EP0566867A1 - Process and apparatus for the production of low gas and pore free aluminium alloys - Google Patents

Process and apparatus for the production of low gas and pore free aluminium alloys Download PDF

Info

Publication number
EP0566867A1
EP0566867A1 EP93104326A EP93104326A EP0566867A1 EP 0566867 A1 EP0566867 A1 EP 0566867A1 EP 93104326 A EP93104326 A EP 93104326A EP 93104326 A EP93104326 A EP 93104326A EP 0566867 A1 EP0566867 A1 EP 0566867A1
Authority
EP
European Patent Office
Prior art keywords
vacuum
continuous casting
melt
furnace
melting furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP93104326A
Other languages
German (de)
French (fr)
Inventor
Heinz Lorenz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vereinigte Aluminium Werke AG
Vaw Aluminium AG
Original Assignee
Vereinigte Aluminium Werke AG
Vaw Aluminium AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vereinigte Aluminium Werke AG, Vaw Aluminium AG filed Critical Vereinigte Aluminium Werke AG
Publication of EP0566867A1 publication Critical patent/EP0566867A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/15Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/113Treating the molten metal by vacuum treating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/007Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/06Obtaining aluminium refining
    • C22B21/068Obtaining aluminium refining handling in vacuum

Definitions

  • the invention relates to a method and an arrangement for producing low-gas and non-porous cast aluminum alloys.
  • Crucible or trough furnaces are usually used to produce cast alloys. Either liquid electrolysis metal is filled in or solid metal is melted. The intended alloy composition is adjusted by adding alloy components such as silicon, magnesium, copper, titanium, nickel. The molten bath is heated to dissolve and alloy the components. It absorbs more hydrogen because aluminum has a high solubility for hydrogen in the liquid state. This occurs when liquid aluminum is converted to water vapor and is immediately absorbed by the melt. The water vapor comes into contact with the liquid aluminum via the feed materials, the furnace and crucible linings, the tools, the melting and fluxing agents, the combustion of gaseous and liquid fuels and the air humidity.
  • the amount of dissolved hydrogen depends on the metal temperature, the alloy composition and the hydrogen partial pressure.
  • the hydrogen uptake is promoted by open burner flames or violent bath movements in induction furnaces.
  • alkali and alkaline earth metals such as strontium, sodium and calcium
  • the hydrogen content of the melt increases significantly again to values of over 0.3 ml of hydrogen in 100 g of metal, since the water vapor decomposition takes place even faster through these metals.
  • the melt should be cleaned as soon as possible, as a treatment that was carried out at an early stage by subsequent technological steps, such as. B. by pouring for the purpose of transporting the melt, in turn can lead to contamination.
  • the vacuum degassing of the melt is a particularly environmentally friendly and effective method.
  • the success of this method is particularly due to the complex transportation of the melt, interim cooling and remelting after the required alloying, refining and vacuum degassing processes up to continuous casting and the inevitable contact with the air humidity is not carried out optimally, so that as a result of the alloying and refining process and after the continuous casting, there are no low-gas and non-porous aluminum casting alloys.
  • the invention has for its object to provide a method and an arrangement for the production of low-gas and non-porous aluminum casting alloys, with which it is possible to keep the contact of the aluminum melt with the air humidity from the alloying process through the refinement to the continuous casting of the cast ingot extremely low , to use the environmentally friendly and effective vacuum degassing and to prevent the formation of large gas pores by a high cooling rate.
  • this object is achieved in that after the alloying of the molten metal in a melting furnace, the melt is fed directly to a vacuum furnace via a channel system, that finishing components are added in the vacuum furnace and the casting temperature required for the continuous casting is set so that the vacuum in the vacuum furnace is periodic Measurement of the metal density is held for a further 5 to 240 minutes and that the metal melt is then fed directly to the continuous casting system via the channel system, the metal melt being filtered before entering the continuous casting system.
  • the melt is fed from the melting furnace alternately or simultaneously into two vacuum furnaces, so that the continuous casting installation, which is preferably designed as a horizontal continuous casting installation, can be fed with melt continuously.
  • the metal density is measured while holding in a vacuum oven. This makes it possible to control the residence time of the melt under vacuum conditions. It is expedient for the size of the vacuum to be between 100 and 1 mbar while the vacuum is being maintained. The regulation of the duration of the vacuum essentially depends on the measured values of the metal density. It may well be necessary that its size be kept constant or varied while the vacuum is being held. For example, it is expedient for the vacuum to be as large as possible with increasing metal density while holding, so that the expulsion of the hydrogen is possible by further reducing its partial pressure despite increasing metal density.
  • the arrangement of the melting furnace, at least one vacuum melting furnace and the continuous casting plant, which are directly connected to one another via a channel system, make it possible to keep the metal in the melt at all times during the treatment process. Energy-consuming solidification and remelting processes are eliminated due to the optimal transport of the melt via the channel system.
  • a gradient is provided, which is realized by different levels of the furnaces and the continuous casting system or by a height-adjustable channel system.
  • the gutter system according to the invention is an open system, so that a control of the Melt flow is guaranteed at all times. Due to the short distances, the contact of the melt with the air humidity is minimal.
  • the melting furnace 1 in FIG. 1 is usually designed as a crucible or trough furnace. It is used to make alloys. Here the alloy components, such as silicon, magnesium, copper, titanium, nickel, etc., are lined up, a refining treatment with reaction and / or inert gases is carried out, and the metal temperature necessary for transferring the melt into the vacuum furnaces 2 is set. Following the gravity, the melt flows through the channel system 4 into the two vacuum furnaces 2. The capacity of the melting furnace 1 is so large that both vacuum furnaces 2 can be charged alternately.
  • the refinement components such as strontium, sodium, calcium are alloyed in here and the necessary treatment temperature with regard to the specified casting temperature set.
  • the alloy melt is subjected to a vacuum treatment, which is controlled according to the results of the metal density test.
  • the melt in the two vacuum furnaces 2 is fed in succession via the channel system 4 with the interposition of a ceramic shape filter 5 to the water-cooled horizontal continuous casting plant 3 and cast into format bars.
  • the low-gas, non-porous casting alloys produced in this way enable ductile, non-porous castings to be produced if they are melted properly again.

Abstract

The invention relates to a process for producing low-gas and pore-free aluminium cast alloys by vacuum treatment of the melt. The object of the invention is to provide a process and an apparatus for the production of low-gas and pore-free aluminium cast alloys, which make it possible to keep the contact of the aluminium melt with the humidity in the air extremely low, from the alloying process via refining and up to continuous casting of the bars, while making use of the environmentally compatible (environment-friendly) and effective method of vacuum-degassing and preventing, by means of a high cooling rate, the formation of gas pores. This object is achieved according to the invention by feeding the melt, after alloying the metal melt in a melting furnace, directly to a vacuum furnace via a system of channels, by adding refining components in the vacuum furnace and there setting the casting temperature required for continuous casting, by maintaining the vacuum in the vacuum furnace by periodic measurements of the metal density for a further 5 to 240 minutes, and by then feeding the metal melt via the system of channels directly to the continuous casting installation.

Description

Die Erfindung betrifft ein Verfahren und eine Anordnung zur Herstellung gasarmer und porenfreier Aluminiumgußlegierungen. Zur Herstellung von Gußlegierungen werden üblicherweise Tiegel- oder Wannenöfen eingesetzt. Es wird entweder flüssiges Elektrolysemetall eingefüllt oder Festmetall aufgeschmolzen. Durch Zugabe von Legierungskomponenten, wie Silicium, Magnesium, Kupfer, Titan, Nickel wird die vorgesehene Legierungszusammensetzung eingestellt. Zum Lösen und Legieren der Komponenten wird das Schmelzebad aufgeheizt. Es nimmt dabei vermehrt Wasserstoff auf, da Aluminium im flüssigen Zustand ein hohes Lösungsvermögen für Wasserstoff besitzt. Dieser entsteht bei der Umsetzung von flüssigem Aluminium mit Wasserdampf und wird sofort von der Schmelze atomar aufgenommen. Der Wasserdampf kommt über die Einsatzmaterialien, die Ofen- und Tiegelauskleidungen, die Werkzeuge, die Schmelz- und Flußmittel, die Verbrennung gasförmiger und flüssiger Brennstoffe und die Luftfeuchtigkeit mit dem flüssigen Aluminium in Kontakt. Die Menge des gelösten Wasserstoffs ist von der Metalltemperatur, der Legierungszusammensetzung und dem Wasserstoffpartialdruck abhängig. Die Wasserstoffaufnahme wird durch offene Brennerflammen oder heftige Badbewegungen bei Induktionsöfen begünstigt. Bei der Veredelung von Gußlegierungen mit Alkali- und Erdalkalimetallen wie Strontium, Natrium und Calcium steigt der Wasserstoffgehalt der Schmelze nochmal erheblich auf Werte von über 0,3 ml Wasserstoff in 100 g Metall an, da die Wasserdampfzersetzung durch diese Metalle noch schneller erfolgt. Die Schmelzereinigung sollte möglichst unmittelbar vor dem Gießen vorgenommen werden, da eine zu einem zu frühen Zeitpunkt vorgenommene Behandlung durch nachfolgende technologische Schritte, wie z. B. durch Umgießen zum Zwecke des Transports der Schmelze, wiederum zu Verunreinigungen führen kann. Insbesondere der Kontakt der Schmelze mit der Luftfeuchtigkeit führt zu einer Zunahme des Wassestoffgehaltes und der damit verbundenen unerwünschten Vergrößerung der Porosität der Aluminiumformkörper. bliche Reinigungsverfahren werden mit inerten aber auch mit chemisch aktiven Gasen durchgeführt. Beim Spülen mit inerten Gasen (z. B. Argon oder Stickstoff) wird der Wasserstoff durch die Erniedrigung seines Partialdruckes praktisch physikalisch entfernt. Diese Art der Wasserstoffentfernung ist technologisch aufwendig und birgt die Gefahr, daß Wasserdampf während der Behandlung mit der Schmelze Kontakt bekommt. Hinzu kommt, daß beim Einsatz von Stickstoff mit bestimmten Legierungsbestandteilen eine unerwünschte Nitridbildung stattfinden kann. Beim Einsatz des chemisch aktiven Chlorgases wird Aluminiumchlorid gebildet, das an die Oberfläche steigt und dabei aufgrund seiner feinen Verteilung in der Schmelze eine wirksame Spülung bewirkt. Chlorgas ist jedoch eine schweres Umweltgift und auch teuer in der Herstellung. Die erforderlichen Schutzmaßnahmen zur Verhinderung des Austretens des giftigen Gases und seiner Reaktionsprodukte erfordern umfangreiche Investitionen. Im Gegensatz zur Verwendung chemischer Mittel stellt die Vakuumentgasung der Schmelze eine besonders umweltfreundliche und wirkungsvolle Methode dar. Allerdings wird der Erfolg dieser Methode insbesondere durch aufwendige Transporte der Schmelze, zwischenzeitliches Abkühlen und Wiederaufschmelzen nach den erforderlichen Legierungs- , Veredelungs- und Vakuumentgasungsprozessen bis zum Stranggießen und das damit zwangsläufige Inkontaktbringen mit der Luftfeuchtigkeit nicht optimal durchgeführt, so daß im Ergebnis des Legierungs- und Veredelungsverfahrens und nach dem Strangguß keine gasarmen und porenfreie Aluminium-Gußlegierungen vorliegen.The invention relates to a method and an arrangement for producing low-gas and non-porous cast aluminum alloys. Crucible or trough furnaces are usually used to produce cast alloys. Either liquid electrolysis metal is filled in or solid metal is melted. The intended alloy composition is adjusted by adding alloy components such as silicon, magnesium, copper, titanium, nickel. The molten bath is heated to dissolve and alloy the components. It absorbs more hydrogen because aluminum has a high solubility for hydrogen in the liquid state. This occurs when liquid aluminum is converted to water vapor and is immediately absorbed by the melt. The water vapor comes into contact with the liquid aluminum via the feed materials, the furnace and crucible linings, the tools, the melting and fluxing agents, the combustion of gaseous and liquid fuels and the air humidity. The amount of dissolved hydrogen depends on the metal temperature, the alloy composition and the hydrogen partial pressure. The hydrogen uptake is promoted by open burner flames or violent bath movements in induction furnaces. When refining cast alloys with alkali and alkaline earth metals such as strontium, sodium and calcium, the hydrogen content of the melt increases significantly again to values of over 0.3 ml of hydrogen in 100 g of metal, since the water vapor decomposition takes place even faster through these metals. The melt should be cleaned as soon as possible, as a treatment that was carried out at an early stage by subsequent technological steps, such as. B. by pouring for the purpose of transporting the melt, in turn can lead to contamination. In particular, the contact of the melt with the air humidity leads to an increase in the hydrogen content and the associated undesirable increase in the porosity of the aluminum moldings. Typical cleaning processes are carried out with inert but also with chemically active gases. When flushing with inert gases (e.g. argon or nitrogen), the hydrogen is practically physically removed by lowering its partial pressure. This type of hydrogen removal is technologically complex and involves the risk of water vapor coming into contact with the melt during the treatment. In addition, when using nitrogen with certain alloy components, undesirable nitride formation can take place. When using the chemically active chlorine gas, aluminum chloride is formed, which rises to the surface and, due to its fine distribution in the melt, causes an effective flushing. However, chlorine gas is a severe environmental poison and also expensive to manufacture. The necessary protective measures to prevent the escape of the toxic gas and its reaction products require extensive investments. In contrast to the use of chemical agents, the vacuum degassing of the melt is a particularly environmentally friendly and effective method. However, the success of this method is particularly due to the complex transportation of the melt, interim cooling and remelting after the required alloying, refining and vacuum degassing processes up to continuous casting and the inevitable contact with the air humidity is not carried out optimally, so that as a result of the alloying and refining process and after the continuous casting, there are no low-gas and non-porous aluminum casting alloys.

Hiervon ausgehend liegt der Erfindung die Aufgabe zugrunde ein Verfahren und eine Anordnung zur Herstellung gasarmer und porenfreier Aluminium-Gußlegierungen zu schaffen, mit denen es möglich ist den Kontakt der Aluminiumschmelze mit der Luftfeuchtigkeit vom Legierungsprozeß über die Veredelung bis zum Stranggießen der Gußbarren extrem gering zu halten, dabei die umweltfreundliche und effektive Vakuumentgasung zu nutzen und durch eine hohe Abkühlungsgeschwindigkeit die Ausbildung großer Gasporen zu verhindern.Proceeding from this, the invention has for its object to provide a method and an arrangement for the production of low-gas and non-porous aluminum casting alloys, with which it is possible to keep the contact of the aluminum melt with the air humidity from the alloying process through the refinement to the continuous casting of the cast ingot extremely low , to use the environmentally friendly and effective vacuum degassing and to prevent the formation of large gas pores by a high cooling rate.

Erfindungsgemäß wird diese Aufgabe dadurch gelöst, daß nach dem Legieren der Metallschmelze in einem Schmelzofen die Schmelze über ein Rinnensystem unmittelbar einem Vakuumofen zugeführt wird, daß im Vakuumofen Veredlungskomponenten zugesetzt werden und die für den Strangguß erforderliche Gießtemperatur eingestellt wird, daß das Vakuum im Vakuumofen bei periodischer Messung der Metalldichte weitere 5 bis 240 Minuten gehalten wird und daß danach die Metallschmelze über das Rinnensystem unmittelbar der Stranggußanlage zugeführt wird, wobei die Metallschmelze vor Eintritt in die Stranggußanlage filtriert wird. Erfindungsgemäß wird die Schmelze vom Schelzofen über das Rinnensystem abwechselnd oder gleichzeitig in zwei Vakuumöfen geführt, so daß die Stranggußanlage, die bevorzugt als Horizontal-Stranggußanlage ausgebildet ist, kontinuierlich mit Schmelze beschickt werden kann. Für die optimale qualitative und quantitative Durchführung des Verfahrens ist es wichtig, daß während des Haltens im Vakuumofen die Metalldichte gemessen wird. Dadurch ist es möglich die Verweildauer der Schmelze unter Vakuumbedingungen zu steuern. Zweckmäßig ist es, daß während des Haltens des Vakuums die Größe des Vakuums zwischen 100 und 1 mbar liegt. Die Regelung der Dauer des Vakuums hängt im wesentlichen von den Meßwerten der Metalldichte ab. So kann es durchaus notwendig sein, daß während des Haltens des Vakuums seine Größe konstant gehalten oder variiert wird. Beispielsweise ist es zweckmäßig, daß während des Haltens eine möglichst hohe Größe des Vakuums mit zunehmender Metalldichte eingestellt wird, damit die Austreibung des Wasserstoffs durch weitere Verringerung seines Partialdruckes trotz steigender Metalldichte möglich wird.According to the invention, this object is achieved in that after the alloying of the molten metal in a melting furnace, the melt is fed directly to a vacuum furnace via a channel system, that finishing components are added in the vacuum furnace and the casting temperature required for the continuous casting is set so that the vacuum in the vacuum furnace is periodic Measurement of the metal density is held for a further 5 to 240 minutes and that the metal melt is then fed directly to the continuous casting system via the channel system, the metal melt being filtered before entering the continuous casting system. According to the invention, the melt is fed from the melting furnace alternately or simultaneously into two vacuum furnaces, so that the continuous casting installation, which is preferably designed as a horizontal continuous casting installation, can be fed with melt continuously. For the optimal qualitative and quantitative implementation of the process, it is important that the metal density is measured while holding in a vacuum oven. This makes it possible to control the residence time of the melt under vacuum conditions. It is expedient for the size of the vacuum to be between 100 and 1 mbar while the vacuum is being maintained. The regulation of the duration of the vacuum essentially depends on the measured values of the metal density. It may well be necessary that its size be kept constant or varied while the vacuum is being held. For example, it is expedient for the vacuum to be as large as possible with increasing metal density while holding, so that the expulsion of the hydrogen is possible by further reducing its partial pressure despite increasing metal density.

Durch Verwendung einer wassergekühlten Horizontal-Stranggußanlage, die schnell und mit relativ kurzem Weg mit der Schmelze aus dem Vakuumofen beschickt wird, ist auch eine hohe Abkühlungsgeschwindigkeit gegeben, die eine Ausbildung großer Poren verhindert. Die Anordnung des Schmelzofens, mindestens eines Vakuumschmelzofens und der Stranggußanlage, die über ein Rinnensystem unmittelbar miteinander verbunden sind, ermöglichen es, das Metall während des Behandlungsprozesses immer in der Schmelze zu halten. Energieaufwendige Erstarrungs- und Wiederaufschmelzvorgänge entfallen aufgrund des optimalen Transportes der Schmelze über das Rinnensystem. Um das Fließen der Schmelze durch das Rinnensystem unter Ausnutzung der Schwerkraft zu erleichtern, ist ein Gefälle vorgesehen, das durch unterschiedliche Standebenen der Öfen und der Stranggußanlage oder durch ein höhenverstellbares Rinnensystem realisiert wird. Das Rinnensystem ist gemäß der Erfindung ein offenes System, damit eine Kontrolle des Schmelzflusses jederzeit gewährleistet ist. Aufgrund der insgesamt kurzen Wege ist der Kontakt der Schmelze mit der Luftfeuchtigkeit minimal.By using a water-cooled horizontal continuous casting plant, which is fed with the melt from the vacuum furnace quickly and with a relatively short distance, there is also a high cooling rate, which prevents the formation of large pores. The arrangement of the melting furnace, at least one vacuum melting furnace and the continuous casting plant, which are directly connected to one another via a channel system, make it possible to keep the metal in the melt at all times during the treatment process. Energy-consuming solidification and remelting processes are eliminated due to the optimal transport of the melt via the channel system. In order to facilitate the flow of the melt through the channel system using gravity, a gradient is provided, which is realized by different levels of the furnaces and the continuous casting system or by a height-adjustable channel system. The gutter system according to the invention is an open system, so that a control of the Melt flow is guaranteed at all times. Due to the short distances, the contact of the melt with the air humidity is minimal.

In der Zeichnung ist ein Ausführungsbeispiel der erfindungsgemäßen Anordnung dargestellt. Es zeigen die

Fig. 1
eine Anordnung eines Schmelzofens, zweier Vakuumschmelzöfen, einer Horizontal-Stranggußanlage mit Keramik-Form-Filter, die durch ein Rinnensystem miteinander verbunden sind;
Fig. 2
Porengehalt eines Masselquerschnittes einer Hüttenlegierung auf einer wassergekühlten Masselgießmaschine vergossen;
Fig. 3
Querschnitt eines Stranggußbarrens, der nach dem erfindungsgemäßen Verfahren und der Anordnung vergossen wurde.
In the drawing, an embodiment of the arrangement according to the invention is shown. They show
Fig. 1
an arrangement of a melting furnace, two vacuum melting furnaces, a horizontal continuous casting plant with ceramic-shaped filter, which are connected to each other by a channel system;
Fig. 2
Pore content of a cross-section of a smelter alloy cast on a water-cooled ingot casting machine;
Fig. 3
Cross section of a continuous casting ingot, which was cast according to the inventive method and the arrangement.

Der Schmelzofen 1 in der Fig.1 ist üblicherweise als Tiegel- oder Wannenofen ausgebildet. Er dient der Legierungsherstellung. Hier werden die Legierungskomponenten, wie Silicium, Magnesium, Kupfer, Titan, Nickel usw. aufgattiert, eine Raffinationsbehandlung mit Reaktions- und/oder Inertgasen durchgeführt und die notwendige Metalltemperatur zur Überführung der Schmelze in die Vakuumöfen 2 eingestellt. Die Schmelze fließt der Schwerkraft folgend durch das Rinnensystem 4 in die beiden Vakuumöfen 2 . Die Kapazität des Schmelzofens 1 ist so groß, daß beide Vakuumöfen 2 im Wechselbetrieb beschickt werden können. Die Veredelungskomponenten wie Strontium, Natrium, Calcium werden hier zulegiert und die notwendige Behandlungstemperatur im Hinblick auf die vorgegebene Gießtemperatur eingestellt. Im Vakuumofen 2 wird die Legierungsschmelze einer Vakuumbehandlung unterzogen, die nach den Ergebnissen der Metalldichteprüfung gesteuert wird. Nach positiver Metalldichteprüfung wird die Schmelze in den beiden Vakuumöfen 2 nacheinander über das Rinnensystem 4 unter Zwischenschaltung eines Keramik-Form-Filters 5 der wassergekühlten Horizontal-Stranggußanlage 3 zugeführt und zu Format-Barren vergossen. Die so hergestellten, gasarmen und porenfreien Gußlegierungen ermöglichen bei sachgemäßem Wiedereinschmelzen die Herstellung duktiler, porenfreier Gußteile.The melting furnace 1 in FIG. 1 is usually designed as a crucible or trough furnace. It is used to make alloys. Here the alloy components, such as silicon, magnesium, copper, titanium, nickel, etc., are lined up, a refining treatment with reaction and / or inert gases is carried out, and the metal temperature necessary for transferring the melt into the vacuum furnaces 2 is set. Following the gravity, the melt flows through the channel system 4 into the two vacuum furnaces 2. The capacity of the melting furnace 1 is so large that both vacuum furnaces 2 can be charged alternately. The refinement components such as strontium, sodium, calcium are alloyed in here and the necessary treatment temperature with regard to the specified casting temperature set. In the vacuum furnace 2, the alloy melt is subjected to a vacuum treatment, which is controlled according to the results of the metal density test. After a positive metal density test, the melt in the two vacuum furnaces 2 is fed in succession via the channel system 4 with the interposition of a ceramic shape filter 5 to the water-cooled horizontal continuous casting plant 3 and cast into format bars. The low-gas, non-porous casting alloys produced in this way enable ductile, non-porous castings to be produced if they are melted properly again.

In der Fig.2 ist ein Masselquerschnitt mit vielen großen Poren dargestellt. Dieser Formkörper ist nicht nach erfindungsgemäßem Verfahren und Anordnung hergestellt worden.2 shows a cross-section of the pig with many large pores. This molded body has not been produced by the method and arrangement according to the invention.

Die Fig.3 zeigt einen porenfreien Stranggußbarren, der erfindungsgemäß hergestellt wurde.3 shows a pore-free ingot which was produced according to the invention.

BezugszeichenlisteReference symbol list

11
SchmelzofenMelting furnace
22nd
VakuumofenVacuum oven
33rd
Horizontal-StranggußanlageHorizontal continuous casting machine
44th
RinnensystemChannel system
55
Keramik-Form-FilterCeramic shape filter

Claims (15)

Verfahren zur Herstellung gasarmer und porenfreier Aluminium-Gußlegierungen durch Vakuumbehandlung der Schmelze
dadurch gekennzeichnet,
daß nach dem Legieren der Metallschmelze in einem Schmelzofen (1) die Schmelze über ein Rinnensystem (4) unmittelbar einem Vakuumofen (2) zugeführt wird,
daß im Vakuumofen (2) Veredlungskomponenten zugesetzt werden und die für den Strangguß erforderliche Gießtemperatur eingestellt wird,
daß das Vakuum im Vakuumofen (2) bei periodischer Messung der Metalldichte weitere 5 bis 240 Minuten gehalten wird und daß danach die Metallschmelze über das Rinnensystem (4) unmittelbar der Stranggußanlage (3) zugeführt wird.
Process for the production of low-gas and non-porous cast aluminum alloys by vacuum treatment of the melt
characterized,
that after the alloying of the molten metal in a melting furnace (1) the melt is fed directly to a vacuum furnace (2) via a channel system (4),
that finishing components are added in the vacuum furnace (2) and the casting temperature required for the continuous casting is set,
that the vacuum in the vacuum furnace (2) is maintained for a further 5 to 240 minutes with periodic measurement of the metal density and that the metal melt is then fed directly to the continuous casting installation (3) via the channel system (4).
Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
daß die Metallschmelze vor Eintritt in die Stranggußanlage (3) filtriert wird.
Method according to claim 1,
characterized,
that the molten metal is filtered before entering the continuous casting plant (3).
Verfahren nach Anspruch 1 und 2,
dadurch gekennzeichnet,
daß die Schmelze vom Schmelzofen (1) über das Rinnensystem (4) abwechselnd oder gleichzeitig in zwei Vakuumöfen (2) geführt wird.
Method according to claims 1 and 2,
characterized,
that the melt from the melting furnace (1) via the channel system (4) alternately or simultaneously in two vacuum furnaces (2).
Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
daß zur Messung der Metalldicke das Vakuum im Vakuumofen kurzzeitig unterbrochen wird.
Method according to claim 1,
characterized,
that the vacuum in the vacuum furnace is briefly interrupted to measure the metal thickness.
Verfahren nach Anspruch 1 und 4,
dadurch gekennzeichnet,
daß während des Haltens des Vakuums die Größe des Vakuums zwischen 100 und 1 mbar liegt.
Method according to claims 1 and 4,
characterized,
that while the vacuum is maintained, the size of the vacuum is between 100 and 1 mbar.
Verfahren nach den Ansprüchen 1, 4 und 5,
dadurch gekennzeichnet,
daß während des Haltens des Vakuums die Größe des Vakuums konstant gehalten wird.
Process according to claims 1, 4 and 5,
characterized,
that while the vacuum is being held, the size of the vacuum is kept constant.
Verfahren nach den Ansprüchen 1, 4 und 5,
dadurch gekennzeichnet,
daß während des Haltens des Vakuums die Größe des Vakuums variiert wird.
Process according to claims 1, 4 and 5,
characterized,
that while the vacuum is being held, the size of the vacuum is varied.
Verfahren nach einem der Ansprüche 1, 4, 5 und 7,
dadurch gekennzeichnet,
daß die Intensität der Vakuumbehandlung mit der Metalldichte korreliert.
Method according to one of claims 1, 4, 5 and 7,
characterized,
that the intensity of the vacuum treatment correlates with the metal density.
Verfahren nach einem der Ansprüche 1, 4, 5, 7 und 8,
dadurch gekennzeichnet,
daß die Einwirkungszeit des Vakuums mit zunehmender Metalldichte erhöht wird.
Method according to one of claims 1, 4, 5, 7 and 8,
characterized,
that the exposure time of the vacuum is increased with increasing metal density.
Anordnung zur Durchführung des Verfahrens zur Herstellung gasarmer und porenfreier Aluminium-Gußlegierungen, bestehend aus Schmelzofen, Vakuumschmelzofen und Stranggußanlage,
dadurch gekennzeichnet,
daß der Schmelzofen (1), mindestens ein Vakuumschmelzofen (2) und die Stranggußanlage (3) über ein Rinnensystem (4) parallel und unmittelbar miteinander verbunden sind und daß vor der Stranggußanlage (3) ein Filter (5) angeordnet ist, der beim Anschluß mit mehreren Vakuumschmelzöfen etwa in der Mitte zwischen der die Öfen verbindenden Schmelzrinne positioniert ist.
Arrangement for carrying out the process for the production of low-gas and pore-free cast aluminum alloys, consisting of a melting furnace, vacuum melting furnace and continuous casting plant,
characterized,
that the melting furnace (1), at least one vacuum melting furnace (2) and the continuous casting system (3) are connected in parallel and directly to one another via a channel system (4) and that a filter (5) is arranged in front of the continuous casting system (3), which during connection with several vacuum melting furnaces is positioned approximately in the middle between the melting channel connecting the furnaces.
Anordnung nach Anspruch 10,
dadurch gekennzeichnet,
daß die Standebene des Schmelzofens (1) sich oberhalb der Standebene des Vakuumschmelzofens (2) und der Stranggußanlage (3) befindet.
Arrangement according to claim 10,
characterized,
that the level of the melting furnace (1) is above the level of the vacuum melting furnace (2) and the continuous casting plant (3).
Anordnung nach einem der Ansprüche 10 und 11,
dadurch gekennzeichnet,
daß die Stranggußanlage (3) eine Horizontal-Stranggußanlage ist.
Arrangement according to one of claims 10 and 11,
characterized,
that the continuous casting system (3) is a horizontal continuous casting system.
Anordnung nach einem der Ansprüch 10 bis 12,
dadurch gekennzeichnet,
daß das Rinnensystem (4) ein offenes System ist.
Arrangement according to one of Claims 10 to 12,
characterized,
that the channel system (4) is an open system.
Anordnung nach einem der Ansprüche 10 bis 13,
dadurch gekennzeichnet,
daß Teile des zwischen den Schmelzöfen (2) angeordneten, mit einem Mehrfachanschluß 4a - c versehenen Rinnensystemes (4) höhenverstellbar sind.
Arrangement according to one of claims 10 to 13,
characterized,
that parts of the channel system (4) arranged between the melting furnaces (2) and provided with a multiple connection 4a-c are height-adjustable.
Anordnung nach einem der Anspruche 10 bis 14,
dadurch gekennzeichnet,
daß der Filter (5) ein Keramik-Form-Filter ist.
Arrangement according to one of claims 10 to 14,
characterized,
that the filter (5) is a ceramic shape filter.
EP93104326A 1992-04-18 1993-03-17 Process and apparatus for the production of low gas and pore free aluminium alloys Withdrawn EP0566867A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4212936 1992-04-18
DE4212936A DE4212936C2 (en) 1992-04-18 1992-04-18 Process and arrangement for producing low-gas and non-porous cast aluminum alloys

Publications (1)

Publication Number Publication Date
EP0566867A1 true EP0566867A1 (en) 1993-10-27

Family

ID=6457057

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93104326A Withdrawn EP0566867A1 (en) 1992-04-18 1993-03-17 Process and apparatus for the production of low gas and pore free aluminium alloys

Country Status (13)

Country Link
US (1) US5330555A (en)
EP (1) EP0566867A1 (en)
KR (1) KR930021294A (en)
AU (1) AU3693993A (en)
CA (1) CA2091857A1 (en)
CZ (1) CZ61593A3 (en)
DE (1) DE4212936C2 (en)
HU (1) HUT65416A (en)
NO (1) NO931049L (en)
SK (1) SK34193A3 (en)
TR (1) TR26957A (en)
TW (1) TW242588B (en)
ZA (1) ZA931909B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112795803A (en) * 2020-12-27 2021-05-14 上海交通大学安徽(淮北)陶铝新材料研究院 In-situ self-growing aluminum-based composite material system with powder injection

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1041900C (en) * 1994-10-20 1999-02-03 邱表来 Vacuum extrusion and special heat treatment technology for producing high-strength shockproof aluminium casting
CN103436919B (en) * 2013-08-22 2016-06-01 中冶东方工程技术有限公司 A kind of preliminary cleaning method before high-temperature electrolysis aluminium liquid founding and product
CN105087968A (en) * 2014-05-13 2015-11-25 陕西宏远航空锻造有限责任公司 Optimized production method for producing aluminum alloy casting through vacuum melting and casting
CN113684402B (en) * 2021-09-01 2022-11-22 连云港星耀材料科技有限公司 Preparation method and processing equipment of rare earth aluminum alloy steering knuckle with good toughness

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4049248A (en) * 1971-07-16 1977-09-20 A/S Ardal Og Sunndal Verk Dynamic vacuum treatment
US4258099A (en) * 1978-10-21 1981-03-24 Bridgestone Tire Company Limited Cordierite, alumina, silica porous ceramic bodies coated with an activated alumina layer
EP0174061A1 (en) * 1984-05-16 1986-03-12 William Lyon Sherwood Continuous vacuum degassing and casting of steel
EP0191586A1 (en) * 1985-02-13 1986-08-20 Sumitomo Light Metal Industries Limited Electromagnetic levitation casting

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2029687A1 (en) * 1970-06-16 1971-12-23 Deutsche Edelstahlwerke AG, 4150Krefeld Process for casting metal or metal alloys in continuous casting molds
JPS5967350A (en) * 1982-10-08 1984-04-17 Toshiba Corp Aluminum material
JPH0620618B2 (en) * 1985-03-26 1994-03-23 日立電線株式会社 Continuous casting method and apparatus
US4738717A (en) * 1986-07-02 1988-04-19 Union Carbide Corporation Method for controlling the density of solidified aluminum

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4049248A (en) * 1971-07-16 1977-09-20 A/S Ardal Og Sunndal Verk Dynamic vacuum treatment
US4258099A (en) * 1978-10-21 1981-03-24 Bridgestone Tire Company Limited Cordierite, alumina, silica porous ceramic bodies coated with an activated alumina layer
EP0174061A1 (en) * 1984-05-16 1986-03-12 William Lyon Sherwood Continuous vacuum degassing and casting of steel
EP0191586A1 (en) * 1985-02-13 1986-08-20 Sumitomo Light Metal Industries Limited Electromagnetic levitation casting

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 8, no. 168 (C-236)3. August 1984 & JP-A-59 067 350 ( TOSHIBA KK ) 17. April 1984 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112795803A (en) * 2020-12-27 2021-05-14 上海交通大学安徽(淮北)陶铝新材料研究院 In-situ self-growing aluminum-based composite material system with powder injection

Also Published As

Publication number Publication date
HUT65416A (en) 1994-06-28
US5330555A (en) 1994-07-19
TR26957A (en) 1994-09-12
SK34193A3 (en) 1993-11-10
AU3693993A (en) 1993-10-21
KR930021294A (en) 1993-11-22
TW242588B (en) 1995-03-11
CZ61593A3 (en) 1993-12-15
DE4212936C2 (en) 1994-11-17
DE4212936A1 (en) 1993-10-21
CA2091857A1 (en) 1993-10-19
NO931049L (en) 1993-10-19
HU9301124D0 (en) 1993-08-30
ZA931909B (en) 1994-01-19
NO931049D0 (en) 1993-03-23

Similar Documents

Publication Publication Date Title
DE1219183B (en) Process for preventing core defects in cast blocks
DE1941282A1 (en) Process for refining steel by remelting it in a plasma arc
EP0479757A1 (en) Process and apparatus for the manufacture of titanium-(aluminum) base alloys
DE2425032B2 (en) Process and device for the production of ingots from high-melting iron and metal alloys with good deformability according to the electroslag remelting process
DE2137996A1 (en) Method for introducing a solid metal into a molten metal
DE3045030A1 (en) METHOD FOR WINNING COPPER IN ANODE GOOD
EP0566867A1 (en) Process and apparatus for the production of low gas and pore free aluminium alloys
DE112014003205T5 (en) Process for producing lithium-containing aluminum alloys
DE1483587A1 (en) Method and device for introducing an additive into a metal melt
DE3334733C2 (en) Process and plant for the production of high-purity alloys
EP0659170B1 (en) Reactor and a method of smelting combustion residues in the reactor
EP0280765B1 (en) Method of and installation for producing castings from pressure treated melts from steel alloys
DE1458167A1 (en) Method and device for the slow casting and shaping of metals
DE1558428A1 (en) Process for cleaning copper-based alloys
DE3830540C2 (en) Process for removing contaminants from AlSi cast alloys
DE2029687A1 (en) Process for casting metal or metal alloys in continuous casting molds
AT215610B (en) Method and device for casting chemically highly reactive melt material
DE3148958C2 (en) Method and device for the treatment of pig iron outside the furnace
DD233145A1 (en) PROCESS FOR PREPARING COLD BOND FROM NICR21,5CU4AL12,5
DE2853442C3 (en)
DE2640606A1 (en) NICKEL-MAGNESIUM ALLOY
DE1912936C (en) Device and operating method for cleaning and vacuum degassing of molten metals
KR970009524B1 (en) Making method of free cutting steel
DD143430A1 (en) METHOD AND DEVICE FOR TREATING METAL MELTS
DE2731367A1 (en) Molten steel treatment to prevent reoxidation - by adding a calcium-silicon alloy to the steel stream during casting

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930814

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IE IT LI LU NL SE

17Q First examination report despatched

Effective date: 19940803

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19941018