EP0453018A2 - Poly (alpha-hydroxy acrylic acid) and derivatives as antitartar actives in oral compositions - Google Patents

Poly (alpha-hydroxy acrylic acid) and derivatives as antitartar actives in oral compositions Download PDF

Info

Publication number
EP0453018A2
EP0453018A2 EP19910200769 EP91200769A EP0453018A2 EP 0453018 A2 EP0453018 A2 EP 0453018A2 EP 19910200769 EP19910200769 EP 19910200769 EP 91200769 A EP91200769 A EP 91200769A EP 0453018 A2 EP0453018 A2 EP 0453018A2
Authority
EP
European Patent Office
Prior art keywords
group
polymer
composition according
hydrogen
mixtures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19910200769
Other languages
German (de)
French (fr)
Other versions
EP0453018B1 (en
EP0453018A3 (en
Inventor
David Leroy Elliott
Catherine Lynn Howie-Meyers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unilever PLC
Unilever NV
Original Assignee
Unilever PLC
Unilever NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unilever PLC, Unilever NV filed Critical Unilever PLC
Publication of EP0453018A2 publication Critical patent/EP0453018A2/en
Publication of EP0453018A3 publication Critical patent/EP0453018A3/en
Application granted granted Critical
Publication of EP0453018B1 publication Critical patent/EP0453018B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q11/00Preparations for care of the teeth, of the oral cavity or of dentures; Dentifrices, e.g. toothpastes; Mouth rinses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8141Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • A61K8/8147Homopolymers or copolymers of acids; Metal or ammonium salts thereof, e.g. crotonic acid, (meth)acrylic acid; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/02Stomatological preparations, e.g. drugs for caries, aphtae, periodontitis

Definitions

  • the invention relates to new antitartar agents, dentifrice compositions containing these agents and use of such compositions to control tartar accumulation on teeth.
  • Tartar known also as calculus
  • calculus is a hard, mineralized deposit which forms around teeth. This formation arises from deposition of crystals of calcium phosphate in the pellicle and extracellular matrix of dental plaque.
  • Various forms of calcium phosphate have been identified but the most difficult to remove and thermodynamically most stable form is called hydroxyapatite (HAP).
  • HAP hydroxyapatite
  • Amorphous forms of calcium phosphate are believed to be the precursors of HAP.
  • Regular brushing can usually remove the amorphous forms but is not fully effective to dislodge the final stable calculus form. Therefore it is desirable to prevent amorphous forms of calcium phosphate from transforming into HAP.
  • the art has recognized that agents which interfere with the formation of HAP crystallization will be effective antitartar agents.
  • U.S. 4,661,341 (Benedict et al) discloses polyacrylic acids of molecular weight 3500 to 7500 for use in oral antitartar compositions. Comonomers specified include hydroxyalkyl acrylates or methacrylates and acrylamides.
  • U.S. 3,429,963 (Shedlovsky) teaches use of maleate-containing copolymers and vinyl sulfonates in oral compositions.
  • low molecular weight anionic materials of high charge density are preferred in the known art. For example, U.S.
  • Polymers have also been found to give benefits other than crystal-growth or transformation inhibition.
  • Gaffar et al. in a series of patents reports use of synthetic linear anionic polymers of higher molecular weight for use in combination with inorganic pyrophosphates in oral compositions. See U.S. 4,627,977; U.S. 4,806,340; U.S. 4,806,342; U.S. 4,808,400 and U.S. 4,808,401.
  • These polymers were found to inhibit the action of pyrophosphatase in the mouth thereby allowing greater efficacy of the pyrophosphate.
  • Preferred were the methyl vinyl ether/maleic anhydride copolymers sold by GAF Corporation under the Gantrez trademark. These materials have molecular weights which are between 50-500,000, although a broader range (1000 to 1 million) is specified in the patents.
  • an object of the present invention to provide an antitartar agent functioning both to inhibit transformation of brushite to hydroxyapatite and also to reduce plaque buildup on oral surfaces.
  • a further object of the present invention is to provide new oral compositions and a method for more effectively controlling buildup of plaque and tartar on teeth.
  • An oral composition comprising:
  • a method is also herewith provided for inhibiting tartar formation in the mouth by applying to the teeth an oral composition containing the aforementioned polymer in a suitable carrier.
  • the polymer is poly( ⁇ -hydroxy acrylic acid).
  • poly ( ⁇ -hydroxy acrylic acid), hereinafter identified as PHAA, as well as its phosphate, sulfate and C1-C22 alkoxy derivatives, are effective antitartar agents. These materials were found to have better performance, as shown in vivo tests, than polyacrylates and polymaleates of the known art. Polymers of this invention were also identified through in vitro tests as being brushite transformation inhibitors with activity comparable to that of the known polyacrylates.
  • Antitartar polymers of this invention will have the following structure: wherein: R1 and R2 represent hydrogen or a C1-C3 alkyl group; R3 represents either hydrogen, phosphate, sulfate or a C1-C22 alkyl group.
  • M represents hydrogen, alkali metal, alkaline earth metal, ammonium alkanolammonium, transition metal cations and mixtures thereof; and x is an integer from 3 to 10,000.
  • Particularly preferred cations M are those of copper and zinc. Amounts of polymer to transition metal cation may range in weight from about 20:1 to 1:1, preferably about 10:1 to about 5:1.
  • Copolymers containing combinations of monomer units with varying R1, R2 and R3 groups may also be effective.
  • the copolymers include a phosphate, sulfate or c1-C22 alkyl substituted monomer unit at least 25% of the remaining monomer units should be ⁇ -hydroxy acrylic acid or salt units. All forms of the polymer of this invention should be water-soluble or at least partially water-soluble. Homopolymers of ⁇ -hydroxy acrylic acid are preferred, as well as polymers of PHAA where 1-75% of the hydroxyl groups are substituted with either phosphate or sulfate groups.
  • Copolymers containing monomer units of the aforedescribed structure at levels of at least 3 mole % may also be employed, provided that the second comonomer does not deleteriously affect the solubility of the resultant polymer.
  • Copolymers of hydroxy acrylic acid with acrylic acid, methacrylic acid, maleic acid, acrylamido monomers, or hydroxyalkyl acrylates or methacrylates are preferred.
  • Molecular weights of the polymers according to this invention should range from about 400 to 2 million, preferably from about 1,000 to 100,000, optimally between about 5000 to about 60,000.
  • Amounts of the polymer of this invention should be present in the oral composition from about 0.1 to about 10% by weight, preferably from about 0.4 to about 7%, optimally between about 1 to about 5%.
  • the final oral composition should not contain any components or level of components which deleteriously affect the antitartar activity of the polymers of the invention.
  • Carriers suitable for use with the polymers are preferably hydroxylic materials such as water, polyols and mixtures thereof.
  • Polyols sometimes referred to as humectants, include glycerol, sorbitol, propylene glycol, lactitol, xylitol, polypropylene glycol, polyethylene glycol, hydrogenated corn syrup and mixtures thereof.
  • Particularly preferred as the carrier is a liquid mixture of 3-30% water, 0-80% glycerol and 20-80% sorbitol.
  • the amount of carrier will range from about 25 to 99.9% by weight, preferably from about 70 to 95% by weight.
  • a natural or synthetic thickening agent in an amount from 0.1-10%, preferably about 0.5-5% by weight.
  • Thickeners may includedthyl cellulose, hydroxy cellulose, xanthan gum, tragacanth gum, karaya gum, arabic gum, Irish moss, starch, alginates and carrageenans.
  • the amount of thickening agent will generally be between about 0.1 and 10% by weight.
  • Surfactants are normally also included in the oral compositions of this invention. These surfactants may be of the anionic, nonionic, cationic or amphoteric type. Most preferred are sodium lauryl sulfate, sodium dodecylbenzene sulfonate and sodium laurylsarcosinate. Surfactants are usually present in an amount from about 0.5 to 5% by weight.
  • the oral compositions When in the form of a toothpaste or gel, the oral compositions will normally include an abrasive.
  • Abrasives may be selected from water-insoluble alkali or alkaline earth metal salts of metaphosphate, calcium carbonate, aluminates and silicates. Especially preferred are silicate, dicalcium phosphate and calcium carbonate. Amounts of the abrasive will range from about 5% to about 80% by weight.
  • Adjunct tartar control agents may be combined with the polymers of the present invention.
  • Inorganic phosphorous adjuncts may include any of the water-soluble pyrophosphates such as disodium pyrophosphate, dipotassium pyrophosphate and mixtures of these with tetrapotassium pyrophosphates or tetrasodium pyrophosphates.
  • Organic phosphorous compounds that may serve as adjuncts include polyphosphonates such as disodium ethane-1-hydroxy-1, 1-diphosphonate(EHDP) and methanediphosphonic acid, and 2-phosphonobutane-1,2,4.-tricarboxylic acid.
  • Fluoride sources include sodium fluoride, potassium fluoride, calcium fluoride, stannous fluoride, stannous monofluorophosphate and sodium monofluorophosphate. These sources should release anywhere from 25 to 3500 ppm of fluoride ion.
  • the anti-caries agent will be present in an amount from about 0.05 to about 3% by weight, preferably 0.5 to 1% by weight.
  • Flavors that are usually present in the oral compositions are those based on oils of spearmint and peppermint. Examples of other flavoring materials include menthol, clove, wintergreen, eucalyptus and aniseed. Flavors may range in concentration from 0.1 to 5% by weight.
  • Sweetening agents such as saccharin, sodium cyclamate, aspartame, sucrose and the like may be included at levels from about 0.1 to 5% by weight.
  • additives may also be incorporated into the oral compositions including preservatives, silicones, other natural or synthetic polymers, and anti-gingivitis actives.
  • Sandoperol PLA (MW 5000) and Sandoperol PL (MW 60,000) , products of Sandoz Chemicals, were used as commercially-available forms of PHAA.
  • powder samples of the desired amount were weighed and dispersed in water, and the pH adjusted to about 8.
  • the polymer becomes fully-dissolved thereby forming a homogeneous solution.
  • Table I lists information about other commercial carboxylate polymers mentioned for comparative purposes in the other examples.
  • the polymers of this invention were tested in vivo using a rat calculus assay.
  • litters from Sprague-Dawley pregnant female rats (ex Charles River) were weaned (21 days old), weighed, tagged and split into cells of 25 animals balanced by gender and litter.
  • Subjects were housed in pairs and were fed a calculogenic diet (consisting of 50% cornstarch, 32% nonfat powdered milk, 5% cellulose flour, 5% sucrose, 3% liver powder, 1% cottonseed oil, 2.7% sodium phosphate, 1% calcium chloride dihydrate, and 0.3% magnesium sulfate) with filtered city water.
  • Subjects were treated with test solutions twice a day for three weeks.
  • the teeth were scored in a blind protocol using a modified Frances & Briner method (J. Dental Res. 48(6) p. 1185-94 1969).
  • a Nikon Stereoscopic Microscope was used for the evaluation (20x magnification).
  • the samples were prepared as rinse formulations containing 5% concentration of the agent.
  • One hundred and fifty microliters (150 ⁇ L) of rinse was delivered to each subject using a 1 cc syringe.
  • Deionized water with no agent added was used as the control sample.
  • PHAA and several other polymeric materials were assessed using an in vitro microbial mineralization assay.
  • Standard glass stirring rods were placed in an aqueous solution containing Streptococcus mutans , one of the microbes found in the human oral cavity. Microbes were allowed to grow onto the rods for about 2 days. The rods were then removed from the solution and placed in a treatment solution containing antitartar agents at levels of about 1.25 wt%. Treatment with a solution containing only deionized water was used as a control. After treatment for about 30 seconds, the rods were placed in a calcifying medium made up of calcium and phosphate at levels of 1.5mM and 5.0mM, respectively. The calcifying medium was supplemented with about 25% human saliva.
  • the glass rods were mineralized in the calcifying medium for 4 days. Thereafter, the level of tartar formation was assessed via calcium and phosphorus analysis. Results were calculated by comparing the % reduction of tartar formation to that of the control. Table III lists results of the experiments.
  • PHAA Sandoperol PLA
  • PA25PN polyacrylate
  • Belclene polymaleate
  • the inhibitory activity of PHAA in this assay was equal to that of typical antitartar agents disclosed in the art.
  • Zinc salts of the polymers of this invention were tested in vitro using a Seeded Crystal Growth Inhibition Assay.
  • This assay involved the treatment of synthetic hydroxyapatite (HAP) with a potential antitartar agent.
  • HAP synthetic hydroxyapatite
  • the treated HAP was incubated at 37°C in a calcifying solution made up of calcium and phosphate at 1.5mM and 4.5mM, respectively.
  • the samples were filtered to remove any calcium phosphate crystals and the free calcium in the filtrate was measured using Atomic Absorption Spectroscopy.
  • the % inhibition was calculated as follows:
  • the % inhibition is a measure of the degree of inhibition of calcium phosphate precipitation.
  • Example illustrates a high abrasive containing toothpaste of the present invention.
  • Example illustrates a typical gel dentifrice of the present invention.
  • Example illustrates a typical mouthwash composition according to the present invention.
  • Example illustrates a standard toothpaste composition according to the present invention.

Abstract

An oral composition is provided which reduces formation of tartar on teeth. The active ingredient is poly(α -hydroxy acrylic acid) as well as phosphate, sulfate and alkoxy derivatives thereof.

Description

    BACKGROUND OF THE INVENTION 1. Field of the Invention
  • The invention relates to new antitartar agents, dentifrice compositions containing these agents and use of such compositions to control tartar accumulation on teeth.
  • 2. The Related Art
  • Tartar, known also as calculus, is a hard, mineralized deposit which forms around teeth. This formation arises from deposition of crystals of calcium phosphate in the pellicle and extracellular matrix of dental plaque. Various forms of calcium phosphate have been identified but the most difficult to remove and thermodynamically most stable form is called hydroxyapatite (HAP). Amorphous forms of calcium phosphate are believed to be the precursors of HAP. Regular brushing can usually remove the amorphous forms but is not fully effective to dislodge the final stable calculus form. Therefore it is desirable to prevent amorphous forms of calcium phosphate from transforming into HAP. The art has recognized that agents which interfere with the formation of HAP crystallization will be effective antitartar agents.
  • Polymers, especially those of the anionic type, have been found to be effective antitartar agents. U.S. 4,661,341 (Benedict et al) discloses polyacrylic acids of molecular weight 3500 to 7500 for use in oral antitartar compositions. Comonomers specified include hydroxyalkyl acrylates or methacrylates and acrylamides. U.S. 3,429,963 (Shedlovsky) teaches use of maleate-containing copolymers and vinyl sulfonates in oral compositions. Typically, low molecular weight anionic materials of high charge density are preferred in the known art. For example, U.S. 4,183,914 (Gaffar et al) discloses use of polymaleates as antitartar agents; however, these materials cannot be obtained above molecular weight 1000, and often have low purity in commercial samples. These polymeric materials have poor appearance, taste, and safety as a consequence of high impurity levels deriving from the manufacturing process.
  • Polymers have also been found to give benefits other than crystal-growth or transformation inhibition. Gaffar et al. in a series of patents reports use of synthetic linear anionic polymers of higher molecular weight for use in combination with inorganic pyrophosphates in oral compositions. See U.S. 4,627,977; U.S. 4,806,340; U.S. 4,806,342; U.S. 4,808,400 and U.S. 4,808,401. These polymers were found to inhibit the action of pyrophosphatase in the mouth thereby allowing greater efficacy of the pyrophosphate. Preferred were the methyl vinyl ether/maleic anhydride copolymers sold by GAF Corporation under the Gantrez trademark. These materials have molecular weights which are between 50-500,000, although a broader range (1000 to 1 million) is specified in the patents.
  • Other polymers have been found to inhibit the growth or adhesion of microbials, resulting in reductions of plaque and therefore degree of tartar buildup. Sipos et al. in U.S. 4,364,927 and U.S. 4,361,547 discloses several types of sulfonated aromatic polymers which are effective in reducing plaque formation.
  • Thus, most of the prior art teaches polymeric materials which are either good crystal growth inhibitors or good antiplaque agents. It would be beneficial to have polymeric agents which were effective in both functions, i.e., effectively inhibit transformation of brushite to hydroxyapatite, and in addition reduce plaque buildup on oral surfaces.
  • Accordingly it is an object of the present invention to provide an antitartar agent functioning both to inhibit transformation of brushite to hydroxyapatite and also to reduce plaque buildup on oral surfaces.
  • A further object of the present invention is to provide new oral compositions and a method for more effectively controlling buildup of plaque and tartar on teeth.
  • These and other objects of the present invention will become more readily apparent in view of the detailed description and Examples which follow.
  • SUMMARY OF THE INVENTION
  • An oral composition is provided comprising:
    • ( i) An effective amount to prevent tartar formation of a polymer whose structure is:
      Figure imgb0001
      wherein:
         R₁ and R₂ may independently be selected from the group consisting of hydrogen and c₁-C₃ alkyl;
         R₃ is selected from the group consisting of hydrogen, phosphate, sulphate and C₁-C₂₂ alkyl;
         M is selected from the group consisting of hydrogen, alkali metal, alkaline earth metal, ammonium, alkanolammonium, transition metal cations and mixtures thereof;
         x is an integer from 3 to 10,000; and
    • (ii) an effective amount of a carrier to convey the polymer into an oral cavity.
  • A method is also herewith provided for inhibiting tartar formation in the mouth by applying to the teeth an oral composition containing the aforementioned polymer in a suitable carrier. Particularly preferred as the polymer is poly(α-hydroxy acrylic acid).
  • DETAILED DESCRIPTION OF THE INVENTION
  • Now it has been found that poly (α-hydroxy acrylic acid), hereinafter identified as PHAA, as well as its phosphate, sulfate and C₁-C₂₂ alkoxy derivatives, are effective antitartar agents. These materials were found to have better performance, as shown in vivo tests, than polyacrylates and polymaleates of the known art. Polymers of this invention were also identified through in vitro tests as being brushite transformation inhibitors with activity comparable to that of the known polyacrylates.
  • Antitartar polymers of this invention will have the following structure:
    Figure imgb0002

    wherein:
       R₁ and R₂ represent hydrogen or a C₁-C₃ alkyl group;
       R₃ represents either hydrogen, phosphate, sulfate or a C₁-C₂₂ alkyl group.
  • M represents hydrogen, alkali metal, alkaline earth metal, ammonium alkanolammonium, transition metal cations and mixtures thereof; and
       x is an integer from 3 to 10,000.
  • Particularly preferred cations M are those of copper and zinc. Amounts of polymer to transition metal cation may range in weight from about 20:1 to 1:1, preferably about 10:1 to about 5:1.
  • Copolymers containing combinations of monomer units with varying R₁, R₂ and R₃ groups may also be effective. Advantageously, when the copolymers include a phosphate, sulfate or c₁-C₂₂ alkyl substituted monomer unit at least 25% of the remaining monomer units should be α-hydroxy acrylic acid or salt units. All forms of the polymer of this invention should be water-soluble or at least partially water-soluble. Homopolymers of α-hydroxy acrylic acid are preferred, as well as polymers of PHAA where 1-75% of the hydroxyl groups are substituted with either phosphate or sulfate groups.
  • Copolymers containing monomer units of the aforedescribed structure at levels of at least 3 mole % may also be employed, provided that the second comonomer does not deleteriously affect the solubility of the resultant polymer. Copolymers of hydroxy acrylic acid with acrylic acid, methacrylic acid, maleic acid, acrylamido monomers, or hydroxyalkyl acrylates or methacrylates are preferred.
  • Molecular weights of the polymers according to this invention should range from about 400 to 2 million, preferably from about 1,000 to 100,000, optimally between about 5000 to about 60,000.
  • Amounts of the polymer of this invention should be present in the oral composition from about 0.1 to about 10% by weight, preferably from about 0.4 to about 7%, optimally between about 1 to about 5%. The final oral composition should not contain any components or level of components which deleteriously affect the antitartar activity of the polymers of the invention.
  • Carriers suitable for use with the polymers are preferably hydroxylic materials such as water, polyols and mixtures thereof. Polyols, sometimes referred to as humectants, include glycerol, sorbitol, propylene glycol, lactitol, xylitol, polypropylene glycol, polyethylene glycol, hydrogenated corn syrup and mixtures thereof. Particularly preferred as the carrier is a liquid mixture of 3-30% water, 0-80% glycerol and 20-80% sorbitol. Generally the amount of carrier will range from about 25 to 99.9% by weight, preferably from about 70 to 95% by weight.
  • When the oral compositions are in the form of a toothpaste or gel there will typically be included a natural or synthetic thickening agent in an amount from 0.1-10%, preferably about 0.5-5% by weight. Thickeners may includthyl cellulose, hydroxy cellulose, xanthan gum, tragacanth gum, karaya gum, arabic gum, Irish moss, starch, alginates and carrageenans. The amount of thickening agent will generally be between about 0.1 and 10% by weight.
  • Surfactants are normally also included in the oral compositions of this invention. These surfactants may be of the anionic, nonionic, cationic or amphoteric type. Most preferred are sodium lauryl sulfate, sodium dodecylbenzene sulfonate and sodium laurylsarcosinate. Surfactants are usually present in an amount from about 0.5 to 5% by weight.
  • When in the form of a toothpaste or gel, the oral compositions will normally include an abrasive. Abrasives may be selected from water-insoluble alkali or alkaline earth metal salts of metaphosphate, calcium carbonate, aluminates and silicates. Especially preferred are silicate, dicalcium phosphate and calcium carbonate. Amounts of the abrasive will range from about 5% to about 80% by weight.
  • Adjunct tartar control agents, especially those containing phosphorous, may be combined with the polymers of the present invention. Inorganic phosphorous adjuncts may include any of the water-soluble pyrophosphates such as disodium pyrophosphate, dipotassium pyrophosphate and mixtures of these with tetrapotassium pyrophosphates or tetrasodium pyrophosphates. Organic phosphorous compounds that may serve as adjuncts include polyphosphonates such as disodium ethane-1-hydroxy-1, 1-diphosphonate(EHDP) and methanediphosphonic acid, and 2-phosphonobutane-1,2,4.-tricarboxylic acid.
  • For anti-caries protection, a source of fluoride ion will normally be present in the oral compositions. Fluoride sources include sodium fluoride, potassium fluoride, calcium fluoride, stannous fluoride, stannous monofluorophosphate and sodium monofluorophosphate. These sources should release anywhere from 25 to 3500 ppm of fluoride ion. The anti-caries agent will be present in an amount from about 0.05 to about 3% by weight, preferably 0.5 to 1% by weight.
  • Flavors that are usually present in the oral compositions are those based on oils of spearmint and peppermint. Examples of other flavoring materials include menthol, clove, wintergreen, eucalyptus and aniseed. Flavors may range in concentration from 0.1 to 5% by weight.
  • Sweetening agents such as saccharin, sodium cyclamate, aspartame, sucrose and the like may be included at levels from about 0.1 to 5% by weight.
  • Other additives may also be incorporated into the oral compositions including preservatives, silicones, other natural or synthetic polymers, and anti-gingivitis actives.
  • The following examples will more fully illustrate the embodiments of this invention. All parts, percentages and proportions referred to herein and in the appended claims are by weight of the total composition unless otherwise stated.
  • Example 1
  • Sandoperol PLA (MW 5000) and Sandoperol PL (MW 60,000) , products of Sandoz Chemicals, were used as commercially-available forms of PHAA. To prepare these materials for use, powder samples of the desired amount were weighed and dispersed in water, and the pH adjusted to about 8. Upon neutralization of the polymer to the alkali salt form, the polymer becomes fully-dissolved thereby forming a homogeneous solution. Table I lists information about other commercial carboxylate polymers mentioned for comparative purposes in the other examples.
    Figure imgb0003
  • Example 2 Rat Calculus Assay
  • The polymers of this invention were tested in vivo using a rat calculus assay. In this test, litters from Sprague-Dawley pregnant female rats (ex Charles River) were weaned (21 days old), weighed, tagged and split into cells of 25 animals balanced by gender and litter. Subjects were housed in pairs and were fed a calculogenic diet (consisting of 50% cornstarch, 32% nonfat powdered milk, 5% cellulose flour, 5% sucrose, 3% liver powder, 1% cottonseed oil, 2.7% sodium phosphate, 1% calcium chloride dihydrate, and 0.3% magnesium sulfate) with filtered city water. Subjects were treated with test solutions twice a day for three weeks. At the end of the test period, the teeth were scored in a blind protocol using a modified Frances & Briner method (J. Dental Res. 48(6) p. 1185-94 1969). A Nikon Stereoscopic Microscope was used for the evaluation (20x magnification).
  • The samples were prepared as rinse formulations containing 5% concentration of the agent. One hundred and fifty microliters (150 µL) of rinse was delivered to each subject using a 1 cc syringe. Deionized water with no agent added was used as the control sample.
  • The results of the tests are shown in Table II for several polymers along with their trade names and previous references which disclose their use as antitartar agents. The term % inhibition is used as a measure of the reduction in tartar or calculus found on the teeth relative to the control sample.
    Figure imgb0004
  • The results indicate that significant reduction in calculus is found for the PHAA material. In addition, this material gives higher scores than the comparative polymers, including a polyacrylate of comparable molecular weight. The comparative examples are known from previous art to have antitartar activity.
  • Example 3 Microbial Mineralization
  • PHAA and several other polymeric materials were assessed using an in vitro microbial mineralization assay. Standard glass stirring rods were placed in an aqueous solution containing Streptococcus mutans, one of the microbes found in the human oral cavity. Microbes were allowed to grow onto the rods for about 2 days. The rods were then removed from the solution and placed in a treatment solution containing antitartar agents at levels of about 1.25 wt%. Treatment with a solution containing only deionized water was used as a control. After treatment for about 30 seconds, the rods were placed in a calcifying medium made up of calcium and phosphate at levels of 1.5mM and 5.0mM, respectively. The calcifying medium was supplemented with about 25% human saliva. The glass rods were mineralized in the calcifying medium for 4 days. Thereafter, the level of tartar formation was assessed via calcium and phosphorus analysis. Results were calculated by comparing the % reduction of tartar formation to that of the control. Table III lists results of the experiments.
    Figure imgb0005
  • The results in Table III indicate that PHAA is about equal in effectiveness to polyacrylate in reducing microbial growth and subsequent calcification. PHAA was however more effective than Gantrez and Sokalan, thereby correlating with the in vivo assay (Example 2).
  • Example 4 Brushite Transformation Assay
  • Brushite (20 mg) of surface area 3 m²/g from Albright & Wilson which was free of stabilizers was suspended in 5 ml of 0.25 M imidazole buffer at pH 7.4 and incubated at 33°C. Agents were added to the buffer solution at desired levels and tested for their ability to inhibit the transformation of brushite to hydroxyapatite. Hydrolysis of the brushite (transformation) was followed by measuring the increase in supernatant phosphate in the buffer solution at 6 and 24 hours. The phosphate level was determined using the method of Chen et al. (Anal. Chem. 8, 1756 (1956)). Untreated brushite was used as the control. Table IV lists results from tests using a series of polymeric agents.
  • Figure imgb0006

    As shown in Table IV, PHAA (Sandoperol PLA) performed equally as effective as polyacrylate (PA25PN) or polymaleate (Belclene) in this in vitro assay. Gantrez was not as effective. Thus, the inhibitory activity of PHAA in this assay was equal to that of typical antitartar agents disclosed in the art.
  • Example 5 Seeded Crystal Growth Inhibition Assay Combinations with Zinc
  • Zinc salts of the polymers of this invention were tested in vitro using a Seeded Crystal Growth Inhibition Assay. This assay involved the treatment of synthetic hydroxyapatite (HAP) with a potential antitartar agent. The treated HAP was incubated at 37°C in a calcifying solution made up of calcium and phosphate at 1.5mM and 4.5mM, respectively. The samples were filtered to remove any calcium phosphate crystals and the free calcium in the filtrate was measured using Atomic Absorption Spectroscopy. The % inhibition was calculated as follows:
    Figure imgb0007
  • The % inhibition is a measure of the degree of inhibition of calcium phosphate precipitation.
  • Table V below lists results of seeded crystal growth inhibition experiments. The term "synergy" is used to demonstrate the enhanced effect of the polymer/zinc combination over the two individual components. For example, in the 1%/0.2% pairing the expected result from the combination would be (8% + 45%) = 53% inhibition; the actual value was 82%, resulting in a synergy of (82% - 53%) = +29.
    Figure imgb0008
  • The results in Table V indicate that synergistic increases in inhibition occur for combinations of the polymers with zinc salts.
  • Example 6
  • The following Example illustrates a high abrasive containing toothpaste of the present invention.
    Figure imgb0009
  • Example 7
  • The following Example illustrates a typical gel dentifrice of the present invention.
    Figure imgb0010
  • Example 8
  • The following Example illustrates a typical mouthwash composition according to the present invention.
    Figure imgb0011
  • Example 9
  • The following Example illustrates a standard toothpaste composition according to the present invention.
    Figure imgb0012
  • The foregoing description and Examples illustrate selected embodiments of the present invention and in light thereof various modifications will be suggested to one skilled in the art, all of which are in the spirit and purview of this invention.

Claims (11)

  1. An oral composition comprising:
    ( i) an effective amount to prevent tartar formation of a polymer whose structure is:
    Figure imgb0013
    wherein:

       R₁ and R₂ may independently be selected from the group consisting of hydrogen and C₁-C₃ alkyl;

       R₃ is selected from the group consisting of hydrogen, phosphate, sulphate and C₁-C₂₂ alkyl;

       M is selected from the group consisting of hydrogen, alkali metal, alkaline earth metal, ammonium, alkanolammonium, transition metal cations and mixtures thereof;

       x is an integer from 3 to 10,000; and
    (ii) an effective amount of a carrier to convey the polymer into an oral cavity.
  2. A composition according to claim 1 wherein said carrier is selected from the group consisting of water, polyols and mixtures thereof.
  3. A composition according to claim 2 wherein said polyol is selected from the group consisting of glycerol, sorbitol, propylene glycol, lactitol, xylitol, polypropylene glycol, polyethylene glycol, hydrogenated corn syrup and mixtures thereof.
  4. A composition according to claim 1 further comprising a source of fluoride ion present in an amount from about 25 to 3500 ppm.
  5. A composition according to claim 1 wherein the polymer is poly(α-hydroxy acrylic acid).
  6. A composition according to claim 1 wherein said polymer has a molecular weight ranging from about 5000 to about 60,000.
  7. A composition according to claim 1 wherein said polymer is present in an amount from about 0.1 to about 10% by weight.
  8. A composition according to claim 1 where said polymer is formed from at least two different acrylic type monomers.
  9. A composition according to claim 1 wherein said transition metal cation is selected from the group consisting of zinc and copper cations.
  10. A method to inhibit formation of tartar on teeth comprising applying into an oral cavity a composition comprising:
    ( i) an effective amount to prevent tartar formation of a polymer whose structure is:
    Figure imgb0014
    wherein:

       R₁ and R₂ may independently be selected from the group consisting of hydrogen and C₁-C₃ alkyl;

       R₃ is selected from the group consisting of hydrogen, phosphate, sulphate and C₁-C₂₂ alkyl;

       M is selected from the group consisting of hydrogen, alkali metal, alkaline earth metal, ammonium, alkanolammonium, transition metal cations and mixtures thereof;

       x is an integer from 3 to 10,000; and
    (ii) an effective amount of a carrier to convey the polymer into an oral cavity.
  11. A method according to claim 10 wherein said transition metal cation is selected from the group consisting of zinc and copper cations.
EP91200769A 1990-04-18 1991-04-03 Poly (alpha-hydroxy acrylic acid) and derivatives as antitartar actives in oral compositions Expired - Lifetime EP0453018B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US510652 1990-04-18
US07/510,652 US5013541A (en) 1990-04-18 1990-04-18 Poly(alpha-hydroxy acrylic acid) and derivatives as antitartar actives in oral compositions

Publications (3)

Publication Number Publication Date
EP0453018A2 true EP0453018A2 (en) 1991-10-23
EP0453018A3 EP0453018A3 (en) 1992-01-15
EP0453018B1 EP0453018B1 (en) 1994-02-09

Family

ID=24031606

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91200769A Expired - Lifetime EP0453018B1 (en) 1990-04-18 1991-04-03 Poly (alpha-hydroxy acrylic acid) and derivatives as antitartar actives in oral compositions

Country Status (6)

Country Link
US (1) US5013541A (en)
EP (1) EP0453018B1 (en)
JP (1) JPH04235120A (en)
CA (1) CA2040236A1 (en)
DE (1) DE69101152T2 (en)
ES (1) ES2062664T3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0518395A2 (en) * 1991-04-16 1992-12-16 Unilever N.V. Anticalculus oral compositions containing combinations of polymers

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5208009A (en) * 1990-12-20 1993-05-04 Colgate-Palmolive Company Anticalculus oral compositions
US5252313A (en) * 1991-12-20 1993-10-12 Colgate-Palmolive Company Visually clear gel dentifrice
US5270031A (en) * 1991-12-20 1993-12-14 Block Drug Company Inc. Dentinal desensitizing compositions
JP3494739B2 (en) * 1995-02-13 2004-02-09 株式会社ジーシー Tooth surface treatment agent for dental glass ionomer cement
US5965777A (en) * 1996-10-29 1999-10-12 Cultor Food Service, Inc. Process to remove catalyst poisons from hop extracts
US6083488A (en) * 1996-12-04 2000-07-04 The Block Drug Company Barrier to plaque formation
US10470985B2 (en) 1999-11-12 2019-11-12 The Procter & Gamble Company Method of protecting teeth against erosion
US20040146466A1 (en) 1999-11-12 2004-07-29 The Procter & Gamble Company Method of protecting teeth against erosion
US8524198B2 (en) * 2003-06-20 2013-09-03 Donald W. Bailey Xylitol dental maintenance system
US20100158820A1 (en) * 2003-06-20 2010-06-24 Bailey Donald W Xylitol dental maintenance system
US10123953B2 (en) 2012-06-21 2018-11-13 The Procter & Gamble Company Reduction of tooth staining derived from cationic antimicrobials
WO2020219323A1 (en) 2019-04-26 2020-10-29 The Procter & Gamble Company Reduction of tooth staining derived from cationic antimicrobials

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3920570A (en) * 1970-12-17 1975-11-18 Solvay Sequestration of metal ions by the use of poly-alpha-hydroxyacrylates
US4846650A (en) * 1985-12-06 1989-07-11 The Procter & Gamble Company Oral compositions and methods for reducing dental calculus
US4892725A (en) * 1988-05-09 1990-01-09 The B. F. Goodrich Company Tartar inhibition on teeth

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3429963A (en) * 1964-06-09 1969-02-25 Colgate Palmolive Co Dental preparation containing polymeric polyelectrolyte
US3934002A (en) * 1972-06-30 1976-01-20 The Procter & Gamble Company Oral compositions for plaque, caries and calculus retardation with reduced staining tendencies
US4183914A (en) * 1977-12-19 1980-01-15 Abdul Gaffar Magnesium polycarboxylate complexes and anticalculus agents
US4361547A (en) * 1980-07-25 1982-11-30 Johnson & Johnson Products, Inc. Sulfonated aromatic formaldehyde condensation polymers as dental plaque barriers
US4364927A (en) * 1980-07-25 1982-12-21 Johnson & Johnson Products, Inc. Sulfonated naphthalene formaldehyde condensation polymers as dental plaque barriers
US4661341A (en) * 1984-10-30 1987-04-28 The Procter & Gamble Company Oral compositions
US4806342A (en) * 1985-09-13 1989-02-21 Colgate-Palmolive Company Anticalculus oral composition
US4806340A (en) * 1985-09-13 1989-02-21 Colgate-Palmolive Company Anticalculus oral composition
US4808400A (en) * 1985-09-13 1989-02-28 Colgate-Palmolive Company Anticalculus oral composition
US4627977A (en) * 1985-09-13 1986-12-09 Colgate-Palmolive Company Anticalculus oral composition
US4842847A (en) * 1987-12-21 1989-06-27 The B. F. Goodrich Company Dental calculus inhibiting compositions
US4892724A (en) * 1988-05-09 1990-01-09 The B. F. Goodrich Company Tartar inhibiting oral compositions and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3920570A (en) * 1970-12-17 1975-11-18 Solvay Sequestration of metal ions by the use of poly-alpha-hydroxyacrylates
US4846650A (en) * 1985-12-06 1989-07-11 The Procter & Gamble Company Oral compositions and methods for reducing dental calculus
US4892725A (en) * 1988-05-09 1990-01-09 The B. F. Goodrich Company Tartar inhibition on teeth

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0518395A2 (en) * 1991-04-16 1992-12-16 Unilever N.V. Anticalculus oral compositions containing combinations of polymers
EP0518395A3 (en) * 1991-04-16 1993-05-19 Unilever N.V. Anticalculus oral compositions containing combinations of polymers

Also Published As

Publication number Publication date
DE69101152T2 (en) 1994-05-19
CA2040236A1 (en) 1991-10-19
EP0453018B1 (en) 1994-02-09
ES2062664T3 (en) 1994-12-16
DE69101152D1 (en) 1994-03-24
US5013541A (en) 1991-05-07
JPH04235120A (en) 1992-08-24
EP0453018A3 (en) 1992-01-15

Similar Documents

Publication Publication Date Title
US4842847A (en) Dental calculus inhibiting compositions
US5294432A (en) Anticalculus dentifrices
US4661341A (en) Oral compositions
US4885155A (en) Anticalculus compositions using pyrophosphate salt
US4892725A (en) Tartar inhibition on teeth
US5208009A (en) Anticalculus oral compositions
EP0297213B1 (en) Oral treatment and use of an oral composition
US4684518A (en) Oral compositions
EP0453018B1 (en) Poly (alpha-hydroxy acrylic acid) and derivatives as antitartar actives in oral compositions
JPH02117612A (en) Antihydrolytic agent for odontology
US4999184A (en) Oral compositions
US5011682A (en) Hypophosphite-containing cotelomers as antitartar agents
AU596756B2 (en) Oral compositions
US5068100A (en) Anticalculus compositions
US5143719A (en) Anticalculus oral composition containing combinations of organophosphorus polycarboxylate cotelomers and inorganic polyphosphate salts
US4990328A (en) Anticalculus compositions
US5194246A (en) Anticalculus oral compositions containing combinations of polymers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE ES FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19911216

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: UNILEVER PLC

Owner name: UNILEVER N.V.

17Q First examination report despatched

Effective date: 19921124

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR GB IT LI NL SE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940309

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19940315

Year of fee payment: 4

REF Corresponds to:

Ref document number: 69101152

Country of ref document: DE

Date of ref document: 19940324

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19940325

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940406

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19940407

Year of fee payment: 4

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: JACOBACCI CASETTA & PERANI S.P.A.

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19940430

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2062664

Country of ref document: ES

Kind code of ref document: T3

EAL Se: european patent in force in sweden

Ref document number: 91200769.7

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950404

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19950430

Ref country code: CH

Effective date: 19950430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19951101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950403

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19951229

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19951101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960103

EUG Se: european patent has lapsed

Ref document number: 91200769.7

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050403