EP0481869B1 - Buse de traitement de surface par laser, avec apport de poudre - Google Patents

Buse de traitement de surface par laser, avec apport de poudre Download PDF

Info

Publication number
EP0481869B1
EP0481869B1 EP91402741A EP91402741A EP0481869B1 EP 0481869 B1 EP0481869 B1 EP 0481869B1 EP 91402741 A EP91402741 A EP 91402741A EP 91402741 A EP91402741 A EP 91402741A EP 0481869 B1 EP0481869 B1 EP 0481869B1
Authority
EP
European Patent Office
Prior art keywords
nozzle
passage
laser beam
powder
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91402741A
Other languages
German (de)
English (en)
Other versions
EP0481869A1 (fr
Inventor
Pascal Jolys
Philippe Lagain
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Group SAS
Original Assignee
Airbus Group SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus Group SAS filed Critical Airbus Group SAS
Publication of EP0481869A1 publication Critical patent/EP0481869A1/fr
Application granted granted Critical
Publication of EP0481869B1 publication Critical patent/EP0481869B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • B05B7/1481Spray pistols or apparatus for discharging particulate material
    • B05B7/1486Spray pistols or apparatus for discharging particulate material for spraying particulate material in dry state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/22Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc
    • B05B7/228Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc using electromagnetic radiation, e.g. laser

Definitions

  • the invention relates to a nozzle for performing a surface treatment on a substrate, by means of a laser beam, with the addition of powder.
  • Such a nozzle makes it possible to inject a powdered filler material, conveyed by a carrier gas, into the laser beam, near the substrate.
  • the energy of the laser beam is used to melt at least one of the two materials, by phenomena of conduction and convection, before the filler material in the form of powder is deposited by inertia and by gravity on the substrate.
  • the treatment nozzles therefore comprise means making it possible to inject a protective gas, also neutral, around the interaction zone between the laser beam and the materials.
  • the powder can be supplied either by using a secondary powder supply nozzle, or coaxially with the laser beam, by using a single nozzle for injecting the powder and for injecting the protective gas.
  • the nozzle comprises a central passage for the laser beam, a convergent interior annular passage for the arrival of powder and an exterior annular passage for the arrival of protective gas, these three passages being formed coaxially in the body of the nozzle.
  • the coaxial technique is simpler to implement, because it does not impose any particular direction of relative displacement between the nozzle and the substrate, which does not is not the case when the powder supply is carried out by means of an auxiliary nozzle.
  • the coaxial technique allows better control of the powder supply.
  • the surface treatment is of a different nature depending on the density of the powder contained in the carrier gas and on the speed of the powder ejected by the nozzle. Indeed, the more the powder particles are numerous inside the beam, the less the energy transmitted to the substrate by the laser through the cloud of particles is important. Furthermore, the higher the speed of the powder, the less the powder particles absorb the energy of the laser beam.
  • the present invention specifically relates to a nozzle of a new type, making it possible, by simple adjustments, to carry out a surface treatment of the deposit, alloy or inlay type at will.
  • a nozzle for surface treatment of a substrate by laser with the addition of powder, comprising a body capable of being fixed on a tubular support for the arrival of a laser beam. focused, a central passage for the laser beam, a convergent interior annular passage for the arrival of powder and an exterior annular passage for the arrival of protective gas being formed coaxially in said body, characterized in that adjustment means are provided for moving the nozzle body relative to a body fixing member on the support, along the axis of the laser beam, a protective skirt being slidably mounted on the nozzle body, parallel to said axis, in order to surround an area of adjustable length between a front end of the body and the surface of the substrate.
  • the adjustment means make it possible to move the front end of the body of the nozzle between extreme positions which are advantageously located on either side of the focal point of the laser beam.
  • a surface deposition can be carried out by giving the distance separating the end of the body of the nozzle from the surface of the substrate its maximum value. Indeed, the path of the particles is then large enough to ensure their fusion. On the contrary, the energy of the beam transmitted to the substrate is insufficient to ensure its fusion, due to the distance of the substrate from the focal point of the laser beam and the large number of particles encountered by the laser beam before reaching the surface of the substrate.
  • an inlay of material on the surface of the substrate is obtained by giving the distance separating the end of the nozzle body from the surface of the substrate its minimum value.
  • the travel time of the particles in the laser beam is then insufficient to ensure their fusion.
  • the relative proximity of the substrate to the focal point of the laser beam and the small number of particles encountered by this beam ensure the local fusion of the substrate.
  • a surface alloy can be obtained by adopting an intermediate position between the two preceding ones, for which the powder and the substrate are both melted by the laser beam.
  • the protective skirt also participates, like the protective gas, in the protection of the materials against oxidation. Consequently, the injection rate of the protective gas can be relatively limited.
  • the outer annular passage then has a section much greater than that of the interior annular passage, and which increases by going towards the front end of the body of the nozzle.
  • At least one jet breaker is advantageously placed in the outer annular passage.
  • At least one protective gas inlet orifice opening into the central passage is preferably formed in the body of the nozzle. This characteristic makes it possible to avoid any risk of the powder rising through the central passage to the focusing lens of the laser beam, which ensures the protection of this lens.
  • the protective gas thus injected into the central passage preferably at the same speed and with the same pressure as the protective gas injected through the outer annular passage, meets at least a second jet-breaker provided with a central opening for the laser beam , this jet breaker being placed in the central passage, between said orifice and the front end of the body of the nozzle.
  • the converging interior annular passage preferably has a width which gradually increases towards the front end of the body of the nozzle. , so that the section of this passage is substantially constant.
  • the homogeneity of the powder injected in the laser beam is ensured by using a powder and carrier gas inlet orifice which opens tangentially at the end of the converging inner annular passage opposite the front end of the body of the nozzle.
  • the protective skirt has an absorbent interior coating and is equipped with cooling means.
  • the internal annular passage is advantageously formed between two removable parts of the body, which allows replacement of the wearing parts and allows, if necessary, to place removable shims between these removable parts, in order to vary the section. of the interior annular passage.
  • the reference 10 designates a part of a tubular support in which is placed a focusing lens (not shown) of a focused laser beam F, of vertical axis.
  • a surface treatment nozzle is fixed below the tubular support 10 by fixing means such as screws 14.
  • the nozzle 12 comprises a body 16, produced in several parts, and having a symmetry of revolution about the vertical axis of the laser beam F.
  • the body 16 comprises an upper tubular part 18 whose upper end has a thread 20 onto which is screwed a tubular fixing member 22 terminated by a flange 22a at its upper end. This flange 22a is fixed to the support 10, for example by means of the screws 14 mentioned above.
  • This arrangement makes it possible to move the body 16 of the nozzle 12 along the vertical axis of the laser beam F, relative to the support 10, by more or less screwing the tubular part 18 into the fixing member 22.
  • a lock nut 24 also screwed onto the thread 20 of the tubular part 18 of the body of the nozzle, makes it possible to block the tubular part 18 and the fixing member 22 in a determined relative position.
  • the rotation maneuvers of the fixing member 22 and of the lock nut 24 are carried out manually by acting on knurls 22b and 24a formed on the external surfaces of these parts. This action makes it possible to adjust the position of the injection zone relative to the outlet of the nozzle and to the position of the focal point of the laser beam.
  • the body 16 of the nozzle 12 further comprises a portion 26 in the form of a crown, the upper end of which is of smaller diameter is received on the cylindrical lower end of the tubular part 18 and fixed on the latter, for example by means a locking screw 28.
  • the tubular part 32 of the body 16 generally has the shape of a truncated cone terminated at its upper end by a flange fixed on the part 26 in the form of a crown by the screws 30.
  • This tubular part 32 is located in the extension of the tubular part 18 of the body 16 and thus forms, over the entire length of the latter, a central passage 36, generally cylindrical, which ends in a frustoconical part converging at the front or lower end of the body 16.
  • This central passage 36 is sized to allow the laser beam F, focused at a point 0, near the front end of the nozzle body, to pass through the latter over its entire length.
  • a converging inner annular passage 38 whose diameter decreases progressively towards the front end of the body of the nozzle. Furthermore, the width of this passage 38 also gradually increases by going towards the front end of the body of the nozzle, so that the section of the passage 38 is uniform over its entire length.
  • the interior annular passage 38 is supplied with powder and carrier gas by an annular chamber 40 formed between the tubular parts 32 and 34, opposite the front end of the body of the nozzle. More specifically, the supply of powder and carrier gas takes place through two orifices 42 for the entry of powder and carrier gas, which pass through the parts 26 and 34 of the body 16 and open tangentially into the annular chamber 40 thus allowing distribution uniform powder in the room.
  • a connector 44 allows each of the orifices 42 to be connected to a powder and carrier gas inlet tube (not shown).
  • An outer annular passage 46 of very large cross section relative to the interior annular passage 38, is formed between the part 26 in the form of a crown and the tubular part 34 of the body 16.
  • This external annular passage 46 has a divergent shape going towards the front end of the body of the nozzle. It is supplied at its end opposite to this front end, for example by two radial holes 48, diametrically opposite, of protective gas inlet. Each of these orifices 48 can be connected to a protective gas inlet tube (not shown) by a connector 50.
  • the crown-shaped part 26 of the body 16 of the nozzle supports, in the outer annular passage 46, between the orifice 48 of the protective gas inlet and its open lower end, three jetbreakers constituted successively by two screens 52 and by a perforated plate 54. These three jet breakers have the function of making the flow of the protective gas leaving the external annular passage 46 uniform, in order to disturb as little as possible the jet of powder leaving the internal annular passage 38.
  • a protective skirt 56 is slidably mounted around the crown-shaped part 26 of the body 16 of the nozzle, so as to be able to completely surround an area between the front end of the nozzle 12 and the surface of a substrate. S that we wish to treat.
  • the protective skirt 56 has the shape of a large diameter tube capable of sliding on the cylindrical outer surface of the part 26 in the form of a crown, parallel to the axis of the focused laser beam F. Immobilization of the protective skirt 56 on the crown-shaped part 26 of the body of the nozzle is ensured by means of a knurled locking screw 58 which passes through a longitudinal slot 60, open upwards, formed in the skirt 56 and which is screwed in a threaded hole radially passing through the part 26 in the form of a crown. When the screw 58 is tightened, it clamps the skirt 56 against the part 26 and immobilizes the skirt. On the contrary, unscrewing the screw 58 allows the skirt 56 to slide.
  • the protective skirt 56 also has longitudinal notches 62 open upwards and allowing the passage of the fittings 44 and 50, whatever the position occupied by the skirt 56 on the part 26 in the form of a crown.
  • an inlet port 64 protective gas is formed in the tubular part 18 of the body 16 of the nozzle, near the part 26 in the form of a crown.
  • This orifice 64 receives a connector 66 making it possible to connect a protective gas inlet tube (not shown).
  • a jet breaker 68 constituted by a frustoconical perforated grid, is advantageously placed between the orifice 64 and the front end of the body 16 of the nozzle, in the central passage 36.
  • This jet breaker 68 can in particular be mounted between the tubular part 18 and the tubular part 32 of the body 16 of the nozzle, as illustrated in FIG. 1. It has a central opening 70 allowing the passage of the focused laser beam F.
  • the tubular parts 32 and 34 are advantageously made of copper, because this material absorbs very little energy emitted by a laser of this type.
  • these two tubular parts are given a thickness as large as possible, in order to increase their thermal inertia.
  • the protective skirt 56 is designed so as to absorb the energy reflected by the powder and by the substrate as much as possible.
  • it is advantageously coated, on its inner surface, with an absorbent material such as a layer of black paint.
  • the material which constitutes it is chosen from materials which are good conductors of heat and can also be copper.
  • the heat absorbed by the protective skirt 56 is removed by cooling means associated with the latter and constituted, in the embodiment illustrated in FIG. 1, by a cooling coil 72 surrounding the end of the skirt 56 which forms protruding beyond the end of the body 16 of the nozzle, and in which a cooling fluid circulates.
  • the coil 72 is also preferably made of copper and it is connected to an additional cooling system (not shown) making it possible to cool the fluid circulating in the coil.
  • the tubular parts 32 and 34 of the body 16 of the nozzle which constitute the wearing parts of the nozzle, can be easily replaced by simply removing the screws 30.
  • This disassembly also makes it possible, if necessary, to modify the section of the interior annular passage 38, by interposing one or more shims 74 between the flanges by which the tubular parts 32 and 34 are fixed to the part 26 in the form of a crown, by means of the screws 30.
  • the nozzle 12 according to the invention makes it possible to carry out different surface treatments by performing simple adjustments and without the need to modify the density volume or speed of the powder injected into the nozzle.
  • FIG. 2B shows an intermediate position of the front end of the body 16 of the nozzle, in which this end is substantially in the same plane as the focal point O of the laser beam. Furthermore, the deployment of the protective skirt 56 beyond the end of the body 16 of the nozzle also has an intermediate value. In this case, the path of the powder particles leaving the interior annular passage 38, inside the bundle laser F, remains sufficient to ensure the melting of these particles before they reach the surface of the substrate S. Furthermore, this surface is slightly closer to the focal point O of the laser beam than in the previous position illustrated on FIG. 2A and the cloud of powder particles present between the end of the body 16 of the nozzle and the surface of the substrate is thinner, so that the energy of the part of the laser beam reaching the surface of the substrate S remains sufficient to melt the latter. The powder and the substrate being melted, an alloy is then produced on the surface of the substrate S.
  • the front end of the body 16 of the nozzle occupies its position furthest from the support 10, located beyond the focal point O of the laser beam F. Furthermore, the protective skirt 56 is retracted to the maximum on the body 16 of the nozzle, so that the surface of the substrate S occupies a position even closer to the focal point O of the laser beam than in the position illustrated in FIG. 2B. Under these conditions, the residence time of the powder particles leaving the internal annular passage 38 in the laser beam F is insufficient for these particles to melt before reaching the surface of the substrate S.
  • the relative proximity of the surface of the substrate with respect to the focal point O of the laser beam and the small thickness of the cloud of particles present between the end of the body 16 of the nozzle and the surface of the substrate result in the melting of the latter. Powder particles are thus encrusted in the surface layers of the substrate.
  • the presence of the protective skirt 56 contributes to the protection against the oxidation of the materials present and makes it possible to have recourse to a protective gas at low flow rate, which facilitates the protection of the beam focusing lens by injecting the same low-flow shielding gas into the central passage 36.
  • the protective gas like the carrier gas can in particular consist of argon.
  • the invention is not limited to the embodiment which has just been described by way of example, but covers all its variants.
  • the means making it possible to move the body of the nozzle parallel to the axis of the laser beam relative to the support 10 as well as the means making it possible to move in the same direction the protective skirt 56 around the body of the nozzle may be different from the means described.

Description

  • L'invention concerne une buse permettant d'effectuer un traitement de surface sur un substrat, au moyen d'un faisceau laser, avec apport de poudre.
  • Une telle buse permet d'injecter un matériau d'apport en poudre, véhiculé par un gaz porteur, dans le faisceau laser, à proximité du substrat. L'énergie du faisceau laser sert à fondre l'un au moins des deux matériaux, par des phénomènes de conduction et de convection, avant que le matériau d'apport sous forme de poudre se dépose par inertie et par gravité sur le substrat.
  • Bien que le gaz porteur soit neutre (en général, de l'argon ou de l'hélium), il ne suffit pas à assurer à lui seul une protection efficace contre l'oxydation des matériaux durant le traitement. Les buses de traitement comprennent donc des moyens permettant d'injecter un gaz de protection, également neutre, autour de la zone d'interaction entre le faisceau laser et les matériaux.
  • Comme l'illustre notamment l'article de Michel JEANDIN intitulé "traitements par laser et faisceaux d'électrons - synthèse bibliographique des traitements d' Al, Cu et leurs alliages" paru dans la revue Matériaux et techniques, novembre-décembre 1989, pages 15 à 22, l'apport de poudre peut se faire soit en utilisant une buse annexe d'alimentation en poudre, soit coaxialement au faisceau laser, en utilisant une seule et même buse pour injecter la poudre et pour injecter le gaz protecteur. Dans ce dernier cas, la buse comprend un passage central pour le faisceau laser, un passage annulaire intérieur convergent d'arrivée de poudre et un passage annulaire extérieur d'arrivée de gaz protecteur, ces trois passages étant formés coaxialement dans le corps de la buse.
  • Parmi les deux techniques d'apport de poudre mentionnées dans l'article précité, la technique coaxiale est plus simple à mettre en oeuvre, car elle n'impose pas de sens de déplacement relatif particulier entre la buse et le substrat, ce qui n'est pas le cas lorsque l'apport de poudre est réalisé au moyen d'une buse annexe. De plus, la technique coaxiale permet un meilleur contrôle de l'apport de poudre.
  • Lorsqu'on utilise une buse pour traitement de surface par laser avec apport de poudre coaxial, on a observé que le traitement de surface est de nature différente selon la densité volumique de la poudre contenue dans le gaz porteur et selon la vitesse de la poudre éjectée par la buse. En effet, plus les particules de poudre sont nombreuses à l'intérieur du faisceau, moins l'énergie transmise au substrat par le laser au travers du nuage de particules est importante. Par ailleurs, plus la vitesse de la poudre est élevée, moins les particules de poudre absorbent l'énergie du faisceau laser.
  • On peut donc, en injectant un grand nombre de particules à une vitesse relativement faible, faire fondre la poudre et ne pas faire fondre le substrat, afin de réaliser un dépôt de surface.
  • Au contraire, si la densité volumique de poudre est faible à l'intérieur du faisceau et si la vitesse des particules de poudre reste peu élevée, une partie de l'énergie fournie par le laser est absorbée par les particules, réalisant leur fusion, et une autre partie est transmise au travers du nuage de particules, afin de fondre le substrat. On obtient alors un alliage à la surface du substrat.
  • Enfin, il est également possible d'obtenir des incrustations de matière à la surface du substrat, si les particules sont injectées à grande vitesse et avec une très faible densité volumique, afin qu'elles ne puissent être fondues par le laser.
  • Dans la pratique, il apparaît cependant très difficile de pouvoir régler à la fois avec précision la densité volumique de la poudre injectée dans le faisceau et la vitesse des particules de poudre, de sorte que la distinction entre ces trois types de traitement n'est pas réellement faite.
  • La présente invention a précisément pour objet une buse d'un type nouveau, permettant par des réglages simples d'effectuer à volonté un traitement de surface du type dépôt, alliage ou incrustation.
  • Selon l'invention, ce résultat est obtenu au moyen d'une buse pour traitement de surface d'un substrat par laser, avec apport de poudre, comprenant un corps apte à être fixé sur un support tubulaire d'arrivée d'un faisceau laser focalisé, un passage central pour le faisceau laser, un passage annulaire intérieur convergent d'arrivée de poudre et un passage annulaire extérieur d'arrivée de gaz protecteur étant formés coaxialement dans ledit corps, caractérisée par le fait que des moyens de réglage sont prévus pour déplacer le corps de la buse par rapport à un organe de fixation du corps sur le support, selon l'axe du faisceau laser, une jupe protectrice étant montée coulissante sur le corps de la buse, parallèlement audit axe, afin d'entourer une zone de longueur réglable comprise entre une extrémité avant du corps et la surface du substrat.
  • Dans une buse ainsi réalisée, les moyens de réglage permettent de déplacer l'extrémité avant du corps de la buse entre des positions extrèmes qui sont avantageusement situées de part et d'autre du point de focalisation du faisceau laser. En faisant coulisser la jupe protectrice sur le corps de la buse, on peut maintenir cette jupe au contact du substrat quelle que soit la position occupée par l'extrémité du corps de la buse et faire également varier la distance séparant le substrat du point de focalisation du faisceau laser. Grâce à ces deux réglages, il devient possible de faire varier la nature du traitement effectué à la surface du substrat, afin de réaliser soit un dépôt de surface, soit un alliage, soit une incrustation, en agissant sur la localisation de la zone d'injection de la poudre par rapport au point focal du faisceau laser et sur le débit et la vitesse de la poudre.
  • Ainsi, un dépôt de surface peut être effectué en donnant à la distance séparant l'extrémité du corps de la buse de la surface du substrat sa valeur maximum. En effet, le trajet des particules est alors suffisamment grand pour assurer leur fusion. Au contraire, l'énergie du faisceau transmise au substrat est insuffisante pour assurer sa fusion, en raison de l'éloignement du substrat par rapport au point de focalisation du faisceau laser et du grand nombre de particules rencontrées par le faisceau laser avant d'atteindre la surface du substrat.
  • A l'inverse, une incrustation de matière à la surface du substrat est obtenue en donnant à la distance séparant l'extrémité du corps de la buse de la surface du substrat sa valeur minimum. En effet, le temps de parcours des particules dans le faisceau laser est alors insuffisant pour assurer leur fusion. Au contraire, la relative proximité du substrat par rapport au point de focalisation du faisceau laser et le petit nombre de particules rencontrées par ce faisceau assurent la fusion locale du substrat.
  • Enfin, un alliage de surface peut être obtenu en adoptant une position intermédiaire entre les deux précédentes, pour laquelle la poudre et le substrat sont tous deux fondus par le faisceau laser.
  • Dans la buse selon l'invention, la jupe protectrice participe en outre, de même que le gaz protecteur, à la protection des matériaux contre l'oxydation. Par conséquent, le débit d'injection du gaz protecteur peut être relativement limité. Le passage annulaire extérieur présente alors une section très supérieure à celle du passage annulaire intérieur, et qui augmente en allant vers l'extrémité avant du corps de la buse.
  • Afin d'assurer une répartition aussi homogène que possible du gaz protecteur autour de la poudre et du faisceau laser, au moins un brise-jet est avantageusement placé dans le passage annulaire extérieur.
  • Par ailleurs, au moins un orifice d'entrée de gaz protecteur débouchant dans le passage central est formé de préférence dans le corps de la buse. Cette caractéristique permet d'éviter tout risque de remontée de la poudre par le passage central jusqu'à la lentille de focalisation du faisceau laser, ce qui assure la protection de cette lentille.
  • Le gaz protecteur ainsi injecté dans le passage central, de préférence à la même vitesse et avec la même pression que le gaz protecteur injecté par le passage annulaire extérieur, rencontre au moins un deuxième brise-jet pourvu d'une ouverture centrale pour le faisceau laser, ce brise-jet étant placé dans le passage central, entre ledit orifice et l'extrémité avant du corps de la buse.
  • Afin que le débit d'injection de la poudre dans le faisceau laser corresponde précisément au débit commandé depuis l'extérieur de la buse, le passage annulaire intérieur convergent présente de préférence une largeur qui augmente progressivement vers l'extrémité avant du corps de la buse, de telle sorte que la section de ce passage soit sensiblement constante.
  • Par ailleurs, l'homogénéité de la poudre injectée dans le faisceau laser est assurée en ayant recours à un orifice d'entrée de poudre et de gaz porteur qui débouche tangentiellement à l'extrémité du passage annulaire intérieur convergent opposé à l'extrémité avant du corps de la buse.
  • Afin d'assurer au mieux l'absorption de l'énergie réfléchie par la poudre et par le substrat, la jupe protectrice comporte un revêtement intérieur absorbant et elle est équipée de moyens de refroidissement.
  • Par ailleurs, le passage annulaire intérieur est formé avantageusement entre deux parties démontables du corps, ce qui autorise un remplacement des pièces d'usure et permet, le cas échéant, de placer des cales démontables entre ces parties démontables, afin de faire varier la section du passage annulaire intérieur.
  • Un mode de réalisation préféré de l'invention va à présent être décrit, à titre d'exemple non limitatif, en se référant aux dessins annexés, dans lesquels :
    • la figure 1 est une vue en coupe longitudinale représentant une buse de traitement de surface par laser, avec apport de poudre, réalisée conformément à l'invention ; et
    • les figures 2A, 2B et 2C illustrent schématiquement trois positions relatives entre l'extrémité du corps de la buse, la surface du substrat et le point de focalisation du faisceau laser, permises par la buse selon l'invention et correspondant respectivement à un dépôt de surface, à un alliage et à une incrustation.
  • Sur la figure 1, la référence 10 désigne une partie d'un support tubulaire dans lequel est placée une lentille de focalisation (non représentée) d'un faisceau laser focalisé F, d'axe vertical.
  • Une buse de traitement de surface, désignée de façon générale par la référence 12, est fixée en dessous du support tubulaire 10 par des moyens de fixation tels que des vis 14. La buse 12 comprend un corps 16, réalisé en plusieurs parties, et présentant une symétrie de révolution autour de l'axe vertical du faisceau laser F. Le corps 16 comporte une partie tubulaire supérieure 18 dont l'extrémité supérieure présente un filetage 20 sur lequel est vissé un organe de fixation tubulaire 22 terminé par une bride 22a à son extrémité supérieure. Cette bride 22a est fixée sur le support 10, par exemple au moyen des vis 14 mentionnées précédemment.
  • Cet agencement permet de déplacer le corps 16 de la buse 12 selon l'axe vertical du faisceau laser F, par rapport au support 10, en vissant plus ou moins la partie tubulaire 18 dans l'organe de fixation 22. Un contre-écrou 24, également vissé sur le filetage 20 de la partie tubulaire 18 du corps de la buse, permet de bloquer la partie tubulaire 18 et l'organe de fixation 22 dans une position relative déterminée.
  • Dans l'exemple de réalisation illustré sur la figure 1, les manoeuvres de rotation de l'organe de fixation 22 et du contre-écrou 24 sont réalisées manuellement en agissant sur des molletages 22b et 24a formés sur les surfaces extérieures de ces pièces. Cette action permet de régler la position de la zone d'injection par rapport à la sortie de la buse et à la position du point de focalisation du faisceau laser.
  • Le corps 16 de la buse 12 comprend de plus une partie 26 en forme de couronne, dont l'extrémité supérieure de plus petit diamètre est reçue sur l'extrémité inférieure cylindrique de la partie tubulaire 18 et fixée sur cette dernière, par exemple au moyen d'une vis de blocage 28.
  • A l'intérieur de la partie 26 en forme de couronne du corps 16 sont fixées de façon démontable, par exemple au moyen de vis 30, deux parties tubulaires coaxiales 32 et 34 du corps 16.
  • La partie tubulaire 32 du corps 16 a généralement la forme d'un tronc de cône terminé à son extrémité supérieure par une bride fixée sur la partie 26 en forme de couronne par les vis 30. Cette partie tubulaire 32 est située dans le prolongement de la partie tubulaire 18 du corps 16 et forme ainsi, sur toute la longueur de ce dernier, un passage central 36, généralement cylindrique, qui se termine par une partie tronconique convergente à l'extrémité avant ou inférieure du corps 16. Ce passage central 36 est dimensionné afin de permettre au faisceau laser F, focalisé en un point 0, voisin de l'extrémité avant du corps de la buse, de traverser cette dernière sur toute sa longueur.
  • Entre les parties tubulaires 32 et 34 du corps 16 de la buse est formé un passage annulaire intérieur convergent 38 dont le diamètre diminue progressivement en allant vers l'extrémité avant du corps de la buse. Par ailleurs, la largeur de ce passage 38 augmente également progressivement en allant vers l'extrémité avant du corps de la buse, de telle sorte que la section du passage 38 est uniforme sur toute sa longueur.
  • Le passage annulaire intérieur 38 est alimenté en poudre et en gaz porteur par une chambre annulaire 40 formée entre les parties tubulaires 32 et 34, à l'opposé de l'extrémité avant du corps de la buse. Plus précisément, l'alimentation en poudre et en gaz porteur se fait par deux orifices 42 d'entrée de poudre et de gaz porteur, qui traversent les parties 26 et 34 du corps 16 et débouchent tangentiellement dans la chambre annulaire 40 permettant ainsi une répartition uniforme de la poudre dans la chambre. Un raccord 44 permet de raccorder chacun des orifices 42 à un tube d'arrivée de poudre et de gaz porteur (non représenté).
  • Un passage annulaire extérieur 46, de très grande section par rapport au passage annulaire intérieur 38, est formé entre la partie 26 en forme de couronne et la partie tubulaire 34 du corps 16. Ce passage annulaire extérieur 46 présente une forme divergente en allant vers l'extrémité avant du corps de la buse. Il est alimenté à son extrémité opposée à cette extrémité avant, par exemple par deux orifices radiaux 48, diamétralement opposés, d'entrée de gaz protecteur. Chacun de ces orifices 48 peut être raccordé sur un tube d'arrivée de gaz protecteur (non représenté) par un raccord 50.
  • La partie 26 en forme de couronne du corps 16 de la buse supporte, dans le passage annulaire extérieur 46, entre l'orifice 48 d'entrée de gaz protecteur et son extrémité inférieure ouverte, trois brise-jet constitués successivement par deux tamis 52 et par une plaque perforée 54. Ces trois brise-jet ont pour fonction de rendre l'écoulement du gaz de protection sortant du passage annulaire extérieur 46 uniforme, afin de perturber le moins possible le jet de poudre sortant du passage annulaire intérieur 38.
  • Une jupe protectrice 56 est montée de façon coulissante autour de la partie 26 en forme de couronne du corps 16 de la buse, de façon à pouvoir entourer complètement une zone comprise entre l'extrémité avant de la buse 12 et la surface d'un substrat S que l'on désire traiter.
  • De façon plus précise, la jupe protectrice 56 a la forme d'un tube de grand diamètre apte à coulisser sur la surface extérieure cylindrique de la partie 26 en forme de couronne, parallèlement à l'axe du faisceau laser focalisé F. L'immobilisation de la jupe protectrice 56 sur la partie 26 en forme de couronne du corps de la buse est assurée au moyen d'une vis de blocage molletée 58 qui traverse une fente longitudinale 60, ouverte vers le haut, formée dans la jupe 56 et qui est vissée dans un trou taraudé traversant radialement la partie 26 en forme de couronne. Lorsque la vis 58 est serrée, elle pince la jupe 56 contre la partie 26 et assure l'immobilisation de la jupe. Au contraire, un dévissage de la vis 58 autorise le coulissement de la jupe 56.
  • La jupe protectrice 56 comporte également des encoches longitudinales 62 ouvertes vers le haut et permettant le passage des raccords 44 et 50, quelle que soit la position occupée par la jupe 56 sur la partie 26 en forme de couronne.
  • Afin de protéger la lentille de focalisation (non représentée) du faisceau laser F, qui se trouve dans le support 10, vis-à-vis d'une remontée éventuelle de la poudre sortant du passage annulaire intérieur 38, un orifice 64 d'entrée de gaz protecteur est formé dans la partie tubulaire 18 du corps 16 de la buse, à proximité de la partie 26 en forme de couronne. Cet orifice 64 reçoit un raccord 66 permettant de brancher un tube d'arrivée de gaz protecteur (non représenté).
  • En reliant les raccords 66 et 50 à une même source d'alimentation en gaz protecteur, on obtient dans le passage central 36 et dans le passage annulaire extérieur 46 un flux de gaz neutre présentant une même vitesse et une même pression. Cette caractéristique permet d'empécher toute remontée de poudre vers la lentille de focalisation montée dans le support 10, tout en évitant de perturber l'écoulement de la poudre sortant du passage annulaire intérieur 38.
  • Un brise-jet 68, constitué par une grille perforée tronconique, est avantageusement placé entre l'orifice 64 et l'extrémité avant du corps 16 de la buse, dans le passage central 36. Ce brise-jet 68 peut notamment être monté entre la partie tubulaire 18 et la partie tubulaire 32 du corps 16 de la buse, comme l'illustre la figure 1. Il comporte une ouverture centrale 70 permettant le passage du faisceau laser focalisé F.
  • Dans le cas où le laser associé à la buse 12 qui vient d'être décrite est un laser CO₂ continu, de longueur d'onde 10,6 m, les parties tubulaires 32 et 34 sont avantageusement réalisées en cuivre, car ce matériau absorbe très peu l'énergie émise par un laser de ce type. De plus, on donne à ces deux parties tubulaires une épaisseur aussi grande que possible, afin d'accroître leur inertie thermique.
  • En revanche, la jupe protectrice 56 est conçue de façon à absorber au maximum l'énergie réfléchie par la poudre et par le substrat. Pour cela, elle est avantageusement revêtue, sur sa surface intérieure, d'un matériau absorbant tel qu'une couche de peinture noire. Le matériau qui la constitue est choisi parmi les matériaux bon conducteurs de la chaleur et peut également être du cuivre.
  • La chaleur absorbée par la jupe protectrice 56 est évacuée par des moyens de refroidissement associés à celle-ci et constitués, dans le mode de réalisation illustré sur la figure 1, par un serpentin de refroidissement 72 entourant l'extrémité de la jupe 56 qui fait saillie au-delà de l'extrémité du corps 16 de la buse, et dans lequel circule un fluide de refroidissement. Le serpentin 72 est également réalisé de préférence en cuivre et il est relié à un système de refroidissement annexe (non représenté) permettant de refroidir le fluide circulant dans le serpentin.
  • Les parties tubulaires 32 et 34 du corps 16 de la buse, qui constituent les pièces d'usure de la buse peuvent être facilement remplacées par un simple démontage des vis 30.
  • Ce démontage permet également, le cas échéant, de modifier la section du passage annulaire intérieur 38, en interposant une ou plusieurs cales 74 entre les brides par lesquelles les parties tubulaires 32 et 34 sont fixées sur la partie 26 en forme de couronne, au moyen des vis 30.
  • Comme on l'a représenté de façon schématique sur les figures 2A, 2B et 2C, la buse 12 conforme à l'invention permet de réaliser des traitements de surface différents en effectuant des réglages simple et sans qu'il soit nécessaire de modifier la densité volumique ou la vitesse de la poudre injectée dans la buse.
  • Ainsi, comme l'illustre la figure 2A, lorsque l'extrémité avant du corps 16 de la buse occupe sa position haute la plus proche du support 10, située au-dessus du point de focalisation O du faisceau laser F, et lorsque la jupe protectrice 56 est déployée au maximum au-delà de cette extrémité, on réalise un dépôt de surface du matériau en poudre injecté par le passage annulaire intérieur 38 sur le substrat S. En effet, le trajet des particules de poudre sortant du passage 38 et injecté dans le faisceau laser F est alors très long, de sorte que ces particules sont fondues avant d'atteindre le substrat. En revanche, la surface du substrat est relativement éloignée du point de focalisation O du faisceau laser F et la quantité de poudre présente dans ce dernier est relativement importante, de sorte que l'énergie de la partie du faisceau laser qui atteint le substrat est insuffisante pour faire fondre ce dernier.
  • Sur la figure 2B, on a représenté une position intermédiaire de l'extrémité avant du corps 16 de la buse, dans laquelle cette extrémité se trouve sensiblement dans le même plan que le point de focalisation O du faisceau laser. Par ailleurs, le déploiement de la jupe protectrice 56 au-delà de l'extrémité du corps 16 de la buse présente également une valeur intermédiaire. Dans ce cas, le trajet des particules de poudre sortant du passage annulaire intérieur 38, à l'intérieur du faisceau laser F, reste suffisant pour assurer la fusion de ces particules avant qu'elles n'atteignent la surface du substrat S. Par ailleurs, cette surface se trouve légèrement plus proche du point de focalisation O du faisceau laser que dans la position précédente illustrée sur la figure 2A et le nuage de particules de poudre présent entre l'extrémité du corps 16 de la buse et la surface du substrat est moins épais, de sorte que l'énergie de la partie du faisceau laser atteignant la surface du substrat S reste suffisante pour faire fondre ce dernier. La poudre et le substrat étant fondus, on réalise alors un alliage à la surface du substrat S.
  • Dans la position illustrée sur la figure 2C, l'extrémité avant du corps 16 de la buse occupe sa position la plus éloignée du support 10, située au-delà du point de focalisation O du faisceau laser F. Par ailleurs, la jupe protectrice 56 est escamotée au maximum sur le corps 16 de la buse, de telle sorte que la surface du substrat S occupe une position encore plus proche du point de focalisation O du faisceau laser que dans la position illustrée sur la figure 2B. Dans ces conditions, le temps de séjour des particules de poudre sortant du passage annulaire intérieur 38 dans le faisceau laser F est insuffisant pour que ces particules fondent avant d'atteindre la surface du sustrat S. En revanche, la relative proximité de la surface du substrat par rapport au point de focalisation O du faisceau laser et la faible épaisseur du nuage de particules présent entre l'extrémité du corps 16 de la buse et la surface du substrat ont pour conséquence la fusion de ce dernier. On réalise ainsi une incrustation des particules de poudre dans les couches superficielles du substrat.
  • Il est donc possible, en vissant plus ou moins la partie tubulaire 18 du corps de la buse dans l'organe de fixation 22 afin de déplacer axialement le corps de la buse par rapport au support 10, et en sortant plus ou moins la jupe protectrice 56 au moyen de la vis 58, de régler à la fois la position de l'extrémité avant du corps de la buse par rapport au point de focalisation 0 du faisceau laser et la distance séparant la surface du substrat, au contact de la jupe protectrice 56, de ce même point de focalisation. Ces réglages simples permettent de modifier la nature du traitement de surface effectué sur le substrat s'en qu'aucune autre intervention soit nécessaire.
  • De plus, la présence de la jupe protectrice 56 contribue à la protection contre l'oxydation des matériaux en présence et permet d'avoir recours à un gaz de protection à faible débit, ce qui facilite la protection de la lentille de focalisation du faisceau par l'injection de ce même gaz de protection à faible débit dans le passage central 36.
  • De façon classique, le gaz protecteur comme le gaz porteur peuvent notamment être constitués par de l'argon.
  • Bien entendu, l'invention n'est pas limitée au mode de réalisation qui vient d'être décrit à titre d'exemple, mais en couvre toutes les variantes. Ainsi, on comprendra notamment que les moyens permettant de déplacer le corps de la buse parallèlement à l'axe du faisceau laser par rapport au support 10 ainsi que les moyens permettant de déplacer dans la même direction la jupe protectrice 56 autour du corps de la buse peuvent être différents des moyens décrits.

Claims (10)

  1. Buse pour traitement de surface d'un substrat par laser, avec apport de poudre, comprenant un corps (16) apte à être fixé sur un support tubulaire d'arrivée d'un faisceau laser focalisé, un passage central (36) pour le faisceau laser, un passage annulaire intérieur convergent (38) d'arrivée de poudre et un passage annulaire extérieur (46) d'arrivée de gaz protecteur étant formés coaxialement dans ledit corps, caractérisée par le fait que des moyens de réglage (20) sont prévus pour déplacer le corps (16) de la buse par rapport à un organe de fixation (22) du corps sur le support, selon l'axe du faisceau laser, une jupe protectrice (56) étant montée coulissante sur le corps (16) de la buse, parallèlement audit axe, afin d'entourer une zone de longueur réglable comprise entre une extrémité avant du corps et la surface du substrat.
  2. Buse selon la revendication 1, caractérisée par le fait que le passage annulaire extérieur (46) présente une section supérieure à celle du passage annulaire intérieur (38) et qui augmente en allant vers l'extrémité avant du corps.
  3. Buse selon la revendication 2, caractérisée par le fait qu'au moins un brise-jet (52,54) est placé dans le passage annulaire extérieur (46).
  4. Buse selon l'une quelconque des revendications précédentes, par le fait qu'au moins un orifice (64) d'entrée de gaz protecteur débouchant dans le passage central (36) est formé dans le corps de la buse.
  5. Buse selon la revendication 4, caractérisée par le fait qu'au moins un deuxième brise-jet (68), pourvu d'une ouverture centrale (70) pour le faisceau laser, est placé dans le passage central (36), entre ledit orifice (64) et l'extrémité avant du corps de la buse.
  6. Buse selon l'une quelconque des revendications précédentes, caractérisée par le fait que le passage annulaire intérieur convergent (38) présente une largeur qui augmente progressivement vers l'extrémité avant du corps de la buse, de telle sorte que la section de ce passage est sensiblement constante.
  7. Buse selon l'une quelconque des révendications précédentes, caractérisée par le fait qu'au moins un orifice (42) d'entrée de poudre et de gaz porteur, débouchant tangentiellement à une extrémité du passage annulaire intérieur convergent (38) opposée à l'extrémité avant du corps de la buse, est formé dans ce corps.
  8. Buse selon l'une quelconque des revendications précédentes, caractérisée par le fait que la jupe protectrice (56) est équipée de moyens de refroidissement (72).
  9. Buse selon l'une quelconque des revendications précédentes, caractérisée par le fait que le passage annulaire intérieur (38) est formé entre deux parties démontables (32,34) du corps (16).
  10. Buse selon la revendication 9, caractérisée par le fait que le corps (16) comprend des cales démontables (74) aptes à être placées entre les parties (32,34) du corps, afin de faire varier la section du passage annulaire intérieur (38).
EP91402741A 1990-10-16 1991-10-14 Buse de traitement de surface par laser, avec apport de poudre Expired - Lifetime EP0481869B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9012746A FR2667805B1 (fr) 1990-10-16 1990-10-16 Buse de traitement de surface par laser, avec apport de poudre.
FR9012746 1990-10-16

Publications (2)

Publication Number Publication Date
EP0481869A1 EP0481869A1 (fr) 1992-04-22
EP0481869B1 true EP0481869B1 (fr) 1994-08-03

Family

ID=9401259

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91402741A Expired - Lifetime EP0481869B1 (fr) 1990-10-16 1991-10-14 Buse de traitement de surface par laser, avec apport de poudre

Country Status (6)

Country Link
US (1) US5111021A (fr)
EP (1) EP0481869B1 (fr)
CA (1) CA2053421C (fr)
DE (1) DE69103245T2 (fr)
ES (1) ES2057821T3 (fr)
FR (1) FR2667805B1 (fr)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2685922B1 (fr) * 1992-01-07 1995-03-24 Strasbourg Elec Buse coaxiale de traitement superficiel sous irradiation laser, avec apport de materiaux sous forme de poudre.
CA2091512A1 (fr) * 1992-03-13 1993-09-14 Kohichi Haruta Buse d'irradiation laser et laser utilisant cette buse
DE4224886C2 (de) * 1992-07-28 1994-08-04 Deutsche Forsch Luft Raumfahrt Oberflächenbeschichtungsvorrichtung
TW270907B (fr) 1992-10-23 1996-02-21 Mitsubishi Electric Machine
DE4322801C1 (de) * 1993-07-08 1994-10-13 Wagner Int Verfahren zum Pulverbeschichten von Werkstücken
US5837960A (en) * 1995-08-14 1998-11-17 The Regents Of The University Of California Laser production of articles from powders
US5961862A (en) * 1995-11-30 1999-10-05 The Regents Of The University Of California Deposition head for laser
DE19548496A1 (de) * 1995-12-22 1997-06-26 Deutsche Forsch Luft Raumfahrt Laserbearbeitungskopf und Verfahren zum Laserschweißen
US6046426A (en) * 1996-07-08 2000-04-04 Sandia Corporation Method and system for producing complex-shape objects
US6429402B1 (en) 1997-01-24 2002-08-06 The Regents Of The University Of California Controlled laser production of elongated articles from particulates
US6146476A (en) 1999-02-08 2000-11-14 Alvord-Polk, Inc. Laser-clad composite cutting tool and method
US6396025B1 (en) * 1999-07-01 2002-05-28 Aeromet Corporation Powder feed nozzle for laser welding
US6504127B1 (en) 1999-09-30 2003-01-07 National Research Council Of Canada Laser consolidation methodology and apparatus for manufacturing precise structures
US6756561B2 (en) 1999-09-30 2004-06-29 National Research Council Of Canada Laser consolidation apparatus for manufacturing precise structures
US7589032B2 (en) * 2001-09-10 2009-09-15 Semiconductor Energy Laboratory Co., Ltd. Laser apparatus, laser irradiation method, semiconductor manufacturing method, semiconductor device, and electronic equipment
DE10154093B4 (de) * 2001-11-02 2006-02-02 Daimlerchrysler Ag Verfahren zur Oberflächenbehandlung durch einen Pulverwerkstoff mit Hilfe eines Laserstrahls und Vorrichtung zur Durchführung des Verfahrens
US6894247B2 (en) 2002-07-26 2005-05-17 Honeywell International, Inc. Powder feed splitter for hand-held laser powder fusion welding torch
US20050023256A1 (en) * 2003-07-31 2005-02-03 Srikanth Sankaranarayanan 3-D adaptive laser powder fusion welding
US20050056628A1 (en) * 2003-09-16 2005-03-17 Yiping Hu Coaxial nozzle design for laser cladding/welding process
US7666522B2 (en) * 2003-12-03 2010-02-23 IMDS, Inc. Laser based metal deposition (LBMD) of implant structures
US7001672B2 (en) 2003-12-03 2006-02-21 Medicine Lodge, Inc. Laser based metal deposition of implant structures
DE102004002268A1 (de) * 2004-01-16 2005-08-04 Daimlerchrysler Ag Verfahren zur Oberflächenbehandlung eines Werkstücks durch einen pulverförmigen Zusatzwerkstoff mittels eines Schweißstrahls
US20050212694A1 (en) * 2004-03-26 2005-09-29 Chun-Ta Chen Data distribution method and system
US7951412B2 (en) * 2006-06-07 2011-05-31 Medicinelodge Inc. Laser based metal deposition (LBMD) of antimicrobials to implant surfaces
ES2360732B1 (es) * 2009-10-24 2012-04-24 Universidad De Vigo Método de obtención de recubrimientos porosos mediante proyección térmica asistida por l�?ser.
DE102009051823A1 (de) * 2009-11-04 2011-05-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Einkristallines Schweißen von direktional verfestigten Werkstoffen
EP2322314A1 (fr) * 2009-11-16 2011-05-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Soudure monocristalline de matières actives renforcées directionnelles
US9168613B2 (en) 2010-10-22 2015-10-27 Paul T. Colby Vertical laser cladding system
DE102011100456B4 (de) * 2011-05-04 2015-05-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Extremes Hochgeschwindigkeitslaserauftragsschweißverfahren
EP3045294B1 (fr) 2015-01-16 2018-03-14 Rolls-Royce Corporation Tête de dépôt de poudre compacte de translation axiale ,système et méthode d'utilisation de la tête
US20150343565A1 (en) * 2015-08-12 2015-12-03 Caterpillar Inc. Method of forming feature on tube
CN105665705A (zh) * 2016-03-18 2016-06-15 山东能源重装集团大族再制造有限公司 一种金属3d打印装置
RU2645631C1 (ru) * 2016-12-07 2018-02-26 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ" (КНИТУ-КАИ) Способ нанесения покрытия на образец (варианты) и устройство для его осуществления (варианты)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL271417A (fr) * 1960-11-15 1900-01-01
FR2117731B2 (fr) * 1967-10-11 1974-08-23 Anvar
US3696230A (en) * 1970-01-19 1972-10-03 Hughes Aircraft Co Laser lens cooling and cleaning system
US4121085A (en) * 1976-05-07 1978-10-17 Caterpillar Tractor Co. Gas nozzle for laser welding
GB2086264B (en) * 1978-09-14 1983-06-08 Metallisation Ltd Metal spraying apparatus
US4730093A (en) * 1984-10-01 1988-03-08 General Electric Company Method and apparatus for repairing metal in an article
JPS61259777A (ja) * 1985-05-13 1986-11-18 Onoda Cement Co Ltd 単ト−チ型プラズマ溶射方法及び装置
US4778693A (en) * 1986-10-17 1988-10-18 Quantronix Corporation Photolithographic mask repair system
US4724299A (en) * 1987-04-15 1988-02-09 Quantum Laser Corporation Laser spray nozzle and method
US4804815A (en) * 1987-06-01 1989-02-14 Quantum Laser Corporation Process for welding nickel-based superalloys

Also Published As

Publication number Publication date
FR2667805A1 (fr) 1992-04-17
US5111021A (en) 1992-05-05
DE69103245D1 (de) 1994-09-08
DE69103245T2 (de) 1995-02-23
CA2053421C (fr) 2002-04-02
ES2057821T3 (es) 1994-10-16
CA2053421A1 (fr) 1992-04-17
EP0481869A1 (fr) 1992-04-22
FR2667805B1 (fr) 1993-01-22

Similar Documents

Publication Publication Date Title
EP0481869B1 (fr) Buse de traitement de surface par laser, avec apport de poudre
FR2648068A1 (fr) Procede et appareil de soudage laser
CA2526328C (fr) Buse pour tete de percage ou d'usinage par faisceau laser
CA1298966C (fr) Dispositif de projection electrostatique de produit en poudre
FR2642672A1 (fr) Appareil et procede de pulverisation sous plasma par un laser a flux axial
FR2744936A1 (fr) Procede de decontamination a laser
CA2892848C (fr) Procede de fabrication d'une piece par fusion de poudre, les particules de poudre arrivant froides dans le bain
FR2636198A1 (fr) Buse pour torche a plasma et procede pour introduire une poudre dans une torche a plasma
EP0506552B1 (fr) Procédé pour traiter par exemple la surface d'un substrat par projection d'un flux de plasma, et dispositif pour la mise en oeuvre du procédé
FR2642673A1 (fr) Tuyere de pulverisation a laser a ecoulement transversal et procede correspondant
FR2978070A1 (fr) Procede de reparation d'une piece de turbomachine
FR2823688A1 (fr) Dispositif de fusion de matiere par faisceau laser
WO2018029432A1 (fr) Procédé de protection, par soufflage fluidique, d'un appareil d'émission et/ou de réception des ondes électromagnétiques, dispositif convenant a sa mise en oeuvre et un tel appareil équipé dudit dispositif
WO2015107309A1 (fr) Dispositif d'impression en trois dimensions d'une piece
EP3736106B1 (fr) Tete d'impression 3d
EP3972771A1 (fr) Appareil a souder par faisceau d'electrons
FR2790689A1 (fr) Procede et dispositif d'assemblage par soudage de deux pieces
WO2003031109A1 (fr) Procede et dispositif de decoupe laser
EP3737901A1 (fr) Creuset froid et collecteur de refroidissement associe pour dispositif de chauffage par induction
FR3083722A1 (fr) Turbine pour dispositif de projection de fluide, dispositif de projection de fluide, ainsi qu'ensemble comprenant un tel dispositif et un outil
WO2004041445A1 (fr) Procede et installation de pointage d'un jet fin de fluide, notamment en soudage, usinage, ou rechargement laser
EP4022107B1 (fr) Procede d'emission d'atomes, de molecules ou d'ions
EP1160216A1 (fr) Appareil d'enduction de fibres optiques
FR2754198A1 (fr) Procede de soudage-forgeage de tenons sur une piece support et dispositif pour sa mise en oeuvre
WO2021032926A1 (fr) Système de dépôt laser de métal

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES GB IT SE

17P Request for examination filed

Effective date: 19920925

17Q First examination report despatched

Effective date: 19931025

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GB IT SE

REF Corresponds to:

Ref document number: 69103245

Country of ref document: DE

Date of ref document: 19940908

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940815

ITF It: translation for a ep patent filed

Owner name: JACOBACCI CASETTA & PERANI S.P.A.

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2057821

Country of ref document: ES

Kind code of ref document: T3

EAL Se: european patent in force in sweden

Ref document number: 91402741.2

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20020926

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20021004

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20021009

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20021023

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031015

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040501

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20031014

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20031015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051014