, falls doch noch Lösungsmittelrück­stände, aus welchen Gründen auch immer, im geöffneten Be­hälter verblieben sein sollten, können deren Dämpfe dann abkondensiert werden, ohne daß es zu einer Umweltbelastung kommt.
  • In Ausgestaltung sieht die Erfindung vor, daß der Tauchbe­hälter wenigstens in seinem Gasraum mit einer Abspritzein­richtung für dorthin verbrachte, zu behandelnde Gegenstän­ de ausgerüstet ist. Diese Abspritzeinrichtung kann orts­fest installiert sein, es kann sich aber auch um eine mit Hand zu betreibende Spritzlanze od. dgl. handeln, selbst­verständlich können auch beide Möglichkeiten gleichzeitig vorgesehen sein. Als Gasraum ist sowohl der Raum über ei­nem Flüssigkeitspegel zu verstehen, als auch der Gesamt­raum des Behälters bei abgepumptem Behandlungsmittelge­misch.
  • Die Erfindung hat, wie erwähnt, den besonderen Vorteil der völlig geschlossenen Betriebsweise. Dazu ist in Ausgestal­tung vorgesehen, daß dem Tauchbehälter wenigstens ein Sam­melbehälter für Lösungsmittel, ein Sammelbehälter für Was­ser und ein Sammelbehälter für ein weiteres Behandlungsmit­tel, wie ein Neutralisationsmittel od. dgl., zugeordnet ist. Es sei erwähnt, daß selbstverständlich mehrere derar­tige Behälter für die entsprechenden Stoffe vorgesehen sein können. Auch kann wenigstens einer der Sammelbehälter für Lösungsmittel auch als Sammelbehälter für das Behand­lungsmittelgemisch herangezogen werden, d.h. z.B. für das Gemisch aus Methylenchlorid mit einem Überschuß an Wasser bezogen auf das azeotrope Gemisch.
  • Um die Gefahr zu unterbinden, die Umwelt auch mit klein­sten Mengen an Lösungsmitteldämpfen zu belasten, ist in weiterer Ausgestaltung vorgesehen, daß der Tauchbehälter mit einem Aktivkohlefilter und/oder einem Druckausgleichbe­ hälter versehen ist. Diese Anlagenelemente haben die Aufga­be, bei geschlossenem Behälter und nach Fluten mit dem Be­handlungsmittelgemisch für einen Gasvolumenausgleich zu sorgen, wenn die Heizeinrichtung zu heizen beginnt. Das sich über dem Behandlungsmittelgemisch ausdehnende Gasvolu­men wird in dem Anteil über den Aktivkohlefilter in die Um­welt entlassen, in dem sich das Volumen gegenüber dem Gas­raumvolumen des Tauchbehälters vergrößert, oder aber es be­aufschlagt den Druckausgleichbehälter.
  • Eine einfache weitere Ausgestaltung der Erfindung besteht darin, daß der Kühleinrichtung eine Kondensatsammelrinne mit Abflußleitungen zugeordnet ist. Bei den Abflußleitun­gen kann es sich um Zuführleitungen zu den entsprechenden Auffangbehältern für Behandlungsmittelgemisch und/oder für Lösungsmittel und/oder für Wasser handeln, es kann sich aber auch um eine Bypassleitung handeln, die das Kondensat in den Behandlungsraum direkt zurückführt.
  • Weitere Einzelheiten, Merkmale und Vorteile der Erfindung ergeben sich aufgrund der nachfolgenden Beschreibung sowie anhand der Zeichnung. Diese zeigt in der einzigen Figur als Prinzipskizze eine Anlage gemäß der Erfindung in ver­einfachter Darstellung.
  • Die allgemein mit 1 bezeichnete Anlage zur Behandlung, z.B. zur Entschichtung oder Entlackung, von Gegenständen 2 besteht im wesentlichen aus einem Tauchbehälter 3, der von einem entfernbaren Deckel 4 an der Oberseite verschließbar ist. Durch die vom Deckel 4 freigegebene Öffnung wird der Tauchbehälter 3 mit den zu behandelnden Gegenständen 2 be­schickt, die z.B. in einem andeutungsweise wiedergegebenen Tauchkorb 5 angeordnet sind.
  • Der Tauchbehälter 3 ist im unteren Bereich mit einer Heiz­einrichtung 6 versehen, im oberen Bereich in der nähe des Deckels 4 mit Kühlschlangen 7, die unter sich mit einer Kondensatrinne 8 ausgerüstet sind.
  • Zur Aufnahme von Behandlungsflüssigkeit und/oder Neutrali­sationsmittel und/oder Wasser od. dgl. sind Vorratstanks vorgesehen, so der Behandlungsmitteltank 9, der Konden­sat-/Wassertank 10 und der Neutralisationsmitteltank 11, die in der Figur jeweils durch weitere Tanks 9a, 9b bzw 10a and 11a ergänzt sind, um darzustellen, daß es auf Art und Umfang der Tanks nicht ankommt.
  • Im Kopfbereich des Tauchbehälters 3 ist eine Entlastungs­leitung 12 vorgesehen, die zu einer Aktivkohleanlage 13 und zu einem Druckausgleichsbehälter 14 führt. Über die Ak­tivkohleanlage 13 kann ein Gasvolumen über das Ventil 15 an die Umgebung abgegeben werden, welches sich durch Wärme­ausdehnung bei Erhitzung bildet.
  • In der Figur ist noch dargestellt, daß der Tauchbehälter 3 etwa zur Hälfte mit Flüssigkeit gefüllt ist, so daß sich eine Aufteilung des Behälters in einem Flüssigkeitsbereich 16 und einem Gasraum 17 bildet. Im Bereich des Gasraumes 17 sind Spritzeinrichtungen vorgesehen, so z.B. eine fest installierte Spritzanlage 18 und eine Handspritzanlage 19, auf deren spezielle Gestaltung es nicht näher ankommt.
  • Die Wirkungsweise der Anlage ist dabei die folgende:
  • Ist der Behälter leer, so kann er zur Behandlung der Gegen­stände 2 mit letzteren gefüllt werden. Dabei wird zunächst der Deckel 4 entfernt, die Kühlung über die Kühleinrich­tung 7 läuft. Nach Bestücken des Tauchbehälters 5, welcher an einer seiner Unterseiten z.B. mit einem zusätzlichen Lochblech 5a versehen sein kann, wird dieser von oben in den Tauchbehälter 3 eingebracht. Nunmehr wird der Deckel geschlossen und z.B. ein Gemisch aus Methylenchlorid sowie Alkoholen und anderen Lösungsmitteln, Säuren oder Alkali, wie beispielsweise Armine oder Tenside od. dgl., und Was­ser im überazeotropen Verhältnis aus dem oder den Tanks 9 bzw. 9a, 9b eingebracht. Die Tanks 9, 9a, 9b können dabei in Schwerkraftsrichtung höher angeordnet sein, als der höchste Füllstand des Behälters 3, so daß beim Füllen ein zusätzliches Pumpen entbehrlich ist, beim Entleeren aber ein vollständiges Abpumpen des Gemisches gewährleistet wer­den kann.
  • Nach Befluten wird die Heizeinrichtung angestellt und das Behandlungsmittelgemisch erwärmt, wobei ein Gemisch aus Me­thylenchlorid/Wasserazeotrop bei 38,1°C in einem Verhält­nis von 89,5 zu 1,5 % siedet. Durch das Sieden bzw. das Sprudeln der Flüssigkeit beschleunigt sich die Reaktion, die Behandlungsdauer der zu behandelnden Teile 2 kann so z.B. gegenüber einem Kaltentlackungsverfahren um ein Vielfaches, etwa 10- bis 20-faches, verkürzt werden, was die 10- bis 20-fache Durchsatzsteigerung der Anlage be­deutet.
  • Bei Erwärmung wird das im Gasraum 17 sich ausdehnende Gas­gemisch über die Leitung 12 z.B. der Aktivkohlefilteranla­ge 13 zugeführt und kann über das Ventil 15 in die Umge­bung entlassen werden. Ein sich danach im Gasraum 17 bil­dender Dampf aus Lösungsmittel und Wasser wird an den Kühl­schlangen 6 kondensiert und über die Kondensatsammelrinne 8 gesammelt und z.B. über eine Bypassleitung 20 direkt wie­der dem Tauchbehälter 3 zugeführt. Ist die Behandlung been­det, wird die Heizung abgestellt. Im Falle von Methylen­chlorid als Lösungsmittel setzt sich dieses nach kurzer Zeit unten ab, während das Wasser als leichteres Medium oben aufschwimmt. Nunmehr kann das Methylenchlorid zurück­gepumpt in die oder einen der Behälter 9 bis 9b, ein Was­seranteil wird im Tauchbehälter 3 zurückgelassen.
  • Nunmehr beginnt die Extraktionsphase, d.h. die Heizung wird erneut eingeschaltet. Zu Beginn kocht das Methy­len/Wasser-Gemisch azeotrop wieder bei 38,1°C. Solange im System Methylenchlorid enthalten ist, bleibt dieser Sie­depunkt konstant. Die Gasphase wird an den Kühlschlangen wieder kondensiert und nun über die Leitung 21 dem Vorrats­tank 9 zugeführt. Steigt die Temperatur höher als 38,1°C, ergibt sich für den Betreiber, daß alles Methylenchlorid ausdestilliert ist. Zwischen dieser Temperatur und der Siedetemperatur von Wasser ergeben sich weitere Azeotrope der anderen Zusatzstoffe, wie Alkohole, Ameisen- oder Essigsäuren, Estern u. dgl. Auch diese können dann entsprechend ausdestilliert werden. Bei der Siedetempera­tur des Wassers sind alle Leichtflüchtiger, Niedrigsieder in den Vorratstank destilliert. Nunmehr kann die Heizung abgeschaltet werden und das Restwasser wird in den Wasser­vorratstank, z.B. dem Tank 10, gepumpt, falls nötig, kann zusätzlich Wasser und Neutralisationsmittel in den Tauchbe­hälter 3 eingegeben werden, um Säuren, Laugen oder andere Zusatzstoffe chemisch unschädlich zu machen.
  • Nach Beendigung dieser Behandlungsstufe kann der Deckel ab­genommen werden. Lösungsmittel sind nunmehr vollständig aus dem Tauchbehälter 3 entfernt, es befinden sich nur noch Teile von Lack- bzw. Farb- oder Kunststoffen oder an­dere abgelöste Beschichtungsmaterialien und ggf. Wasser im Behälter. Beim langsamen Ausfahren des Tauchkorbes 5 kön­ nen nun die Teile durch die stationäre oder die handbetrie­benen Spritzanlagen 18 und 19 abgespritzt werden, und zwar in der Weise, daß sich die in der Regel großflächig ablö­senden Beschichtungen im unteren Lochblech 5a sammeln. Wie schon der Behandlungsflüssigkeit können auch dem zu behan­delnden Wasser Additive zugefügt sein, etwa Korrosions­schutzmittel od. dgl. mehr. Damit wird durch das Absprit­zen im Tauchbehälter zusätzlich ein externer Abspritzplatz eingespart. Die wassernassen Rückstände auf dem Lochblech können über Filterpressen od. dgl. entwässert werden und einer Wiederverwendung zugeführt werden. Bei entsprechen­der Verfahrensführung sind die abgespritzten und entnomme­nen Teile noch vergleichsweise warm, so daß sie sehr schnell abtrocknen, was zusätzlich korrosionsmindernd wirkt.
  • Mit der erfindungsgemäßen Anlage läßt sich ein einfacher Weise auch eine Regeneration der eingesetzten Flüssigkei­ten bzw. Flüssigkeitsgemische erreichen. Hierbei kann bei Verunreinigung der Flüssigkeiten durch feinste Lackteile, Pigmente od. dgl., etwa wie in Lösung gegangenen Harzen ei­ne komplette Regeneration der Entschichtungsmittel möglich gemacht werden. Dabei kann in einer Behandlungsstufe die gesamte Behandlungsflüssigkeit überdestilliert werden, d.h. man verzichtet in diesem Falle auf ein, wenn auch nur teilweises Abpumpen der Flüssigkeiten, vielmehr werden die­se entsprechend der Siedetemperaturen über die Leitung 21 dem Tank 9 als Lösungsmittel oder die Leitung 22 dem Was­sertank 10 zugeführt.
  • Je nach Baugröße oder Füllstand des Behälters bzw. Reak­tors 3 können neben der Tauchbehandlung im Bereich 16 auch eine Lösungsmitteldampfbehandlung im Dampfraum 17 ggf. gleichzeitig erfolgen, z.B. von Gegenständen, die für eine Tauchbehandlung nicht geeignet sind, z.B. Leichtmetalle und deren Legierungen, Buntmetalle, Holz, Kunststoffe u. dgl. Diese Verfahrensweise kann z.B. auch bei fehlerhaft lackierten Teilen aus der Elektronik, aus dem Flugzeugbau, aus der Automobilfertigung, etwa für Leichtmetall-Hochge­schwindigkeitsfelgen eingesetzt werden u. dgl. mehr. Im Prinzip kann die Anlage völlig geschlossen arbeiten, wird ein gewisses Gasvolumen im Aufwärtsvorgang über die Aktiv­kohlefilteranlage 13 abgeleitet, besteht darin der einzige Austoß an die Umwelt, in einem Druckausdehnungsbehälter 14 kann allerdings dieses Volumen ebenfalls aufgefangen wer­den, dann wird die Anlage mit einem gewissen Überdruck ge­genüber der Umgebung betrieben.
  • Wie bereits erwähnt, können auch Entfettungsvorgänge oder andere Behandlungsvorgänge in der Anlage vorgenommen wer­den, dies richtet sich ganz nach den eingesetzten Flüssig­keitsgemischen oder deren überazeotropen Zusammensetzun­gen.

Claims (12)

1. Verfahren zum Behandeln von Gegenständen mit einem ge­schlossenen Behälter mit Lösungsmittel, wobei die zu behan­delnden Gegenstände wenigstens zeitweise durch Tauchen in Lösungsmittel behandelt und anschließend in einem lösungs­mittelfreien Bereich des Behälters abgespritzt werden,
dadurch gekennzeichnet,
daß das Verfahren zum Entlacken und Entschichten der Gegen­stände eingesetzt wird und dabei wenigstens die folgenden Verfahrensschritte zusätzlich umfaßt:
a) als Lösungsmittel wird nach Schließen des Behandlungs­behälters ein Behandlungsmittelgemisch mit wenigstens einem Hauptanteil an Lösungsmittel, wie Methylenchlo­rid, mit einem Überschußanteil an Wasser zum azeotropen Gemisch eingesetzt.
b) das Behandlungsmittelgemisch wird auf Siedetemperatur des Gemisches erwärmt,
c) nach Beendigung der Behandlungszeit wird das sich ab­setzende und sich ggf. kondensierende Lösungsmittel aus dem Behandlungsbehälter entfernt,
d) Wasser wird im Behandlungsbehälter erhitzt und ver­dampft, wobei
e) das an oder in den Beschichtungs- bzw. Lackrückständen und den zu behandelnden Gegenständen befindliche Lö­sungsmittel wird vor dem Öffnen des Behälters aus dem System mit Wasser azeotrop abdestilliert und entfernt.
2. Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
daß zum Entfernen des Lösungsmittels aus dem System und aus den Beschichtungs- bzw. Lackrückständen im Kreislauf geführtes Wasser eingesetzt wird, wobei wenigstens ein Teil dieses Wassers zuvor als Bestandteil des Behandlungs­mittelgemisches eingesetzt wurde.
3. Verfahren nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
daß nach vollständigem Entfernen des Lösungsmittel aus dem System durch Auskochen und Rückkondensieren die Teile im Behandlungsbehälter abgespritzt und aus dem Behälter ent­fernt werden.
4. Verfahren nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet,
daß die lösungsmittelfreien Rückstände gesammelt und insbe­sondere einer Wiederverwendung zugeführt werden.
5. Verfahren nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet,
daß nur ein Teil des Behandlungsbehälters mit Lösungsmit­tel gefüllt und der Füllpegel des Lösungsmittels auf Ab­stand zu im Bereich des Behälterdeckels vorgesehenen Kühl-­und Kondensierungsschlangen gehalten wird.
6. Verfahren nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet,
daß das Lösungsmittelgemisch auch als Abspritzmittel im Gasraum des Behandlungsbehälters eingesetzt wird.
7. Verfahren nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet,
daß dem Lösungsmittel als Behandlungsflüssigkeit und/oder Spritzflüssigkeit Additive zur Passivierung oder zum Korro­sionsschutz zugefügt werden.
8. Anlage zur Durchführung des Verfahrens nach einem der vor­angehenden Ansprüche mit einem wenigstens teilweise mit einem Lösungsmittelgemisch füllbaren Tauchbehälter,
dadurch gekennzeichnet,
daß der Tauchbehälter (3) mit einer Heizeinrichtung (6) in seinem unteren Bereich und mit einer Kühleinrichtung (7) im Bereich des oben vorgesehenen Deckels (4) ausgerüstet ist.
9. Anlage nach Anspruch 8,
dadurch gekennzeichnet,
daß der Tauchbehälter (3) wenigstens in seinem Gasraum (17) mit einer Abspritzeinrichtung (18,19) für dorthin ver­brachte, zu behandelnde Gegenstände (2) ausgerüstet ist.
10. Anlage nach Anspruch 8 oder 9,
dadurch gekennzeichnet,
daß dem Tauchbehälter wenigstens ein Sammelbehälter (9) für Lösungsmittel, ein Sammelbehälter (10) für Wasser und ein Sammelbehälter (11) für ein weiteres Behandlungsmit­tel, wie ein Neutralisationsmittel od. dgl., zugeordnet ist.
11. Anlage nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet,
daß der Tauchbehälter (3) mit einem Aktivkohlefilter (13) und/oder einem Druckausgleichbehälter (14) versehen ist.
12. Anlage nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet,
daß der Kühleinrichtung (7) eine Kondensatsammelrinne (8) mit Abflußleitungen (20-22) zugeordnet ist.
EP88111774A 1987-08-01 1988-07-21 Verfahren und Vorrichtung zum Behandeln von Gegenständen in einem geschlossenen Behälter mit Lösungsmittel Expired - Lifetime EP0302313B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88111774T ATE70315T1 (de) 1987-08-01 1988-07-21 Verfahren und vorrichtung zum behandeln von gegenstaenden in einem geschlossenen behaelter mit loesungsmittel.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3725565 1987-08-01
DE3725565A DE3725565A1 (de) 1987-08-01 1987-08-01 Verfahren und anlage zum entlacken von gegenstaenden mit einem tauchbehaelter mit loesungsmittel

Publications (2)

Publication Number Publication Date
EP0302313A1 true EP0302313A1 (de) 1989-02-08
EP0302313B1 EP0302313B1 (de) 1991-12-11

Family

ID=6332876

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88111774A Expired - Lifetime EP0302313B1 (de) 1987-08-01 1988-07-21 Verfahren und Vorrichtung zum Behandeln von Gegenständen in einem geschlossenen Behälter mit Lösungsmittel

Country Status (10)

Country Link
US (1) US5011542A (de)
EP (1) EP0302313B1 (de)
JP (1) JPH02500178A (de)
KR (1) KR950014078B1 (de)
AT (1) ATE70315T1 (de)
BR (1) BR8807154A (de)
DE (2) DE3725565A1 (de)
ES (1) ES2027351T3 (de)
GR (1) GR3003993T3 (de)
WO (1) WO1989001057A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0416763A1 (de) * 1989-08-14 1991-03-13 BUSH BOAKE ALLEN Limited Verfahren und Zusammensetzungen zur Reinigung von Artikeln
WO1996018511A1 (en) * 1994-12-16 1996-06-20 Rotary Stripping Systems Limited Apparatus for supporting articles in liquid treatment tanks
WO1996024704A1 (de) * 1995-02-07 1996-08-15 Peter Weil Verfahren zum reinigen von gegenständen mit lösungsmitteln in einem geschlossenen behandlungsraum

Families Citing this family (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR8807903A (pt) * 1988-04-25 1991-05-21 Aga Ab Processo de remocao de tinta
US5300154A (en) * 1990-08-14 1994-04-05 Bush Boake Allen Limited Methods for cleaning articles
US5346534A (en) * 1990-09-12 1994-09-13 Baxter International Inc. Process for treating an article with a volatile fluid
DE4119303A1 (de) * 1991-06-12 1991-12-12 Rolf Prof Dr Ing Germerdonk Verfahren zum zerlegen von stueckigen abfallgemischen, die metallteile, loesliche polymere, insbes. aus (chlor-)kohlenwasserstoffen, weichmachern sowie farb- und zuschlagstoffe enthalten, in zwei bzw. drei recyclingfaehige komponenten und in einen chlorkohlenwasserstoff-freien, problemloser zu entsorgenden restabfall
DE4138400C1 (de) * 1991-11-22 1993-02-18 Aichelin Gmbh, 7015 Korntal-Muenchingen, De
US5273060A (en) * 1992-06-26 1993-12-28 Martin Marietta Corporation Alcohol spray cleaning system
DE4317862A1 (de) * 1993-05-28 1994-12-01 Aichelin Ind Ofen Verfahren und Vorrichtung zum Reinigen von metallischen Werkstücken
US5377705A (en) * 1993-09-16 1995-01-03 Autoclave Engineers, Inc. Precision cleaning system
US5367881A (en) * 1993-09-28 1994-11-29 Liquid Carbonic Corporation Cryogenic control of emission of solvent vapors from mixers
DE4336704A1 (de) * 1993-10-27 1995-05-04 Wacker Chemitronic Verfahren und Vorrichtung zur Behandlung von scheibenförmigen Werkstücken mit einer Flüssigkeit
US6027651A (en) * 1994-06-06 2000-02-22 Cash; Alan B. Process for regenerating spent solvent
US5876567A (en) * 1995-04-28 1999-03-02 Yamamoto; Soichiro Solvent recycling system
US6500605B1 (en) 1997-05-27 2002-12-31 Tokyo Electron Limited Removal of photoresist and residue from substrate using supercritical carbon dioxide process
TW539918B (en) 1997-05-27 2003-07-01 Tokyo Electron Ltd Removal of photoresist and photoresist residue from semiconductors using supercritical carbon dioxide process
US6306564B1 (en) 1997-05-27 2001-10-23 Tokyo Electron Limited Removal of resist or residue from semiconductors using supercritical carbon dioxide
US6277753B1 (en) 1998-09-28 2001-08-21 Supercritical Systems Inc. Removal of CMP residue from semiconductors using supercritical carbon dioxide process
US7064070B2 (en) * 1998-09-28 2006-06-20 Tokyo Electron Limited Removal of CMP and post-CMP residue from semiconductors using supercritical carbon dioxide process
US6748960B1 (en) * 1999-11-02 2004-06-15 Tokyo Electron Limited Apparatus for supercritical processing of multiple workpieces
KR100744888B1 (ko) 1999-11-02 2007-08-01 동경 엘렉트론 주식회사 소재를 초임계 처리하기 위한 장치 및 방법
US6558475B1 (en) 2000-04-10 2003-05-06 International Business Machines Corporation Process for cleaning a workpiece using supercritical carbon dioxide
IL152376A0 (en) * 2000-04-25 2003-05-29 Tokyo Electron Ltd Method of depositing metal film and metal deposition cluster tool including supercritical drying/cleaning module
JP4724353B2 (ja) * 2000-07-26 2011-07-13 東京エレクトロン株式会社 半導体基板のための高圧処理チャンバー
US6428683B1 (en) * 2000-12-15 2002-08-06 United Technologies Corporation Feedback controlled airfoil stripping system with integrated water management and acid recycling system
CN100392796C (zh) * 2001-04-10 2008-06-04 东京毅力科创株式会社 包含流量增强特征的半导体衬底高压加工室
US20040040660A1 (en) * 2001-10-03 2004-03-04 Biberger Maximilian Albert High pressure processing chamber for multiple semiconductor substrates
WO2003064065A1 (en) * 2002-01-25 2003-08-07 Supercritical Systems Inc. Method for reducing the formation of contaminants during supercritical carbon dioxide processes
US7001468B1 (en) 2002-02-15 2006-02-21 Tokyo Electron Limited Pressure energized pressure vessel opening and closing device and method of providing therefor
US6924086B1 (en) 2002-02-15 2005-08-02 Tokyo Electron Limited Developing photoresist with supercritical fluid and developer
WO2003070846A2 (en) * 2002-02-15 2003-08-28 Supercritical Systems Inc. Drying resist with a solvent bath and supercritical co2
JP2005517884A (ja) * 2002-02-15 2005-06-16 東京エレクトロン株式会社 圧力強化ダイヤフラム弁
US20050227187A1 (en) * 2002-03-04 2005-10-13 Supercritical Systems Inc. Ionic fluid in supercritical fluid for semiconductor processing
AU2003220039A1 (en) * 2002-03-04 2003-09-22 Supercritical Systems Inc. Method of passivating of low dielectric materials in wafer processing
US7387868B2 (en) 2002-03-04 2008-06-17 Tokyo Electron Limited Treatment of a dielectric layer using supercritical CO2
AU2003220443A1 (en) * 2002-03-22 2003-10-13 Supercritical Systems Inc. Removal of contaminants using supercritical processing
US7169540B2 (en) * 2002-04-12 2007-01-30 Tokyo Electron Limited Method of treatment of porous dielectric films to reduce damage during cleaning
JP2004050119A (ja) * 2002-07-23 2004-02-19 Matsushita Electric Ind Co Ltd 洗浄装置及び洗浄方法
DE10258490A1 (de) * 2002-12-14 2004-07-08 Daimlerchrysler Ag Verfahren zur Entlackung von Polymersubstraten
US20040177867A1 (en) * 2002-12-16 2004-09-16 Supercritical Systems, Inc. Tetra-organic ammonium fluoride and HF in supercritical fluid for photoresist and residue removal
US20040112409A1 (en) * 2002-12-16 2004-06-17 Supercritical Sysems, Inc. Fluoride in supercritical fluid for photoresist and residue removal
US7021635B2 (en) * 2003-02-06 2006-04-04 Tokyo Electron Limited Vacuum chuck utilizing sintered material and method of providing thereof
US20040154647A1 (en) * 2003-02-07 2004-08-12 Supercritical Systems, Inc. Method and apparatus of utilizing a coating for enhanced holding of a semiconductor substrate during high pressure processing
US7077917B2 (en) * 2003-02-10 2006-07-18 Tokyo Electric Limited High-pressure processing chamber for a semiconductor wafer
US7225820B2 (en) * 2003-02-10 2007-06-05 Tokyo Electron Limited High-pressure processing chamber for a semiconductor wafer
US7270137B2 (en) 2003-04-28 2007-09-18 Tokyo Electron Limited Apparatus and method of securing a workpiece during high-pressure processing
US20040231707A1 (en) * 2003-05-20 2004-11-25 Paul Schilling Decontamination of supercritical wafer processing equipment
US7163380B2 (en) * 2003-07-29 2007-01-16 Tokyo Electron Limited Control of fluid flow in the processing of an object with a fluid
US20050035514A1 (en) * 2003-08-11 2005-02-17 Supercritical Systems, Inc. Vacuum chuck apparatus and method for holding a wafer during high pressure processing
US20050034660A1 (en) * 2003-08-11 2005-02-17 Supercritical Systems, Inc. Alignment means for chamber closure to reduce wear on surfaces
US20050067002A1 (en) * 2003-09-25 2005-03-31 Supercritical Systems, Inc. Processing chamber including a circulation loop integrally formed in a chamber housing
US7186093B2 (en) * 2004-10-05 2007-03-06 Tokyo Electron Limited Method and apparatus for cooling motor bearings of a high pressure pump
US7250374B2 (en) * 2004-06-30 2007-07-31 Tokyo Electron Limited System and method for processing a substrate using supercritical carbon dioxide processing
US7307019B2 (en) * 2004-09-29 2007-12-11 Tokyo Electron Limited Method for supercritical carbon dioxide processing of fluoro-carbon films
US20060065288A1 (en) * 2004-09-30 2006-03-30 Darko Babic Supercritical fluid processing system having a coating on internal members and a method of using
US20060065189A1 (en) * 2004-09-30 2006-03-30 Darko Babic Method and system for homogenization of supercritical fluid in a high pressure processing system
US20060102590A1 (en) * 2004-11-12 2006-05-18 Tokyo Electron Limited Method for treating a substrate with a high pressure fluid using a preoxide-based process chemistry
US7491036B2 (en) * 2004-11-12 2009-02-17 Tokyo Electron Limited Method and system for cooling a pump
US20060102204A1 (en) * 2004-11-12 2006-05-18 Tokyo Electron Limited Method for removing a residue from a substrate using supercritical carbon dioxide processing
US20060102591A1 (en) * 2004-11-12 2006-05-18 Tokyo Electron Limited Method and system for treating a substrate using a supercritical fluid
US20060102208A1 (en) * 2004-11-12 2006-05-18 Tokyo Electron Limited System for removing a residue from a substrate using supercritical carbon dioxide processing
US20060130966A1 (en) * 2004-12-20 2006-06-22 Darko Babic Method and system for flowing a supercritical fluid in a high pressure processing system
US20060135047A1 (en) * 2004-12-22 2006-06-22 Alexei Sheydayi Method and apparatus for clamping a substrate in a high pressure processing system
US7434590B2 (en) * 2004-12-22 2008-10-14 Tokyo Electron Limited Method and apparatus for clamping a substrate in a high pressure processing system
US7140393B2 (en) * 2004-12-22 2006-11-28 Tokyo Electron Limited Non-contact shuttle valve for flow diversion in high pressure systems
US20060180572A1 (en) * 2005-02-15 2006-08-17 Tokyo Electron Limited Removal of post etch residue for a substrate with open metal surfaces
US7291565B2 (en) * 2005-02-15 2007-11-06 Tokyo Electron Limited Method and system for treating a substrate with a high pressure fluid using fluorosilicic acid
US7435447B2 (en) * 2005-02-15 2008-10-14 Tokyo Electron Limited Method and system for determining flow conditions in a high pressure processing system
US20060180174A1 (en) * 2005-02-15 2006-08-17 Tokyo Electron Limited Method and system for treating a substrate with a high pressure fluid using a peroxide-based process chemistry in conjunction with an initiator
US20060186088A1 (en) * 2005-02-23 2006-08-24 Gunilla Jacobson Etching and cleaning BPSG material using supercritical processing
US20060185693A1 (en) * 2005-02-23 2006-08-24 Richard Brown Cleaning step in supercritical processing
US20060185694A1 (en) * 2005-02-23 2006-08-24 Richard Brown Rinsing step in supercritical processing
US7550075B2 (en) 2005-03-23 2009-06-23 Tokyo Electron Ltd. Removal of contaminants from a fluid
US7767145B2 (en) 2005-03-28 2010-08-03 Toyko Electron Limited High pressure fourier transform infrared cell
US7380984B2 (en) * 2005-03-28 2008-06-03 Tokyo Electron Limited Process flow thermocouple
US20060225772A1 (en) * 2005-03-29 2006-10-12 Jones William D Controlled pressure differential in a high-pressure processing chamber
US7399708B2 (en) * 2005-03-30 2008-07-15 Tokyo Electron Limited Method of treating a composite spin-on glass/anti-reflective material prior to cleaning
US7442636B2 (en) * 2005-03-30 2008-10-28 Tokyo Electron Limited Method of inhibiting copper corrosion during supercritical CO2 cleaning
US7494107B2 (en) * 2005-03-30 2009-02-24 Supercritical Systems, Inc. Gate valve for plus-atmospheric pressure semiconductor process vessels
US20060223899A1 (en) * 2005-03-30 2006-10-05 Hillman Joseph T Removal of porogens and porogen residues using supercritical CO2
US20060219268A1 (en) * 2005-03-30 2006-10-05 Gunilla Jacobson Neutralization of systemic poisoning in wafer processing
US20060255012A1 (en) * 2005-05-10 2006-11-16 Gunilla Jacobson Removal of particles from substrate surfaces using supercritical processing
US7789971B2 (en) * 2005-05-13 2010-09-07 Tokyo Electron Limited Treatment of substrate using functionalizing agent in supercritical carbon dioxide
US7524383B2 (en) * 2005-05-25 2009-04-28 Tokyo Electron Limited Method and system for passivating a processing chamber
US20070000519A1 (en) * 2005-06-30 2007-01-04 Gunilla Jacobson Removal of residues for low-k dielectric materials in wafer processing
US20070012337A1 (en) * 2005-07-15 2007-01-18 Tokyo Electron Limited In-line metrology for supercritical fluid processing
US10421124B2 (en) * 2017-09-12 2019-09-24 Desktop Metal, Inc. Debinder for 3D printed objects
CN109174780A (zh) * 2018-07-20 2019-01-11 孟凡清 一种镜片脱膜设备
CN109201606B (zh) * 2018-09-13 2023-05-09 无锡市恒利弘实业有限公司 一种金属基材表面uv油墨的剥离联用工艺
CN109201607B (zh) * 2018-09-13 2023-05-09 无锡市恒利弘实业有限公司 一种金属基材表面uv油墨的剥离联用装置
CN109201605B (zh) * 2018-09-13 2023-05-09 无锡市恒利弘实业有限公司 一种金属表面保护uv油墨的脱膜装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2310569A (en) * 1941-07-18 1943-02-09 Ici Ltd Degreasing of metal articles
GB870970A (en) * 1959-10-28 1961-06-21 Du Pont Improvements in or relating to the cleaning of articles
FR2044887A5 (de) * 1969-05-09 1971-02-26 Hunter Douglas International
EP0080407A2 (de) * 1981-11-19 1983-06-01 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Verfahren und Vorrichtung zum Entfernen von Schichten von Gegenständen
GB2113719A (en) * 1982-01-26 1983-08-10 Guido Zucchini Solvent recovery and regeneration in washing operation
EP0087055A1 (de) * 1982-02-18 1983-08-31 Dürr GmbH Verfahren für die Lösungsmittelbehandlung von insbesondere metallischem Behandlungsgut

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA579891A (en) * 1959-07-21 J. Rosenthal Arnold Dehydration of mixtures of methylene chloride with alcohols
US2385564A (en) * 1940-06-19 1945-09-25 Ici Ltd Solvent extraction
US3338756A (en) * 1963-10-28 1967-08-29 Hooker Chemical Corp Method for removing coatings
US3794524A (en) * 1972-11-21 1974-02-26 Chemed Corp Stripping method
CA1001934A (en) * 1974-03-26 1976-12-21 Tony G. Talana Method of stripping paint
US4038155A (en) * 1976-04-05 1977-07-26 Purex Corporation Ltd. Energy saving vapor degreasing apparatus
US4339283A (en) * 1980-02-19 1982-07-13 Mccord James W Vapor generating and recovering apparatus
DE3015524C2 (de) * 1980-04-23 1985-05-23 LPW-Reinigungstechnik GmbH, 7024 Filderstadt Anlage zum Behandeln von Gegenständen mit Lösungsmitteln, lösungsmittelhaltigen Flüssigkeiten und mit Lösungsmitteldämpfen
DE8437870U1 (de) * 1984-12-22 1986-02-13 Wache Oberflächentechnik GmbH & Co KG, 2000 Norderstedt Vorrichtung zum Waschen von vorzugsweise metallischen Werkstücken
US4770197A (en) * 1986-02-21 1988-09-13 Westinghouse Electric Corp. Apparatus for recovering solvent

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2310569A (en) * 1941-07-18 1943-02-09 Ici Ltd Degreasing of metal articles
GB870970A (en) * 1959-10-28 1961-06-21 Du Pont Improvements in or relating to the cleaning of articles
FR2044887A5 (de) * 1969-05-09 1971-02-26 Hunter Douglas International
EP0080407A2 (de) * 1981-11-19 1983-06-01 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Verfahren und Vorrichtung zum Entfernen von Schichten von Gegenständen
GB2113719A (en) * 1982-01-26 1983-08-10 Guido Zucchini Solvent recovery and regeneration in washing operation
EP0087055A1 (de) * 1982-02-18 1983-08-31 Dürr GmbH Verfahren für die Lösungsmittelbehandlung von insbesondere metallischem Behandlungsgut

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0416763A1 (de) * 1989-08-14 1991-03-13 BUSH BOAKE ALLEN Limited Verfahren und Zusammensetzungen zur Reinigung von Artikeln
WO1996018511A1 (en) * 1994-12-16 1996-06-20 Rotary Stripping Systems Limited Apparatus for supporting articles in liquid treatment tanks
WO1996024704A1 (de) * 1995-02-07 1996-08-15 Peter Weil Verfahren zum reinigen von gegenständen mit lösungsmitteln in einem geschlossenen behandlungsraum

Also Published As

Publication number Publication date
ES2027351T3 (es) 1992-06-01
ATE70315T1 (de) 1991-12-15
WO1989001057A1 (fr) 1989-02-09
BR8807154A (pt) 1989-10-17
GR3003993T3 (de) 1993-03-16
DE3725565A1 (de) 1989-02-16
KR890701799A (ko) 1989-12-21
DE3866820D1 (de) 1992-01-23
EP0302313B1 (de) 1991-12-11
KR950014078B1 (ko) 1995-11-21
US5011542A (en) 1991-04-30
JPH02500178A (ja) 1990-01-25

Similar Documents

Publication Publication Date Title
EP0302313B1 (de) Verfahren und Vorrichtung zum Behandeln von Gegenständen in einem geschlossenen Behälter mit Lösungsmittel
EP0543322B1 (de) Verfahren zum Reinigen von metallischen Werkstücken
EP0543318A1 (de) Verfahren und Vorrichtung zum Reinigen von metallischen Werkstücken
DE19527317A1 (de) Verbessertes Lösungsmittel-Reinigungssystem
EP0541892A2 (de) Verfahren zur Entfettung und Reinigung von mit fett- und/oder ölhaltigen Stoffen behaftetem Gut
DE4024769C1 (en) Treatment of sludge contg. toxic heavy metals - comprises treating with excess hydrochloric acid, concentrating by thermal evapn. and distilling
DE102005049923A1 (de) Verfahren und Anordnung zum Reinigen von industriell verunreinigtem Abwasser/Prozesswasser mittels einer Destillationsanlage
DE2709515A1 (de) Verfahren und vorrichtung zur entfernung von ueberzuegen auf metallischen gegenstaenden
DE4030331C2 (de)
DE102011109613B4 (de) Verfahren zur Behandlung von Abwasser sowie Abwasserbehandlungsvorrichtung
DE3939222C1 (de)
DE4040944C2 (de) Verfahren zur Reinigung von Behältern
US5496585A (en) Method for reducing volatile organic compound emissions
DE4402499C1 (de) Verfahren und Vorrichtung zum Destillieren einer verschmutzten Kohlenwasserstoff-Lösemittelflotte
EP0087055B1 (de) Verfahren für die Lösungsmittelbehandlung von insbesondere metallischem Behandlungsgut
DE4441821A1 (de) Verfahren zum Reinigen von Gegenständen mit anhaftenden Salzen
DE102009049823A1 (de) Verfahren und Vorrichtung zur Aufbereitung von Prozesswasser
DE2256965A1 (de) Verfahren zur mehrstufigen oberflaechenbehandlung von metallen
DE4240387A1 (de) Abtrennen organischer Verunreinigungen, insbesondere Öle, von Gegenständen wie Abfallprodukten
DE2722211C2 (de) Verfahren und Vorrichtung zur Beseitigung von Lacken und/oder anderen Auftragsmitteln auf Werkstücken
DE3038914C2 (de) Verfahren zum Entfernen von organischen Verunreinigungen aus Abwässern einer Metallband-Veredelungsanlage
DE1810630C (de) Verfahren und Alage zur Trennung der Bestandteile von "Ol in Wasser' Alt emulsionen
DE4314990A1 (de) Anlage zum Eindampfen
DE19701460A1 (de) Verfahren zur Aufbereitung und Wiederverwertung von Spraydosen und der darin enthaltenen restlichen Inhaltsstoffe
EP1260613A2 (de) Verfahren zum Entölen von Schrotten aus Aluminium-Werkstoffen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19890120

17Q First examination report despatched

Effective date: 19900409

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

REF Corresponds to:

Ref document number: 70315

Country of ref document: AT

Date of ref document: 19911215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3866820

Country of ref document: DE

Date of ref document: 19920123

ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R.L.

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2027351

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3003993

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940718

Year of fee payment: 7

Ref country code: FR

Payment date: 19940718

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19940722

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19940727

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 19940729

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19940731

Year of fee payment: 7

Ref country code: NL

Payment date: 19940731

Year of fee payment: 7

Ref country code: LU

Payment date: 19940731

Year of fee payment: 7

EPTA Lu: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 88111774.1

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950721

Ref country code: GB

Effective date: 19950721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950722

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19950722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19950731

BERE Be: lapsed

Owner name: WEIL PETER

Effective date: 19950731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19960131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19960201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950721

REG Reference to a national code

Ref country code: GR

Ref legal event code: MM2A

Free format text: 3003993

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19960201

EUG Se: european patent has lapsed

Ref document number: 88111774.1

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19960709

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960716

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19960729

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980401

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050721