EP0324870B1 - Selbststeuerndes Gestängerohr für rotierende Bohrgestänge von Gesteinsbohrmaschinen - Google Patents

Selbststeuerndes Gestängerohr für rotierende Bohrgestänge von Gesteinsbohrmaschinen Download PDF

Info

Publication number
EP0324870B1
EP0324870B1 EP88100657A EP88100657A EP0324870B1 EP 0324870 B1 EP0324870 B1 EP 0324870B1 EP 88100657 A EP88100657 A EP 88100657A EP 88100657 A EP88100657 A EP 88100657A EP 0324870 B1 EP0324870 B1 EP 0324870B1
Authority
EP
European Patent Office
Prior art keywords
drilling
drilling shaft
steering
self
drill string
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88100657A
Other languages
English (en)
French (fr)
Other versions
EP0324870A1 (de
Inventor
Martin Wiebe
Heinz Wallussek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bergwerksverband GmbH
Schwing Hydraulik Elektronik GmbH and Co
Original Assignee
Bergwerksverband GmbH
Schwing Hydraulik Elektronik GmbH and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bergwerksverband GmbH, Schwing Hydraulik Elektronik GmbH and Co filed Critical Bergwerksverband GmbH
Priority to EP88100657A priority Critical patent/EP0324870B1/de
Priority to DE8888100657T priority patent/DE3863640D1/de
Priority to AT88100657T priority patent/ATE65111T1/de
Priority to AU28336/89A priority patent/AU616930B2/en
Priority to ZA89251A priority patent/ZA89251B/xx
Priority to US07/297,046 priority patent/US5000272A/en
Priority to JP1007874A priority patent/JPH01287391A/ja
Priority to BR898900201A priority patent/BR8900201A/pt
Publication of EP0324870A1 publication Critical patent/EP0324870A1/de
Application granted granted Critical
Publication of EP0324870B1 publication Critical patent/EP0324870B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B4/00Drives for drilling, used in the borehole
    • E21B4/02Fluid rotary type drives
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/02Determining slope or direction
    • E21B47/022Determining slope or direction of the borehole, e.g. using geomagnetism
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/14Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves
    • E21B47/18Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves through the well fluid, e.g. mud pressure pulse telemetry
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/06Deflecting the direction of boreholes
    • E21B7/062Deflecting the direction of boreholes the tool shaft rotating inside a non-rotating guide travelling with the shaft

Definitions

  • the invention relates to a self-controlling drill pipe for rotating drill pipes according to the preamble of patent claim 1.
  • the self-controlling drill pipe according to the invention is arranged behind the drilling tool and generally in the vicinity thereof. Its inner drilling shaft is connected in a rotationally fixed manner, in particular to the deepest drill pipe and to the drilling tool.
  • a drill head equipped with several roller drill bits serves as the drilling tool.
  • the self-control works immediately behind the free cutting of the drilling tool, whereby the correction of any deviation of the drilling tool from the predefined drilling direction is carried out so quickly that the direction of the drilling practically coincides with the desired direction.
  • the self-control required for this is accommodated with its various systems in the standing housing, which encloses the drilling shaft.
  • the housing On the outside, the housing carries the control strips, which are offset by the same arc angle and pivotally mounted at one end, which, in cooperation with the joint of the borehole, apply the necessary correction forces.
  • the sensors which are designed as inclinometers
  • the system used to drive the control strips which can pivot out the control strips individually in accordance with the respective deviations
  • the control and, if appropriate, special electronics which act on a measured value pressure pulse generator, which transmits data to the drilling rig via the borehole flushing.
  • the stator of a generator that generates the electrical energy for the electronics and electrics is also accommodated in the housing.
  • the chambers are placed one behind the other in radial projections of the standing outer body, which are housed behind the rod-side end mounted and connected to the travel limiter end of the housing connected to the travel limiter.
  • the rotating drill pipe with which the self-controlling drill pipe according to the invention is used, is driven by a drill motor installed outside the drill hole.
  • Rotary drilling Working rock drilling machines produce boreholes sunk from top to bottom, in which the borehole flushing serves to discharge the cuttings removed from the borehole bottom with the drilling tool upwards and out of the borehole.
  • Such a flushing can also be operated with water in the device according to the invention with sufficient buoyancy speed in the borehole, but weighted flushing fluids which generate additional buoyancy and are known for this purpose are known as a gel or as a slurry with tixotropic properties, for example when bentonite is applied.
  • the device according to the invention can also be used for such bores, provided that rinsing liquids are used here, for example, to cool the cutting edges.
  • the borehole slurry flowing in the area between the pipe string and the borehole joint can be used for the transmission of measured values.
  • Part of the electrical system then serves to hydraulically control the pressure pulse generator, which is mounted in the shaft and changes the cross section of the flushing channel.
  • the hydraulic Control of the encoder can be installed in the outer body.
  • the invention is based on a known self-controlling drill pipe of the type described at the beginning (magazine Johnsonauf 120 (1984) No. 13, pp. 819,822).
  • one of the chambers mentioned serves as a tank for the hydraulic working fluid of the hydraulic pumps consisting of oil for the pistons accommodated in the linkage behind each control bar.
  • the pumps represent the system's pressure generators and are mechanical, ie driven by an eccentric of the drilling shaft.
  • the hydraulic control of the pressure pulse generator requires a series of rotary unions of the drilling shaft in the housing, which are provided with soft seals sealed on the drilling shaft, which seal the working fluid of the hydraulic system, which is under a system pressure of, for example, 100 bar.
  • the radial bearings of the drilling shaft are located at the ends of the housing and are supplemented by an axial bearing which is arranged behind the radial bearing on the drilling tool side in the housing.
  • These drilling shaft bearings are designed as roller bearings in order to achieve a smooth shaft in the housing.
  • rotary seals are attached to the front of the housing, which separate the bearing lubrication from the borehole slurry and relieve the soft seals.
  • the described construction of these seals is complex and prone to failure due to the large number of their components.
  • the sealing pressure of the rotary seals is not sufficient for the high pressures of the borehole flushing, as are encountered in deep boreholes that have to be sunk over several hundred or even a thousand meters.
  • the sealing rings of the rotary bearings must be insulated. Nevertheless, even at low depths, a wedge of lubricant forms between these surfaces of the rotary seals that rub against each other. Even with the most careful storage, the drilling shaft and the housing execute radial movements, which also act on the surfaces of the rotary seals, which are sealed and lubricated.
  • the invention has for its object to simplify the structure of the self-control in a self-controlling drill pipe with the features explained above and to ensure that regardless of the pressure of the borehole flushing and thus of the depths drilled holes, the service life of the parts important for the system anyway turns out large that it is not less than the service life of the drilling tools.
  • the hydraulic differential pressure which prevails between the drill pipe rinsing in the rinsing channel of the drilling shaft and the borehole rinsing at the respective end of the housing is used as a working medium of the hydraulic system by branching off a partial flow of the rinsing liquid which is largely free of the drilling cuttings and which flows in to prevent contaminated flushing liquid from the borehole into the housing.
  • This differential pressure namely creates a pressure gradient from the annulus into the borehole so that no cuttings can flow back.
  • this pressure drop is relatively small, so that there are also small pressure differences in front of and behind the check valves separating the clean drilling fluid from the contaminated drilling fluid, which considerably simplifies the construction of such valves.
  • the invention uses the relatively clean drill pipe drilling as a working fluid hydraulic system of self-control, which u. a. does the necessary work in the drives of the control strips.
  • This enables self-control to be achieved with a simplified hydraulic system, even for very deep bores with correspondingly high hydraulic pressures.
  • the rotary unions described are namely outside under the high hydraulic pressure of the flushing and inside under the system pressure, so that low differential pressures result in deep bores and the soft seals can also be used for this.
  • the check valves mainly act as dirt deflectors on the cuttings of the borehole slurry.
  • the clean drill pipe flushing is used for the drive of the pulse generator, but generates the required pressure with a pump mechanically derived from the drill pipe. Thereby it is possible to shape the pulses representing the measured values in such a way that they can be read without error by a differential pressure sensor at the mouth of the borehole.
  • the check valves which are required at the ends of the housing or the annular space, can be constructed relatively easily.
  • their valve body is formed by a metal ring housed in a standing housing in the groove, which is preloaded, for example, with an annular spring arrangement in the direction of the valve seat, which is axially immovably housed in a groove of the drilling shaft or a drilling shaft flange.
  • metal rings are known as seals and for rough operating conditions suitable, such as occur in construction. They are particularly useful as check valves for the purposes of the invention, because their spring force is increased by the external pressure of the drilling fluid and because the pressure gradient directed from the inside out ensures that no abrasive particles of the cuttings can get between the mutually projecting surfaces of the metal rings .
  • the self-controlling drill pipe is provided with a drilling shaft (2) which is screwed to the end of the last drill pipe of a rotating pipe rod via a threaded head (3), which is common in drill pipes of rotary drilling rigs can be.
  • the drilling shaft (2) has a rinsing channel (4) which extends to the other shaft end (5) with an enlarged diameter, which, with its internal thread (6), receives the threaded pin of a drilling tool, not shown, which consists of several tapered rollers fitted with hard metal chisels consists.
  • the drilling shaft is surrounded by a housing (10).
  • a housing (10) On the outside of the housing are U-shaped profiled control bars (11-14), each offset by a quarter circle, with their angled web ends, as shown at (15) in Fig. 1, pivotally mounted.
  • the housing has projections (16-19) enclosed by the U-profiles of the control strips (11-14), in which chambers are recessed.
  • the control electronics of the self-control is housed protected.
  • Chamber (22) of the drive piston assigned to each control strip is guided.
  • the rotor of a generator (22) generating the electrical energy is connected in a rotationally fixed manner to the drilling shaft (2) and works in a stator which is arranged in a rotationally fixed manner in the housing.
  • a hydraulic pump is housed in the chamber shown at (24), while a hydraulic pulse generator is indicated at (25).
  • control bars (11-14) are swiveled out in accordance with the signals coming from the inclinometers at (21) and thereby hold the drill pipe (1) in the specified drilling direction.
  • the electronics convert the measured values into electrical or hydraulic signals, which are implemented by the directional control valves of the hydraulic system or recorded by the pulse generator. This changes the cross-section of the flushing channel and thus generates differential pressures in the drill pipe drilling, which are read at the mouth of the borehole and converted into digital values.
  • annular space (26) surrounding the drilling shaft (2) is formed between the drilling shaft (2) and the housing (10). It is connected to the drill pipe flushing by means of a radial shaft bore (27) which extends from the annular space into the flushing channel (4) of the drilling shaft (2).
  • the annular space is sealed with a rotary check valve (28, 29) against the drilling fluid (30) flowing between the housing (10) and the borehole joint (29).
  • the borehole mud contains particles released from the drilling tool, not shown in FIG. 3.
  • Between the two rotary seals (28 and 29) are the radial bearings of the drilling shaft (2), shown schematically at (31 and 32).
  • the axial bearing usually provided is not shown in the illustration in FIG. 3 for reasons of simplification.
  • the dirt filter (33) built into the radial bore (7) is shown next to the bore to show the hydraulic system.
  • a hydraulic pump In the hydraulic system of self-control, a hydraulic pump is assigned to each bar. It is driven by an eccentric (34) which is fixed in a rotationally fixed manner on the drilling shaft (2) and acts on a pump piston (36) via a self-bearing ring (35). A radial bore (37) connects the pressure chamber of the pump cylinder with the annular space (26), in which the clean drill pipe flushing is applied. Check valves (37, 38) secure the pressure chamber of the pump.
  • the pump acts on an electrically controlled, spring-loaded 2/3-way valve (39) via which the drive piston mentioned in connection with FIG. 1 acts which opposing control strips are assigned as rotary actuators and are designated by (40 and 41).
  • the hydrostatic system is secured by a bypass line (42) secured by a check valve.
  • the pulse generator (25) is shown as a double piston, which is mounted in the drilling shaft (2) in a radially movable manner.
  • the soft seals of the rotary unions (43-45) serve to secure the two hydraulic lines (46 and 47) which act on the piston of the pulse generator. This is done via a 2/3-way valve (48) corresponding to the valve (39), which is acted upon by a spring pressure accumulator (49) with the clean flushing liquid, which is supplied by the hydraulic pressure generator via a branch line (50) and a pressure relief valve (51) is acted upon.
  • the check valves (28, 29) are of uniform design. According to the enlarged representation in FIG. 1, they are each in a radial gap (53, 54) between the end face (55, 56) of the housing (10) and a collar (58, 59) of the drilling shaft (2).
  • Each valve is realized with an axially preloaded slide ring (66), which is seated in a bore (64) in a bore (64) Groove (61) of the housing (10) is housed.
  • the mutually projecting surfaces of the rings serve as dirt repellants because of the pressure gradient directed from the inside outwards. Due to the wedge shape of the sealing gap, the area ratios of the rings are selected so that the ring areas are lifted off one another from the internal pressure which prevails in the annular space as soon as the internal pressure is greater than the external pressure. Therefore drill pipe flushing can overcome the ring surfaces from the outside, but the backflow is excluded.

Description

  • Die Erfindung betrifft ein selbststeuerndes Gestängerohr für rotierende Bohrgestänge gemäß dem Oberbegriff des Patentanspruches 1.
  • Das erfindungsgemäße selbststeuernde Gestängerohr wird hinter dem Bohrwerkzeug und in der Regel in dessen Nähe angeordnet. Seine innere Bohrwelle wird drehfest insbesondere mit dem tiefsten Gestängerohr und mit dem Bohrwerkzeug unmittelbar verbunden. Als Bohrwerkzeug dient beispielsweise eine mit mehreren Rollenbohrmeißeln bestückter Bohrkopf. Dadurch arbeitet die Selbststeuerung unmittelbar hinter dem Freischnitt des Bohrwerkzeuges, wodurch die Korrektur jeder Abweichung des Bohrwerkzeuges von der vorgegebenen Bohrrichtung derart schnell erfolgt, daß die Richtung der Bohrung mit der Sollrichtung praktisch übereinstimmt. Die hierzu erforderliche Selbststeuerung ist mit ihren verschiedenen Systemen in dem stehenden Gehäuse untergebracht, welches die Bohrwelle umschließt. Außen trägt das Gehäuse die um gleiche Bogenwinkel versetzt angeordneten und an einem Ende schwenkbar gelagerten Steuerleisten, welche im Zusammenwirken mit dem Bohrlochstoß die erforderlichen Korrekturkräfte aufbringen. In dem Gehäuse sind Kammern ausgespart, in denen die als Neigungsmesser ausgebildeten Meßwertgeber, das zum Antrieb der Steuerleisten dienende System, welches nach Maßgabe der jeweiligen Abweichungen die Steuerleisten einzeln ausschwenken kann, sowie die Steuer- und gegebenenfalls eine Sonderelektronik untergebracht ist, welche einen Meßwert-Druck-Impulsgeber beaufschlagt, welcher über die Bohrlochspülung Daten zum Bohrstand überträgt. In dem Gehäuse ist ferner der Stator eines die elektrische Energie für die Elektronik und Elektrik erzeugenden Generators untergebracht.
  • Im allgemeinen bringt man die Kammern hintereinander in radialen Vorsprüngen des stehenden Außenkörpers unter, welche hinter dem gestängeseitigen Ende gelagerten und am bohrwerkzeugseitigen Ende des Gehäuses am Wegbegrenzer angeschlossenen Steuerleisten untergebracht sind. Hieraus ergibt sich eine raumsparende Anordnung, welche Rohrgestänge für Bohrungen mit relativ geringem Durchmesser von z.B. 21,6 cm ermöglicht.
  • Im allgemeinen wird das rotierende Bohrgestänge, mit dem zusammen das erfindungsgemäße selbststeuernde Gestängerohr verwendet wird, von einem außerhalb der Bohrung aufgestellten Bohrmotor angetrieben. Solche nach dem Rotary-Bohrverfahren arbeitenden Gesteinsbohrmaschinen stellen von oben nach unten abgeteufte Bohrungen her, bei denen die Bohrlochspülung dazu dient, das von der Bohrlochsohle mit dem Bohrwerkzeug abgetragene Bohrklein nach oben und aus der Bohrung auszutragen. Eine solche Spülung kann bei hinreichender Auftriebsgeschwindigkeit im Bohrloch auch bei der erfindungsgemäßen Vorrichtung mit Wasser betrieben werden, jedoch eignen sich hierfür auch einen zusätzlichen Auftrieb erzeugende beschwerte Spülflüssigkeiten, die als Gel oder als Trübe mit tixotropen Eigenschaften z.B. bei Beschwerung durch Bentonit bekannt sind. Da beim Bohren von unten nach oben die Schwerkraft den Austrag des Bohrkleins aus dem Bohrloch unterstützt, kann die erfindungsgemäße Vorrichtung auch für solche Bohrungen eingesetzt werden, soweit hierbei Spülflüssigkeiten etwa zum Kühlen der Bohrschneiden verwendet werden.
  • Die im Bereich zwischen dem Rohrgestänge und dem Bohrlochstoß strömende Bohrlochtrübe kann zur Übertragung von Meßwerten benutzt werden. Ein Teil der Elektrik dient dann zur hydraulischen Steuerung des Druckimpulsgebers, der in der Welle gelagert ist und den Querschnitt des Spülkanals verändert. Hierbei muß allerdings die hydraulische Steuerung des Impulsgebers im Außenkörper angebracht sein.
  • Bei derartigen selbststeuernden Gestängerohren ist es wegen der infolge des geringen Platzangebotes im Gehäuse weitgehend miniaturisierten Hydraulik erforderlich, hohe Anforderungen an die Sauberkeit der hydraulischen Arbeitsflüssigkeit zu stellen und außerdem auch die mechanischen Teile, welche etwa wie die Lager der Bohrwelle gegen das Eindringen von Bohrklein besonders empfindlich sind, zu schützen.
  • Die Erfindung geht von einem bekannten selbststeuernden Gestängerohr der eingangs beschriebenen Art aus (Zeitschrift Glückauf 120 (1984) Nr. 13, SS. 819,822). Hierbei dienz eine der erwähnten Kammern als Tank für die aus Öl bestehende hydraulische Arbeitsflüssigkeit der hydraulischen Pumpen für die hinter jeder Steuerleiste im Gestänge untergebrachten Kolben. Die Pumpen stellen die Druckerzeuger des Systems dar und sind meachanisch, d. h. über einen Exzenter der Bohrwelle angetrieben. Die hydraulische Steuerung des Druckimpulsgebers macht eine Reihe von Drehdurchführungen der Bohrwelle im Gehäuse erforderlich, die mit auf der Bohrwelle abgedichteten Weichdichtungen versehen sind, welche die unter einem Systemdruck von z.B. 100 bar stehender Arbeitsflüssigkeit des hydraulischen Systems abdichten. In den Enden des Gehäuses sitzen die Radiallager der Bohrwelle, die ein Axiallager ergänzt, das hinter dem bohrwerkzeugseitigen Radiallager im Gehäuse angeordnet sind. Diese Bohrwellenlager sind als Wälzlager ausgebildet, um eine leicht gängige Welle im Gehäuse zu erreichen. An den Stirnseiten des Gehäuses sind zum Schutz der Bohrwellenlager Rotationsdichtungen angebracht, welche die Lagerschmierung von der Bohrlochtrübe trennen und die Weichdichtungen entlasten.
  • Einerseits ist der beschriebene Aufbau dieser Dichtungen durch die Vielzahl ihrer Bauelemente aufwendig und störanfällig. Andererseits genügt der Dichtdruck der Rotationsdichtungen nicht für hohe Drücke der Bohrlochspülung, wie sie bei Tiefbohrungen angetroffen werden, die über mehrere hundert oder sogar tausend Meter abgeteuft werden müssen. Die aufeinander abdichtenden Ringe der Rotationslager müssen isoliert sein. Dennoch bildet sich schon bei geringen Teufen ein Schmiermittelkeil zwischen diesen aufeinanderreibenden Flächen der Rotationsdichtungen. Selbst bei sorgfältigster Lagerung führen die Bohrwelle und das Gehäuse Radialbewegungen aus, die auch auf zwischen den aufeinanderdichtenden und mit Schmiermittel versehenen Flächen der Rotationsdichtungen wirken. Hierdurch wird feinstes Bohrklein aus der Bohrlochspülung in den erwähnten Schmiermittelteil eingezogen. Diese Partikel wirken abrasiv auf die polierten, aufeinanderreibenden Flächen der Rotationsdichtung. Das führt im Ergebnis dazu, daß Teile des Bohrkleins zwischen die Bohrwelle und das Gehäuse geraten. Sie zerstören in kurzer Zeit die Wellenlager und greifen auch den Generator, Hydraulikpumpen, sowie die Weichdichtungen der Drehdurchführungen an. Die Beschädigung oder Zerstörung dieser Teile ist besonders gefährlich, weil dadurch das als Arbeitsflüssigkeit dienende Öl verlorengehen kann. Die insgesamt vorhandene Ölmenge ist sehr klein, so daß schon geringe Ölverluste das ganze System zum Ausfall bringen können. Außerdem führen Verschmutzungen des Öls zu erheblichen Störungen in den nachgeordneten hydraulischen Baugruppen des Systems.
  • Wenn derartige Störungen eintreten, spielen sie sich mit wechselnder Teufe in immer kürzer werdenden Zeiträumen ab. Sie lassen sich nur an der ausgebauten Vorrichtung beseitigen. Das setzt das Ausfahren des gesamten Rohrgestänges aus dem Bohrloch voraus. Die hierdurch und durch das Wiedereinfahren des Rohrgestänges verlorengehenden Zeiträume sind dann nicht tragbar, wenn sie nach ihrer Häufigkeit nicht mit den Zeiträumen übereinstimmen, die für das Auswechseln abgenutzter Bohrwerkzeuge erforderlich sind.
  • Der Erfindung liegt die Aufgabe zugrunde, bei einem selbststeuernden Gestängerohr mit den eingangs erläuterten Merkmalen den Aufbau der Selbststeuerung zu vereinfachen und dafür zu sorgen, daß unabhängig vom Druck der Bohrlochspülung und damit von der Teufe niedergebrachter Bohrungen die Standzeit der für das System wichtigen Teile jedenfalls so groß ausfällt, daß sie nicht geringer als die Standzeit der Bohrwerkzeuge ist.
  • Diese Aufgabe löst die Erfindung mit den Merkmalen des Patentanspruches 1. Zweckmäßige Ausführungsformen sind Gegenstand der Unteransprüche.
  • Gemäß der Erfindung wird der hydraulische Differenzdruck, welcher zwischen der Bohrgestängespülung im Spülkanal der Bohrwelle und der Bohrlochspülung an dem jeweiligen Ende des Gehäuses herrscht, durch Abzweigung eines Teilstromes der weitgehend von dem Bohrklein freien, zufließenden Spülflüssigkeit als Arbeitsmedium des hydraulischen Systems dazu genutzt, das Eindringen von verschmutzter Spülflüssigkeit aus dem Bohrloch in das Gehäuse zu verhindern. Dieser Differenzdruck erzeugt nämlich ein Druckgefälle vom Ringraum in das Bohrloch, so daß kein Bohrklein zurückfließen kann. Andererseits ist dieses Druckgefälle relativ gering, so daß vor und hinter den die saubere Bohrlochspülung von der verschmutzten Bohrlochspülung trennenden Rückschlagventilen ebenfalls geringe Druckdifferenzen herrschen, was den Aufbau solcher Ventile wesentlich vereinfacht.
  • Außerdem nutzt die Erfindung die relativ sauberen Bohrgestängespülung als Arbeitsflüssigkeit hydraulischen Systems der Selbststeuerung, die u. a. die notwendige Arbeit in den Antrieben der Steuerleisten leistet. Das ermöglicht die Verwirklichung der Selbststeuerung mit einem vereinfachten hydraulischen System auch für sehr tiefe Bohrungen mit entsprechend hohen hydraulischen Drucken. Die beschriebenen Drehdurchführungen stehen nämlich außen unter dem hohen hydraulischen Druck der Spülung und innen unter dem Systemdruck, so daß sich bei tiefen Bohrungen geringe Differenzdrücke ergeben und auch hierfür die Weichdichtungen verwendbar sind.
  • Es hat sich herausgestellt, daß trotz der empfindlichen Bauteile des hydraulischen Systems der Selbststeuerung außer den Spülungen aus Wasser oder Gelen auch tixotrope Trüben als Arbeitsflüssigkeit geeignet sind, wenn sie vor der Bohrlochspülung abgetrennt werden und daher im wesentlichen frei von Bohrklein sind. Zwar reichern sich alle Arten von Spülungen über die Dauer ihrer Benutzung im Spülkreislauf mit Teilen des Bohrkleins an. Da man aber erfindungsgemäß nur einen Teilstrom der frischen, d.h. der Bohrgestängespülung in den Ringraum abzweigt, läßt sie sich einer gefährlichen Verschmutzung der hydraulischen Arbeitsflüssigkeit entgegenwirken. Zwar steht nach dem Ziehen des Rohrgestänges die Bohrlochspülung in dem Bohrloch weiterhin an, jedoch läßt sich auch beim Ein- und Ausfahren des Rohrgestänges durch eingebaute Rückschlagventile die Flüssigkeitsfüllung des Ringraumes aufrechterhalten, die das Eindringen von Bohrklein verhindert.
  • Dadurch ist es auch möglich, die Lager in die Bohrgestängespülung des Ringraumes einzubeziehen und diese mit dieser Flüssigkeit zu kühlen. Die Rückschlagventile wirken hauptsächlich als Schmutzabweiser auf das Bohrklein der Bohrlochtrübe.
  • Gemäß den Merkmalen des Patentanspruches 2 verwendet man für den als Antrieb des Impulsgebers zwar auch die saubere Bohrgestängespülung, erzeugt jedoch den erforderlichen Druck mit einer von dem Bohrgestänge mechanisch abgeleiteten Pumpe. Dadurch ist es möglich, die die Meßwerte wiedergebenden Impule so zu formen, daß sie fehlerfrei von einem Differenzdruckaufnehmer am Bohrlochmund abgelesen werden können.
  • Die oben erwähnte Möglichkeit, mit Partikeln des Bohrkleins verschmutzte Bohrgestängespülungen störungsfrei in der erfindungsgemäßen Weise wie oben beschrieben zu benutzen, läßt sich mit den Merkmalen des Patentanspruches 3 realisieren, weil geeignete Filter bzw. Filtermedien zur Verfügung stehen und hinreichende Standdauern erbringen, so daß der regelmäßige Ausbau verschmutzter Filter nach dem Ziehen des Rohrgestänges zum Auswechseln des Bohrwerkzeuges ausreicht, um diese Störungsquelle auszuschalten.
  • Die Rückschlagventile, welche an den Enden des Gehäuses bzw. des Ringraumes benötigt werden, lassen sich relativ einfach ausbilden. Mit den Merkmalen des Patentanspruches 4 wird ihr Ventilkörper von einem im stehenden Gehäuse in einer Nut untergebrachten Metallring gebildet, der beispielsweise mit einer Ringfederanordnung in Richtung auf den Ventilsitz vorgespannt ist, welcher axial unbeweglich in einer Nut der Bohrwelle bzw. eines Bohrwellenflansches untergebracht ist. Solche Metallringe sind als Dichtungen bekannt und für rauhe Betriebsbedingungen geeignet, wie sie beispielsweise im Bauwesen auftreten. Sie sind als Rückschlagventile für die Zwecke der Erfindung besonders zweckmäßig, weil ihre Federkraft von dem außen anliegenden Druck der Bohrlochspülung verstärkt wird und weil das von innen nach außen gerichtete Druckgefälle dafür sorgt, daß zwischen die aufeinanderragenden Flächen der Metallringe keine abrasiven Partikel des Bohrkleins geraten können.
  • Die Einzelheiten der Erfindung werden im folgenden anhand der Zeichnung näher erläutert; es zeigen
  • Fig. 1
    schematisch und unter Fortlassung der erfindungsgemäßen Einzelheiten eine Gesamtansicht des selbststeuernden Gestängerohres gemäß der Erfindung im Längsschnitt,
    Fig. 2
    einen Schnitt längs der Linie II-II der Fig. 1 und
    Fig. 3
    schematisch die Ausbildung der Selbststeuerung gemäß der Erfindung, wobei Teile im Schnitt wiedergegeben und das hydraulische System in Symbolen gezeichnet ist.
  • Gemäß der Darstellung der Fig. 1 ist das allgemein mit (1) bezeichnete, selbststeuernde Gestängerohr mit einer Bohrwelle (2) versehen, die über ein bei Bohrgestängen von Rotary-Bohranlagen üblichen Gewindekopf (3) an das Ende des letzten Gestängerohres eines drehenden Rohrgestänges angeschraubt werden kann. Die Bohrwelle (2) weist einen Spülkanal (4) auf, der bis zum anderen, im Durchmesser vergrößerten Wellenende (5) reicht, der mit seinem Innengewinde (6) den nicht dargestellten Gewindezapfen eines Bohrwerkzeuges aufnimmt, das aus mehreren, mit Hartmetallmeißeln besetzten Kegelrollen besteht.
  • Die Bohrwelle ist vom einem Gehäuse (10) umgeben. Außen am Gehäuse sind U-förmig profilierte, jeweils um einen Viertelkreis versetzt angeordnete Steuerleisten (11-14) mit ihren abgewinkelten Stegenden, wie bei (15) in Fig. 1 dargestellt, ausschwenkbar gelagert. Das Gehäuse weist von den U-Profilen der Steuerleisten (11-14) umschlossene Vorsprünge (16-19) auf, in denen Kammern ausgespart sind. In der bei (20) in Fig. 1 wiedergegebenen Kammer ist geschützt die Steuerelektronik der Selbststeuerung untergebracht. In der darunterliegenden Kammer (21) liegen kreuzweise orientierte Neigungsmesser, welche die Istwerte der Neigung des Bohrgestänges im Bohrloch angeben. In der weiter unten liegenden Kammer (22) ist der jeder Steuerleiste zugeordnete Antriebskolben geführt. Der Rotor eines die elektrische Energie erzeugenden Generators (22) ist drehfest mit der Bohrwelle (2) verbunden und arbeitet in einem Stator, der drehfest im Gehäuse angeordnet ist. Eine hydraulische Pumpe ist in der bei (24) gezeichneten Kammer untergebracht, während ein hydraulischer Impulsgeber bei (25) angedeutet ist.
  • Im Betrieb werden die Steuerleisten (11-14) nach Maßgabe der von den Neigungsmessern bei (21) kommenden Signale ausgeschwenkt und halten dadurch das Gestängerohr (1) in der vorgegebenen Bohrrichtung. Die Elektronik setzt die Meßwerte in elektrische bzw. hydraulische Signale um, welche von den Wegeventilen des hydraulischen Systems umgesetzt bzw. von dem Impulsgeber aufgenommen werden. Dieser verändert den Querschnitt des Spülkanals und erzeugt dadurch in der Bohrgestängespülung Differenzdrücke, die am Bohrlochmund gelesen und in digitale Werte umgesetzt werden.
  • Gemäß der Darstellung der Fig. 3 ist zwischen der Bohrwelle (2) und dem Gehäuse (10) ein die Bohrwelle (2) umgebender Ringraum (26) ausgebildet. Er ist mit einer radialen Wellenbohrung (27), welche vom Ringraum in den Spülkanal (4) der Bohrwelle (2) reicht, mit der Bohrgestängespülung verbunden.
  • An beiden Enden ist der Ringraum mit je einem Rotationsrückschlagventil (28, 29) gegen die zwischen dem Gehäuse (10) und dem Bohrlochstoß (29) strömende Bohrlochspülung (30) abgedichtet. Die Bohrlochspülung enthält je von dem in Fig. 3 nicht dargestellten Bohrwerkzeug gelösten Partikel. Zwischen den beiden Rotationsdichtungen (28 und 29) liegen die schematisch bei (31 und 32) gezeichneten Radiallager der Bohrwelle (2). Das üblicherweise vorgesehene Axiallager ist in der Darstellung der Fig. 3 aus Vereinfachungsgründen nicht dargestellt. Zur Wiedergabe des hydraulischen Systems ist das in die Radialbohrung (7) eingebaute Schmutzfilter (33) neben der Bohrung dargestellt.
  • Im hydraulischen System der Selbststeuerung ist jeder Leiste eine hydraulische Pumpe zugeordnet. Sie wird über einen Exzenter (34) angetrieben, der drehfest auf der Bohrwelle (2) befestigt ist und über einen Selbstlagerring (35) auf einen Pumpenkolben (36) wirkt. Eine Radialbohrung (37) verbindet den Druckraum des Pumpenzylinders mit dem Ringraum (26), in dem die saubere Bohrgestängespülung ansteht. Rückschlagventile (37, 38) sichern den Druckraum der Pumpe ab. Die Pumpe beaufschlagt ein elektrisch angesteuertes, federnd vorgespanntes 2/3-Wegeventil (39), über das die im Zusammenhang mit der Fig. 1 erwähnten Antriebskolben beaufschlagt werden, welche gegenüberliegenden Steuerleisten als Schwenkantriebe zugeordnet und mit (40 und 41) bezeichnet sind. Über eine mit einem Rückschlagventil abgesicherte Bypasleitung (42) wird das hydrostatische System abgesichert.
  • Im mittleren Teil der Fig. 3 ist der Impulsgeber (25) als Doppelkolben dargestellt, der radial beweglich in der Bohrwelle (2) gelagert ist. Die Weichdichtungen der Drehdurchführungen (43-45) dienen zur Absicherung der beiden hydraulischen Leitungen (46 und 47), die den Kolben des Impulsgebers beaufschlagen. Das geschieht über ein dem Ventil (39) entsprechendes 2/3-Wegeventil (48), welches von einem Federdruckspeicher (49) mit der sauberen Spülflüssigkeit beaufschlagt wird, die über eine Zweigleitung (50) und ein Überdruckventil (51) von dem hydraulischen Druckerzeuger beaufschlagt ist.
  • Wie sich aus der Fig. 3 ferner ergibt, sind die Rückschlagventile (28, 29) einheitlich ausgebildet. Sie sitzen auch gemäß der vergrößerten Darstellung in Fig. 1 in je einem Radialspalt (53, 54) zwischen der Stirnfläche (55, 56) des Gehäuses (10) und je einem Bund (58, 59) der Bohrwelle (2). Dabei ist jedes Ventil mit durch eine in einer Bohrung (64) sitzende Druckfeder (65) einem axial vorgespannten Gleitring (66) verwirklicht, der in einer Nut (61) des Gehäuses (10) untergebracht ist. Als Ventilsitz dient die Ringfläche (62) eines Metallringes (63), der in jeden Bund (58, 59) der Bohrwelle (2) in einer dort angebrachten Nute (67) unbeweglich festgesetzt ist.
  • Die aufeinanderragenden Flächen der Ringe dienen wegen des von innen nach außen gerichteten Druckgefälles als Schmutzabweiser. Durch die Keilform des Dichtspaltes sind die Flächenverhältnisse der Ringe so gewählt, daß die Ringflächen von dem Innendruck, der im Ringraum herrscht vorneinander abgehoben werden, sobald der Innendruck größer als der Außendruck ist. Deshalb kann Bohrgestängespülung die Ringflächen von außen überwinden, jedoch ist der Rückfluß ausgeschlossen.

Claims (5)

  1. Selbststeuerndes Gestängerohr für rotierende Bohrgestänge von Gesteinsbohrmaschinen, welches eine mit dem Bohrgestänge und dem Bohrwerkzeug (7) verbindbare innere Bohrwelle (2) mit Spülkanal (4) und ein drehbeweglich um die Bohrwelle (2) auf dieser gelagertes Gehäuse (10) aufweist, an dem außen ausschwenkbare Steuerleisten (11-14) angeordnet und in dem die Teile der auf die Steuerleiste wirkenden hydrostatischen Antriebe (40, 41), sowie die Steuereleketronik (20) und -elektrik (23) untergebracht sind, wobei der Energiebedarf durch die Drehbewegung beim Bohrvorgang erzeugt wird, dadurch gekennzeichnet, daß zwischen der Bohrwelle (2) und dem Gehäuse (10) ein Ringraum (11) vorhanden ist, der eine radiale Verbindung (27) zum Spülkanal (4) der Bohrwelle (2) aufweist und an beiden Enden mit je einem gegen die Bohrlochspülung abdichtenden Rotationsrückschlagventil (28, 29) abgeschlossen ist, und daß der Ringraum (26) als Tank für die von der Bohrwellenspülung gebildete Arbeitsflüssigkeit des hydraulischen Systems dient.
  2. Selbststeuerndes Gestängerohr nach Anspruch 1, dadurch gekennzeichnet, daß es einen Druckimpulsgeber (25) aufweist und daß als hydraulisches Arbeitsmedium des Druckimpulsgebers (25) die Bohrgestängespülung dient, wobei der hydraulische Arbeitsdruck von dem hydraulischen System zum Ausschwenken der Steuerleisten (11-14) abgeleitet ist.
  3. Selbststeuerndes Gestängerohr nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß die radiale Verbindung (27) eine bis zum Spülkanal reichende Bohrung (27) ist, in die ein Filter (33) eingebaut ist, das mit der Spülung aus dem Spülkanal (4) der Bohrwelle (2) beaufschlagt ist.
  4. Selbststeuerndes Gestängerohr nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Rückschlagventile (28, 29) an den Enden des Außenrohres in je einem Radialspalt (53, 54) zwischen den Stirnflächen (55, 56) des Gehäuses (10) und je einem Bund (58, 59) der Bohrwelle (2) untergebracht sind, wobei als Ventil ein axial vorgespannter Gleitring (60) in einer Nut (61) des Gehäuses (10) und als Ventilsitz die Ringfläche (62) eines im Bund (58, 59) der Bohrwelle (2) untergebrachten, axial festliegenden Metallringes (63) dient.
  5. Selbststeuerndes Gestängerohr nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Impulsgeber (25) über eine mit Weichdichtungen (43-45) versehene Drehdurchführung aus einem Druckspeicher (49) beaufschlagt ist, der von einem hydraulischen Druckerzeuger (36) beaufschlagt ist.
EP88100657A 1988-01-19 1988-01-19 Selbststeuerndes Gestängerohr für rotierende Bohrgestänge von Gesteinsbohrmaschinen Expired - Lifetime EP0324870B1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP88100657A EP0324870B1 (de) 1988-01-19 1988-01-19 Selbststeuerndes Gestängerohr für rotierende Bohrgestänge von Gesteinsbohrmaschinen
DE8888100657T DE3863640D1 (de) 1988-01-19 1988-01-19 Selbststeuerndes gestaengerohr fuer rotierende bohrgestaenge von gesteinsbohrmaschinen.
AT88100657T ATE65111T1 (de) 1988-01-19 1988-01-19 Selbststeuerndes gestaengerohr fuer rotierende bohrgestaenge von gesteinsbohrmaschinen.
AU28336/89A AU616930B2 (en) 1988-01-19 1989-01-10 A self-controlling drill rod
ZA89251A ZA89251B (en) 1988-01-19 1989-01-12 A self-controlling drill rod
US07/297,046 US5000272A (en) 1988-01-19 1989-01-17 Self-controlling drill rod
JP1007874A JPH01287391A (ja) 1988-01-19 1989-01-18 自己制御性ドリルロッド
BR898900201A BR8900201A (pt) 1988-01-19 1989-01-18 Tubo de hastes automaticos para hastes de perfuracao rotativas de maquinas perfuradoras de rochas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP88100657A EP0324870B1 (de) 1988-01-19 1988-01-19 Selbststeuerndes Gestängerohr für rotierende Bohrgestänge von Gesteinsbohrmaschinen

Publications (2)

Publication Number Publication Date
EP0324870A1 EP0324870A1 (de) 1989-07-26
EP0324870B1 true EP0324870B1 (de) 1991-07-10

Family

ID=8198656

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88100657A Expired - Lifetime EP0324870B1 (de) 1988-01-19 1988-01-19 Selbststeuerndes Gestängerohr für rotierende Bohrgestänge von Gesteinsbohrmaschinen

Country Status (8)

Country Link
US (1) US5000272A (de)
EP (1) EP0324870B1 (de)
JP (1) JPH01287391A (de)
AT (1) ATE65111T1 (de)
AU (1) AU616930B2 (de)
BR (1) BR8900201A (de)
DE (1) DE3863640D1 (de)
ZA (1) ZA89251B (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4037259A1 (de) * 1990-11-23 1992-05-27 Schwing Hydraulik Elektronik Zielbohrstange mit eigener elektrischer energieversorgung durch einen eingebauten generator

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4017761A1 (de) * 1990-06-01 1991-12-05 Eastman Christensen Co Bohrwerkzeug zum abteufen von bohrungen in unterirdische gesteinsformationen
DE4037261A1 (de) * 1990-11-23 1992-05-27 Schwing Hydraulik Elektronik Zielbohrstange mit einer rohrwellenlagerung
US5553678A (en) * 1991-08-30 1996-09-10 Camco International Inc. Modulated bias units for steerable rotary drilling systems
GB9204910D0 (en) * 1992-03-05 1992-04-22 Ledge 101 Ltd Downhole tool
US6050350A (en) * 1997-05-12 2000-04-18 Morris; Waldo Underground directional drilling steering tool
GB9902023D0 (en) 1999-01-30 1999-03-17 Pacitti Paolo Directionally-controlled eccentric
WO2001034935A1 (en) 1999-11-10 2001-05-17 Schlumberger Holdings Limited Control method for use with a steerable drilling system
JP4901059B2 (ja) 2000-09-22 2012-03-21 アトラス・コプコ・セコロツク・エル・エル・シー ダウンホールドリル用迅速離脱ドリルビット
US6962214B2 (en) 2001-04-02 2005-11-08 Schlumberger Wcp Ltd. Rotary seal for directional drilling tools
US7188685B2 (en) * 2001-12-19 2007-03-13 Schlumberge Technology Corporation Hybrid rotary steerable system
US6698535B1 (en) 2002-04-30 2004-03-02 Waldo Morris Floating offset transmitter housing underground directional drilling tool
WO2004113665A1 (en) * 2003-06-17 2004-12-29 Noble Drilling Services Inc. Modular housing for a rotary steerable tool
GB0911844D0 (en) 2009-07-08 2009-08-19 Fraser Simon B Downhole apparatus, device, assembly and method
US9771793B2 (en) 2009-07-08 2017-09-26 Halliburton Manufacturing And Services Limited Downhole apparatus, device, assembly and method
EP2845995A1 (de) 2013-09-10 2015-03-11 Welltec A/S Bohrwerkzeug
US11352856B2 (en) * 2017-01-20 2022-06-07 Halliburton Energy Services, Inc. Downhole power generation and directional drilling tool
CN109138829A (zh) * 2017-06-28 2019-01-04 盐城市新永佳石油机械制造有限公司 一种可自动降温的螺杆钻具

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2316409A (en) * 1941-12-05 1943-04-13 Lloyd R Downing Oil well straightener
US3005507A (en) * 1957-09-30 1961-10-24 Houston Oil Field Mat Co Inc Fluid by-pass for rotary drill bits
GB867025A (en) * 1958-11-19 1961-05-03 British Petroleum Co Improvements relating to borehole drilling
US3062303A (en) * 1960-03-21 1962-11-06 Shell Oil Co Method and apparatus for controlling hole direction and inclination
US3196959A (en) * 1961-08-14 1965-07-27 Lamphere Jean K Directional drilling apparatus
US3595326A (en) * 1970-02-03 1971-07-27 Schlumberger Technology Corp Directional drilling apparatus
DE2016952A1 (de) * 1970-04-09 1971-10-21 Gräfer, Albrecht. Dipl.-Berging. Dr.-Ing. e.h., 4322 Sprockhövel Bohrwerkzeugführung
SU438771A1 (ru) * 1973-04-09 1974-08-05 Всесоюзный Ордена Трудового Красного Знамени Научно-Исследовательский Институт Буровой Техники Торцовое уплотнение забойного двигател
US4040494A (en) * 1975-06-09 1977-08-09 Smith International, Inc. Drill director
DE3046122C2 (de) * 1980-12-06 1984-05-17 Bergwerksverband Gmbh, 4300 Essen Einrichtungen zur Herstellung zielgerichteter Bohrungen mit einer Zielbohrstange
DE3325962A1 (de) * 1983-07-19 1985-01-31 Bergwerksverband Gmbh, 4300 Essen Zielbohrstange fuer drehendes bohrgestaenge mit spuelkanal fuer den untertagebetrieb
WO1988010355A1 (en) * 1987-06-16 1988-12-29 Preussag Aktiengesellschaft Device for guiding a drilling tool and/or pipe string

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4037259A1 (de) * 1990-11-23 1992-05-27 Schwing Hydraulik Elektronik Zielbohrstange mit eigener elektrischer energieversorgung durch einen eingebauten generator

Also Published As

Publication number Publication date
DE3863640D1 (de) 1991-08-14
AU616930B2 (en) 1991-11-14
ATE65111T1 (de) 1991-07-15
ZA89251B (en) 1989-10-25
US5000272A (en) 1991-03-19
JPH01287391A (ja) 1989-11-20
AU2833689A (en) 1989-07-20
BR8900201A (pt) 1989-09-12
EP0324870A1 (de) 1989-07-26

Similar Documents

Publication Publication Date Title
EP0324870B1 (de) Selbststeuerndes Gestängerohr für rotierende Bohrgestänge von Gesteinsbohrmaschinen
DE2233324C3 (de) Vorrichtung zur Bohrlochmessung während der Bohrung
DE3511916A1 (de) Drehbetaetigtes schieberventil fuer bohrfluessigkeits-fernuebertragungssysteme
DE2822512C2 (de)
DE2919007C2 (de) Kernbohreinrichtung für Gesteinsbohrlöcher
EP1491716A2 (de) Verfahren zum Niederbringen einer Bohrung im Boden und Nassbohrwerkzeug
DE102006059171B3 (de) Bohrvorrichtung und Verfahren zum Erstellen einer Bohrung im Erdboden
DE2824441C2 (de) Erdbohrer
DE3439268C2 (de)
DE60207109T2 (de) Flüssigkeitsgetriebene bohrloch-bohrmaschine
DE3127969A1 (de) Abgedichtetes lagersystem fuer hydraulisch betaetigte vorrichtung
EP2334874B1 (de) Vorrichtung und verfahren zum aktivieren oder reinigen von brunnen
DE19621849C2 (de) Einrichtung zum Indrehungversetzen und axialen Bewegen von Bohrrohrsträngen
DE4037261C2 (de)
DE2924392C2 (de) Bohrvorrichtung zum Überlagerungsbohren
DE102010010036B4 (de) Bohrvorrichtung mit Dichtungsanordnung und Verfahren zum Betrieb einer Bohrantriebseinheit
DE4426497C2 (de) Vortriebsschild
EP1649128B1 (de) Vorrichtung zur herstellung eines erdlochs
DE19718573C2 (de) Bohrverfahren und Bohrkopf
DE19749409A1 (de) Bohrverfahren und Bohrkopf
DE2418771C3 (de) Turbobohrer
DE102011052182B4 (de) Vorrichtung zur Herstellung eines Erdlochs
EP0220318A1 (de) Bohrlochschraubenmotor
DE3343565A1 (de) Tieflochhammer
DE3204564A1 (de) Vorrichtung zum auffahren eines stollens, tunnels oder dergleichen im rohrvorpressbetrieb, insbesondere zur herstellung einer nicht begehbaren rohrleitung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19881231

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR LI LU SE

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE FR GB LI SE

17Q First examination report despatched

Effective date: 19901025

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB LI SE

REF Corresponds to:

Ref document number: 65111

Country of ref document: AT

Date of ref document: 19910715

Kind code of ref document: T

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3863640

Country of ref document: DE

Date of ref document: 19910814

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19930122

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19930126

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19930204

Year of fee payment: 6

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19931217

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19931231

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940107

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19940119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19940120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940131

Ref country code: CH

Effective date: 19940131

Ref country code: BE

Effective date: 19940131

BERE Be: lapsed

Owner name: BERGWERKSVERBAND G.M.B.H.

Effective date: 19940131

Owner name: SCHWING HYDRAULIK ELEKTRONIK G.M.B.H. & CO.

Effective date: 19940131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950119

EUG Se: european patent has lapsed

Ref document number: 88100657.1

Effective date: 19940810

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950929

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970320

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981001