EP0520858A1 - Current mirror functioning at low voltages - Google Patents

Current mirror functioning at low voltages Download PDF

Info

Publication number
EP0520858A1
EP0520858A1 EP92401666A EP92401666A EP0520858A1 EP 0520858 A1 EP0520858 A1 EP 0520858A1 EP 92401666 A EP92401666 A EP 92401666A EP 92401666 A EP92401666 A EP 92401666A EP 0520858 A1 EP0520858 A1 EP 0520858A1
Authority
EP
European Patent Office
Prior art keywords
transistor
current
voltage
current mirror
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92401666A
Other languages
German (de)
French (fr)
Other versions
EP0520858B1 (en
Inventor
Jean-François Agaesse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teledyne e2v Semiconductors SAS
Original Assignee
Thomson Composants Militaires et Spatiaux
Thomson SCF Semiconducteurs Specifiques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson Composants Militaires et Spatiaux, Thomson SCF Semiconducteurs Specifiques filed Critical Thomson Composants Militaires et Spatiaux
Publication of EP0520858A1 publication Critical patent/EP0520858A1/en
Application granted granted Critical
Publication of EP0520858B1 publication Critical patent/EP0520858B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors
    • G05F3/262Current mirrors using field-effect transistors only

Definitions

  • the present invention relates to a current mirror electronic circuit, the architecture of which has been established with a view to obtaining good operation at a low voltage close to the lower supply voltage, and a low pass resistance.
  • a current mirror electronic circuit the architecture of which has been established with a view to obtaining good operation at a low voltage close to the lower supply voltage, and a low pass resistance.
  • the invention is applicable to circuits produced with different types of transistors: in order to clarify the description, the invention will be explained by relying on a circuit in N-MOS transistors, which does not limit the scope of the 'invention.
  • I error
  • FIG. 2 on the follower branch is added a transistor T3, the gate of which is connected to the reference branch, between the source 1 and T1.
  • the transistor T3 is counter-reacted by a simple mirror.
  • the voltage excursion of point A, between the load 2 and T3 is limited to some 100 mV + V GS above the "lower" voltage V SS some 100 mV "corresponds to the drop of voltage across T3, and V GS at the voltage drop across T2.
  • a transistor T4 added in the reference branch allows T1 to work under the same conditions as T2, by symmetrizing the circuit, because the pair T3 T4 imposes the same voltage at points B and C, improving current copying. But in the two cases of Wilson mirrors, there are two transistors in series in the feedback branch.
  • V GS can reach values as high as 4 or 5 volts, while circuits operate at 1 volt.
  • V DS sat or V DSS this threshold value, which according to the prior art is too much higher than V SS because there are in the follower branch two transistors T2 and T3 in series, whose pass resistance R on is too high.
  • the object of the invention is to obtain that a current mirror operates with a low voltage V DSS , above the supply voltage VSS, so as to be adapted to the circuits which themselves operate under a low potential difference between V DD and V SS , which does not allow the mirror to operate very above V SS .
  • Another object of the invention is to produce a current mirror which has a low pass resistance R on in its feedback branch, which is moreover a necessary condition for being able to work at a voltage close to V ss .
  • the invention relates to a current mirror operating at low voltage, comprising, in a reference branch, a current source and a first transistor and in an output branch, a load and a second transistor, the gates of these two transistors being joined and controlled from the current source, this mirror being characterized in that it further comprises a voltage feedback circuit which, for a voltage close to the lower supply voltage requires that the first transistor copies, on its drain, the voltage existing on the drain of the second transistor.
  • the originality of the mirror of FIG. 5 comes from the fact that it further comprises a voltage feedback circuit, formed by the transistors T5 and T6.
  • the transistor T5 is mounted on the reference branch of the simple mirror, between the current source 1 (point D) and the transistor T1. (point C).
  • the transistor T6 is mounted in parallel with the load 2, that is to say that its source is connected to the point B common to the load 2 and to T2, and that its drain is joined at the point A to an auxiliary current source 10
  • the grids of the transistors T5 and T6 are combined, and controlled from point A.
  • a first simple mirror 1 + T1 + T2 is counter-reacted by a second simple mirror 10 + T 6 + T5, mounted symmetrically so that the feedback branch of one constitutes the branch of other's reference. Only the load 2, mounted in parallel on the current source 10 and T6, breaks the symmetry.
  • the pair of transistors T5 and T6 constitutes a voltage follower which, if neither of the two transistors is blocked, imposes the same voltage at points B and C, which means that the transistors T1 and T2 of the two branches operate under the same conditions.
  • the source 10 supplies a current I ′
  • the load 2 is traversed by a current II ′, since the feedback transistor T2 supplies a total current equal to I.
  • the feedback produced by T5 and T6 makes it possible to keep the current of constant output, in the load, when V B - V SS ⁇ V DSS (T2) V B being the voltage at point B, defined above, V DSS (T2) being the voltage V DS at saturation for the transistor T2.
  • FIG. 8 represents some characteristic curves I (V) of the current mirror according to the invention, for 4 values of V GS different from each other.
  • V current mirror
  • FIG. 8 represents some characteristic curves I (V) of the current mirror according to the invention, for 4 values of V GS different from each other.
  • the corresponding curves of a simple current mirror for the same values of V GS .
  • the arrows 11 show the difference which exists between the characteristics of a known mirror (dotted lines) and those of the invention (solid lines). It can be observed that, unlike Wilson mirrors (FIG. 4) for which there is an increase in V DSS compared to a simple mirror, there is according to the invention a reduction in V DSS : the current mirror according to the invention operates at a voltage close to V SS , even if V DS of T2 is less than V DSS .
  • the current mirror according to the invention is used as an interface with circuits operating under low voltage, for example TTL, or as a switch with low pass resistance.

Abstract

The invention relates to a current mirror keeping correct characteristics when the current to be copied corresponds to a voltage close to the lower power supply voltage Vss. …<??>This current mirror (1, T1, 2, T2) comprises a voltage feedback circuit (T5, T6, 10) which makes the first transistor (T1) of the reference arm of the mirror copy, in voltage, the second transistor (T2) of the output arm of the mirror. …<??>Applications to circuits functioning at low power supply voltages. …<IMAGE>…

Description

La présente invention concerne un circuit électronique miroir de courant, dont l'architecture a été établie en vue d'obtenir un bon fonctionnement à une tension faible proche de la tension d'alimentation inférieure, et une faible résistance passante. Par modification d'un miroir de courant connu, auquel on ajoute un circuit de contre-réaction, on conserve le courant de sortie constant quelque soit la tension appliquée aux bornes du miroir de courant selon l'invention.The present invention relates to a current mirror electronic circuit, the architecture of which has been established with a view to obtaining good operation at a low voltage close to the lower supply voltage, and a low pass resistance. By modification of a known current mirror, to which a feedback circuit is added, the output current is kept constant whatever the voltage applied to the terminals of the current mirror according to the invention.

L'invention est applicable à des circuits réalisés avec différents types de transistors: en vue de clarifier l'exposé, l'invention sera expliquée en s'appuyant sur un circuit en transistors N-MOS, ce qui ne limite pas la portée de l'invention.The invention is applicable to circuits produced with different types of transistors: in order to clarify the description, the invention will be explained by relying on a circuit in N-MOS transistors, which does not limit the scope of the 'invention.

En soi, le miroir de courant est bien connu en électronqiue analogique, et le schéma de base en est donné figure 1. De façon très simplifiée, entre deux sources de tension VDD et VSS se trouvent :

  • une branche de référence composée d'une source de courant 1, qui fournit un courant I, et d'un premier transistor T1,
  • une branche suiveuse ou de recopie composée d'une charge 2 et d'un second transistor T2. Les grilles de T1 et T2 sont réunies entre elles et de plus à la source de courant 1, de sorte que le courant I′ qui traverse la charge 2 recopie le courant I de la source 1.
In itself, the current mirror is well known in analog electronics, and the basic diagram is given in figure 1. In a very simplified way, between two voltage sources V DD and V SS are:
  • a reference branch composed of a current source 1, which supplies a current I, and of a first transistor T1,
  • a follower or feedback branch composed of a load 2 and a second transistor T2. The grids of T1 and T2 are joined together and in addition to the current source 1, so that the current I ′ which flows through the load 2 copies the current I from the source 1.

En fait, ce type de miroir de courant est entâché d'une erreur (I′ = I) due au gain des transistors, surtout à faible gain. On peut y remédier en réalisant un miroir de Wilson, schématisé en figure 2 : sur la branche suiveuse est ajouté un transistor T3, dont la grille est reliée à la branche de référence, entre la source 1 et T1. Le transistor T3 est contre-réactionné par un miroir simple. Dans ce type de montage, l'excursion en tension du point A, entre la charge 2 et T3, est limitée à quelques 100 mV + VGS au dessus de la tension "inférieure "VSS quelques 100 mV" correspond à la chute de tension à travers T₃, et VGS à la chute de tension à travers T2.In fact, this type of current mirror is marred by an error (I ′ = I) due to the gain of the transistors, especially at low gain. This can be remedied by making a Wilson mirror, shown diagrammatically in FIG. 2: on the follower branch is added a transistor T3, the gate of which is connected to the reference branch, between the source 1 and T1. The transistor T3 is counter-reacted by a simple mirror. In this type of assembly, the voltage excursion of point A, between the load 2 and T3, is limited to some 100 mV + V GS above the "lower" voltage V SS some 100 mV "corresponds to the drop of voltage across T₃, and V GS at the voltage drop across T2.

Dans le miroir de Wilson amélioré de la figure 3, un transistor T₄ ajouté dans la branche de référence permet à T₁ de travailler dans les mêmes conditions que T₂, en symétrisant le circuit, parce que la paire T₃ T₄ impose la même tension aux points B et C, améliorant la recopie de courant. Mais dans les deux cas de miroirs de Wilson, il y a deux transistors en série dans la branche de recopie.In the improved Wilson mirror of FIG. 3, a transistor T₄ added in the reference branch allows T₁ to work under the same conditions as T₂, by symmetrizing the circuit, because the pair T₃ T₄ imposes the same voltage at points B and C, improving current copying. But in the two cases of Wilson mirrors, there are two transistors in series in the feedback branch.

Ainsi, les deux types de miroir de Wilson décrits ne fonctionnent que pour des tensions de sorties (en A) supérieures à VSS + VGS + quelques 100 mV, ce qui est une valeur trop élevée dans certains cas, si l'on tient compte que, pour les transistors MOS, VGS peut atteindre des valeurs aussi élevées que 4 ou 5 volts, tandis que des circuits fonctionnent sous 1 volt.Thus, the two types of Wilson mirror described only work for output voltages (in A) greater than V SS + V GS + some 100 mV, which is too high a value in certain cases, if one holds account that, for MOS transistors, V GS can reach values as high as 4 or 5 volts, while circuits operate at 1 volt.

Cette limitation est illustrée par les courbes de la figure 4 qui donnent les caractéristiques courant-tension d'un miroir en fonction de différentes tensions grille-source VGS, pour le transistor de sortie T₂. Les courbes en pointillés telles que 5 correspondent à un miroir de courant simple (fig. 1) et les courbes en trait plein à un miroir de courant Wilson (fig. 2 et 3). On voit que les miroirs Wilson n'atteignent un courant de saturation (donc stable) IDS sat que pour une valeur de VDs plus élevée, en 7, que pour une miroir simple, en 8. Les flèches 9 montrent le décalage qui existe, pour une tension VGS donnée, entre un miroir simple et un miroir Wilson : pour ce dernier type, la recopie est meilleurs, mais au prix d'un VDSS supérieur.This limitation is illustrated by the curves in FIG. 4 which give the current-voltage characteristics of a mirror as a function of different gate-source voltages V GS , for the output transistor T₂. The dotted curves such as 5 correspond to a simple current mirror (fig. 1) and the solid lines curves to a Wilson current mirror (fig. 2 and 3). We see that Wilson mirrors reach a saturation current (therefore stable) I DS sat only for a higher value of V Ds , in 7, than for a simple mirror, in 8. Arrows 9 show the offset that exists , for a given voltage V GS , between a simple mirror and a Wilson mirror: for the latter type, the copying is better, but at the price of a higher V DSS .

On appelle VDS sat ou VDSS cette valeur de seuil, qui selon l'art antérieur est par trop supérieure à VSS parce qu'il y a dans la branche suiveuse deux transistors T₂ et T₃ en série, dont la résistance passante Ron est trop élevée.We call V DS sat or V DSS this threshold value, which according to the prior art is too much higher than V SS because there are in the follower branch two transistors T₂ and T₃ in series, whose pass resistance R on is too high.

L'objet de l'invention est d'obtenir qu'un miroir de courant fonctionne avec une faible tension VDSS, au dessus de la tension d'alimentation VSS, de façon à être adapté aux circuits qui eux-mêmes fonctionnent sous une faible différence de potentiel entre VDD et VSS, ce qui ne permet pas au miroir de fonctionner très au dessus de VSS.The object of the invention is to obtain that a current mirror operates with a low voltage V DSS , above the supply voltage VSS, so as to be adapted to the circuits which themselves operate under a low potential difference between V DD and V SS , which does not allow the mirror to operate very above V SS .

Un autre objet de l'invention est de réaliser un miroir de courant qui ait une faible résistance passante Ron dans sa branche de recopie, ce qui est par ailleurs une condition nécessaire pour pouvoir travailler à une tension proche de Vss.Another object of the invention is to produce a current mirror which has a low pass resistance R on in its feedback branch, which is moreover a necessary condition for being able to work at a voltage close to V ss .

Ces objectifs sont atteints, selon l'invention, au moyen d'un miroir de courant simple, n'ayant qu'un seul transistor dans sa branche de recopie, mais doté d'une contre-réaction en tension qui a la particularité que sa branche qui agit sur la branche de recopie du miroir est en fait en parallèle avec la charge, et non pas en série avec elle .These objectives are achieved, according to the invention, by means of a simple current mirror, having only one transistor in its feedback branch, but provided with a voltage feedback which has the particularity that its branch which acts on the mirror copying branch is in fact in parallel with the load, and not in series with it.

De façon plus précise, l'invention concerne un miroir de courant fonctionnant sous faible tension, comportant, dans une branche de référence, une source de courant et un premier transistor et dans une branche de sortie, une charge et un second transistor, les grilles de ces deux transistors étant réunies et commandées à partir de la source de courant, ce miroir étant caractérisé en ce qu'il comporte en outre un circuit de contre-réaction en tension qui, pour une tension proche de la tension d'alimentation inférieure impose que le premier transistor recopie, sur son drain, la tension existant sur le drain du second transistor.More specifically, the invention relates to a current mirror operating at low voltage, comprising, in a reference branch, a current source and a first transistor and in an output branch, a load and a second transistor, the gates of these two transistors being joined and controlled from the current source, this mirror being characterized in that it further comprises a voltage feedback circuit which, for a voltage close to the lower supply voltage requires that the first transistor copies, on its drain, the voltage existing on the drain of the second transistor.

L'invention sera mieux comprise par la description détaillée qui suit maintenant d'un exemple d'application, appuyée sur les figures jointes en annexes, qui représentent :

  • figures 1 à 3 : trois schémas électriques de miroirs de courant simple et de Wilson, connus, exposés précédemment,
  • figure 4 : courbes de caractéristiques 1 (V) de ces miroirs connus, pour plusieurs valeurs de tension de grilles
  • figure 5 : schéma électrique d'un miroir de courant selon l'invention,
  • figure 6 : schéma équivalent du précédant, pour une tension élevée au dessus de VSS
  • figures 7 et 8 : courbes de caractéristiques I(V) d'un miroir de courant selon l'invention.
The invention will be better understood from the detailed description which now follows of an example of application, supported by the appended figures, which represent:
  • Figures 1 to 3: three electrical diagrams of simple current and Wilson mirrors, known, exposed previously,
  • Figure 4: characteristic curves 1 (V) of these known mirrors, for several values of gate voltage
  • Figure 5: electrical diagram of a current mirror according to the invention,
  • Figure 6: equivalent diagram of the previous one, for a high voltage above V SS
  • Figures 7 and 8: characteristic curves I (V) of a current mirror according to the invention.

La figure 5 représente le schéma électrique d'un miroir de courant selon l'invention. Il comporte, comme élément de base, un miroir de courant simple pour lequel on reconnait, par comparaison avec la figure 1 :

  • une branche de référence, composée d'une source 1, qui fournit un courant I, et d'un premier transistor T1.
  • une branche de recopie, composée d'une charge 2 et d'un second transistor T2. Les grilles communes de T1 et T2 sont commandées à partir d'un point D situé entre la source de courant 1 et le transistor T1.
FIG. 5 represents the electrical diagram of a current mirror according to the invention. It comprises, as a basic element, a simple current mirror for which we recognize, by comparison with FIG. 1:
  • a reference branch, composed of a source 1, which supplies a current I, and of a first transistor T1.
  • a feedback branch, composed of a load 2 and a second transistor T2. The common gates of T1 and T2 are controlled from a point D located between the current source 1 and the transistor T1.

L'originalité du miroir de la figure 5 vient de ce qu'il comporte en outre un circuit de contre réaction en tension, formé par les transistors T5 et T6. Le transistor T5 est monté sur la branche de référence du miroir simple, entre la source de courant 1 (point D) et le transistor T1. (point C). le transistor T6 est monté en parallèle avec la charge 2, c'est à dire que sa source est connectée au point B commun à la charge 2 et à T2, et que son drain est réuni au point A à une source auxiliaire de courant 10. Les grilles des transistors T5 et T6 sont réunies, et commandées à partir du point A.The originality of the mirror of FIG. 5 comes from the fact that it further comprises a voltage feedback circuit, formed by the transistors T5 and T6. The transistor T5 is mounted on the reference branch of the simple mirror, between the current source 1 (point D) and the transistor T1. (point C). the transistor T6 is mounted in parallel with the load 2, that is to say that its source is connected to the point B common to the load 2 and to T2, and that its drain is joined at the point A to an auxiliary current source 10 The grids of the transistors T5 and T6 are combined, and controlled from point A.

La symétrie du circuit est remarquable : un premier miroir simple 1 + T1 + T2 est contre-réactionné par un second miroir simple 10 + T 6 + T5, montés en symétrique de façon que la branche de recopie de l'un constitue la branche de référence de l'autre. Seule la charge 2, montée en parallèle sur la source de courant 10 et T6, rompt la symétrie. On peut également considérer que la paire de transistors T5 et T6 constitue un suiveur de tension qui, si aucun des deux transistors n'est bloqué, impose la même tension aux points B et C, ce qui signifie que les transistors T1 et T2 des deux branches fonctionnent dans les mêmes conditions.The symmetry of the circuit is remarkable: a first simple mirror 1 + T1 + T2 is counter-reacted by a second simple mirror 10 + T 6 + T5, mounted symmetrically so that the feedback branch of one constitutes the branch of other's reference. Only the load 2, mounted in parallel on the current source 10 and T6, breaks the symmetry. We can also consider that the pair of transistors T5 and T6 constitutes a voltage follower which, if neither of the two transistors is blocked, imposes the same voltage at points B and C, which means that the transistors T1 and T2 of the two branches operate under the same conditions.

Si la source 10 fournit un courant I′, la charge 2 est parcourue par un courant I-I′, puisque le transistor de recopie T2 fournit un courant total égal à I. La contre-réaction réalisée par T5 et T6 permet de garder le courant de sortie constant, dans la charge, lorsque V B - V SS < V DSS(T2)

Figure imgb0001

VB étant la tension au point B, défini ci-dessus,
VDSS(T2) étant la tension VDS à saturation pour le transistor T2.If the source 10 supplies a current I ′, the load 2 is traversed by a current II ′, since the feedback transistor T2 supplies a total current equal to I. The feedback produced by T5 and T6 makes it possible to keep the current of constant output, in the load, when V B - V SS <V DSS (T2)
Figure imgb0001

V B being the voltage at point B, defined above,
V DSS (T2) being the voltage V DS at saturation for the transistor T2.

Le fonctionnement de ce miroir de courant s'explique en considérant la tension VB au point B, dont on supposera qu'elle diminue progressivement de VDD jusque VSS.

  • 1. Lorsque VB = VDD , T₆ est bloqué parce que son VGS = 0 et le point A est tiré vers VDD , par la source auxiliaire 10. T₅ se comporte dans ce cas comme un interrupteur conducteur à faible Ron. Dans ces conditions, le schéma se simplifie et devient celui représenté en figure 6. Si la résistance Ron de l'interrupteur T₅ est suffisamment faible, elle peut être négligée, et le schéma du miroir de courant selon l'invention est équivalent à celui d'un miroir simple, en figure 1.
  • 2. Lorsque VB s'abaisse et atteint V B = V DD - V DSS (10) - V GS (T6)
    Figure imgb0002
    (VDSS (10) étant la chute de tension dans la source de courant 10, qui est elle-même réalisée au moyen d'un transistor), le courant I′ débité par la source 10 est. rétabli et T6 redevient conducteur. Le courant qui traverse la charge 2 diminue et devient I-I′. Cette diminution du courant dans la charge 2 ne présente aucun inconvénient, puisque l'objet de l'invention est de travailler très près de l'alimentation négative VSS , et non pas à proximité de l'alimentation positive VDD.
  • 3. Lorsque VB continue de baisser, et atteint V B = V SS + V DSS (T2)
    Figure imgb0003
    la paire de transistors T5 et T6 se comporte comme un suiveur de tension et recopie la tension VB au point C, situé entre T1 et T5 sur la branche de référence du miroir de courant. Ceci garanti que les transistors T1 et T2 entrent simultanèment en fonctionnement ohmique.
    Considérons alors le comportement de T1 dans la branche de référence, illustré par la figure 7, La source de courant 1 impose un courant I, mais T5 + T6 imposent la tension au point C : la caractéristique de T1 se déplace du point P au point P′, sur la figure 7, en baisse puisque par définition VB baisse. Il s'ensuit que la tension de grille de T1 augmente de VGS3 à VGS4, par exemple. Mais, par construction d'un miroir de courant, cette même tension VGS4 est appliquée sur la grille de T2, et le courant de sortie dans la charge 2 reste constant bien que le transistor T₂ soit entré en fonctionnement ohmique, puisque le point P′ est sur la partie linéaire de la caractéristique I (V)
  • 4. Si la tension VB continue à diminuer, et donc à se rapprocher de VSS , la tension de grille VGS de T1 continue à augmenter, mais également la tension VD du point D situé entre la source de courant 1 et le transistor T5. VD est tiré à VDD et lorsqu'il atteint cette valeur, la contre-réaction cesse de fonctionner, et le courant de sortie décroît. Le générateur de courant 1 ne fonctionne plus, ni le miroir de courant, mais néanmoins ce dernier à fonctionné jusqu'à une valeur peu élevée au dessus de VSS.
The operation of this current mirror can be explained by considering the voltage V B at point B, which will be assumed to decrease progressively from V DD to V SS .
  • 1. When V B = V DD , T₆ is blocked because its V GS = 0 and point A is pulled towards V DD , by the auxiliary source 10. T₅ behaves in this case like a conductive switch at low R on . Under these conditions, the diagram is simplified and becomes that shown in FIG. 6. If the resistance R on of the switch T₅ is sufficiently low, it can be neglected, and the diagram of the current mirror according to the invention is equivalent to that of a simple mirror, in figure 1.
  • 2. When V B lowers and reaches V B = V DD - V DSS (10) - V GS (T6)
    Figure imgb0002
    (V DSS (10) being the voltage drop in the current source 10, which is itself produced by means of a transistor), the current I ′ supplied by the source 10 is. restored and T6 becomes conductive again. The current flowing through the load 2 decreases and becomes II ′. This reduction in the current in the load 2 presents no drawback, since the object of the invention is to work very close to the negative supply V SS , and not close to the positive supply V DD .
  • 3. When V B continues to fall, and reaches V B = V SS + V DSS (T2)
    Figure imgb0003
    the pair of transistors T5 and T6 behaves like a voltage follower and copies the voltage V B at point C, located between T1 and T5 on the reference branch of the current mirror. This guarantees that the transistors T1 and T2 enter ohmic operation simultaneously.
    Let us then consider the behavior of T1 in the reference branch, illustrated by Figure 7, The current source 1 imposes a current I, but T5 + T6 impose the voltage at point C: the characteristic of T1 moves from point P to point P ′, in Figure 7, decreasing since by definition V B decreases. It follows that the gate voltage of T1 increases from V GS3 to V GS4 , for example. But, by construction of a current mirror, this same voltage V GS4 is applied to the gate of T2, and the output current in the load 2 remains constant although the transistor T₂ has entered ohmic operation, since the point P ′ Is on the linear part of the characteristic I (V)
  • 4. If the voltage V B continues to decrease, and therefore to approach V SS , the gate voltage V GS of T1 continues to increase, but also the voltage V D of the point D located between the current source 1 and the transistor T5. V D is drawn at V DD and when it reaches this value, the feedback stops working, and the output current decreases. The current generator 1 no longer works, nor the current mirror, but nevertheless the latter has operated up to a low value above V SS .

La figure 8 représente quelques courbes de caractéristiques I (V) du miroir de courant selon l'invention, pour 4 valeurs de VGS différentes entre elles. Sur la même figure sont reportées en pointillés, les courbes correspondantes d'un miroir de courant simple, pour les mêmes valeurs de VGS. Les flêches 11 montrent le décalage qui existe entre les caractéristiques d'un miroir connu (pointillés ) et celles de l'invention (traits pleins), On peut observer que, contrairement aux miroirs Wilson (figure 4) pour lesquels il y a augmentation de VDSS par rapport à un miroir simple, il y a selon l'invention une diminution de VDSS : le miroir de courant selon l'invention fonctionne à une tension proche de VSS, même si VDS de T2 est inférieure a VDSS.FIG. 8 represents some characteristic curves I (V) of the current mirror according to the invention, for 4 values of V GS different from each other. In the same figure are shown in dotted lines, the corresponding curves of a simple current mirror, for the same values of V GS . The arrows 11 show the difference which exists between the characteristics of a known mirror (dotted lines) and those of the invention (solid lines). It can be observed that, unlike Wilson mirrors (FIG. 4) for which there is an increase in V DSS compared to a simple mirror, there is according to the invention a reduction in V DSS : the current mirror according to the invention operates at a voltage close to V SS , even if V DS of T2 is less than V DSS .

Le miroir de courant selon l'invention est utilisé en interface avec les circuits fonctionnant sous faible tension, par exemple les TTL, ou comme interrupteur à faible résistance passante.The current mirror according to the invention is used as an interface with circuits operating under low voltage, for example TTL, or as a switch with low pass resistance.

L'invention est précisée par les revendications suivantes.The invention is specified by the following claims.

Claims (6)

1 - Miroir de courant fonctionnant sous faible tension, comportant, dans une branche de référence, une source de courant (1) et un premier transistor (T1) et, dans une branche de sortie, une charge (2) et un second transistor (T2), les grilles de ces deux transistors (T1,T2) étant réunies et commandées à partir de la source de courant (1), ce miroir étant caractérisé en ce qu'il comporte en outre un circuit de contre-réaction en tension (T5, T6, 10) qui, pour une tension proche de la tension d'alimentation inférieure (VSS) impose que le premier transistor (T1) recopie, sur son drain, la tension (VB) existant sur le drain du second transistor (T₂). 1 - Current mirror operating at low voltage, comprising, in a reference branch, a current source (1) and a first transistor (T1) and, in an output branch, a load (2) and a second transistor ( T2), the gates of these two transistors (T1, T2) being joined together and controlled from the current source (1), this mirror being characterized in that it also comprises a voltage feedback circuit ( T5, T6, 10) which, for a voltage close to the lower supply voltage (V SS ) requires that the first transistor (T1) copy, on its drain, the voltage (V B ) existing on the drain of the second transistor (T₂). 2 - Miroir de courant selon la revendication 1, caractérisé en ce que le circuit de contre réaction comprend un troisième transistor (T5), intercalé entre la source de courant (1) et le premier transistor (T1), et un quatrième transistor (T6), intercalé entre une source de courant auxiliaire (10) et le second transistor (T2), les grilles des troisième (T5) et quatrième (T6) transistors étant réunies et commandées à partir de la source de courant auxiliaire (10) 2 - Current mirror according to claim 1, characterized in that the feedback circuit comprises a third transistor (T5), interposed between the current source (1) and the first transistor (T1), and a fourth transistor (T6 ), inserted between an auxiliary current source (10) and the second transistor (T2), the gates of the third (T5) and fourth (T6) transistors being joined together and controlled from the auxiliary current source (10) 3 - Miroir de courant selon la revendication 2, caractérisé en ce que le circuit de contre-réaction (T5, T6, 10) constitue un second miroir de courant, dont la branche de recopie (T5) commande la branche de référence du miroir de courant principal (T1, T2, 1). 3 - Current mirror according to claim 2, characterized in that the feedback circuit (T5, T6, 10) constitutes a second current mirror, the feedback branch (T5) of which controls the reference branch of the mirror. main current (T1, T2, 1). 4 - Miroir de courant selon la revendication 2, caractérisé en ce que le circuit de contre-réaction en tension (T6,10) est monté en parallèle avec la charge (2) 4 - Current mirror according to claim 2, characterized in that the voltage feedback circuit (T6,10) is mounted in parallel with the load (2) 5 - Miroir de courant selon la revendication 4, caractérisé en ce que la branche de sortie (2,T2) ne comporte qu'un seul transistor (T2). 5 - Current mirror according to claim 4, characterized in that the output branch (2, T2) has only one transistor (T2). 6 - Miroir de courant selon la revendication 1, caractérisé en ce que, en raison du circuit de contre-réaction en tension, le second transistor (T2) conserve une caractéristique de courant drain-source IDS saturée pour une valeur de tension drain-source VDS inférieure à la valeur de saturation VDS sat. 6 - Current mirror according to claim 1, characterized in that, due to the voltage feedback circuit, the second transistor (T2) retains a drain-source current characteristic I DS saturated for a drain-source voltage value V DS lower than the saturation value V DS sat .
EP92401666A 1991-06-27 1992-06-16 Current mirror functioning at low voltages Expired - Lifetime EP0520858B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9108007 1991-06-27
FR9108007A FR2678399B1 (en) 1991-06-27 1991-06-27 CURRENT MIRROR OPERATING AT LOW VOLTAGE.

Publications (2)

Publication Number Publication Date
EP0520858A1 true EP0520858A1 (en) 1992-12-30
EP0520858B1 EP0520858B1 (en) 1995-11-29

Family

ID=9414415

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92401666A Expired - Lifetime EP0520858B1 (en) 1991-06-27 1992-06-16 Current mirror functioning at low voltages

Country Status (4)

Country Link
US (1) US5252910A (en)
EP (1) EP0520858B1 (en)
DE (1) DE69206335T2 (en)
FR (1) FR2678399B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19612269C1 (en) * 1996-03-28 1997-08-28 Bosch Gmbh Robert Current mirror circuit with additional circuit
CN103324229A (en) * 2012-03-21 2013-09-25 广芯电子技术(上海)有限公司 Constant current source

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5835994A (en) * 1994-06-30 1998-11-10 Adams; William John Cascode current mirror with increased output voltage swing
JP2638494B2 (en) * 1994-08-12 1997-08-06 日本電気株式会社 Voltage / current conversion circuit
US5954572A (en) * 1995-06-27 1999-09-21 Btg International Limited Constant current apparatus
US5801523A (en) * 1997-02-11 1998-09-01 Motorola, Inc. Circuit and method of providing a constant current
US6124753A (en) * 1998-10-05 2000-09-26 Pease; Robert A. Ultra low voltage cascoded current sources
EP1250635A2 (en) * 1999-11-11 2002-10-23 Broadcom Corporation Current mirror with improved current matching
US6542098B1 (en) * 2001-09-26 2003-04-01 Intel Corporation Low-output capacitance, current mode digital-to-analog converter
US6788134B2 (en) 2002-12-20 2004-09-07 Freescale Semiconductor, Inc. Low voltage current sources/current mirrors
DE10328605A1 (en) * 2003-06-25 2005-01-20 Infineon Technologies Ag Current source generating constant reference current, with amplifier circuit, invertingly amplifying negative feedback voltage, applied to first resistor, as amplified output voltage
JP4443205B2 (en) * 2003-12-08 2010-03-31 ローム株式会社 Current drive circuit
US20090160557A1 (en) * 2007-12-20 2009-06-25 Infineon Technologies Ag Self-biased cascode current mirror
DE102008052614A1 (en) * 2008-10-21 2010-05-27 Khs Ag Device for pivoting a bottle conveyed in a gripper
US8063624B2 (en) * 2009-03-12 2011-11-22 Freescale Semiconductor, Inc. High side high voltage switch with over current and over voltage protection
US8253479B2 (en) * 2009-11-19 2012-08-28 Freescale Semiconductor, Inc. Output driver circuits for voltage regulators
CN104684223A (en) * 2015-03-17 2015-06-03 无锡中星微电子有限公司 Led drive circuit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4471292A (en) * 1982-11-10 1984-09-11 Texas Instruments Incorporated MOS Current mirror with high impedance output
US4550284A (en) * 1984-05-16 1985-10-29 At&T Bell Laboratories MOS Cascode current mirror
US4618815A (en) * 1985-02-11 1986-10-21 At&T Bell Laboratories Mixed threshold current mirror
GB2209254A (en) * 1987-08-29 1989-05-04 Motorola Inc Current minor amplifier with reduced supply voltage sensitivity
EP0378452A1 (en) * 1989-01-11 1990-07-18 STMicroelectronics S.A. Current mirror circuits

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE190518C (en) * 1906-06-30 1907-11-19
US3936725A (en) * 1974-08-15 1976-02-03 Bell Telephone Laboratories, Incorporated Current mirrors
US4029974A (en) * 1975-03-21 1977-06-14 Analog Devices, Inc. Apparatus for generating a current varying with temperature
JPS562017A (en) * 1979-06-19 1981-01-10 Toshiba Corp Constant electric current circuit
US4300091A (en) * 1980-07-11 1981-11-10 Rca Corporation Current regulating circuitry
GB2214018A (en) * 1987-12-23 1989-08-23 Philips Electronic Associated Current mirror circuit arrangement
GB2228351A (en) * 1989-02-17 1990-08-22 Philips Electronic Associated Circuit arrangement for processing sampled analogue electrical signals

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4471292A (en) * 1982-11-10 1984-09-11 Texas Instruments Incorporated MOS Current mirror with high impedance output
US4550284A (en) * 1984-05-16 1985-10-29 At&T Bell Laboratories MOS Cascode current mirror
US4618815A (en) * 1985-02-11 1986-10-21 At&T Bell Laboratories Mixed threshold current mirror
GB2209254A (en) * 1987-08-29 1989-05-04 Motorola Inc Current minor amplifier with reduced supply voltage sensitivity
EP0378452A1 (en) * 1989-01-11 1990-07-18 STMicroelectronics S.A. Current mirror circuits

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19612269C1 (en) * 1996-03-28 1997-08-28 Bosch Gmbh Robert Current mirror circuit with additional circuit
CN103324229A (en) * 2012-03-21 2013-09-25 广芯电子技术(上海)有限公司 Constant current source

Also Published As

Publication number Publication date
FR2678399B1 (en) 1993-09-03
DE69206335D1 (en) 1996-01-11
FR2678399A1 (en) 1992-12-31
EP0520858B1 (en) 1995-11-29
DE69206335T2 (en) 1996-04-25
US5252910A (en) 1993-10-12

Similar Documents

Publication Publication Date Title
EP0520858B1 (en) Current mirror functioning at low voltages
EP1081572B1 (en) Supply circuit with voltage selector
EP0414319B1 (en) Circuit for supplying a reference voltage
FR2819904A1 (en) VOLTAGE REGULATOR PROTECTED AGAINST SHORT CIRCUITS
TW200824492A (en) Protection circuit and method
FR2858493A1 (en) Bootstrap driver for class D amplifier of CRT display, has discharge diode connected to output of voltage regulator and high charge port, to conduct inverse current from bootstrap diode when drivers output switches from low to high state
EP0756223A1 (en) Reference voltage and/or current generator in integrated circuit
EP1383103A1 (en) Automatic adaptation of the supply voltage of an electroluminescent panel depending on the desired luminance
EP1826905A1 (en) Electronic device for controlling an external load, in which the output signal slope is independent from the capacity of the external load, and corresponding integrated component
EP0613241B1 (en) Output common-mode voltage control device of a balanced amplifier
EP0571302B1 (en) Amplifier with limited output current
FR2476937A1 (en) DIFFERENTIAL LOAD CIRCUIT CARRIED OUT USING FIELD EFFECT TRANSISTORS.
EP0538121B1 (en) Circuit for generating a programming voltage for a programmable read-only memory, especially of an EPROM type, and method and memory relating to it
EP0843412B1 (en) A proximity detector with a stable current source
FR2458945A1 (en) MOS DIFFERENTIAL AMPLIFIER
FR2744299A1 (en) DC=DC converter with low supply voltage and higher output voltage
EP0466619A1 (en) Overvoltage protection device
EP0050583B1 (en) Alternating voltage to direct current converter and oscillator circuit comprising said converter
BE549967A (en)
FR2677823A1 (en) AMPLIFIER DEVICE.
EP0317420B1 (en) High stability digital-analog output voltage converter
EP0227491A2 (en) Test interface for a MOS technique integrated circuit
EP0249287A1 (en) Differential amplifier circuit and regenerator of complementary low-amplitude signals
EP0187572B1 (en) Logic voltage excursion limiter circuit, and circuit using such an excursion limiter
EP0722217A1 (en) Threshold adjusting circuit of the signal attenuation characteristic

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB IT NL

17P Request for examination filed

Effective date: 19930113

17Q First examination report despatched

Effective date: 19940809

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THOMSON-CSF SEMICONDUCTEURS SPECIFIQUES

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT NL

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REF Corresponds to:

Ref document number: 69206335

Country of ref document: DE

Date of ref document: 19960111

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960215

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970521

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970522

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19970616

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980616

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19990101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050616