EP0356556A1 - Multieingangs-Vier-Quadranten-Multiplizierer - Google Patents

Multieingangs-Vier-Quadranten-Multiplizierer Download PDF

Info

Publication number
EP0356556A1
EP0356556A1 EP88114225A EP88114225A EP0356556A1 EP 0356556 A1 EP0356556 A1 EP 0356556A1 EP 88114225 A EP88114225 A EP 88114225A EP 88114225 A EP88114225 A EP 88114225A EP 0356556 A1 EP0356556 A1 EP 0356556A1
Authority
EP
European Patent Office
Prior art keywords
transistor
emitter
collector
input
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88114225A
Other languages
English (en)
French (fr)
Other versions
EP0356556B1 (de
Inventor
Richard Dipl.-Ing. Stepp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to ES88114225T priority Critical patent/ES2045047T3/es
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP88114225A priority patent/EP0356556B1/de
Priority to DE88114225T priority patent/DE3885280D1/de
Priority to AT88114225T priority patent/ATE96558T1/de
Priority to US07/393,607 priority patent/US5115409A/en
Priority to JP1222781A priority patent/JPH02113382A/ja
Priority to FI894071A priority patent/FI894071A/fi
Priority to DK426489A priority patent/DK426489A/da
Priority to PT91582A priority patent/PT91582B/pt
Publication of EP0356556A1 publication Critical patent/EP0356556A1/de
Application granted granted Critical
Publication of EP0356556B1 publication Critical patent/EP0356556B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06GANALOGUE COMPUTERS
    • G06G7/00Devices in which the computing operation is performed by varying electric or magnetic quantities
    • G06G7/12Arrangements for performing computing operations, e.g. operational amplifiers
    • G06G7/16Arrangements for performing computing operations, e.g. operational amplifiers for multiplication or division
    • G06G7/163Arrangements for performing computing operations, e.g. operational amplifiers for multiplication or division using a variable impedance controlled by one of the input signals, variable amplification or transfer function
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06JHYBRID COMPUTING ARRANGEMENTS
    • G06J1/00Hybrid computing arrangements

Definitions

  • the invention relates to a four-quadrant multiplier with more than two signal inputs for multiplying an input signal by a plurality of further input signals, at the output of which the individual multiplication results are additively linked, according to the preamble of patent claim 1.
  • Such multipliers are e.g. in the modulation of different signals on a common carrier or the detection of signals with different frequencies that are modulated on a carrier.
  • Figure 1 shows such a known circuit.
  • a first and a second transistor T1 and T2 and a third and a fourth transistor T3 and T4 each form a differential amplifier pair with directly connected emitters.
  • the collector terminal of the first transistor T1 is connected to the collector terminal of the third transistor T3 and connected via a first resistor R1 to a supply potential Uv and forms a signal output terminal + z.
  • the collector connection of the second transistor T2 is also the collector terminal of the fourth transistor T4 connected together, connected via a second resistor R2 to the supply potential Uv and forms another signal output terminal -z, which together with the signal output terminal + z can provide a symmetrical output signal.
  • the base connections of these transistors do not represent a linear signal input connected to the collector terminal of the fifth transistor T5 and connected via a first diode D1 to a current source which, in particular, connects a third resistor R3 connected to the supply potential Uv with another terminal.
  • the base connection of the second transistor T2 is connected to the base connection of the third transistor T3 and the collector connection of a sixth transistor T6 and connected via a second diode D2 to said third resistor R3 or said current source.
  • the emitter connections of the fifth transistor T5 and the sixth transistor T6 are either connected to one another via a resistor and each connected to the reference potential via a separate current source, or, as shown in FIG. 1, connected to one another via a fourth resistor Rx1 and a fifth resistor Rx2 , wherein the connection node of the resistors Rx1 and Rx2 is connected to the reference potential (ground) via a first constant current source I1.
  • the base terminal of the sixth transistor T6 thus forms the first input terminal + x and the base terminal of the fifth transistor T5 forms a second input terminal -x of the multiplier.
  • a symmetrical input signal can be fed in via the terminals + x and -x, the multiplier having linear transmission properties with respect to this signal input.
  • the emitter connections of the transistors T1 and T2 are connected to the collector connection of the seventh transistor T7.
  • the emitter connections of transistors T3 and T4 are connected to the collector connection of an eighth transistor T8 bound.
  • the emitter connections of the transistors T7 and T8 are connected together via a coupling resistor Ry.
  • the emitter terminal of the seventh transistor T7 is connected to the reference potential via a second constant current source I2 and the emitter terminal of the eighth transistor T8 is connected to the reference potential via a third constant current source I3.
  • the base terminal of the seventh transistor T7 forms the third input terminal + y and the base terminal of the eighth transistor T8 forms the fourth input terminal -y of the multiplier.
  • a symmetrical input signal can be fed in via the terminals + y and -y, the multiplier also having linear transmission properties with respect to this signal input due to the negative feedback caused by the coupling resistance Ry.
  • Circuits of this type are particularly suitable for multiplying at least one digital input signal by another input signal.
  • a corresponding number of such known multipliers could be interconnected.
  • this interconnection of several multipliers has certain disadvantages, which have a particularly negative effect when used as a detector or modulator.
  • Transistors or diodes manufactured in one operation and on a chip are to a great extent similar, but the slightly different large signal behavior, the scattering of the amplification factors etc. of the individual transistors, especially if many transistors are connected appropriately, among other things, for different DC voltages Offsets in individual amplifier stages and also the individual signal inputs of the overall multiplier circuit are weighted differently. Since the DC voltage offset is problematic in such circuits, the consideration is important tion of several different DC voltage offsets is particularly noticeable.
  • the object of the invention is to provide a multiplier for multiplying an input signal by a plurality of further input signals, the individual multiplication results to be provided in an additively linked manner at the output, in which these disadvantages do not occur or are reduced to a non-disturbing extent.
  • Figure 2 shows the subject matter of claim 1, which is particularly suitable for processing rectangular or digital signals.
  • Figure 3 shows the subject matter of claim 2.
  • Circuit elements which fulfill the same or a similar function are provided with the same or similar reference symbols in FIG. 1, FIG. 2 and FIG. 3.
  • the particular advantage of the circuits according to the invention resides in the fact that the transistors T1, T2, T3 and T4 connected in a corresponding control circuit in the form of a Gilbert cell are designed as multi-emitter transistors for this special application.
  • the circuit complexity and the chip area requirement of circuits according to the invention is thus hardly greater than that of single-stage multipliers.
  • the input signal that is fed in at the input terminals + x / -x is mixed in a known manner with the input signals that are fed in at the terminals + y1 / -y1, + y2 / -y2 etc., or multiplied in the linear control range . Since the collector currents of the transistors T1, T2, T3 and T4 each contain the sum of their emitter currents, the individual multiplication products are provided additively linked at the output terminals + z / -z.
  • the multiplication product of the input signal fed in at the input + x / -x with an input signal fed in at another signal input is added to the other multiplication products which are formed from the input signal by the input + x / -x and the input signals of the remaining signal inputs subtracted, is only due to the sign of the individual input signal.
  • the sign can be reversed by swapping the input terminals, for example + y1 with -y1.
  • the circuit shown in FIG. 3 and described in claim 2 is particularly suitable for applications in which the transmission behavior of the multiplier is to be linear with respect to the individual inputs.
  • This linear transmission behavior with regard to the inputs + y1 / -y1, + y2 / -y2, etc. is ensured in particular by the negative feedback which the coupling resistors Ry1, Ry2, ... bring about.
  • controllable current sources Is21, Is22, ... Is31, Is32, ... are designed as conventional constant current sources which are switched on or off depending on the signal level to be fed in in each case. If the collector of a transistor Tx is provided as the current input of these controllable current sources Is21, ..., the emitter of which is connected to another potential, in particular the reference potential and at the same time to the emitter of a further transistor Ty, the base connection of the transistor Tx being connected to the base connection and the collector connection of the transistor Ty is connected together and forms the control input of this current source and this control input is connected to the supply potential Uv via a resistor Rv, for example the control input of the current source constructed in this way can directly from the output of a logic gate, in particular an I2L gate G1, G2 , ... can be controlled.
  • an inverting input terminal -y1, -y2, ... can be controlled with the output signal of a logic gate G1, G2, ... and a non-inverting input terminal + y1, + y2, ... with the output signal of this logic gate G1, G2, ... which is inverse to this output signal.

Abstract

Zum Multiplizieren mehrerer Signale mit einem gleichen weiteren Signal wird ein Vier-Quadranten-Multiplizierer auf der Grundlage der Gilbert-Zelle eingesetzt, wobei die Transistoren der beiden gekoppelten Differenzverstärkerpaare des einen, im Sinne der Gilbert-Zelle über eine Dioden-Transistor-Strecke angesteuerten Einganges des inneren Multiplizierers als Multiemitter-Transistoren ausgeführt sind und jeweils ein Emitterpaar des rechten und des linken Multipliziererzweiges über je eine steuerbare Stromquelle bzw. die Serienschaltung eines Transistors und einer Stromquelle gegenläufig ansteuerbar sind. Für die Verarbeitung von rechteckförmigen Signalen wird als steuerbare Stromquelle eine schaltbare Stromquelle vorgeschlagen, die insbesondere durch I²L-Gatter ansteuerbar ist.

Description

  • Die Erfindung betrifft einen Vier-Quadranten-Multiplizierer mit mehr als zwei Signaleingängen zum Multiplizieren eines Eingangs­signals mit mehreren weiteren Eingangssignalen, an dessen Aus­gang die einzelnen Multiplikationsergebnisse additiv verknüpft sind, nach dem Oberbegriff des Patentanspruches 1.
  • Solche Multiplizierer werden z.B. bei der Modulation verschie­dener Signale auf einen gemeinsamen Träger oder der Detektion von Signalen mit verschiedenen Frequenzen, die auf einem Träger aufmoduliert sind, benötigt.
  • Vier-Quadranten-Multiplizierer mit zwei linearen Signaleingän­gen sowie deren Funktionsweise sind unter anderem in dem "Data-­Acquisition Databook 1984, Vol. 1 Integrated Circuits" von Anolog Devices, Inc., auf den Seiten 6-9 bis 6-16 sowie in dem Buch "Halbleiterschaltungstechnik", 5. Auflage 1980 von U. Tietze, Ch. Schenk auf den Seiten 227 ff., insbesondere Abb. 11.41, beschrieben. Es handelt sich hierbei um Multiplizierer, die auf der Grundlage der sogenannten Gilbert-Zelle aufgebaut sind.
  • Figur 1 zeigt eine solche bekannte Schaltung. Ein erster und ein zweiter Transistor T1 und T2 sowie ein dritter und ein vierter Transistor T3 und T4 bilden jeweils ein Differenzver­stärkerpaar mit unmittelbar verbundenen Emittern. Der Kollek­toranschluß des ersten Transistors T1 ist mit dem Kollektoran­schluß des dritten Transistors T3 zusammengeschaltet und über einen ersten Widerstand R1 mit einem Versorgungspotential Uv verbunden und bildet eine Signalausgangsklemme +z. In gleicher Weise ist der Kollektoranschluß des zweiten Transistors T2 mit dem Kollektoranschluß des vierten Transistors T4 zusammenge­schaltet, über einen zweiten Widerstand R2 mit dem Versorgungs­potential Uv verbunden und bildet eine andere Signalausgangs­klemme -z, die zusammen mit der Signalausgangsklemme +z ein symmetrisches Ausgangssignal bereitstellen kann. Da die Emit­teranschlüsse der Transistoren T1 und T2 sowie T3 und T4 ohne Gegenkopplungswiderstand miteinander verbunden sind, stellen die Basisanschlüsse dieser Transistoren keinen linearen Signal­eingang dar. Um einen linearen Signaleingang zu erhalten, ist der Basisanschluß des ersten Transistors T1 mit dem Basisan­schluß des vierten Transistors T4 sowie dem Kollektoranschluß des fünften Transistors T5 zusammengeschaltet und über eine er­ste Diode D1 an eine Stromquelle, die insbesondere einen mit einem anderen Anschluß an das Versorgungspotential Uv ange­schlossenen dritten Widerstand R3 geschaltet. Analog ist der Basisanschluß des zweiten Transistors T2 mit dem Basisanschluß des dritten Transistors T3 und dem Kollektoranschluß eines sechsten Transistors T6 zusammengeschaltet und über eine zweite Diode D2 an den besagten dritten Widerstand R3 bzw. die besagte Stromquelle geschaltet. Die Emitteranschlüsse des fünften Tran­sistors T5 und des sechsten Transistors T6 sind entweder über einen Widerstand miteinander verbunden und je über eine eigene Stromquelle an das Bezugspotential geschaltet, oder aber, wie in Figur 1 gezeigt, über einen vierten Widerstand Rx1 und einen fünften Widerstand Rx2 miteinander verbunden, wobei der Verbin­dungsknoten der Widerstände Rx1 und Rx2 über eine erste Kon­stantstromquelle I1 an das Bezugspotential (Masse) geschaltet ist. Der Basisanschluß des sechsten Transistors T6 bildet somit die erste Eingangsklemme +x und der Basisanschluß des fünften Transistors T5 bildet eine zweite Eingangsklemme -x des Multi­plizierers. Über die Klemmen +x und -x ist das Einspeisen eines symmetrischen Eingangssignales möglich, wobei der Multiplizie­rer bezüglich dieses Signaleinganges lineare Übertragungseigen­schaften besitzt. Die Emitteranschlüsse der Transistoren T1 und T2 sind mit dem Kollektoranschluß des siebten Transistors T7 verbunden. Die Emitteranschlüsse der Transistoren T3 und T4 sind mit dem Kollektoranschluß eines achten Transistors T8 ver­ bunden. Die Emitteranschlüsse der Transistoren T7 und T8 sind über einen Koppelwiderstand Ry zusammengeschaltet. Der Emitter­anschluß des siebten Transistors T7 ist über eine zweite Kon­stantstromquelle I2 an das Bezugspotential geschaltet und der Emitteranschluß des achten Transistors T8 ist über eine dritte Konstantstromquelle I3 an das Bezugspotential angeschlossen. Der Basisanschluß des siebten Transistors T7 bildet die dritte Eingangsklemme +y und der Basisanschluß des achten Transistors T8 bildet die vierte Eingangsklemme -y des Multiplizierers. Über die Klemmen +y und -y ist das Einspeisen eines symmetri­schen Eingangssignales möglich, wobei der Multiplizierer infol­ge der Gegenkopplung, die durch den Koppelwiderstand Ry bewirkt wird, auch bezüglich dieses Signaleinganges lineare Übertra­gungseigenschaften aufweist.
  • Schaltungen dieser Art eignen sich besonders gut zum Multipli­zieren von mindestens einem Digitaleingangssignal mit einem weiteren Eingangssignal. Um entsprechende Multiplizierer mit mehr als zwei Signaleingängen zu erhalten, wobei ein Eingangs­signal mit mehreren weiteren Eingangssignalen multipliziert werden soll und die einzelnen Multiplikationsergebnisse addiert werden sollen, könnte man eine entsprechende Anzahl solcher be­kannter Multiplizierer zusammenschalten. Dieses Zusammenschal­ten mehrerer Multiplizierer bringt jedoch gewisse Nachteile mit sich, die sich insbesondere bei dem Einsatz als Detektor oder Modulator negativ bemerkbar machen.
  • In einem Arbeitsgang und auf einem Chip hergestellte Transisto­ren bzw. Dioden sind sich in hohem Maße ähnlich, doch sorgt das geringfügig andere Großsignalverhalten, die Streuung der Ver­stärkungsfaktoren etc. der einzelnen Transistoren, speziell wenn viele Transistoren entsprechend zusammengeschaltet sind, unter anderem für unterschiedliche Gleichspannungs-Offsets in einzelnen Verstärkerstufen und außerdem werden die einzelnen Signaleingänge der Multiplizierer-Gesamtschaltung unterschied­lich gewichtet. Da der Gleichspannungs-Offset in solchen Schaltungen sowieso problematisch ist, macht sich die Überlage­ rung mehrerer verschiedener Gleichspannungs-Offsets besonders negativ bemerkbar.
  • Weitere Nachteile einer solchen Schaltung sind der große Chip­flächenbedarf und die bei hohen Frequenzen eventuell störenden Leiterbahnkapazitäten.
  • Aufgabe der Erfindung ist das Bereitstellen eines Multiplizie­rers zum Multiplizieren eines Eingangssignales mit mehreren weiteren Eingangssignalen, wobei die einzelnen Multiplikations­ergebnisse additiv verknüpft am Ausgang bereitgestellt werden sollen, bei dem diese Nachteile nicht auftreten oder auf ein nicht störendes Maß reduziert sind.
  • Diese Aufgabe wird durch eine Schaltungsanordnung nach dem Pa­tentanspruch 1 sowie durch eine Schaltungsanordnung nach dem Patentanspruch 2 gelöst.
  • Günstige Ausgestaltungsformen sind Gegenstand von Unteransprü­chen.
  • Figur 2 zeigt den Gegenstand des Patentanspruches 1, der sich insbesondere für die Verarbeitung von rechteckförmigen bzw. di­gitalen Signalen eignet.
  • Figur 3 zeigt den Gegenstand des Patentanspruches 2.
  • Schaltungselemente, die die gleiche oder eine ähnliche Funktion erfüllen sind in Figur 1, Figur 2 und Figur 3 mit gleichen oder ähnlichen Bezugszeichen versehen.
  • Die prinzipielle Funktionsweise der in Figur 2 und Figur 3 ge­zeigten und in den Patentansprüchen 1 und 2 beschriebenen Schaltungen ist analog der dem Fachmann geläufigen Funktions­weise der in Figur 1 gezeigten Schaltung.
  • Der besondere Vorteil der erfindungsgemäßen Schaltungen liegt darin begründet, daß die in einer entsprechenden Ansteuerschal­tung in Form einer Gilbert-Zelle geschalteten Transistoren T1, T2, T3 und T4 für diese spezielle Anwendung als Multiemitter­transistoren ausgeführt sind. Der Schaltungsaufwand sowie der Chipflächenbedarf erfindungsgemäßer Schaltungen ist somit kaum größer als der von einstufigen Multiplizierern.
  • Das Eingangssignal, das an den Eingangsklemmen +x/-x einge­speist wird, wird mit den Eingangssignalen, die an den Klemmen +y1/-y1, +y2/-y2 etc. eingespeist werden in bekannter Weise multiplikativ gemischt bzw. im linearen Ansteuerbereich multi­pliziert. Da die Kollektorströme der Transistoren T1, T2, T3 und T4 jeweils die Summe ihrer Emitterströme enthalten, werden die einzelnen Multiplikationsprodukte additiv verknüpft an den Ausgangsklemmen +z/-z bereitgestellt.
  • Ob das Multiplikationsprodukt des am Eingang +x/-x eingespei­sten Eingangssignales mit einem an einem anderen Signaleingang eingespeisten Eingangssignal zu den übrigen Multiplikationspro­dukten, die aus dem Eingangssignal vom Eingang +x/-x und den Eingangssignalen der restlichen Signaleingänge gebildet werden, addiert wird oder davon subtrahiert, liegt nur am Vorzeichen des einzelnen Eingangssignales. Durch Vertauschen der Eingangs­klemmen, beispielsweise +y1 mit -y1, kann das Vorzeichen umge­dreht werden.
  • Die in Figur 3 gezeigte und im Patentanspruch 2 beschriebene Schaltung eignet sich besonders für Anwendungsfälle, bei denen das Übertragungsverhalten des Multiplizierers bezüglich der einzelnen Eingänge linear sein soll. Dieses lineare Übertra­gungsverhalten bezüglich der Eingänge +y1/-y1, +y2/-y2, etc. wird insbesondere durch die Gegenkopplung, die die Koppelwider­stände Ry1, Ry2, ... bewirken, gewährleistet.
  • Für erfindungsgemäße Schaltungsanordnungen ist es nicht rele­vant, ob die Emitter der Transistoren T5, T6, T7, T8, T71, T81, T72, T82, ... jeweils über einen Widerstand Ry1, ... mit dem Emitter des entsprechenden Transistors verbunden sind und je­weils über eine eigene Stromquelle an das Bezugspotential ge­schaltet sind oder ob diese Emitter über eine Serienschaltung zweier Widerstände Rx1, Rx2, ... miteinander verbunden sind und jeweils nur der Verbindungsknoten dieser Widerstände über eine Konstantstromquelle an das Bezugspotential geschaltet ist. Wie dem Buch "Halbleiter-Schaltungstechnik", 4. Auflage 1978 von U. Tietze, Ch. Schenk auf den Seiten 64 und 65 zu entnehmen ist, sind diese Ausgestaltungsformen äquivalent. Sie unterscheiden sich in ihrer Wirkung nur dadurch, daß bei zwei Stromquellen und einem Widerstand pro Emitterpaar dieser Widerstand im Ruhe­zustand stromlos ist, so daß eine Variation der Verstärkung hier keine Beeinträchtigung der Ruhepotentiale mit sich bringt. Die Wahl der entsprechenden Schaltungsausführung ist also von den jeweiligen Anforderungen abhängig, bei monolithisch inte­grierten Schaltungen aber weitgehend unkritisch.
  • Wenn die in den Figuren mit +y/-y, +y1/-y1 etc. bezeichneten Signaleingänge zur Beaufschlagung mit rechteckförmigen Signalen vorgesehen sind, ist eine Multipliziererschaltung nach Figur 2 bzw. Patentanspruch 1 besonders günstig.
  • Hierbei kann es genügen, daß die steuerbaren Stromquellen Is21, Is22, ... Is31, Is32, ... als übliche Konstantstromquellen aus­gebildet sind, die in Abhängigkeit vom jeweils einzuspeisenden Signalpegel ein- oder ausgeschaltet sind. Wenn als Stromeingang dieser steuerbaren Stromquellen Is21, ... der Kollektor eines Transistors Tx vorgesehen ist, dessen Emitter an ein anderes Potential, insbesondere das Bezugspotential und gleichzeitig an den Emitter eines weiteren Transistors Ty geschaltet ist, wobei der Basisanschluß des Transistors Tx mit dem Basisanschluß und dem Kollektoranschluß des Transistors Ty zusammengeschaltet ist und den Steuereingang dieser Stromquelle bildet und dieser Steuereingang über einen Widerstand Rv an das Versorgungspoten­tial Uv geschaltet ist, kann beispielsweise der Steuereingang der derart aufgebauten Stromquelle unmittelbar vom Ausgang ei­nes Logikgatters, insbesondere eines I²L-Gatters G1, G2, ... angesteuert werden.
  • Um saubere Flanken des Rechtecksignals zu erhalten, kann dabei jeweils eine invertierende Eingangsklemme -y1, -y2, ... mit dem Ausgangssignal eines Logikgatters G1, G2, ... angesteuert wer­den und eine nichtinvertierende Eingangsklemme +y1, +y2, ... mit dem zu diesem Ausgangssignal inversen Ausgangssignal dieses Logikgatters G1, G2, ... angesteuert werden.

Claims (4)

1. Vier-Quadranten-Multiplizierer in Form einer monolithisch integrierten elektronischen Schaltung, bestehend aus einem er­sten Transistor (T1), dessen Kollektoranschluß mit dem Kollek­toranschluß eines dritten Transistors (T3) zusammengeschaltet und über einen ersten Widerstand (R1) mit einem Versorgungspo­tential (Uv) verbunden ist und eine Signalausgangsklemme (+z) bildet, des weiteren bestehend aus einem zweiten Transistor (T2), dessen Kollektoranschluß mit dem Kollektoranschluß eines vierten Transistors (T4) zusammengeschaltet und über einen zweiten Widerstand (R2) mit dem Versorgungspotential (Uv) ver­bunden ist und eine andere Signalausgangsklemme (-z) bildet, wobei der Basisanschluß des ersten Transistors (T1) mit dem Ba­sisanschluß des vierten Transistors (T4) sowie dem Kollektoran­schluß eines fünften Transistors (T5) und der Anode einer er­sten Diode (D1) zusammengeschaltet ist, wobei der Basisanschluß des zweiten Transistors (T2) mit dem Basisanschluß des dritten Transistors (T3) und dem Kollektoranschluß eines sechsten Tran­sistors (T6) sowie der Anode einer zweiten Diode (D2) zusammen­geschaltet ist, wobei die Kathode der ersten Diode (D1) gemein­sam mit der Kathode der zweiten Diode (D2) über einen dritten Widerstand (R3) an das Versorgungspotential (Uv) angeschlossen ist, wobei die Emitteranschlüsse des fünften Transistors (T5) und des sechsten Transistors (T6) über die Serienschaltung aus einem vierten Widerstand (Rx1) und einem fünften Widerstand (Rx2) miteinander verbunden sind, wobei der Verbindungsknoten dieser Widerstände (Rx1, Rx2) über eine erste Stromquelle (I1) an das Bezugspotential (Masse) geschaltet ist und wobei der Basisanschluß des sechsten Transistors (T6) die erste Eingangs­klemme (+x) und der Basisanschluß des fünften Transistors (T5) die zweite Eingangsklemme (-x) des Multiplizierers bilden,
dadurch gekennzeichnet,
daß als erster, als zweiter, als dritter und als vierter Tran­sistor (T1, T2, T3, T4) in ihrem Aufbau identische Multiemit­tertransistoren vorgesehen sind, daß jeder Emitter des ersten Transistors (T1) mit je einem Emitter des zweiten Transistors (T2) und dem Stromeingang einer jeweiligen steuerbaren Strom­quelle (Is21, Is22, ...) zusammengeschaltet ist, daß der jewei­lige Stromausgang dieser steuerbaren Stromquellen (Is21, Is22, ...) an das Bezugspotential (Masse) angeschlossen ist, daß die Steuereingänge dieser steuerbaren Stromquellen (Is21, Is22, ...) als nichtinvertierende Eingangsklemmen (+y1, +y2, ...) vorgesehen sind, daß jeder Emitter des dritten Transistors (T3) mit je einem Emitter des vierten Transistors (T4) und dem Stromeingang einer jeweiligen steuerbaren Stromquelle (Is31, Is32, ...) zusammengeschaltet ist, daß der jeweilige Stromaus­gang dieser steuerbaren Stromquellen (Is31, Is32, ...) an das Bezugspotential (Masse) angeschlossen ist, und daß die Steuer­eingänge dieser steuerbaren Stromquellen (Is31, Is32, ...) als invertierende Eingangsklemmen (-y1, -y2, ...) vorgesehen sind.
2. Vier-Quadranten-Multiplizierer nach dem Oberbegriff des Pa­tentanspruches 1,
dadurch gekennzeichnet,
daß als erster, als zweiter, als dritter und als vierter Tran­sistor (T1, T2, T3, T4) in ihrem Aufbau identische Multiemitter­transistoren vorgesehen sind, daß jeder Emitter des ersten Tran­sistors (T1) mit je einem Emitter des zweiten Transistors (T2) und dem Kollektor eines siebten oder weiteren Transistors (T71, T72, ...) zusammengeschaltet ist, daß jeder Emitter des dritten Transistors (T3) mit je einem Emitter des vierten Transistors (T4) und dem Kollektor eines achten oder weiteren Transistors (T81, T82, ...) zusammengeschaltet ist, daß der Emitter eines jeden mit seinem Kollektor an einen Emitter des ersten Transi­stors (T1) angeschlossenen Transistors (T71, T72, ...) über je einen Koppelwiderstand (Ry1, Ry2, ...) mit je einem Emitter ei­nes mit seinem Kollektor an einen Emitter des dritten Transi­stors (T3) angeschlossenen Transistors (T81, T82, ...) verbun­den ist, daß jeweils beide Anschlüsse eines jeden Koppelwider­standes (Ry1, Ry2, ...) über eine separate Konstantstromquelle (I21, I22, ..., I31, I32, ...) an das Bezugspotential (Masse) geschaltet sind, daß der Basisanschluß des siebten Transistors (T71) sowie die Basisanschlüsse der entsprechend geschalteten weiteren Transistoren (T72, ...) als Eingangsklemmen für nicht­invertierende Signaleingänge vorgesehen sind und daß der Basis­anschluß des achten Transistors (T81) sowie die Basisanschlüsse der entsprechend geschalteten weiteren Transistoren (T82, ...) als Eingangsklemmen für invertierende Signaleingänge vorgesehen sind.
3. Monolithisch integrierter Vier-Quadranten-Multiplizierer nach Anspruch 1,
dadurch gekennzeichnet,
daß die mit den invertierenden und nichtinvertierenden Ein­gangsklemmen (-y1, -y2, ...; +y1, +y2, ...) verbundenen steuer­baren Stromquellen (Is21, Is22, ...; Is31, Is32, ...) als ein- und ausschaltbare Konstantstromquellen ausgebildet sind und die durch die entsprechenden Eingangsklemmen (+y1, -y1; +y2, -y2; ...) gebildeten Signaleingänge zur Beaufschlagung mit rechteck­förmigen Signalen vorgesehen sind.
4. Monolithisch integrierter Vier-Quadranten-Multiplizierer nach Anspruch 1 oder 3,
dadurch gekennzeichnet,
daß mindestens alle nichtinvertierenden Eingangsklemmen (+y1, +y2, ...) außer der ersten Eingangsklemme (+x) jeweils mit ei­nem ersten Ausgang eines jeweiligen I²L-Gatters (G1, G2, ...) verbunden sind, daß mindestens alle invertierenden Eingangs­klemmen (-y1, -y2, ...) außer der zweiten Eingangsklemme (-x) jeweils mit dem das inverse Signal zum am ersten Ausgang be­reitgestellten Signal führenden zweiten Ausgang jeweils eines dieser I²L-Gatter (G1, G2, ...) ist und daß jeweils der Eingang dieser I²L-Gatter (G1, G2, ...) zur Beaufschlagung mit einem auf Bezugspotential bezogenen Rechtecksignal vorgesehen ist.
EP88114225A 1988-08-31 1988-08-31 Multieingangs-Vier-Quadranten-Multiplizierer Expired - Lifetime EP0356556B1 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP88114225A EP0356556B1 (de) 1988-08-31 1988-08-31 Multieingangs-Vier-Quadranten-Multiplizierer
DE88114225T DE3885280D1 (de) 1988-08-31 1988-08-31 Multieingangs-Vier-Quadranten-Multiplizierer.
AT88114225T ATE96558T1 (de) 1988-08-31 1988-08-31 Multieingangs-vier-quadranten-multiplizierer.
ES88114225T ES2045047T3 (es) 1988-08-31 1988-08-31 Multiplicador de cuatro cuadrantes de entradas multiples.
US07/393,607 US5115409A (en) 1988-08-31 1989-08-14 Multiple-input four-quadrant multiplier
JP1222781A JPH02113382A (ja) 1988-08-31 1989-08-28 4象限乗算器
FI894071A FI894071A (fi) 1988-08-31 1989-08-30 Fyrkvadrantmultiplicerare med flere ingaongar.
DK426489A DK426489A (da) 1988-08-31 1989-08-30 Multiindgangs-firekvadrant-multiplikator
PT91582A PT91582B (pt) 1988-08-31 1989-08-30 Multiplicador de quatro quadrantes com varias entradas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP88114225A EP0356556B1 (de) 1988-08-31 1988-08-31 Multieingangs-Vier-Quadranten-Multiplizierer

Publications (2)

Publication Number Publication Date
EP0356556A1 true EP0356556A1 (de) 1990-03-07
EP0356556B1 EP0356556B1 (de) 1993-10-27

Family

ID=8199251

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88114225A Expired - Lifetime EP0356556B1 (de) 1988-08-31 1988-08-31 Multieingangs-Vier-Quadranten-Multiplizierer

Country Status (9)

Country Link
US (1) US5115409A (de)
EP (1) EP0356556B1 (de)
JP (1) JPH02113382A (de)
AT (1) ATE96558T1 (de)
DE (1) DE3885280D1 (de)
DK (1) DK426489A (de)
ES (1) ES2045047T3 (de)
FI (1) FI894071A (de)
PT (1) PT91582B (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0395894A2 (de) * 1989-04-05 1990-11-07 Kabushiki Kaisha Toshiba Elektronische Schaltung zur analogen Multiplikation, differentiellen Verstärkung oder Ladungsakkumulation
EP0467387A2 (de) * 1990-07-19 1992-01-22 Nec Corporation Trägerwellenwiedergabeschaltung mit Costasschleife
EP0616423A1 (de) * 1993-03-16 1994-09-21 ALCATEL BELL Naamloze Vennootschap Differenzverstärkeranordnung
EP0736966A1 (de) * 1995-04-05 1996-10-09 Thomson Consumer Electronics, Inc. Über Datenbus justierter FM-Quadratur-Detektor

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0416383A (ja) * 1990-05-10 1992-01-21 Matsushita Electric Ind Co Ltd 光記録媒体及びその製造方法
DE69209873T2 (de) * 1991-03-01 1996-10-17 Toshiba Kawasaki Kk Multiplizierschaltung
JP2661394B2 (ja) * 1991-04-08 1997-10-08 日本電気株式会社 掛算回路
JPH07109608B2 (ja) * 1992-10-30 1995-11-22 日本電気株式会社 マルチプライヤ
US5389840A (en) * 1992-11-10 1995-02-14 Elantec, Inc. Complementary analog multiplier circuits with differential ground referenced outputs and switching capability
GB9307384D0 (en) * 1993-04-08 1993-06-02 Philips Electronics Uk Ltd Four quadrant multiplier and a receiver including such a circuit
DE69426650T2 (de) * 1994-11-07 2001-09-06 Alcatel Sa Mischer für Sender, mit einem Eingang im Strom-Modus
EP0767536A3 (de) * 1995-10-02 1998-04-08 Nortel Networks Corporation ECL-Taktphasenschieber mit digitaler CMOS-Steuerung
US5945860A (en) * 1996-01-04 1999-08-31 Northern Telecom Limited CLM/ECL clock phase shifter with CMOS digital control
JP3189710B2 (ja) * 1996-10-11 2001-07-16 日本電気株式会社 アナログ乗算器
US5903185A (en) * 1996-12-20 1999-05-11 Maxim Integrated Products, Inc. Hybrid differential pairs for flat transconductance
US5821810A (en) * 1997-01-31 1998-10-13 International Business Machines Corporation Method and apparatus for trim adjustment of variable gain amplifier
US6040731A (en) * 1997-05-01 2000-03-21 Raytheon Company Differential pair gain control stage
US5877974A (en) * 1997-08-11 1999-03-02 National Semiconductor Corporation Folded analog signal multiplier circuit
US5872446A (en) * 1997-08-12 1999-02-16 International Business Machines Corporation Low voltage CMOS analog multiplier with extended input dynamic range
US6054889A (en) * 1997-11-11 2000-04-25 Trw Inc. Mixer with improved linear range
US6466072B1 (en) * 1998-03-30 2002-10-15 Cypress Semiconductor Corp. Integrated circuitry for display generation
JP3880730B2 (ja) * 1998-08-14 2007-02-14 三菱電機株式会社 4象限掛算回路
US6061551A (en) 1998-10-21 2000-05-09 Parkervision, Inc. Method and system for down-converting electromagnetic signals
US7515896B1 (en) 1998-10-21 2009-04-07 Parkervision, Inc. Method and system for down-converting an electromagnetic signal, and transforms for same, and aperture relationships
US6694128B1 (en) 1998-08-18 2004-02-17 Parkervision, Inc. Frequency synthesizer using universal frequency translation technology
US6118339A (en) * 1998-10-19 2000-09-12 Powerwave Technologies, Inc. Amplification system using baseband mixer
US7236754B2 (en) 1999-08-23 2007-06-26 Parkervision, Inc. Method and system for frequency up-conversion
US6370371B1 (en) 1998-10-21 2002-04-09 Parkervision, Inc. Applications of universal frequency translation
US7039372B1 (en) 1998-10-21 2006-05-02 Parkervision, Inc. Method and system for frequency up-conversion with modulation embodiments
US6542722B1 (en) 1998-10-21 2003-04-01 Parkervision, Inc. Method and system for frequency up-conversion with variety of transmitter configurations
US6813485B2 (en) 1998-10-21 2004-11-02 Parkervision, Inc. Method and system for down-converting and up-converting an electromagnetic signal, and transforms for same
US6061555A (en) 1998-10-21 2000-05-09 Parkervision, Inc. Method and system for ensuring reception of a communications signal
US6560301B1 (en) 1998-10-21 2003-05-06 Parkervision, Inc. Integrated frequency translation and selectivity with a variety of filter embodiments
US6049706A (en) 1998-10-21 2000-04-11 Parkervision, Inc. Integrated frequency translation and selectivity
US6704549B1 (en) 1999-03-03 2004-03-09 Parkvision, Inc. Multi-mode, multi-band communication system
US6704558B1 (en) 1999-01-22 2004-03-09 Parkervision, Inc. Image-reject down-converter and embodiments thereof, such as the family radio service
US6879817B1 (en) 1999-04-16 2005-04-12 Parkervision, Inc. DC offset, re-radiation, and I/Q solutions using universal frequency translation technology
US6853690B1 (en) 1999-04-16 2005-02-08 Parkervision, Inc. Method, system and apparatus for balanced frequency up-conversion of a baseband signal and 4-phase receiver and transceiver embodiments
US7065162B1 (en) 1999-04-16 2006-06-20 Parkervision, Inc. Method and system for down-converting an electromagnetic signal, and transforms for same
US7693230B2 (en) 1999-04-16 2010-04-06 Parkervision, Inc. Apparatus and method of differential IQ frequency up-conversion
US7110444B1 (en) 1999-08-04 2006-09-19 Parkervision, Inc. Wireless local area network (WLAN) using universal frequency translation technology including multi-phase embodiments and circuit implementations
US8295406B1 (en) 1999-08-04 2012-10-23 Parkervision, Inc. Universal platform module for a plurality of communication protocols
US7010286B2 (en) 2000-04-14 2006-03-07 Parkervision, Inc. Apparatus, system, and method for down-converting and up-converting electromagnetic signals
US7454453B2 (en) 2000-11-14 2008-11-18 Parkervision, Inc. Methods, systems, and computer program products for parallel correlation and applications thereof
US20020146996A1 (en) * 2001-03-06 2002-10-10 Bachman Thomas A. Scanning receiver for use in power amplifier linearization
US6433720B1 (en) 2001-03-06 2002-08-13 Furaxa, Inc. Methods, apparatuses, and systems for sampling or pulse generation
US6829471B2 (en) 2001-03-07 2004-12-07 Andrew Corporation Digital baseband receiver in a multi-carrier power amplifier
US6642878B2 (en) * 2001-06-06 2003-11-04 Furaxa, Inc. Methods and apparatuses for multiple sampling and multiple pulse generation
US7072427B2 (en) 2001-11-09 2006-07-04 Parkervision, Inc. Method and apparatus for reducing DC offsets in a communication system
US7460584B2 (en) 2002-07-18 2008-12-02 Parkervision, Inc. Networking methods and systems
US7379883B2 (en) 2002-07-18 2008-05-27 Parkervision, Inc. Networking methods and systems
US7403573B2 (en) * 2003-01-15 2008-07-22 Andrew Corporation Uncorrelated adaptive predistorter
US7729668B2 (en) 2003-04-03 2010-06-01 Andrew Llc Independence between paths that predistort for memory and memory-less distortion in power amplifiers
US6972622B2 (en) * 2003-05-12 2005-12-06 Andrew Corporation Optimization of error loops in distributed power amplifiers
US7259630B2 (en) * 2003-07-23 2007-08-21 Andrew Corporation Elimination of peak clipping and improved efficiency for RF power amplifiers with a predistorter
US20050035663A1 (en) * 2003-07-31 2005-02-17 Steven Moore Electromagnetic pulse generator
US20050024038A1 (en) * 2003-07-31 2005-02-03 John Santhoff Sampling circuit apparatus and method
US6963242B2 (en) * 2003-07-31 2005-11-08 Andrew Corporation Predistorter for phase modulated signals with low peak to average ratios
US20050035660A1 (en) * 2003-07-31 2005-02-17 John Santhoff Electromagnetic pulse generator
US7023273B2 (en) * 2003-10-06 2006-04-04 Andrew Corporation Architecture and implementation methods of digital predistortion circuitry
US20050113045A1 (en) * 2003-11-21 2005-05-26 John Santhoff Bridged ultra-wideband communication method and apparatus
US7046618B2 (en) * 2003-11-25 2006-05-16 Pulse-Link, Inc. Bridged ultra-wideband communication method and apparatus
US7418468B2 (en) * 2004-02-13 2008-08-26 University Of Alberta Low-voltage CMOS circuits for analog decoders
US8232831B2 (en) * 2009-11-24 2012-07-31 Bae Systems Information And Electronic Systems Integration Inc. Multiple input/gain stage Gilbert cell mixers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3309508A (en) * 1963-03-01 1967-03-14 Raytheon Co Hybrid multiplier
DE3030115A1 (de) * 1980-08-08 1982-02-25 Siemens AG, 1000 Berlin und 8000 München Differenzverstaerkeranordnung mit umschaltbaren schwellenspannungen
EP0145976A2 (de) * 1983-12-14 1985-06-26 Tektronix, Inc. Multiplizierender Digital-Analogwandler mit hoher Geschwindigkeit
EP0157520A2 (de) * 1984-04-02 1985-10-09 Precision Monolithics Inc. Analoger Vervielfacher mit Linearität

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3689752A (en) * 1970-04-13 1972-09-05 Tektronix Inc Four-quadrant multiplier circuit
US3670155A (en) * 1970-07-23 1972-06-13 Communications & Systems Inc High frequency four quadrant multiplier
NL7210633A (de) * 1972-08-03 1974-02-05
US4071777A (en) * 1976-07-06 1978-01-31 Rca Corporation Four-quadrant multiplier
US4586155A (en) * 1983-02-11 1986-04-29 Analog Devices, Incorporated High-accuracy four-quadrant multiplier which also is capable of four-quadrant division
EP0166044B1 (de) * 1984-06-25 1989-03-15 International Business Machines Corporation Vierquadrantenmultiplizierer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3309508A (en) * 1963-03-01 1967-03-14 Raytheon Co Hybrid multiplier
DE3030115A1 (de) * 1980-08-08 1982-02-25 Siemens AG, 1000 Berlin und 8000 München Differenzverstaerkeranordnung mit umschaltbaren schwellenspannungen
EP0145976A2 (de) * 1983-12-14 1985-06-26 Tektronix, Inc. Multiplizierender Digital-Analogwandler mit hoher Geschwindigkeit
EP0157520A2 (de) * 1984-04-02 1985-10-09 Precision Monolithics Inc. Analoger Vervielfacher mit Linearität

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0395894A2 (de) * 1989-04-05 1990-11-07 Kabushiki Kaisha Toshiba Elektronische Schaltung zur analogen Multiplikation, differentiellen Verstärkung oder Ladungsakkumulation
EP0395894A3 (de) * 1989-04-05 1993-01-27 Kabushiki Kaisha Toshiba Elektronische Schaltung zur analogen Multiplikation, differentiellen Verstärkung oder Ladungsakkumulation
EP0467387A2 (de) * 1990-07-19 1992-01-22 Nec Corporation Trägerwellenwiedergabeschaltung mit Costasschleife
EP0467387A3 (en) * 1990-07-19 1993-04-07 Nec Corporation Costas loop carrier wave reproducing circuit
EP0616423A1 (de) * 1993-03-16 1994-09-21 ALCATEL BELL Naamloze Vennootschap Differenzverstärkeranordnung
US5514950A (en) * 1993-03-16 1996-05-07 Alcatel N.V. Differential pair arrangement
EP0736966A1 (de) * 1995-04-05 1996-10-09 Thomson Consumer Electronics, Inc. Über Datenbus justierter FM-Quadratur-Detektor

Also Published As

Publication number Publication date
ATE96558T1 (de) 1993-11-15
DK426489D0 (da) 1989-08-30
DK426489A (da) 1990-03-01
PT91582B (pt) 1995-07-18
US5115409A (en) 1992-05-19
FI894071A0 (fi) 1989-08-30
PT91582A (pt) 1990-03-08
JPH02113382A (ja) 1990-04-25
DE3885280D1 (de) 1993-12-02
EP0356556B1 (de) 1993-10-27
FI894071A (fi) 1990-03-01
ES2045047T3 (es) 1994-01-16

Similar Documents

Publication Publication Date Title
EP0356556B1 (de) Multieingangs-Vier-Quadranten-Multiplizierer
DE2551068C3 (de) Verfahren zum Verringern der beim Übersteuern eines Differenzverstärkers auftretenden Verzerrungen und Operationsverstärkeranordnung zur Durchführung des Verfahrens
EP0275941A2 (de) ECL-kompatible Eingangs-/Ausgangsschaltungen in CMOS-Technik
DE1901804B2 (de) Stabilisierter differentialverstaerker
DE2139170A1 (de) Binares Addier und Subtrahierwerk
DE2416534A1 (de) Komplementaer-symmetrische verstoerkerschaltung
DE3117222A1 (de) Komplexe logikschaltung
EP0021085B1 (de) Monolithisch integrierbarer Transistorverstärker
DE2409929C3 (de) Verzerrungsarmer, niederfrequenter Gegentakt-Leistungsverstärker
DE2933038C2 (de)
EP0371163B1 (de) Integrierbare Schaltungsanordnung zur Verzögerung impulsförmiger Signale
EP0429717B1 (de) Transkonduktanzverstärker
WO2020211978A1 (de) Elektronische schaltung für einen differenzverstärker mit mindestens vier eingängen
DE102007040867B4 (de) Schaltungsanordnung zur linearen Signalmischung
DE3145771C2 (de)
EP0047476A1 (de) Entzerrerschaltung für Nachrichtensignale
DE19754114A1 (de) Mischschaltkreis zum Mischen eines ersten und eines zweiten Signals mit gegenseitig verschiedenen Frequenzen
EP0276632B1 (de) Anordnung in einer integrierten Schaltung zum Erzeugen einer nichtlinearen Funktion
DE3614691A1 (de) Integrierbarer impulsverstaerker
EP0822656B1 (de) Schaltungsanordnung mit einem Operationsverstärker
DE1512749C (de) Verstarker mit Gegentakteingang und Ein tak tausgang
DE4027703C2 (de)
DE2716038A1 (de) Phasenschieberschaltung
DE1099224B (de) Kombinationsschaltung mit Halbleitersystemen
DE19740108A1 (de) Schaltungsanordnung für eine digitale Schaltung in differentieller Logik

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19900328

17Q First examination report despatched

Effective date: 19930216

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19931027

Ref country code: NL

Effective date: 19931027

Ref country code: BE

Effective date: 19931027

REF Corresponds to:

Ref document number: 96558

Country of ref document: AT

Date of ref document: 19931115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3885280

Country of ref document: DE

Date of ref document: 19931202

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2045047

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940107

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940831

Ref country code: LI

Effective date: 19940831

Ref country code: CH

Effective date: 19940831

Ref country code: AT

Effective date: 19940831

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020731

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020828

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20020909

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030901

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030930

Year of fee payment: 16

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050831