EP0438971A1 - Beschichtetes metallisches Substrat - Google Patents

Beschichtetes metallisches Substrat Download PDF

Info

Publication number
EP0438971A1
EP0438971A1 EP90810867A EP90810867A EP0438971A1 EP 0438971 A1 EP0438971 A1 EP 0438971A1 EP 90810867 A EP90810867 A EP 90810867A EP 90810867 A EP90810867 A EP 90810867A EP 0438971 A1 EP0438971 A1 EP 0438971A1
Authority
EP
European Patent Office
Prior art keywords
protective layer
substrate
layer
hardness
minimum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP90810867A
Other languages
English (en)
French (fr)
Other versions
EP0438971B1 (de
Inventor
James Dr. Simpson
Roger Dr. Dekumbis
Michel Dr. Les Hauts De Garenne Pierantoni
Roberto Busin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sulzer Markets and Technology AG
Original Assignee
Sulzer Innotec AG
Sulzer AG
Gebrueder Sulzer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sulzer Innotec AG, Sulzer AG, Gebrueder Sulzer AG filed Critical Sulzer Innotec AG
Priority to AT9090810867T priority Critical patent/ATE105594T1/de
Publication of EP0438971A1 publication Critical patent/EP0438971A1/de
Application granted granted Critical
Publication of EP0438971B1 publication Critical patent/EP0438971B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • C23C26/02Coating not provided for in groups C23C2/00 - C23C24/00 applying molten material to the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment

Definitions

  • the invention relates to a protective layer for a metallic substrate, which is particularly effective against corrosion, erosion and wear.
  • the protective layer is characterized by (in% by mass):
  • sigma phase the proportion of which is at least 5% by volume in order to achieve the required minimum hardness, and by its high chromium (or chromium and molybdenum) content.
  • the sigma phase contains approximately 55% iron and 45% chromium; it is characterized by high hardness and very low plastic deformability.
  • too other phases such as Chi, Alpha-prime and Gamma-prime, and excretions, such as carbides and nitrides, contribute to the increased hardness.
  • a method for producing the new protective layer is characterized in that the layer material is melted together with the surface of the substrate to be coated using a thermal melting process and is cooled to a minimum cooling rate of 100 K / sec to at least 500 ° C., a metallurgically bound protective layer with a hardness of less than 500 HV0.1, and that this protective layer is then heat-treated in a temperature range of 500 - 950 ° C until the hardness is at least 800 HV0.1.
  • the proportion of the sigma phase in the structure is increased; this can advantageously be, for example, at least 50% by volume.
  • the layer material is blown into the melt bath as a powder through a nozzle, the layer material being remelted at the same time and metallurgically bonded to the substrate;
  • the layer material can also be supplied as a rod or wire.
  • precoat the substrate with the layer material and then to connect the two materials to one another metallurgically by remelting.
  • the precoating is advantageously carried out galvanically or by a thermal spray process, such as, for example, vacuum plasma spraying CVD or PVD.
  • a thermal spray process such as, for example, vacuum plasma spraying CVD or PVD.
  • the melting and remelting can be carried out, for example, with a laser beam or an arc.
  • a laser beam or an arc With pre-coated substrates, it is also possible to use an electron beam as the energy source for the melting.
  • the substrate can optionally be preheated before the precoating and / or before the melting process.
  • the heat treatment to form the sigma phase is carried out at about 700 ° C. for at least six hours.
  • a substrate made of carbon steel St 37 is to be coated with a layer 0.15 to 0.2 mm thick, which contains about 45% chromium in addition to iron.
  • the surface of the substrate to be coated is first degreased and galvanically coated with an approximately 80 ⁇ m thick coating of pure chrome.
  • the galvanically chrome-plated substrate is then subjected to a heat treatment in air at about 200 ° C. for 4 to 6 hours.
  • the protective layer is produced by remelting the chrome-plated surface using a laser beam.
  • a laser beam with a power of 1500 W and a beam diameter on the surface to be remelted of 1.23 mm - which results in a power density of 1260 W / mm2 - is row by row under a helium protective gas atmosphere with a lateral offset of 0.2 mm per line performed in three passes over the surface of the chromium-plated substrate to be remelted, the feed speeds being 1900, 1500 and 1000 mm / min; from this, exposure times of 31, 39 and 58 ms can be calculated, which in this case results in a cooling rate of at least 2000 K / sec given the total mass of the substrate used and its thermal conductivity.
  • the multiple melting serves the purpose of the protective layer metallurgically bonded to the substrate by the melting, which after the melting has the required composition of about 45% chromium and 55% iron in addition has low proportions of carbon, silicon, manganese and other trace elements from the steel St37.
  • the layer After the laser treatment, the layer has an intermediate hardness of HV0.1 240-260 and its structure contains no sigma phase.
  • a partial transformation of the structure into a sigma phase is achieved by a subsequent heat treatment, which is carried out in an oven in air at about 700 ° C. for about 12 hours, with neither the heating rate nor the cooling rate being critical parameters; it is only necessary to ensure that the necessary holding time at the treatment temperature is observed.
  • the protective layer has proven to be particularly resistant to corrosion, which is evidenced by corrosion tests in 5% NaCl, whereby the resistance to local forms of corrosion (pitting or crevice corrosion) after heat treatment is better than that of austenitic stainless steel DIN 1.4435 (X2 CrNiMo 18 12. AISI 316L); the critical pitting temperatures determined were for a Fe-44% Cr heat-treated, laser-remelted protective layer on St 37 or for a 1.4435 stainless steel 16 or 11.5 ° C.

Abstract

Eine Schutzschicht für ein metallisches Substrat, die metallurgisch mit dem Substrat verbunden ist, enthält (in Masse-%) 35 bis 50 % Chrom, das bis zu 10 % durch Molybdän ersetzt sein kann, und mindestens Eisen, wobei der Eisenanteil mindestens 25 % betragen muss. Die Mindesthärte beträgt 800 HV0.1, was durch einen Mindestanteil von 5 Vol.-% des Gefüges als Sigma-Phase erreicht wird. Die Sigma-Phase wird durch eine Wärmebehandlung des beschichteten Substrats erhalten. Die Schutzschicht ist besonders widerstandsfähig gegen Korrosion, besitzt jedoch auch gute Erosions- und Verschleissfestigkeit.

Description

  • Die Erfindung betrifft eine Schutzschicht für ein metallisches Substrat, die vor allem gegen Korrosion, Erosion und Verschleiss wirksam ist.
  • Die Schutzschicht ist gekennzeichnet durch (in Masse-%):
  • 35 - 50 % Chrom (Cr) + Molybdän (Mo), mit einem Mo-Anteil von 0 - 10 %, Rest mindestens Eisen (Fe), mit einem minimalen Fe-Anteil von 25 %, und ferner durch eine Mindesthärte von 800 HV0.1.
  • Ihre Schutzwirkung wird erreicht durch die Ausbildung einer Sigma-Phase, deren Anteil mindestens 5 Vol.-% beträgt, um die geforderte Mindesthärte zu erreichen, und durch ihren hohen Chrom (oder Chrom und Molybdän) -Gehalt. Die Sigma-Phase enthält circa 55 % Eisen und 45% Chrom; sie zeichnet sich durch hohe Härte und sehr geringe plastische Verformbarkeit aus. Neben der Sigma-Phase können - nach geeigneten Wärmebehandlungen - auch andere Phasen, wie Chi, Alpha-prime und Gamma-prime und Ausscheidungen, wie Karbide und Nitride, zu der erhöhten Härte beitragen.
  • Ein Verfahren zur Herstellung der neuen Schutzschicht ist dadurch gekennzeichnet, dass das Schichtmaterial zusammen mit der zu beschichtenden Oberfläche des Substrats mit Hilfe eines thermischen Schmelzverfahrens aufgeschmolzen und mit einer Mindestabkühlgeschwindigkeit von 100 K/sec auf mindestens 500 °C abgekühlt wird, wobei eine metallurgisch gebundene Schutzschicht mit einer Härte kleiner als 500 HV0.1 erzeugt wird, und dass diese Schutzschicht anschliessend in einem Temperaturbereich von 500 - 950 °C solange wärmebehandelt wird, dass die Härte mindestens 800 HV0.1 beträgt.
  • Unter Wahrung des vorgeschriebenen Minimalanteils an Eisen können andere Elemente das Eisen teilweise ersetzen, um bestimmte Wirkungen zu erreichen. So bewirkt beispielsweise eine Zugabe von Kohlenstoff eine Erhöhung der Umwandlungsgeschwindigkeit, d.h. der Bildung der Sigma-Phase; andere Elemente, wie Silizium, Niob und Titan fördern die Ausbildung der Sigma-Phase ebenfalls, insbesondere bei relativ niedrigem Chrom-Gehalt.
  • Soll die maximale Mindesthärte der Schutzschicht, die aus einer oder mehreren Lagen bestehen kann, erhöht werden, so erhöht man den Anteil der Sigma-Phase an den Gefügen; diese kann mit Vorteil beispielsweise mindestens 50 Vol.-% betragen.
  • Eine gute Haftung der Schutzschicht, die zweckmässigerweise Schichtdicken zwischen 0,1 und 3 mm aufweisen kann, wird erreicht, wenn Schicht und Substrat metallurgisch verbunden sind. Als Substrat eigenen sich alle Metalle mit ausreichend hohem Schmelzpunkt; bevorzugt werden als Subtrate Eisen-Basislegierungen verwendet.
  • Für die Herstellung der Schutzschicht hat es sich besonders bewährt, wenn das Schichtmaterial als Pulver durch eine Düse in das Schmelzbad eingeblasen wird, wobei das Schichtmaterial gleichzeitig umgeschmolzen und mit dem Substrat metallurgisch verbunden wird; selbstverständlich kann das Schichtmaterial dabei auch als Stange oder Draht zugeführt werden.
  • Es ist weiterhin auch möglich, das Substrat mit dem Schichtmaterial vorzubeschichten und anschliessend beide Materialien durch Umschmelzen metallurgisch miteinander zu verbinden. Die Vorbeschichtung erfolgt dabei vorteilhafterweise galvanisch oder durch ein thermisches Spritzverfahren, wie beispielsweise durch Vakuum-Plasmaspritzen CVD oder PVD. Schliesslich ist es noch möglich, die Oberfläche des Substrates einfach mit dem Schichtmaterial in Form von Pulver, Draht, dünnen Streifen oder Plättchen zu "belegen", wobei der Belag dann gemeinsam mit der Substrat-Oberfläche aufgeschmolzen wird.
  • Bei der Zuführung des Schichtmaterials als Pulver, Draht oder Stange kann das Auf- und Umschmelzen beispielsweise mit einem Laserstrahl oder einem Lichtbogen durchgeführt werden. Bei vorbeschichteten Substraten ist es zusätzlich auch möglich, als Energiequelle für das Schmelzen einen Elektronenstrahl zu benutzen. Weiterhin kann das Substrat gegebenenfalls vor der Vorbeschichtung und/oder vor dem Schmelzverfahren vorgewärmt werden.
  • Schliesslich ist es vorteilhaft, wenn die Wärmebehandlung zur Ausbildung der Sigma-Phase bei etwa 700° C während mindestens sechs Stunden durchgeführt wird.
  • Die Erfindung wird im folgenden anhand eines Ausführungsbeispiels näher erläutert.
  • Zu beschichten ist ein Substrat aus Kohlenstoff-Stahl St 37 mit einer 0,15 bis 0,2 mm dicken Schicht, die neben Eisen etwa 45 % Chrom enthält.
  • Die zu beschichtende Oberfläche des Substrates wird zunächst entfettet und galvanisch mit einem etwa 80 µm dicken Belag aus reinem Chrom versehen. Um in der späteren Schutzschicht Gaseinschlüsse zu vermeiden, wird das galvanisch verchromte Substrat anschliessend einer Wärmebehandlung in Luft bei etwa 200° C für 4 bis 6 Stunden unterworfen.
  • Die Herstellung der Schutzschicht erfolgt durch Umschmelzen der verchromten Oberfläche mit Hilfe eines Laserstrahls. Ein Laserstrahl mit einer Leistung von 1500 W und einem Strahldurchmesser auf der umzuschmelzenden Oberfläche von 1,23 mm - was eine Leistungsdichte von 1260 W/mm² ergibt - wird unter einer Helium-Schutzgasatmosphäre mit je einer seitlichen Versetzung von 0,2 mm pro Zeile zeilenweise in drei Durchgängen über die umzuschmelzende Oberfläche des verchromten Substrates geführt, wobei die Vorschubgeschwindigkeiten 1900, 1500 und 1000 mm/min betragen; daraus lassen sich Einwirkzeiten von 31, 39 und 58 ms errechnen, was bei der Gesamtmasse des verwendeten Substrates und dessen Wärmeleitfähigkeit in diesem Fall eine Abkühlgeschwindigkeit von mindestens 2000 K/sec ergibt.
  • Das mehrfache Aufschmelzen dient dazu, die durch das Umschmelzen mit dem Substrat metallurgisch verbundene Schutzschicht, die nach dem Umschmelzen die geforderte Zusammensetzung von etwa 45 % Chrom und 55 % Eisen neben geringen Anteilen von Kohlenstoff, Silizium, Mangan und anderen Spurenelementen aus dem Stahl St37 aufweist, zu homogenisieren. Nach der Laserbehandlung hat die Schicht als Zwischenprodukt eine Härte von HV0.1 240-260 und ihr Gefüge enthält keine Sigma-Phase.
  • Eine teilweise Umwandlung des Gefüges in eine Sigma-Phase wird durch eine anschliessende Wärmebehandlung, die bei etwa 700° C in einem Ofen in Luft für etwa 12 Stunden durchgeführt wird, erreicht, wobei weder die Aufheizgeschwindigkeit noch die Abkühlgeschwindigkeit kritische Parameter sind; es ist lediglich darauf zu achten, dass die notwendige Haltezeit bei Behandlungstemperatur eingehalten wird.
  • In metallurgischen Untersuchungen ist bei der so behandelten Schutzschicht ein Anteil von mehr als 80 Vol.-% an Sigma-Phase ermittelt worden; die Härte der Schicht beträgt HV0.1 1200-1400.
  • Die Schutzschicht hat sich als besonders widerstandsfähig gegen Korrosion erwiesen, was belegt wird durch Korrosionsprüfungen in 5% NaCl, wobei die Beständigkeit gegen lokale Korrosionsformen (Lochfrass oder Spaltkorrosion) nach der Wärmebehandlung besser ist als bei austenitischem rostfreien Stahl DIN 1.4435 (X2 CrNiMo 18 12. AISI 316L); die ermittelten kritischen Lochfrasstemperaturen waren für eine Fe-44%Cr wärmebehandelte, laserumgeschmolzene Schutzschicht auf St 37 bzw. für einen 1.4435 rostfreien Stahl 16 bzw. 11,5° C.

Claims (13)

  1. Schutzschicht, insbesondere gegen Korrosion, Erosion und/oder Verschleiss, für ein metallisches Substrat, gekennzeichnet durch einen Gehalt an (in Masse-%):

    35 - 50 % Chrom (Cr) + Molybdän (Mo), mit einem Mo-Anteil von 0 - 10 %, Rest mindestens Eisen (Fe), mit einem minimalen Fe-Anteil von 25 %, und ferner durch eine Mindesthärte von 800 HV0.1.
  2. Schutzschicht nach Anspruch 1, dadurch gekennzeichnet, dass Fe teilweise ersetzt ist durch mindestens eines der nachstehenden Elemente (in Masse-%):
    Figure imgb0001
  3. Schutzschicht nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass ihre Schichtdicke 0.1 bis 3 mm beträgt.
  4. Schutzschicht nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass mindestens 5 Vol% der Schicht in Form einer Sigma-Phase vorliegen.
  5. Schutzschicht nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Anteil der Sigma-Phase mindestens 50 Vol.% beträgt.
  6. Schutzschicht nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Schicht und das Substrat metallurgisch miteinander verbunden sind.
  7. Verfahren zur Herstellung einer Schutzschicht nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Schichtmaterial zusammen mit der zu beschichtenden Oberfläche des Substrats mit Hilfe eines thermischen Schmelzverfahrens aufgeschmolzen und mit einer Mindestabkühlgeschwindigkeit von 100 K/sec auf mindestens 500 °C abgekühlt wird, wobei eine metallurgisch gebundene Schutzschicht mit einer Härte kleiner als 500 HV0.1 erzeugt wird, und dass diese Schutzschicht anschliessend in einem Temperaturbereich von 500 - 950 °C solange wärmebehandelt wird, dass die Härte mindestens 800 HV0.1 beträgt.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass das Schichtmaterial als Pulver durch eine Düse in das Schmelzbad eingeblasen wird, wobei das Schichtmaterial gleichzeitg umgeschmolzen und mit dem Substrat metallurgisch verbunden wird.
  9. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass das Substrat mit dem Schichtmaterial vorbeschichtet und anschliessend beide Materialien durch Umschmelzen metallurgisch miteinander verbunden werden.
  10. Verfahren nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass das Auf- oder Umschmelzen mit einem Laserstrahl, einem Elektronenstrahl oder einem Lichtbogen durchgeführt wird.
  11. Verfahren nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass das Substrat vor der Vorbeschichtung vorgewärmt wird.
  12. Verfahren nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, dass das Substrat galvanisch oder durch ein thermisches Spritzverfahren vorbeschichtet wird.
  13. Verfahren nach einem der Ansprüche 7 bis 12, dadurch gekennzeichnet, dass die Wärmebehandlung bei einer Temperatur von 700 ± 25 °C durchgeführt wird, die mindestens 6 Stunden gehalten wird.
EP90810867A 1990-01-22 1990-11-12 Beschichtetes metallisches Substrat Expired - Lifetime EP0438971B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT9090810867T ATE105594T1 (de) 1990-01-22 1990-11-12 Beschichtetes metallisches substrat.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH18190 1990-01-22
CH181/90 1990-01-22

Publications (2)

Publication Number Publication Date
EP0438971A1 true EP0438971A1 (de) 1991-07-31
EP0438971B1 EP0438971B1 (de) 1994-05-11

Family

ID=4181121

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90810867A Expired - Lifetime EP0438971B1 (de) 1990-01-22 1990-11-12 Beschichtetes metallisches Substrat

Country Status (6)

Country Link
US (1) US5230755A (de)
EP (1) EP0438971B1 (de)
JP (1) JP3065674B2 (de)
AT (1) ATE105594T1 (de)
DE (1) DE59005683D1 (de)
ES (1) ES2053163T3 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0542631A1 (de) * 1991-11-14 1993-05-19 Xaloy, Inc. Verfahren zur Herstellung einer Förderschnecke zur Anwendung in der Kunststoffindustrie
WO1995029274A1 (de) * 1994-04-26 1995-11-02 Igenwert Gmbh Verfahren zur beaufschlagung und beeinflussung einer festkörperoberfläche, insbesondere einer werkstoffoberfläche
DE19740696A1 (de) * 1997-09-16 1999-03-18 Bayerische Motoren Werke Ag Verfahren zur Herstellung und Bearbeitung metallischer Schichten

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6350326B1 (en) 1996-01-15 2002-02-26 The University Of Tennessee Research Corporation Method for practicing a feedback controlled laser induced surface modification
EP1045175B1 (de) * 1999-04-12 2006-11-08 Wärtsilä Schweiz AG Stopfbuchsenring
US6294225B1 (en) 1999-05-10 2001-09-25 The University Of Tennessee Research Corporation Method for improving the wear and corrosion resistance of material transport trailer surfaces
US6173886B1 (en) 1999-05-24 2001-01-16 The University Of Tennessee Research Corportion Method for joining dissimilar metals or alloys
US6299707B1 (en) 1999-05-24 2001-10-09 The University Of Tennessee Research Corporation Method for increasing the wear resistance in an aluminum cylinder bore
US6497985B2 (en) 1999-06-09 2002-12-24 University Of Tennessee Research Corporation Method for marking steel and aluminum alloys
US6284067B1 (en) 1999-07-02 2001-09-04 The University Of Tennessee Research Corporation Method for producing alloyed bands or strips on pistons for internal combustion engines
US6423162B1 (en) 1999-07-02 2002-07-23 The University Of Tennesse Research Corporation Method for producing decorative appearing bumper surfaces
US6229111B1 (en) 1999-10-13 2001-05-08 The University Of Tennessee Research Corporation Method for laser/plasma surface alloying
US6328026B1 (en) 1999-10-13 2001-12-11 The University Of Tennessee Research Corporation Method for increasing wear resistance in an engine cylinder bore and improved automotive engine
JP2004342845A (ja) * 2003-05-15 2004-12-02 Kobe Steel Ltd 微細構造体の洗浄装置
US20050112399A1 (en) * 2003-11-21 2005-05-26 Gray Dennis M. Erosion resistant coatings and methods thereof
US7141110B2 (en) * 2003-11-21 2006-11-28 General Electric Company Erosion resistant coatings and methods thereof
US7458358B2 (en) * 2006-05-10 2008-12-02 Federal Mogul World Wide, Inc. Thermal oxidation protective surface for steel pistons
JP2013241635A (ja) * 2012-05-18 2013-12-05 National Institute Of Advanced Industrial Science & Technology 鉄クロム合金
BR102014016213A2 (pt) * 2014-06-30 2016-02-10 Mahle Int Gmbh válvula para motores de combustão interna e processo para obtenção de uma válvula
CN104894560A (zh) * 2015-04-27 2015-09-09 苏州统明机械有限公司 一种用于金属表面抗氧化性能强的涂层及其制备方法
CN113549915B (zh) * 2021-06-16 2023-01-24 太原理工大学 一种矿用刮板机齿轨抗磨复合涂层及制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3187717A (en) * 1957-06-12 1965-06-08 Gen Motors Corp Method of coating aluminum
FR2166360A1 (de) * 1972-01-03 1973-08-17 Schmidt Gmbh Karl
EP0290052A1 (de) * 1987-05-08 1988-11-09 Castolin S.A. Verfahren zum Herstellen von Gleitflächen auf Teilen von Fahrzeugmotoren
WO1989001534A1 (en) * 1987-08-20 1989-02-23 Whitford Plastics Limited Thermal spraying of stainless steel
WO1989010433A1 (fr) * 1988-04-23 1989-11-02 Glyco-Metall-Werke Daelen & Loos Gmbh Materiau stratifie ou piece stratifiee comprenant une couche fonctionnelle, notamment une couche de glissement, appliquee sur une couche de support
DE3821896A1 (de) * 1988-06-25 1989-12-28 Castolin Sa Pulverfoermiger metallhaltiger werkstoff und verfahren dazu

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU63431A1 (de) * 1971-06-29 1973-01-22
US4015100A (en) * 1974-01-07 1977-03-29 Avco Everett Research Laboratory, Inc. Surface modification
US4212900A (en) * 1978-08-14 1980-07-15 Serlin Richard A Surface alloying method and apparatus using high energy beam
US4451299A (en) * 1982-09-22 1984-05-29 United Technologies Corporation High temperature coatings by surface melting
JPS63109151A (ja) * 1986-10-27 1988-05-13 Hitachi Ltd 高硬度複合材およびその製造方法
JPH01319658A (ja) * 1988-06-20 1989-12-25 Sumitomo Metal Ind Ltd チタン製品の表面硬化方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3187717A (en) * 1957-06-12 1965-06-08 Gen Motors Corp Method of coating aluminum
FR2166360A1 (de) * 1972-01-03 1973-08-17 Schmidt Gmbh Karl
EP0290052A1 (de) * 1987-05-08 1988-11-09 Castolin S.A. Verfahren zum Herstellen von Gleitflächen auf Teilen von Fahrzeugmotoren
WO1989001534A1 (en) * 1987-08-20 1989-02-23 Whitford Plastics Limited Thermal spraying of stainless steel
WO1989010433A1 (fr) * 1988-04-23 1989-11-02 Glyco-Metall-Werke Daelen & Loos Gmbh Materiau stratifie ou piece stratifiee comprenant une couche fonctionnelle, notamment une couche de glissement, appliquee sur une couche de support
DE3821896A1 (de) * 1988-06-25 1989-12-28 Castolin Sa Pulverfoermiger metallhaltiger werkstoff und verfahren dazu

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, Band 11, Nr. 106 (C-414)[2553], 3. April 1987; & JP-A-61 253 357 (YOSHIKAWA KOGYO) 11-11-1986 *
PATENT ABSTRACTS OF JAPAN, Band 11, Nr. 18 (C-398)[2465], 17. Januar 1987; & JP-A-61 194 152 (TOYOTA MOTOR CORP.) 28-08-1986 *
PATENT ABSTRACTS OF JAPAN, Band 11, Nr. 259 (C-441)[2706], 21. August 1987; & JP-A-62 60 855 (TOYOTA MOTOR CORP.) 17-03-1987 *
PATENT ABSTRACTS OF JAPAN, Band 11, Nr. 43 (C-402)[2490], 7. Februar 1987; & JP-A-61 207 565 (NIPPON STEEL CORP.) 13-09-1986 *
PATENT ABSTRACTS OF JAPAN, Band 6, Nr. 78 (C-102)[956], 15. Mai 1982; & JP-A-57 13 166 (HITACHI ZOSEN) 23-01-1982 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0542631A1 (de) * 1991-11-14 1993-05-19 Xaloy, Inc. Verfahren zur Herstellung einer Förderschnecke zur Anwendung in der Kunststoffindustrie
WO1995029274A1 (de) * 1994-04-26 1995-11-02 Igenwert Gmbh Verfahren zur beaufschlagung und beeinflussung einer festkörperoberfläche, insbesondere einer werkstoffoberfläche
DE19740696A1 (de) * 1997-09-16 1999-03-18 Bayerische Motoren Werke Ag Verfahren zur Herstellung und Bearbeitung metallischer Schichten

Also Published As

Publication number Publication date
DE59005683D1 (de) 1994-06-16
JP3065674B2 (ja) 2000-07-17
ES2053163T3 (es) 1994-07-16
ATE105594T1 (de) 1994-05-15
JPH04214879A (ja) 1992-08-05
US5230755A (en) 1993-07-27
EP0438971B1 (de) 1994-05-11

Similar Documents

Publication Publication Date Title
EP0438971B1 (de) Beschichtetes metallisches Substrat
DE2632739C3 (de) Verfahren zum thermischen Aufspritzen eines selbsthaftenden Nickel-Aluminium- oder-Nickel-Titan-Überzugs auf ein Metallsubstrat
DE3839775C2 (de) Kathoden-Zerstäubungstarget und Verfahren zu seiner Herstellung
DE2829369B2 (de) Verfahren zum Ausbilden von harten, verschleißfestenMetallkarbide enthaltenden Überzügen
EP0915184A1 (de) Verfahren zur Herstellung einer keramischen Schicht auf einem metallischen Grundwerkstoff
DE2744189A1 (de) Verfahren zur verbesserung der verschleisseigenschaften von eisenmetallteilen
DE4203869A1 (de) Hochbelastbare, beschichtete bauteile aus der intermetallischen phase titan-aluminid als werkstoff
DE2208070A1 (de) Plasma-flammgespritzte titancarbidwerkzeugstahl-ueberzuege auf metallsubstraten, die so gebildeten verbundwerkstoffe und verfahren zu deren herstellung
CH616960A5 (en) Components resistant to high-temperature corrosion.
CH670103A5 (de)
DE19935164A1 (de) Verfahren zur gleichzeitigen Reinigung und Flußmittelbehandlung von Aluminium-Motorblock-Zylinderbohrungsoberflächen zur Befestigung von thermisch gespritzten Überzügen
DE19722023B4 (de) Oberflächenbehandeltes Eisenmaterial und Verfahren zur Oberflächenbehandlung von Eisenmaterial
DE3221884C2 (de) Verschleißbeständiges Bauteil zur Verwendung in Brennkraftmaschinen
EP3877555A1 (de) Verfahren zum herstellen eines blechbauteils aus einem mit einer korrosionsschutzbeschichtung versehenen stahlflachprodukt
AT400726B (de) Metallischer bauteil zur verwendung in einem metallbad
EP0352220B1 (de) Oberflächenbeschichtung aus einer Aluminium-Basislegierung
DE1942292B2 (de) Verfahren zur abscheidung eines ueberzuges
DE102007016411A1 (de) Halbzeug aus Refraktärmetallen, insbesondere aus Molybdän, welches mit einer Schutzschicht versehen ist und Verfahren zu dessen Herstellung
DE3219071A1 (de) Verfahren zum plattieren von titan mit einer harten schicht
EP2955249B1 (de) Verfahren zum Herstellen eines mit einem Korrosionsschutzsystem beschichteten Stahlblechs
DE2531835C3 (de) Verfahren zur Bildung eines Überzugs auf der Grundlage von Nickel und/oder Kobalt auf Gegenständen aus hochwarmfesten Metallmaterialien
DE102004047196B4 (de) Verfahren zur Herstellung einer mehrlagigen Schutzschicht auf einem Metallgegenstand durch Metallspritzen
DE102011119087B3 (de) Verfahren zum Erzeugen einer Chrom-Schutzschicht und ihre Verwendung
DD224057A1 (de) Beschichtungspulver auf der basis von titancarbid
DE3237655A1 (de) Verfahren zur herstellung von innenbeschichtungen von rohren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19901114

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI NL

17Q First examination report despatched

Effective date: 19930430

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SULZER INNOTEC AG

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL

REF Corresponds to:

Ref document number: 105594

Country of ref document: AT

Date of ref document: 19940515

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: ING. ZINI MARANESI & C. S.R.L.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940506

REF Corresponds to:

Ref document number: 59005683

Country of ref document: DE

Date of ref document: 19940616

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2053163

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20021017

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20021029

Year of fee payment: 13

Ref country code: AT

Payment date: 20021029

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20021030

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20021104

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20021111

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20021114

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20021115

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031112

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031130

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031130

BERE Be: lapsed

Owner name: *SULZER INNOTEC A.G.

Effective date: 20031130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040602

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20031112

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040730

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20040601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20031113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051112