EP0386013A1 - Katalysatoranordnung mit strömungsleitkörper. - Google Patents

Katalysatoranordnung mit strömungsleitkörper.

Info

Publication number
EP0386013A1
EP0386013A1 EP88907684A EP88907684A EP0386013A1 EP 0386013 A1 EP0386013 A1 EP 0386013A1 EP 88907684 A EP88907684 A EP 88907684A EP 88907684 A EP88907684 A EP 88907684A EP 0386013 A1 EP0386013 A1 EP 0386013A1
Authority
EP
European Patent Office
Prior art keywords
flow guide
catalyst
flow
guide body
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88907684A
Other languages
English (en)
French (fr)
Other versions
EP0386013B1 (de
Inventor
Wolfgang Maus
Helmut Swars
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vitesco Technologies Lohmar Verwaltungs GmbH
Original Assignee
Emitec Gesellschaft fuer Emissionstechnologie mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Emitec Gesellschaft fuer Emissionstechnologie mbH filed Critical Emitec Gesellschaft fuer Emissionstechnologie mbH
Publication of EP0386013A1 publication Critical patent/EP0386013A1/de
Application granted granted Critical
Publication of EP0386013B1 publication Critical patent/EP0386013B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2807Metal other than sintered metal
    • F01N3/281Metallic honeycomb monoliths made of stacked or rolled sheets, foils or plates
    • F01N3/2817Metallic honeycomb monoliths made of stacked or rolled sheets, foils or plates only with non-corrugated sheets, plates or foils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2807Metal other than sintered metal
    • F01N3/281Metallic honeycomb monoliths made of stacked or rolled sheets, foils or plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2807Metal other than sintered metal
    • F01N3/281Metallic honeycomb monoliths made of stacked or rolled sheets, foils or plates
    • F01N3/2814Metallic honeycomb monoliths made of stacked or rolled sheets, foils or plates all sheets, plates or foils being corrugated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2892Exhaust flow directors or the like, e.g. upstream of catalytic device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/02Metallic plates or honeycombs, e.g. superposed or rolled-up corrugated or otherwise deformed sheet metal
    • F01N2330/04Methods of manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • F01N2330/32Honeycomb supports characterised by their structural details characterised by the shape, form or number of corrugations of plates, sheets or foils
    • F01N2330/324Corrugations of rectangular form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • F01N2330/36Honeycomb supports characterised by their structural details with flow channels formed by tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like

Definitions

  • the present invention relates to a catalyst arrangement, in particular for internal combustion engines, according to the preamble of claim 1 and a method for its production.
  • Such a catalyst arrangement is known for example from DE-A-34 30 399 or DE-A-34 30 400.
  • Most conventional catalyst arrangements contain a honeycomb-like catalyst body with a multiplicity of parallel channels, which can either consist of a ceramic base material or of structured metal sheets. Because the usual
  • Exhaust pipes have a much smaller cross-section than a catalyst body, a conically widening diffuser section is usually arranged in front of each catalyst body and, correspondingly, a confusing section is arranged behind the catalyst body as a transition to the normal exhaust pipes.
  • a known problem with catalyst arrangements now consists in that the flow of the catalyst body is not uniform over its entire cross-sectional area, so that flow guide bodies, for example, are used for uniform utilization.
  • the object of the present invention is therefore to create a catalytic converter arrangement which has an optimal flow against the
  • Catalyst body causes.
  • the utilization of the volume required for the diffuser and the confuser is to be improved or this volume is to be reduced.
  • a better light-off behavior of the catalyst should also be found.
  • Flow guide bodies according to the invention can be used both in the diffuser and in the confuser.
  • the open cross-sectional area of the flow guide body must increase in the diffuser, and it must decrease in the confuser, so that such a flow guide body only has to be arranged upside down. In the following, therefore, only the Flow guide considered in the diffuser, although all
  • a flow guide body which consists of a plurality of at least partially conically widening channels, can direct the flow much more uniformly onto the entire end face of a catalyst body than known arrangements can.
  • the pressure loss caused by the flow guide remains relatively small, in some cases even below the pressure loss that a diffuser without a flow guide would cause.
  • Flow guide bodies according to the invention are therefore honeycomb bodies, the individual channels of which, however, do not run parallel but at angles to one another and which overall have a cross section which increases in the flow direction.
  • the shape of such honeycomb bodies must of course be adapted to the shape of the cross-sectional area of the catalyst body, so that, in addition to truncated cone shapes, flattened shapes are also possible.
  • a difficulty of the present invention lies first of all in the fact that the manufacturing techniques customary for catalyst bodies are not readily applicable to conical honeycomb bodies. Neither can conical bodies with conically widening channels be made from the usual nozzles with ceramic mass, nor can they be wound spirally out of sheet metal strips without problems. When manufacturing from metal sheets, as they are preferably used for catalyst bodies, new forms and manufacturing methods must therefore be found.
  • the problem is that for the spiral winding of conical bodies, for example from alternating layers of smooth and corrugated sheets, there is no straight line Sheet metal strips are required, but sheet metal strips with a radius of curvature that decreases from layer to layer. The production of such metal strips is possible in principle, but not necessarily advantageous in terms of production technology.
  • the flow guide only has to have a much smaller number of channels than that
  • each channel has an effective opening angle, which results from its cross-sectional area at the entrance and its cross-sectional area at the exit, unless a channel at the entrance is divided into a plurality of channels at the exit, which also occurs in the present exemplary embodiments. Therefore, when the following refers to an opening angle of a channel, it means the solid angle that this channel delimits. The measure of this solid angle is the area that is cut out from this solid angle from the unit sphere around the apex as the center.
  • the individual channels can in any case have such small opening angles that the flow no longer separates from the walls.
  • the flow separates from the wall at an opening angle of approximately ⁇ / 17 and becomes turbulent.
  • Common diffusers in catalyst arrangements have typical opening angles of ⁇ 2 ⁇ / 3, so that the
  • the separation angle must be determined empirically, but one according to the invention can be used
  • Catalyst body If desired, even an uneven distribution of the flow, which may still be present, can even be counteracted by different opening angles of the inner and outer channels of the flow guiding body, or a desired non-uniform distribution can be targeted
  • Distribution over the end face of the catalyst body can be achieved.
  • the open cross-sectional areas of the individual channels of the flow guide body on the upstream side for example, approximately the same size as the open cross-sectional areas of the channels of the catalyst body.
  • the open cross-sectional areas can even be chosen to be considerably larger there.
  • the flow guide body and the catalyst body are to be separated by an intermediate space which swirls the exhaust gas between the flow guide body and catalyst body allows. This increases the turbulence when entering the catalyst body and thus the
  • the opening angle of the individual channels should be smaller than the angle at which the flow separates from the walls. This measure optimizes the pressure losses caused by the flow guide body.
  • Opening angle of the individual channels of the flow guide body can also be chosen so that turbulence is present, for example at the end of the channels, as a result of which better mixing of the exhaust gas is achieved.
  • This configuration has particular advantages if, as mentioned below, the flow guide body is also coated with catalytically active material.
  • a very decisive advantage of the invention results in the configurations according to claims 10 and 11.
  • the total catalytically active surface available with unchanged volume is considerably increased.
  • the volume required for the diffuser and possibly also the confuser can thus also be used for the attachment of catalytically active surfaces.
  • the flow control function of the flow guide body is not impaired by this. Rather, the flow guide bodies also become catalyst bodies in addition to the actual catalyst body, which results in additional advantages. It has been shown in experiments that metallic catalyst carrier bodies with a small number of channels per cross-sectional area show better starting behavior than catalysts with a larger number of channels per cross-sectional area. These catalysts reach a high conversion rate more quickly on cold start, which is of considerable importance.
  • a flow guide body coated with catalytically active material is now connected upstream of the actual catalyst body, this can likewise significantly improve the starting properties.
  • the catalytic reaction in the flow guide body begins earlier than that in the actual catalyst body.
  • the reaction in the actual catalyst body may even be ignited earlier, since the exothermic reaction in the flow guide body accelerates the cold start in the actual catalyst body.
  • the flow guide body can also be coated with a catalytically active material other than the actual catalyst body, for example with a material which in particular improves the cold start properties.
  • this embodiment also does not apply in the same way to a catalytic coating of a flow guide body in the confuser, although a catalytically active coating also makes better use of the available volume there.
  • claim 12 describes a particularly preferred method for producing a flow guide body according to the invention, as will be explained in more detail with reference to the drawing.
  • FIG. 1 shows a typical catalyst arrangement with flow guide bodies according to the invention
  • Figure 2 shows a catalyst arrangement with only one Flow guide in the diffuser
  • Figure 3 is a slotted, corrugated sheet, such as
  • FIG. 4 schematically shows a straightened position on the end face of a flow guide body
  • FIG. 5 schematically and straightens a position on the outflow side of the flow guide body
  • FIG. 6 schematically shows a straightened position on the end face of a flow guide body produced differently
  • FIG. 7 schematically shows a straightened position on the outflow side of a flow guide body according to the invention in the central region
  • Figure 8 schematically shows a straightened position in the outer area of the
  • FIG. 9 schematically shows the construction of flow guide bodies from individual prefabricated frustoconical channel modules
  • Figure 10 shows schematically the structure of a flow guide body from individual prefabricated channels with a rectangular cross-section
  • Figure 11 schematically shows the structure of a flow guide body of nested, concentrically arranged
  • Truncated cones with increasing opening angle Truncated cones with increasing opening angle.
  • FIG. 1 shows a catalyst arrangement with an inlet tube 1, an outlet tube 2, a customary honeycomb-shaped catalyst body 3, a flow guide body 4 in the diffuser and a flow guide body 5 in the confuser. Mixing gaps 6, 7 are provided between the flow guide bodies 4, 5 and the catalyst body 3.
  • FIG. 2 shows a catalyst arrangement consisting of an inlet pipe 21, an outlet pipe 22, a catalyst body 23 and a flow guide 24 in the diffuser, which is separated from the catalyst body 23 by a mixing column 26.
  • This figure indicates the structure of the catalyst body from parallel channels and the structure of the flow guide body from widening in the direction of flow Channels with a room opening angle ⁇ . Basically, it is favorable if the flow guide body begins exactly at the end of the inlet pipe 21, but it may be necessary for manufacturing or fluidic reasons that the end face of the flow guide body is only slightly inside the diffuser.
  • the schematic cross sections through catalyst arrangements shown apply equally to cylindrical or conical arrangements as well as to flattened shapes.
  • FIGS. 3, 4 and 5 serve to illustrate how a flow guide body according to the invention can be produced from sheet metal, as is usually also used for metallic catalyst carrier bodies.
  • An alternative is first illustrated in FIGS. 3, 4 and 5.
  • the basic problem is that the overall conical flow guide body should not be created by compressing one end face, because then the ratio of open cross-sectional areas to cross-sectional areas closed by material would be very unfavorable on this end face, which considerably increases the pressure loss.
  • a corrugated sheet 31 is suitable for this, which. has slots 34 extending from its outflow side 33 along all or part of the troughs and / or peaks.
  • Such a corrugated sheet 31 is first produced with as steep as possible flanks and a large amplitude.
  • the slots 34 are then made. Now the corrugated sheet metal on its upstream side 32 can be pulled apart, as a result of which the slope and the amplitude are reduced. On the outflow side 33, the slotted sheet 34 is also pulled apart, and possibly further than on the inflow side 32.
  • the slots 34 expand without the flanks or the amplitude changing. Wraps such a corrugated sheet 31 together with a smooth one
  • Sheet 35 which, however, does not have to be straight but increasingly curved, spirally on, possibly with increasing spreading of the slots 34, so a desired flow guide body with channels 36 is formed, which one in
  • Figures 4 and 5 indicate the resulting cross-sectional shape on the
  • the flow guide body essentially consists of a corrugated plate 71 with a large amplitude and a corrugated plate 72 with the same wavelength and a smaller amplitude.
  • These sheets are wound spirally, however, a narrow, smooth intermediate layer 73 is also wrapped on the outflow side, as a result of which the two corrugations cannot interlock there, resulting in a much faster growing end face than on the inflow side.
  • the smooth intermediate layer is not a straight one.
  • Sheet metal strip but must have an increasing curvature, but in the case of a narrow sheet metal strip this can generally be achieved by plastic deformation.
  • the resulting flow guide body shows on its front side a typical constellation of corrugated sheets lying one inside the other, as shown in FIG. 6 and on the outflow side in the inner region a constellation as in FIG. 7 and in the outer region a constellation as shown in FIG.
  • FIGS. 9 and 10 show schematically how flow guide bodies according to the invention can be constructed from individually prefabricated frustoconical channel modules 91 or from rectangular channel modules 101. Other channel cross sections are of course possible, but in addition the individual modules can also comprise entire rows of channels, not individual ones.
  • FIG. 11 shows a further possibility of arranging a flow guide body according to the invention from nested, concentrically arranged truncated cone surfaces 111 with increasing opening angle. Such surfaces can be kept at the desired distances, for example by webs, corrugated intermediate layers or the like.
  • the exemplary embodiments mentioned here show only a few of many possibilities for the production of flow guide bodies according to the invention, wherein, of course, considerable variants in the sheet metal structures are possible in accordance with other known catalyst arrangements. In general, it will be advantageous to solder the sheets to one another, but other joining techniques such as gluing, welding and sintering can also be used.
  • the flow guide body according to the invention can also have a jacket tube, as is usually the case with a catalyst body
  • Catalyst system then forms the confuser or is used in such.

Description

Katalysatoranordnung mit Strömungsleitkörper
Die vorliegende Erfindung betrifft eine Katalysatoranordnung, insbesondere für Verbrennungsmotoren, gemäß dem Oberbegriff des Anspruchs 1 sowie ein Verfahren zu seiner Herstellung.
Eine solche Katalysatoranordnung ist beispielsweise aus der DE-A-34 30 399 oder der DE-A-34 30 400 bekannt. Die meisten üblichen Katalysatoranordnungen enthalten einen wabenartigen Katalysatorkörper mit einer Vielzahl von parallelen Kanälen, der entweder aus einem keramischen Grundwerkstoff oder aber aus strukturierten Blechen bestehen kann. Da die üblichen
Abgasleitungen einen viel geringeren Querschnitt haben als ein Katalysatorkorper ist üblicherweise vor jeden Katalysatorkörper ein sich konisch erweiternder Diffusorabschnitt und entsprechend hinter dem Katalysatorkörper ein Konfusorabschnitt als Übergang zu den normalen Abgasleitungen angeordnet.
Ein bekanntes Problem bei Katalysatoranordnungen besteht nun darin, daß der Katalysatorkörper nicht gleichmäßig auf seiner gesamten Querschnittsfläche angeströmt wird, so daß zu einer gleichmäßigen Ausnutzung beispielsweise Strömungsleitkörper Anwendung finden.
Aus der DE-A-35 36 315 ist dabei auch bekannt* Strömungsleitkörper zu verwenden, welche einen Strömungsdrall vor dem Katalysatorkörper erzeugen.
Aus der DE-C-34 17 506 sind ferner zwei geteilte Katalysatorkörper mit unterschiedlichem Querschnitt bekannt, welche die Anpassung an verschiedene Einbauverhältnisse ermöglichen. Zweistufige Katalysatorkörper sind auch aus der DE-A-30 12 132 bekannt, um an die jeweiligen Verbrennungsabgase optimal angepaßte Verhältnisse zu erreichen.
Schließlich ist aus der DE-OS-23 13 040 noch ein Katalysatorkorper bekannt, welcher aus fertigungstechnischen Gründen geringfügig konisch gestaltet ist, indem er in ein leicht konisches Gehäuse gepreßt wird.
Nach wie vor ist jedoch bei Katalysatoranordnungen das Problem der gleichmäßigen Anströmung der Vorderseite eines Katalysatorkörpers nicht befriedigend gelöst. Alle bekannten Vorrichtungen wirken wie Drosseln im Abgasstrom und erhöhen somit unerwünscht den Abgasgegendruck, worunter der Wirkungsgrad des Motors leidet. Auch kann durch die bekannten Strömungsleitkörper immer noch keine gleichmäßige Anströmung des Katalysatorkörpers erreicht werden. Hinzu kommt, daß der Raum, der für den Diffusor bzw. Konfusor benötigt wird, nicht optimal ausgenutzt werden kann.
Aufgabe der vorliegenden Erfindung ist daher die Schaffung einer Katalysatoranordnung, die eine optimale Anströmung des
Katalysatorkörpers bewirkt. Nebenbei soll die Ausnutzung des für den Diffusor und den Konfusor benötigten Volumens verbessert oder dieses Volumen verringert werden. Schließlich soll auch ein besseres Anspringverhalten des Katalysators beim
Kaltstart erreicht werden.
Zur Lösung dieser Aufgaben wird eine Katalysatoränordnung gemäß den kennzeichnenden Merkmalen des Anspruchs 1 vorgeschlagen. Erfindungsgemäße Strömungsleitkörper können sowohl im Diffusor wie auch im Konfusor gleichermaßen eingesetzt werden. Im Diffusor muß die offene Querschnittsfläche der Strömungsleitkörper zunehmen, im Konfusor muß sie abnehmen, so daß ein solcher Strömungsleitkörper nur umgekehrt angeordnet werden muß. Im folgenden wird daher grundsätzlich nur noch der Strömungsleitkörper im Diffusor betrachtet, obwohl sämtliche
Angaben, wenn nicht ausdrücklich etwas anderes angegeben wird, ebenso für die umgekehrte Anordnung im Konfusor gelten.
Ein Strömungsleitkörper, welcher aus einer Vielzahl von sich zumindest teilweise konisch erweiternden Kanälen besteht, kann die Strömung sehr viel besser gleichmäßig auf die gesamte Stirnseite eines Katalysatorkörpers lenken als dies bekannte Anordnungen können. Dabei bleibt der Druckverlust, den der Strömungsleitkörper verursacht, relativ klein, in manchen Fällen sogar unter dem Druckverlust den ein Diffusor ohne Strömungsleitkörper bewirken würde. Erfindungsgemäße Strömungsleitkörper sind daher Wabenkörper, deren einzelne Kanäle jedoch nicht parallel, sondern in Winkeln zueinander verlaufen und die insgesamt einen in Strömungsrichtung zunehmenden Querschnitt aufweisen. Solche Wabenkörper müssen in ihrer Form natürlich der Form der Querschnittsfläche des Katalysatorkörpers angepaßt sein, so daß außer Kegelstumpfformen auch abgeflachte Formen möglich sind.
Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben und werden im folgenden und anhand der Zeichnung näher erläutert.
Eine Schwierigkeit der vorliegenden Erfindung liegt zunächst darin, daß für konische Wabenkörper nicht ohne weiteres die für Katalysatorkörper üblichen Herstellungstechniken anwendbar sind. Weder kann man konische Körper mit sich konisch erweiternden Kanälen aus den üblichen Düsen mit Keramikmasse herstellen, noch lassen sie sich problemlos spiralig aus Blechbändern aufwickeln. Bei einer Herstellung aus Metallblechen, wie sie auch vorzugsweise für Katalysatorkörper eingesetzt werden, müssen daher neue Formen bzw. Herstellungsmethoden gefunden werden. Das Problem liegt darin, daß zum spiraligen Wickeln von konischen Körpern, beispielsweise aus abwechselnden Lagen glatter und gewellter Bleche, keine geraden Blechbänder benötigt werden, sondern Blechbänder mit einem sich von Lage zu Lage verringernden Krümmungsradius. Die Herstellung solcher Blechbänder ist zwar prinzipiell möglich, fertigungstechnisch jedoch nicht unbedingt vorteilhaft. Andererseits ist festzuhalten, daß der Strömungsleitkörper nur eine viel geringere Anzahl an Kanälen haben muß, als der
Katalysatorkörper selbst, so daß auch relativ komplizierte
Herstellungsverfahren wegen der geringen Anzahl an Kanälen durchaus noch möglich sind. Sogar die Vorfertigung von einzelnen Kanalbausteinen und deren späteres Zusammensetzen sind ein möglicher Weg zur Herstellung der gewünschten
Strömungsieitkörper.
Jedenfalls aber entstehen bei der Herstellung eines konischen Strömungsleitkörpers relativ komplizierte Formen und über die Länge quantitativ und qualitativ unterschiedliche Kanalquerschnitte. Die Definition eines Öffnungswinkels der einzelnen Kanäle ist dadurch praktisch nicht möglich. Trotzdem hat aber jeder Kanal einen effektiven Öffnungswinkel, welcher sich aus seiner Querschnittsfläche am Eingang und seiner Querschnittsfläche am Ausgang ergibt, sofern nicht ein Kanal am Eingang im mehrere Kanäle am Ausgang unterteilt wird, was bei den vorliegenden Ausführungsbeispielen ebenfalls vorkommt. Wenn im folgenden daher von einem Öffnungswinkels eines Kanals die Rede ist, so ist damit der Raumwinkel gemeint, den dieser Kanal begrenzt. Als Maß dieses Raumwinkels dient die Fläche, die von diesem Raumwinkel aus der Einheitskugel um den Scheitel als Mittelpunkt herausgeschnitten wird.
Strömungstechnisch spielt natürlich nicht nur dieser Öffnungswinkel sondern auch die Querschnittsform der einzelnen Kanäle eine Rolle, so daß eine vollständige theoretische Behandlung der verschiedenen denkbaren Formen kaum möglich ist. Ein entscheidender Vorteil der erfindungsgemäßen Strömungsleitkörper ist jedoch, daß die einzelnen Kanäle jedenfalls so geringe Öffnungswinkel haben können, daß sich die Strömung nicht mehr von den Wänden ablöst. Bei einem kegelförmigen Diffusor beispielsweise löst sich die Strömung bei einem Öffnungswinkel etwa π/17 von der Wand ab und wird turbulent. übliche Diffusoren bei Katalysatoranordnungen haben typische Öffnungswinkel von ~ 2 π/3, so daß sich dort die
Strömung immer ablöst, was ohne Strömungsleitkörper gerade zur ungleichmäßigen Verteilung der Strömung führt. Für kompliziertere Kanalformen muß zwar der Ablösewinkel empirisch bestimmt werden, jedoch läßt sich ein erfindungsgemäßer
Strömungsleitkörper immer aus so vielen Kanälen herstellen, daß der kritische Winkel, bei dem sich die Strömung von den Wänden ablöst, unterschritten wird. Die Unterteilung des Diffusofs in einzelne Kanäle verringert daher trotz des Einbaus von
Zwischenwänden den Strömungswiderstand im Diffusor und bewirkt eine sehr gleichmäßige Verteilung auf der Stirnfläche des
Katalysatorkörpers. Sofern es gewünscht wird, kann sogar durch unterschiedliche Öffnungswinkel der inneren und äußeren Kanäle des Strömungsleitkörpers einer eventuell immer noch vorhandenen ungleichmäßigen Verteilung der Strömung entgegengewirkt werden, bzw. es kann gezielt eine beliebig gewünschte ungleichmäßige
Verteilung über die Stirnfläche des Katalysatorkorpers erreicht werden.
Dadurch das der Strömungsleitkörper weniger Kanäle aufweist als der Katalysatorkorper ist es möglich, gemäß Anspruch 2 die offenen Querschnittsflächen der einzelnen Kanäle des Strömungsleitkörpers an der Anströmseite beispielsweise etwa gleich groß zu machen wie die offenen Querschnittsflachen der Kanäle des Katalysatorkörpers. Um den Druckverlust am Strömungsleitkörper klein zu machen, können die offenen Querschnittsflächen dort sogar erheblich größer gewählt werden.
Gemäß Anspruch 3 sollen Strömungsleitkörper und Katalysatorkörper durch einen Zwischenraum getrennt sein, der eine Verwirbelung des Abgases zwischen Strömungsleitkörper und Katalysatorkörper ermöglicht. Dies erhöht die Turbulenz beim Eintritt in den Katalysatorkörper und damit die
Wirksamkeit des Katalysators.
Gemäß Anspruch 4 wird vorgeschlagen, daß die Öffnungswinkel der einzelnen Kanäle kleiner sein sollen als der Winkel, bei dem sich die Strömung von den Wänden ablöst. Diese Maßnahme optimiert die durch den Strömungsleitkörper hervorgerufenen Druckverluste.
Alternativ dazu können jedoch gemäß Anspruch 5 die
Öffnungswinkel der einzelnen Kanäle des Strömungsleitkörpers auch gerade so gewählt werden, daß Turbulenzen vorhanden sind, beispielsweise am Ende der Kanäle, wodurch eine bessere Vermischung des Abgases erreicht wird. Diese Ausgestaltung hat insbesondere dann Vorteile, wenn, wie weiter unten erwähnt, auch der Strömungsleitkörper mit katalytisch aktivem Material beschichtet wird.
In den Ansprüchen 6 bis 9 werden technisch realisierbare Formen von erfindungsgemäßen Strömungsleitkörpern angegeben, wie sie anhand der Zeichnung näher erläutert werden.
Ein ganz entscheidender Vorteil der Erfindung ergibt sich bei den Ausgestaltungen gemäß den Ansprüchen 10 und 11. Durch Beschichtung des Strömungsleitkörpers mit katalytisch aktivem Material wird die insgesamt bei unverändertem Volumen verfügbare katalytisch aktive Oberfläche erheblich vergrößert . Das für den Diffusor und gegebenenfalls auch den Konfusor benötigte Volumen kann somit auch noch für die Anbringung von katalytisch aktiven Oberflächen ausgenutzt werden. Die Strömungsleitfunktion der Strömungsleitkörper wird dadurch nicht beeinträchtigt. Die Strömungsleitkörper werden vielmehr zusätzlich zum eigentlichen Katalysatorkorper ebenfalls zu Katalysatorkörpern, wobei sich dadurch zusätzliche Vorteile ergeben. Es hat sich bei Versuchen gezeigt, daß metallische Katalysator-Trägerkörper mit einer geringen Anzahl von Kanälen pro Querschnittsfläche ein besseres Anspringverhalten zeigen als Katalysatoren mi t einer größeren Anzahl Kanälen pro Querschnittsfläche. Diese Katalysatoren erreichen beim Kaltstart schneller einer hohe Umsetzungsrate, was von erheblicher Bedeutung ist. Wird nun dem eigentlichen Katalysatorkörper ein mit katalytisch aktivem Material beschichteter Strömungsleitkörper vorgeschaltet, so kann dieser ebenfalls die Starteigenschaften erheblich verbessern. Die katalytische Reaktion im Strömungsleitkörper beginnt bereits früher als die im eigentlichen Katalysatorkörper. Dadurch kann sogar gegebenenfalls auch die Reaktion im eigentlichen Katalysatorkörper früher gezündet werden, da die exotherme Reaktion im Strömungsleitkörper den Kaltstart im eigentlichen Katalysatorkörper beschleunigt. Um diesen Effekt zu unterstützen kann gemäß Anspruch 11 der Strömungsleitkörper auch mit einem anderen katalytisch aktiven Material beschichtet werden als der eigentliche Katalysatorkörper, beispielsweise mit einem Material, welches insbesondere die Kaltstarteigenschaften verbessert. Diese Ausführung trifft natürlich nicht in gleicher Weise auch für eine katalytische Beschichtung eines Strömungsleitkörpers im Konfusor zu, obwohl eine katalytisch aktive Beschichtung auch dort das verfügbare Volumen besser ausnutzt.
Im Anspruch 12 schließlich wird ein besonders bevorzugtes Verfahren zur Herstellung eines erfindungsgemäßen Strömungsleitkörpers beschrieben, wie es anhand der Zeichnung näher erläutert wird.
Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und zwar zeigen
Figur 1 eine typische Katalysatoranordnung mit erfindungsgemäßen Strömungsleitkörpern,
Figur 2 eine Katalysatoranordnung mit nur einem Strömungsleitkörper im Diffusor,
Figur 3 ein geschlitztes, gewelltes Blech, wie es zur
Herstellung erfindungsgemäßer Strömungsleitkörper geeignet ist,
Figur 4 schematisch eine begradigte Lage an der Stirnseite eines Strömungsleitkörpers,
Figur 5 schematisch und begradigt eine Lage an der Abströmseite des Strömungsleitkörpers,
Figur 6 schematisch eine begradigte Lage an der Stirnseite eines anders hergestellten Strömungsleitkörpers, Figur 7 schematisch eine begradigte Lage an der Abströmseite eines erfindungsgemäßen Strömungsleitkörpers im Zentralbereich,
Figur 8 schematisch eine begradigte Lage im Außenbereich der
Abströmseite dieses Körpers,
Figur 9 schematisch den Aufbau von Strömungsleitkörpern aus einzelnen vorgefertigten kegelstumpfförmigen Kanalbausteinen,
Figur 10 schematisch den Aufbau eines Strömungsleitkörpers aus einzelnen vorgefertigten Kanälen mit rechteckigem Querschnitt und
Figur 11 schematisch den Aufbau eines Strömungsleitkörpers aus ineinander geschachtelten, konzentrisch angeordneten
Kegelstümpfen mit zunehmendem Öffnungswinkel.
Figur 1 zeigt eine Katalysatoranordnung mit einem Einlaßrohr 1, einem Auslaßrohr 2, einem üblichen wabenförmigen Katalysatorkörper 3, einem Strömungsleitkörper 4 im Diffusor und einem Strömungsleitkörper 5 im Konfusor. Zwischen den Strömungsleitkörpern 4, 5 und dem Katalysatorkörper 3 sind Vermischungsspalte 6, 7 vorgesehen.
Figur 2 zeigt eine Katalysatoranordnung, bestehend aus einem Einlaßrohr 21, einem Auslaßrohr 22, einem Katalysatorkorper 23 und einem Strömungsleitkσrper 24 im Diffusor, welcher durch eine Vermischungsspalte 26 vom Katalysatorkörper 23 getrennt ist. Angedeutet ist in dieser Figur der Aufbau des Katalysatorkörpers aus parallelen Kanälen und der Aufbau des Strömungsleitkörpers aus sich in Strömungsrichtung erweiternden Kanälen mit einem Raumöffnungswinkel α. Grundsätzlich ist es günstig, wenn der Strömungsleitkörper genau am Ende des Einlaßrohres 21 beginnt, jedoch kann es aus fertigungstechnischen oder strömungstechnischen Gründen nötig sein, daß die Stirnseite des Strömungsleitkörpers erst etwas innerhalb des Diffusors liegt. Die dargestellten schematischen Querschnitte durch Katalysatoranordnungen gelten gleichermaßen für zylinder- bzw. kegelförmige Anordnungen wie auch für abgeflachte Formen.
Um zu verdeutlichen, wie sich ein erfindungsgemäßer Strömungsleitkörper aus Blechen, wie sie üblicherweise für metallische Katalysator-Trägerkörper auch Verwendung finden, herstellen läßt, dienen die folgenden Figuren. Zunächst ist eine Alternative in den Figuren 3, 4 und 5 veranschaulicht. Das prinzipielle Problem besteht darin, daß der insgesamt konische Strömungsleitkörper nicht quasi durch das Zusammendrücken einer Stirnseite entstehen soll, weil dann an dieser Stirnseite das Verhältnis von offenen Querschnittsflächen zu durch Material verschlossenen Querschnittsflächen sehr ungünstig würde, Was den Druckverlust beträchtlich erhöht. Für technisch sinnvolle Lösungen ist es daher nötig, besonders gestaltete Bleche zu verwenden, die die gewünschten Kanalformen mit zunehmenden Querschnitten beim Zusammensetzen hervorrufen. Gemäß Figur 3 eignet sich dafür ein gewelltes Blech 31, welches. von seiner Abströmseite 33 ausgehende Schlitze 34 entlang aller oder eines Teils der Wellentäler und/oder -berge aufweist. Ein solches gewelltes Blech 31 wird zunächst mit möglichst steilen Flanken und großer Amplitude hergestellt. Anschließend werden die Schlitze 34 angebracht. Nun kann das gewellte Blech an seiner Anströmseite 32 auseinander gezogen werden, wodurch sich die Flankensteilheit und die Amplitude verringern. Auf der Abströmseite 33 wird das geschlitzte 34 Blech ebenfalls auseinander gezogen, und zwar gegebenenfalls weiter als auf der Anströmseite 32. Dabei spreizen sich die Schlitze 34, ohne daß sich jedoch die Flanken bzw. die Amplitude verändern. Wickelt man ein solches gewelltes Blech 31 zusammen mit einem glatten
Blech 35 , welches jedoch nicht gerade sondern zunehmend gekrümmt sein muß, spiralig auf, gegebenenfalls unter zunehmender Aufspreizung der Schlitze 34, so entsteht ein gewünschter Strömungsleitkörper mit Kanälen 36, die einen in
Strömungsrichtung zunehmenden Querschnitt aufweisen. Die
Figuren 4 und 5 deuten die entstehende Querschnittsform auf der
Anströmseite 32 bzw. auf der Abströmseite 33 an. Es wurde der
Einfachheit halber nur jeweils eine begradigte Lage eines gewellten Bleches 31 mit zwei glatten Blechen 35 dargestellt.
Eine andere Alternative zur Herstellung gewünschter Strömungsleitkörper ist in den Figuren 6, 7 und 8 schematisch dargestellt. Bei diesem Ausführungsbeispiel besteht der Strömungsleitkörper im wesentlichen aus einem gewellten Blech 71 mit großer Amplitude und einem gewellten Blech 72 mit gleicher Wellenlänge und kleinerer Amplitude. Diese Bleche werden spiralig aufgewickelt, wobei jedoch an der Abströmseite eine schmale, glatte Zwischenlage 73 mit eingewickelt wird, wodurch dort die beiden Wellungen nicht ineinandergreifen können, wodurch eine beim Aufwickeln sehr viel schneller wachsende Stirnfläche entsteht als auf der Anströmseite. Die glatte Zwischenlage ist im Prinzip auch kein gerades. Blechband, sondern muß eine zunehmende Krümmung aufweisen, jedoch kann dies bei einem schmalen Blechband im allgemeinen durch plastische Verformung erreicht werden. Der entstehende Strömungsleitkörper zeigt an seiner Stirnseite eine typische Konstellation von ineinanderliegenden gewellten Blechen, wie in Figur 6 dargestellt und an der Abströmseite im inneren Bereich eine Konstellation wie in Figur 7 und im äußeren Bereich eine Konstellation wie in Figur 8 dargestellt.
Die Figuren 9 und 10 zeigen schematisch, wie sich erfindungsgemäße Strömungsleitkörper aus einzeln vorgefertigten kegelstumpfförmigen Kanalbausteinen 91 oder aus rechteckigen Kanalbausteinen 101 aufbauen lassen. Andere Kanalquerschnitte sind natürlich möglich, wobei zusätzlich auch die einzelnen Bausteine nicht einzelne, sondern jeweils auch ganze Reihen von Kanälen umfassen können. Schließlich zeigt Figur 11 eine weitere Möglichkeit, einen erfindungsgemäßen Strömungsleitkörper aus ineinandergeschachtelten, konzentrisch angeordneten Kegelstumpfflächen 111 mit zunehmendem Öffnungswinkel anzuordnen. Solche Flächen können beispielsweise durch Stege, gewellte Zwischenlagen oder dergleichen auf den gewünschten Abständen gehalten werden.
Die hier genannten Ausführungsbeispiele zeigen nur einige von vielen Möglichkeiten der Herstellung erfindungsgemäßer Strömungsleitkörper, wobei natürlich erhebliche Varianten in den Blechstrukturen gemäß anderer bekannter Katalysatoranorndungen möglich sind. Im allgemeinen wird es günstig sein, die Bleche untereinander zu verlöten, jedoch kommen auch anderer fügetechnische Verfahren wie Kleben, Schweißen und Sintern in Betracht. Auch der erfindungsgemäße Strömungsleitkörper kann wie üblicherweise ein Katalysatorkörper ein Mantelrohr aufweisen, welches beim Zusammensetzen des
Katalysatorsystems dann den Konfusor bildet oder in einen solchen eingesetzt wird .

Claims

Patentansprüche
1. Katalysatoranordnung, insbesondere für Verbrennungsmotoren, mit einem sich in Strömungsrichtung erweiternden Diffusor vor einem wabenartigen Katalysatorkörper (3; 23) und einem sich in
Strömungsrichtung verengenden Konfusor hinter dem Katalysatorkörper und mindestens einem Strömungsleitkörper im Diffusor und/oder Konfusor, g e k e n n z e i c h n e t d u r c h folgende Merkmale: a) der Strömungsleitkörper (4, 5; 24) besteht aus einer Vielzahl nebeneinander und/oder ineinander angeordneter, von einem Fluid durchströmbarer Kanäle, welche alle oder zumindest zum Teil im Diffusor einen in Strömungsrichtung zunehmenden Querschnitt bzw. im Konfusor einen in Strömungsrichtung abnehmenden Querschnitt aufweisen. b) Die offene Querschnittsfläche des Strömungsleitkörpers ist auf einer Seite wesentlich größer als auf der anderen, z. B. mehr als doppelt so groß, vorzugsweise etwa 4 bis 6 mal so groß.
2. Katalysatoranordnung nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß die offenen Querschnittsflächen der einzelnen Kanäle des
Strömungsleitkörpers (4, 5; 24) an der Seite mit den kleineren Querschnittsflächen etwa so groß sind wie die offenen Querschnittsflächen der Kanäle des wabenförmigen Katalysatorkörpers (3; 23), vorzugsweise sogar erheblich größer.
3. Katalysatoranordnung nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t , daß zwischen dem Strömungsleitkörper (4, 5; 24) und dem Katalysatorkorper (3; 23) ein der Verwirbelung des Abgases dienender Zwischenraum (6, 7; 26) von etwa 5 mm bis 30 mm vorhanden ist.
4. Katalysatoranordnung nach Anspruch 1, 2 oder 3, d a d u r c h g e k e n n z e i c h n e t , daß die Kanäle des Strömungsleitkörpers (4; 24), die einen zunehmenden Querschnitt aufweisen, Öffnungswinkel (Qt) haben, die kleiner als der Winkel sind, bei dem sich die Strömung von den Wänden ablöst, beispielsweise bei einfachen Querschnitten kleiner als π/17, vorzugweise kleiner als π/24.
5. Katalysatoranordnung nach Anspruch 1, 2 oder 3, d a d u r c h g e k e n n z e i c h n e t , daß die Kanäle des Strömungsleitkörpers (4; 24) die einen zunehmenden
Querschnitt aufweisen, solche Öffnungswinkel (α) haben, daß gerade eine turbulente Strömung in den Kanälen oder am Ende der Kanäle aufrechterhalten wird.
6. Katalysatoranordnung nach einem der vorhergehenden
Ansprüche, d a d u r c h g e k e n n z e i c h n e t , daß die Kanäle, die einen zunehmenden Querschnitt aufweisen, durch abwechselnd geschichtete oder gewickelte glatte (35) und gewellte (31) Bleche gebildet werden, bei denen die gewellten Bleche (31) von der Abströmseite (33) her etwa entlang der Wellenberge oder Wellentäler bis nahe zur Anströmseite (32) geschlitzt und in Strömungsrichtung aufgespreizt sind, wobei jedoch die Flanken der Wellung auf der Anströmseite (32) weniger steil sind als auf der Abströms.eite (33).
7. Katalysatoranordnung nach einem der vorhergehenden
Ansprüche, d a d u r c h g e k e n n z e i c h n e t, daß der Strömungsleitkörper aus mindestens zwei gewellten
Blechen (71, 72) etwa gleicher Wellenlänge und erheblich unterschiedlicher Amplitude gewickelt oder geschichtet ist, wobei die Wellungen auf der Seite mit geringerer
Querschnittsfläche ineinander greifen, auf der anderen Seite jedoch durch eine Zwischenlage (73) aus einem schmalen, glatten
Blechstreifen getrennt sind.
8. Katalysatoranordnung nach Anspruch 1, 2, 3 oder 4, d a d u r c h g e k e n n z e i c h n e t , daß der Strömungsleitkörper (4, 5; 24) aus einzeln vorgefertigten Kanalbausteinen (91; 101; 111) mit zunehmendem bzw. abnehmendem Querschnitt zusammengesetzt ist, vorzugsweise aus metallischen, aus Blechen hergestellten Bausteinen.
9. Katalysatoranordnung nach Anspruch 6, 7 oder 8, d a d u r c h g e k e n n z e i c h n e t , daß die Bleche (31, 35; 71, 72, 73) an zumindest einem Teil der Berührungsstellen miteinander verlötet sind.
10. Katalysatoranordnung nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , daß der Strömungsleitkörper (4, 5; 24) mit katalytisch aktivem Material beschichtet ist.
11. Katalysatoranordnung nach Anspruch 10, d a d u r c h g e k e n n z e i c h n e t , daß das katalytisch aktive Material auf dem Strömungsleitkörper (4; 24) im Diffusor so beschaffen ist, daß es insbesondere die Kaltstarteigenschaften verbessert, d. h. den Beginn der katalytischen Reaktionen bei niedrigen Temperaturen.
12. Verfahren zur Herstellung eines Strömungsleitkörpers, gemäß Anspruch 5, g e k e n n z e i c h n e t d u r c h folgende Schritte: a) Ein gewelltes Blech (31) mit möglichst steilen Flanken wird von einer Seite (33) aus entlang aller oder eines Teils der Wellenberge bzw. Wellentäler geschlitzt (34) bis nahe zur anderen Seite (32), z. B. bis auf 10 mm. b) Das Blech (31) wird gespreizt, und zwar auf der geschlitzten Seite (33) stärker als auf der nicht geschlitzten (32). c) Das gespreizte Blech (31) wird im Wechsel mit einem glatten Blech (35) zu einem Block mit vielen Kanälen (36) gewickelt oder geschichtet und an zumindest einem Teil der Berührungsstellen fügetechnisch verbunden, vorzugsweise hochtemperaturgelötet.
EP88907684A 1987-10-02 1988-08-23 Katalysatoranordnung mit strömungsleitkörper Expired - Lifetime EP0386013B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19873733402 DE3733402A1 (de) 1987-10-02 1987-10-02 Katalysatoranordnung mit stroemungsleitkoerper
DE3733402 1987-10-02

Publications (2)

Publication Number Publication Date
EP0386013A1 true EP0386013A1 (de) 1990-09-12
EP0386013B1 EP0386013B1 (de) 1991-11-13

Family

ID=6337512

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88907684A Expired - Lifetime EP0386013B1 (de) 1987-10-02 1988-08-23 Katalysatoranordnung mit strömungsleitkörper

Country Status (7)

Country Link
US (2) US5103641A (de)
EP (1) EP0386013B1 (de)
JP (1) JPH0791972B2 (de)
DE (2) DE3733402A1 (de)
ES (1) ES2009047A6 (de)
RU (1) RU1839696C (de)
WO (1) WO1989002978A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5506028A (en) * 1992-04-03 1996-04-09 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Conical honeycomb body

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO172508C (no) * 1987-11-23 1993-07-28 United Technologies Corp Diffusor for katalytiske omformingssystemer
US5110560A (en) * 1987-11-23 1992-05-05 United Technologies Corporation Convoluted diffuser
DE4104637A1 (de) * 1990-02-16 1991-08-29 Bischoff Erhardt Gmbh Co Kg Katalysator fuer kraftfahrzeuge
DE4117364A1 (de) * 1991-05-28 1992-12-03 Duerrwaechter E Dr Doduco Verfahren zum verkuerzen der anspringverzoegerung eines katalysators und vorrichtung zur durchfuehrung des verfahrens
JPH05146685A (ja) * 1991-11-30 1993-06-15 Mazda Motor Corp 排気ガス浄化用触媒及びその製造方法
DE4200807C2 (de) * 1992-01-15 1994-03-03 Daimler Benz Ag Anordnung zur Reinigung von Abgasen
JPH06167213A (ja) * 1992-08-10 1994-06-14 Ford Motor Co エンジン排ガス装置のための触媒コンバータ
US5427746A (en) * 1994-03-08 1995-06-27 W. R. Grace & Co.-Conn. Flow modification devices for reducing emissions from thermal voc oxidizers
JPH0814033A (ja) * 1994-06-24 1996-01-16 Caterpillar Inc 内燃エンジン用モジュール触媒コンバータとマフラー
US5548955A (en) * 1994-10-19 1996-08-27 Briggs & Stratton Corporation Catalytic converter having a venturi formed from two stamped components
DE4445557A1 (de) * 1994-12-20 1996-06-27 Emitec Emissionstechnologie Doppelwandiges Gehäuse, insbesondere für Abgas-Katalysatoren von Kraftfahrzeugen
WO1996036796A1 (en) * 1995-05-19 1996-11-21 Silentor A/S A silencer with incorporated catalyst
US5771683A (en) * 1995-08-30 1998-06-30 Southwest Research Institute Active porous medium aftertreatment control system
DE29611143U1 (de) 1996-06-25 1996-09-12 Emitec Emissionstechnologie Konischer Wabenkörper mit Longitudinalstrukturen
SE9602688L (sv) * 1996-07-08 1998-01-09 Volvo Ab Katalytisk brännkammare, samt förfarande för tändning och reglering av den katalytiska brännkammaren
US6520286B1 (en) 1996-09-30 2003-02-18 Silentor Holding A/S Silencer and a method of operating a vehicle
ATE471438T1 (de) 1996-09-30 2010-07-15 Silentor Holding As Schalldämpfer für gasstrom
DE19704144A1 (de) * 1997-02-04 1998-08-06 Emitec Emissionstechnologie Extrudierter Wabenkörper, insbesondere Katalysator-Trägerkörper, mit verstärkter Wandstruktur
JP3610720B2 (ja) * 1997-03-03 2005-01-19 日産自動車株式会社 メタル触媒担体の構造
US5916134A (en) * 1997-09-10 1999-06-29 Industrial Technology Research Institute Catalytic converter provided with vortex generator
DE19819202A1 (de) * 1998-04-29 1999-11-04 Emitec Emissionstechnologie Konischer Wabenkörper und Verfahren zu seiner Herstellung
DE19838703A1 (de) * 1998-08-26 2000-03-02 Zeuna Staerker Kg Vorrichtung zur Strömungsberuhigung in der Abgasleitung eines Verbrennungsmotors
KR100308952B1 (ko) * 1999-05-10 2001-09-26 이계안 오블리크 클로즈 커플드 캐털리스트 출구측 컨넥터
DE19938854C5 (de) * 1999-08-17 2006-12-28 Emitec Gesellschaft Für Emissionstechnologie Mbh Vorrichtung zur Verringerung des Stickoxidanteils in einem Abgas einer Verbrennungskraftmaschine
US6713025B1 (en) * 1999-09-15 2004-03-30 Daimlerchrysler Corporation Light-off and close coupled catalyst
DE10000568C2 (de) * 2000-01-10 2003-08-14 Emitec Emissionstechnologie Thermisch isolierte Abgasreinigungsanlage
EP1230978B1 (de) * 2001-02-12 2005-09-28 Ecocat Oy Verfahren zur Herstellung einer Reaktorpackung aus gewelltem Blech
US7018590B2 (en) * 2001-06-27 2006-03-28 Environmental Control Corporation Reverse flow catalytic muffler
US6622482B2 (en) 2001-06-27 2003-09-23 Environmental Control Corporation Combined catalytic muffler
DE10130867B4 (de) * 2001-06-30 2014-05-28 Gerd, Dr.-Ing. Gaiser Vorrichtung zur Reinigung von Abgasen aus Verbrennungsmotoren
JP2003080083A (ja) * 2001-09-14 2003-03-18 Calsonic Kansei Corp メタル触媒担体
GB2381218B (en) * 2001-10-25 2004-12-15 Eminox Ltd Gas treatment apparatus
US6712869B2 (en) * 2002-02-27 2004-03-30 Fleetguard, Inc. Exhaust aftertreatment device with flow diffuser
DE10226282A1 (de) * 2002-06-13 2003-12-24 Emitec Emissionstechnologie Nicht-zylindrischer Katalysator-Trägerkörper sowie Werkzeug und Verfahren zu seiner Herstellung
US6745562B2 (en) 2002-09-16 2004-06-08 Kleenair Systems, Inc. Diverter for catalytic converter
US20040141889A1 (en) * 2003-01-16 2004-07-22 Visteon Global Technologies, Inc. Catalytic converter comprising inner heat shield with noise suppression
US7189446B2 (en) * 2003-07-11 2007-03-13 Corning Incorporated Curved honeycomb article, EUV apparatus having a curved honeycomb article, and method of making a curved honeycomb article
JP2005177736A (ja) * 2003-11-28 2005-07-07 Calsonic Kansei Corp メタル担体
GB0329095D0 (en) * 2003-12-16 2004-01-14 Johnson Matthey Plc Exhaust system for lean burn IC engine including particulate filter
DE102005014385A1 (de) * 2005-03-24 2006-09-28 Emitec Gesellschaft Für Emissionstechnologie Mbh Abgaswärmeübertrager, insbesondere Abgaskühler für Abgasrückführung in Kraftfahrzeugen
DE102005020045A1 (de) * 2005-04-29 2006-11-02 Arvinmeritor Emissions Technologies Gmbh Verbindungselement zwischen einem Gehäuse und einem Abgasrohr
US20070144158A1 (en) * 2005-12-22 2007-06-28 Girard James W Exhaust dispersion device
DE102006024778B3 (de) * 2006-03-02 2007-07-19 J. Eberspächer GmbH & Co. KG Statischer Mischer und Abgasbehandlungseinrichtung
CA2584955C (en) * 2006-05-15 2014-12-02 Sulzer Chemtech Ag A static mixer
US20100024405A1 (en) * 2006-09-20 2010-02-04 Ecocat Oy Exhaust gas flow equalizer
US7805932B2 (en) * 2006-09-29 2010-10-05 Perkins Engines Company Limited Flow assembly for an exhaust system
EP2162603A4 (de) * 2007-06-15 2012-03-07 Choon Nam Son Vorrichtung zum beseitigen von abgasdruck und verhindern von abgasrückstrom
FR2920472B1 (fr) * 2007-09-04 2010-02-19 Renault Sas Dispositif d'echappement de moteur thermique.
US7971433B2 (en) * 2008-02-14 2011-07-05 Ford Global Technologies, Llc Helical exhaust passage
US20100050874A1 (en) * 2008-08-29 2010-03-04 Walter Cullen Lucas Exhaust after treatment system and method
DE102010056281A1 (de) 2010-12-24 2012-06-28 Volkswagen Ag Abgasanlage mit HC-Adsorber und parallelem Abgaskatalysator sowie Fahrzeug mit einer solchen Abgasanlage
US9109466B2 (en) * 2011-07-22 2015-08-18 The Board Of Trustees Of The Leland Stanford Junior University Diffuser with backward facing step having varying step height
DE102011117090B4 (de) 2011-10-27 2023-01-26 Volkswagen Aktiengesellschaft Abgasreinigungsvorrichtung
FI124030B (en) 2012-06-26 2014-02-14 Outotec Oyj Process for producing a separating element and separating element
FI123831B (en) 2012-06-26 2013-11-15 Outotec Oyj Solvent extraction clarifier tank arrangement
FI124674B (en) * 2012-06-26 2014-11-28 Outotec Oyj Solvent extraction procedure and solvent extraction basin
FI123834B (en) 2012-06-26 2013-11-15 Outotec Oyj Process for making a gutter and gutter
FI123835B (en) 2012-06-26 2013-11-15 Outotec Oyj Arrangement for a pool for solvent extraction
FI123803B (en) 2012-06-26 2013-10-31 Outotec Oyj Process for preparing a solvent extraction pool and solvent extraction pool
US9599012B2 (en) * 2012-12-30 2017-03-21 General Electric Company Charge air cooler cover and turbocharger bracket
CN103322833A (zh) * 2013-06-19 2013-09-25 上海宝钢节能技术有限公司 一种换热效率高、寿命长的换热器
FR3012519A3 (fr) * 2013-10-25 2015-05-01 Renault Sa Catalyseur pour une ligne d'echappement d'un flux de gaz
DE102015207573B4 (de) * 2015-04-24 2023-07-06 Ford Global Technologies, Llc Brennkraftmaschine mit kombiniertem Abgasnachbehandlungssystem
JP6855884B2 (ja) * 2017-04-04 2021-04-07 富士通株式会社 排気浄化装置、内燃装置、発電装置及び自動車
US10774717B2 (en) * 2017-11-01 2020-09-15 Imagine Tf, Llc Structures for catalytic converters
DE102019207065B4 (de) * 2019-05-15 2021-05-20 Vitesco Technologies GmbH Ringkatalysator
KR20210071578A (ko) * 2019-12-06 2021-06-16 현대자동차주식회사 차량용 촉매 컨버터
DE102021115885A1 (de) 2021-06-18 2022-12-22 Endress+Hauser Flowtec Ag Strömungsgleichrichter

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1279524A (fr) * 1959-11-23 1961-12-22 Universal Oil Prod Co Appareil pour la mise en contact avec une matière solide d'un fluide tel que les gaz d'échappement d'un moteur
US3302394A (en) * 1965-11-24 1967-02-07 Du Pont Exhaust manifold reactor
FR2182614B1 (de) * 1972-03-17 1978-05-05 Louyot Comptoir Lyon Alemand
GB1437114A (en) * 1972-09-23 1976-05-26 Daimler Benz Ag Exhaust pipe apparatus comprising a catalyst element
US3953176A (en) * 1973-05-22 1976-04-27 Texas Instruments Incorporated Catalytic converter
JPS5022118A (de) * 1973-06-29 1975-03-10
US3929420A (en) * 1973-08-31 1975-12-30 Minnesota Mining & Mfg Dual cross-flow canister
US3969083A (en) * 1973-11-26 1976-07-13 Maremont Corporation Catalytic converter for purifying gases
DE2429002A1 (de) * 1974-06-15 1976-01-08 Bosch Gmbh Robert Abgasreaktor
US3964875A (en) * 1974-12-09 1976-06-22 Corning Glass Works Swirl exhaust gas flow distribution for catalytic conversion
US4039294A (en) * 1975-05-21 1977-08-02 Mayer Edward A Filter for internal combustion exhaust gases
JPS54125912U (de) * 1978-02-24 1979-09-03
DE3012182A1 (de) * 1979-04-03 1980-10-23 Engelhard Min & Chem Katalytisches system mit nichteinheitlicher zellengroesse und verfahren zur oxidation von gasen unter verwendung dieses katalytischen systems
DE2924592C2 (de) * 1979-06-19 1983-05-26 Süddeutsche Kühlerfabrik Julius Fr. Behr GmbH & Co KG, 7000 Stuttgart Verfahren zum Herstellen einer Trägermatrix für einen katalytischen Reaktor zur Abgasreinigung bei Brennkraftmaschinen von Kraftfahrzeugen
JPS5940516B2 (ja) * 1981-11-09 1984-10-01 東京電機工業株式会社 水質管理装置
DE3430400C2 (de) * 1984-08-17 1986-06-26 Voest-Alpine St. Aegyd AG, St. Aegyd am Neuwalde Katalytische Abgasreinigungseinrichtung
DE3430399A1 (de) * 1984-08-17 1986-02-20 Voest-Alpine St. Aegyd AG, St. Aegyd am Neuwalde Katalytische abgasreinigungseinrichtung
US4634459A (en) * 1985-02-12 1987-01-06 FEV Forschungsgesellschaft fur Energie-Technik und Verbrennungsmotoren GmbH Particle filtration and removal system
DE3536315A1 (de) * 1985-10-11 1987-04-16 Sueddeutsche Kuehler Behr Katalysatoranordnung zur reinigung von abgasen, insbesondere einer brennkraftmaschine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8902978A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5506028A (en) * 1992-04-03 1996-04-09 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Conical honeycomb body

Also Published As

Publication number Publication date
US5103641A (en) 1992-04-14
ES2009047A6 (es) 1989-08-16
RU1839696C (ru) 1993-12-30
DE3866244D1 (de) 1991-12-19
JPH02502110A (ja) 1990-07-12
JPH0791972B2 (ja) 1995-10-09
WO1989002978A1 (fr) 1989-04-06
US5150573A (en) 1992-09-29
DE3733402A1 (de) 1989-04-13
EP0386013B1 (de) 1991-11-13

Similar Documents

Publication Publication Date Title
EP0386013B1 (de) Katalysatoranordnung mit strömungsleitkörper
DE19680093B4 (de) Wabenkörper mit von einem Fluid durchströmbaren Kanälen von unterschiedlichem Strömungswiderstand
EP0483256B1 (de) Wabenkörper mit internen strömungsleitflächen, insbesondere katalysatorkörper für kraftfahrzeuge
EP0151229B1 (de) Matrix für einen katalytischen Reaktor
EP0186801B1 (de) Trägermatrix, insbesondere für einen katalytischen Reaktor zur Abgasreinigung
EP0484364B1 (de) Wabenkörper mit internen anströmkanten, insbesondere katalysatorkörper für kraftfahrzeuge
EP0542775B1 (de) Monolithischer metallischer wabenkörper mit variierender kanalzahl
DE19938854C5 (de) Vorrichtung zur Verringerung des Stickoxidanteils in einem Abgas einer Verbrennungskraftmaschine
EP1089819B1 (de) Monolithischer metallischer wabenkörper mit variierender kanalzahl
DE4014215A1 (de) Abgasreinigungsvorrichtung
EP0542805B1 (de) Wabenkörper mit querschnittsbereichen unterschiedlicher kanalgrössen, insbesondere katalysator-trägerkörper
EP0506686B1 (de) Abgasleitung mit wendelförmig angeströmtem katalysator-trägerkörper
EP0929738B1 (de) Wabenkörper mit wärmeisolierung, vorzugsweise für einen abgaskatalysator
DE4313187A1 (de) Metallischer Trägerkörper für Abgasreinigungskatalysator-Material
DE102005009585A1 (de) Wabenkörper mit zerklüfteten Stirnseiten
DE19701169A1 (de) Katalytischer Konverter
WO2005115589A1 (de) Reinigungseinsatz für abgasreinigungsanlagen, insbesondere für partikelfilter
DE69727819T2 (de) Metallfolie für einen metallischen Katalysatorträger und damit arbeitender metallischer Katalysator
EP2250353B1 (de) Wabenkörper mit verbindungsfreiem bereich
DE3923094C2 (de) Katalysator-Trägerkörper
EP0959988B1 (de) Wabenkörper mit im inneren eingerahmtem querschnittsbereich, insbesondere für kleinmotoren
DE19922356A1 (de) Wabenkörper
EP0988109B1 (de) Metallischer katalysator-trägerkörper zur reinigung eines abgasstromes, insbesondere von einem kleinmotor
DE19704129A1 (de) Wabenkörper, insbesondere Katalysator-Trägerkörper,mit verstärkter Wandstruktur
EP1180203A1 (de) Wabenkörper und verfahren zu dessen herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19900126

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

17Q First examination report despatched

Effective date: 19910409

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

REF Corresponds to:

Ref document number: 3866244

Country of ref document: DE

Date of ref document: 19911219

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920824

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EUG Se: european patent has lapsed

Ref document number: 88907684.0

Effective date: 19930307

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070904

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070723

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070823

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070821

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20080822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20080822