EP0616831B1 - Oily mist resistant electret filter media - Google Patents

Oily mist resistant electret filter media Download PDF

Info

Publication number
EP0616831B1
EP0616831B1 EP94104430A EP94104430A EP0616831B1 EP 0616831 B1 EP0616831 B1 EP 0616831B1 EP 94104430 A EP94104430 A EP 94104430A EP 94104430 A EP94104430 A EP 94104430A EP 0616831 B1 EP0616831 B1 EP 0616831B1
Authority
EP
European Patent Office
Prior art keywords
additive
filter media
electret
fluorochemical
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94104430A
Other languages
German (de)
French (fr)
Other versions
EP0616831A1 (en
Inventor
Marvin E. c/o Minnesota Min. & Manuf. Comp. Jones
Alan D. c/o Minnesota Min.& Manuf. Comp. Rousseau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Co
Original Assignee
Minnesota Mining and Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minnesota Mining and Manufacturing Co filed Critical Minnesota Mining and Manufacturing Co
Publication of EP0616831A1 publication Critical patent/EP0616831A1/en
Application granted granted Critical
Publication of EP0616831B1 publication Critical patent/EP0616831B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/04Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins
    • D01F6/06Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins from polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/08Filter cloth, i.e. woven, knitted or interlaced material
    • B01D39/083Filter cloth, i.e. woven, knitted or interlaced material of organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/28Plant or installations without electricity supply, e.g. using electrets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/56Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in association with fibre formation, e.g. immediately following extrusion of staple fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0407Additives and treatments of the filtering material comprising particulate additives, e.g. adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0435Electret
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/0604Arrangement of the fibres in the filtering material
    • B01D2239/0622Melt-blown
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1225Fibre length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1233Fibre diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1291Other parameters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S55/00Gas separation
    • Y10S55/39Electrets separator

Definitions

  • the invention concerns electret-enhanced filter media (more simply called “electret filters”) made of fibers such as melt-blown microfibers.
  • the invention concerns fibrous electret filters for removing particulate matter from air and improved fibers for making those filters.
  • the invention is especially concerned with respirators and the problem of improving the ability of filter media to accept filtration-enhancing electrostatic charges and to sustain that electret filtration enhancement in the presence of oily aerosols.
  • melt-blown microfiber webs continue to be in widespread use for filtering particulate contaminants, e.g., as face masks and as water filters, and for other purposes, e.g., to remove oil from water.
  • the filtering efficiency of a melt-blown microfiber web can be improved by a factor of two or more when the melt-blown fibers are bombarded as they issue from the orifices with electrically charged particles such as electrons or ions, thus making the fibrous web an electret.
  • the web can be made an electret by exposure to a corona after it is collected.
  • Melt-blown polypropylene microfibers are especially useful, while other polymers may also be used such as polycarbonates and polyhalocarbons that may be melt-blown and have appropriate volume-resistivities under expected environmental conditions.
  • Fibrous filters for removing particulate contaminants from the air are also made from fibrillated polypropylene films.
  • Electret filtration enhancement can be provided by electrostatically charging the film before it is fibrillated.
  • the electret structures may be films or sheets which find applications as the electrostatic element in electro-acoustic devices such as microphones, headphones and speakers and in dust particle control, high voltage electrostatic generators, electrostatic recorders and other applications.
  • Fibrous polypropylene electret filters that are currently available, some made from melt-blown polypropylene microfibers and others from fibrillated polypropylene film, can show thermally stable electret filtration enhancement.
  • fibrous electret filters made of polypropylene tend to lose their electret enhanced filtration efficiency faster than desired for some purposes when exposed to oily aerosols.
  • the present invention provides oily mist resistant electret filter media comprising polypropylene electret fibers and a melt processable fluorochemical additive, said additive having a melting temperature of at least 70°C and a molecular weight of 500 to 2500.
  • the fibers may be in the form of meltblown microfibers.
  • Preferred fluorochemical additives are fluorochemical oxazolidinones, fluorochemical piperazines or perfluorinated alkanes.
  • the present invention provides a method for filtering particulate material from air containing oily aerosol particles comprising passing said air through electret filter media comprising polypropylene melt blown microfibers and a melt processable fluorochemical additive.
  • the electret filter media of the present invention have improved electret filtration enhancement and sustain that enhancement upon exposure to oily aerosols. Furthermore, the electret filter media of the present invention maintain functional filtration enhancing charge levels under accelerated aging conditions.
  • the fibrous electret filter is especially useful as an air filter element of a respirator such as a face mask or for such purposes as heating, ventilation, and air-conditioning.
  • the electret filters may be in the form of molded or folded half-face masks, replaceable cartridges or canisters, or prefilters.
  • an air filter element of the invention is surprisingly effective for removing oily aerosols such as in cigarette smoke or in fumes from combustion engines.
  • the electret filter media has surprisingly better filtration performance than does a comparable electret filter made of 100% polypropylene fibers.
  • melt blown polypropylene microfibers useful in the present invention can be prepared as described in Van Wente, A., "Superfine Thermoplastic Fibers," Industrial Engineering Chemistry , vol. 48, pp. 1342-1346 and in Report No. 4364 of the Naval Research Laboratories, published May 25, 1954, entitled “Manufacture of Super Fine Organic Fibers” by Van Wente et al. or from microfiber webs containing particulate matter such as those disclosed, for example, in US-A-3,971,373, US-A-4,100,324 and US-A-4,429,001.
  • the polypropylene resin used to form the melt blown microfibers should be substantially free from materials such as antistatic agents which could increase the electrical conductivity or otherwise interfere with the ability of the fibers to accept and hold electrostatic charges.
  • Blown microfibers for fibrous electret filters of the invention typically have an effective fiber diameter of from 5 to 30 micrometers preferably from 7 to 10 micrometers, as calculated according to the method set forth in Davies, C.N., "The Separation of Airborne Dust and Particles," Institution of Mechanical Engineers, London, Proceedings 1B, 1952.
  • the fluorochemical additives useful in the present invention are fluorochemical compounds which can provide oil and water repellency to fibers.
  • the fluorochemical additives must be melt processable, i.e., suffer substantially no degradation under the melt processing conditions used to form the microfibers.
  • the fluorochemical additive is solid at 25°C and has a melting point of at least 70°C, more preferably at least 100°C.
  • the fluorochemical additive preferably exhibits no phase transitions in the range of commonly encountered temperatures, i.e., 0°C to 80°C as such changes in molecular freedom can adversely affect charge stability.
  • the fluorochemical additive has a molecular weight in the range of 500 to 2500, more preferably in the range of 800 to 1500.
  • the fluorochemical additive is preferably substantially free from mobile polar and/or ionic species, contaminants and impurities which could increase the electrical conductivity or otherwise interfere with the ability of the fibers to accept and hold electrostatic charges.
  • Preferred fluorochemical additives include, for example, fluorochemical oxazolidinones which are described in US-A-5,025,052 fluorochemical piperazines which are described in Katritzky, Alan R. et al., "Design and Synthesis of Novel Fluorinated Surfactants for Hydrocarbon Subphases, " Langmuir , vol. 4, pp. 732-735., 1988, and perfluorinated alkanes preferably having 10 to 50 carbon atoms, more preferably 15 to 30 carbon atoms.
  • the fluorochemical additive is preferably present in amounts of 0.2 to 10 weight percent, more preferably 0.5 to 5 weight percent, most preferably 0.5 to 2 weight percent.
  • the filter media is annealed, i.e., heated for a sufficient time at a sufficient temperature to cause the fluorochemical additive to bloom to the surface of the fibers.
  • a sufficient temperature to cause the fluorochemical additive to bloom to the surface of the fibers.
  • 1 to 10 minutes at 140°C is sufficient although shorter times may be used at higher temperatures and longer times may be required at lower temperatures.
  • the electret filter media of the present invention preferably has a basis weight in the range of 10 to 500 g/m 2 , more preferably 10 to 100 g/m 2 .
  • the basis weight can be controlled, for example, by changing either the collector speed or the die throughput.
  • the thickness of the filter media is preferably 0.25 to 20 mm, more preferably 0.5 to 2 mm.
  • the electret filter media and the polypropylene resin from which it is produced should not be subjected to any unnecessary treatment which might increase its electrical conductivity, e.g., exposure to gamma rays, ultraviolet irradiation, pyrolysis, oxidation, etc.
  • the melt-blown microfibers or fibrillated fibers of the electret filters of the invention can be electrostatically charged by a process described in US-Re. 30,782 or Re. 31,285 or by other conventional methods for charging or polarizing electrets, e.g., by a process of US-A-4,375,718; US-A-4,588,537; or US-A-4,592,815.
  • the charging process involves subjecting the material to corona discharge or pulsed high voltage.
  • a fluorochemical oxazolidinone was prepared following the procedure of Example 5 of US-A-5,099,026 which is incorporated herein by reference.
  • the solid product was ground to form a powder and one part was added to four parts refluxing solvent of 95% ethanol and 5% water and refluxed for ten minutes.
  • the resulting slurry was cooled and the solid filtered and dried at 71°C.
  • the resulting solid had a melting point of 197°C as determined by DSC.
  • the structure is set forth in Table I.
  • Additive B was prepared using the procedure used for Additive A except the isocyanate used was p-xylene diisocyanate.
  • the resulting solid product had a melting point of 220°C as determined by DSC.
  • the structure is set forth in Table I.
  • a fluorochemical oxazolidinone was prepared following the procedure of Example 1 of US-A-5,099,026. One part of the solid product was dissolved in five parts dimethyl formamide at 100°C and the resulting solution was allowed to cool. The solid which formed was isolated by filtration and added to 16 times its weight of refluxing ethyl acetate. After cooling, the resulting solid was isolated by filtration and dried. The resulting solid product had a melting point of 169°C as determined by DSC. The structure is set forth in Table I.
  • Additive D was prepared using the procedure used for Additive A except the isocyanate used was octadecyl isocyanate. The product was recrystallized from ethyl acetate four times. The resulting solid product had a melting point of 145°C as determined by DSC. The structure is set forth in Table I.
  • Additive E was then prepared using the procedure used for Additive A except the isocyanate used was the polyfunctional isocyanate intermediate prepared above.
  • the reaction product was difficult to filter. Filter cakes of the product swollen with ethyl acetate were added to a solution of 70% acetone and 30% water. A white solid rapidly settled out and was isolated by filtration. The product was dried at 71°C. The resulting solid had a melting point of 182°C as determined by DSC.
  • Table I The structure is set forth in Table I.
  • Additive F was prepared by adding to a 3-neck round bottom 500 ml flask equipped with a nitrogen inlet and a magnetic stirrer N-(perfluorooctylsulfonyl)-piperazine (34.1 g, 60 mmol), triethylamine (6.7 g, 66 mmol)and chloroform (200 mL) and the mixture was stirred. Phthaloyl dichloride (95%, 6.4 g, 30 mmol) was added dropwise as a chloroform solution. After the addition was complete, the reaction mixture was stirred under nitrogen atmosphere for 30 minutes. The reaction product was washed with deionized water several times. The solid was allowed to air dry and then was oven dried at 105°C for three hours.
  • the solid product was ground to form a powder and one part was added to four parts refluxing solvent of 95% ethanol and 5% water and refluxed for ten minutes. The resulting solid product was dried at 71°C. The product had a melting point of 191°C. The structure was confirmed by NMR. The structure is set forth in Table I.
  • Additive G was C 24 F 50 , available from Aldrich Chemical Co., melting point 188-190°C.
  • N-methyl-perfluorooctanesulfonamide 450 g was placed in a two-liter, three-necked, round bottom flask and heated to 80°C.
  • Epichlorohydrin 101 g was then added, followed by addition of methanol (91 g).
  • the temperature was reduced to 65°C and sodium methoxide (30 g, 25% in methanol) was slowly added while the temperature was maintained below 70°C.
  • sodium hydroxide 60 g, 50% aqueous solution was slowly added with the temperature maintained below 70°C.
  • the resulting reaction was stirred overnight at 65°C. Vacuum was then applied to remove excess methanol and epichlorohydrin.
  • N-methyl-N-glycidyl-perfluorooctanesulfon-amide, (250 g, 0.44 mol) and toluene (250 g) were placed in a one-liter, three-necked, round bottom flask equipped with a stirrer, condenser, gas inlet tube, thermometer and electric heating mantle under a nitrogen atmosphere.
  • the solution was stirred, heated to 60°C and then octadecylamine (118.4 g, 0.44 mol) was added in small portions over 15 minutes. The temperature was then raised to 115°C and the mixture was stirred for 12 hours until gas chromatographic analysis confirmed the epoxide groups had been converted to aminoalcohol groups.
  • the reaction mixture was cooled to 25°C and excess toluene was removed under vacuum with a rotary evaporator.
  • the resulting material was recrystallized from a solution of 5 parts water and 95 parts ethyl alcohol and had a melting point of 63°C as determined by DSC analysis.
  • Additive J is FS-1265 Fluid, a trimethyl terminated trifluoropropylmethyl polysiloxane, viscosity 10,000 CST available from Dow Corning Corp.
  • Example 1 polypropylene (99%, ESCORENE PP-3505, available from Exxon Corporation) and Additive A (1%) were dry blended and extruded as described in Van Wente,A., "Superfine Thermoplastic Fibers," Industrial Engineering Chemistry , vol. 48, pp. 1342-1346 at a melt temperature of 297°C to form melt blown microfiber web having a basis weight of 54 g/m 2 and a thickness of 0.79 mm. The web was annealed at 140°C for 10 minutes and then corona charged using a high voltage electric field provided between a corona source and a ground electrode with a corona current of 0.01 milliamp per centimeter of corona source.
  • Example 2-7 and Comparative Examples C1- C3 webs were prepared using the procedure of Example 1.
  • Comparative Example C4 contained no additive.
  • the additive, amount of additive, melt temperature, basis weight, thickness and ⁇ P are set forth in Table II.
  • the ⁇ P was measured with a flow rate of 32 L/min at a face velocity of 5.2 cm/sec.
  • Dioctyl phthalate (DOP) 0.3 micrometer diameter particles at a concentration of between 70 and 110 mg/m 3 are generated using a TSI No. 212 sprayer with four orifices and 0.2 MPa (30 psi) clean air.
  • the particles are forced through a sample of filter media which is 11.43 cm (4.5 inches) in diameter at a rate of 42.5 L/min. at a face velocity of 6.9 centimeters per second.
  • the sample was exposed to the aerosol for 30 to 60 seconds until the readings stabilized.
  • the penetration is measured with an optical scattering chamber, Percent Penetration Meter Model TPA-8F available from Air Techniques Inc.
  • the DOP penetration is preferably less than 40%, more preferably less than 25%.
  • the pressure drop is measured at a flow rate of 42.5 L/min and a face velocity of 6.9 cm/sec using an electronic manometer. Pressure drop is reported as ⁇ P in mm of water.
  • the pressure drop is less than 4, more preferably less than 3.
  • the penetration and pressure drop are used to calculate a quality value "QF value" from the natural log (In) of the DOP penetration by the following formula:
  • QF value a quality value "QF value" from the natural log (In) of the DOP penetration by the following formula:
  • a higher initial QF value indicates better initial filtration performance.
  • Decreased QF values effectively correlate with decreased filtration performance.
  • a QF value of at least 0.25 is preferred, a value of at least 0.4 is more preferred and a value of at least 0.5 is most preferred.
  • the filter media are preferably thermally stable, i.e., show no more than 30% loss in QF value after three days storage at 60°C,
  • DOP Loading Test the same test equipment was used as in the penetration and pressure drop tests.
  • the test sample was weighed and then exposed to the DOP aerosol for 45 min. to provide an exposure of between 130 and 200 mg. DOP penetration and pressure drop are measured throughout the test at least as frequently as once per minute.
  • the mass of DOP collected divided by the mass of sample exposed was calculated for each measurement interval from the measured penetration, mass of the filter web and total mass of DOP collected on the filter web during exposure.
  • each of Examples 1-7 exhibit a QF value greater than 0.4 and each of Examples 1-6 have penetrations lower than 50% after 100 mg DOP exposure.
  • Comparative Example C2 did not retain charge after elevated temperature aging, possibly due to the low melting point of the fluorochemical additive and the presence of polar groups in the molecule.
  • Example 8-10 samples were prepared as in Example 1 using 0.5, 1 and 2 weight percent, respectively of Additive A. In Comparative Example C8 no additive was used. The samples were stored at 70°C for 72 hours. Testing was carried out as in the previous examples. The results are set forth in Table VI.
  • Additive A provides improved performance.

Description

  • The invention concerns electret-enhanced filter media (more simply called "electret filters") made of fibers such as melt-blown microfibers. The invention concerns fibrous electret filters for removing particulate matter from air and improved fibers for making those filters. The invention is especially concerned with respirators and the problem of improving the ability of filter media to accept filtration-enhancing electrostatic charges and to sustain that electret filtration enhancement in the presence of oily aerosols.
  • For many years nonwoven fibrous filter webs have been made from polypropylene using melt-blowing apparatus of the type described in Report No. 4364 of the Naval Research Laboratories, published May 25, 1954, entitled "Manufacture of Super Fine Organic Fibers" by Van Wente et al. Such melt-blown microfiber webs continue to be in widespread use for filtering particulate contaminants, e.g., as face masks and as water filters, and for other purposes, e.g., to remove oil from water.
  • The filtering efficiency of a melt-blown microfiber web can be improved by a factor of two or more when the melt-blown fibers are bombarded as they issue from the orifices with electrically charged particles such as electrons or ions, thus making the fibrous web an electret. Similarly, the web can be made an electret by exposure to a corona after it is collected. Melt-blown polypropylene microfibers are especially useful, while other polymers may also be used such as polycarbonates and polyhalocarbons that may be melt-blown and have appropriate volume-resistivities under expected environmental conditions.
  • Fibrous filters for removing particulate contaminants from the air are also made from fibrillated polypropylene films. Electret filtration enhancement can be provided by electrostatically charging the film before it is fibrillated.
  • Common polymers such as polyesters, polycarbonates, etc. can be treated to produce highly charged electrets but these charges are usually short-lived especially under humid conditions. The electret structures may be films or sheets which find applications as the electrostatic element in electro-acoustic devices such as microphones, headphones and speakers and in dust particle control, high voltage electrostatic generators, electrostatic recorders and other applications.
  • Fibrous polypropylene electret filters that are currently available, some made from melt-blown polypropylene microfibers and others from fibrillated polypropylene film, can show thermally stable electret filtration enhancement.
  • Unfortunately, fibrous electret filters made of polypropylene, whether melt-blown microfibers or fibrillated film, tend to lose their electret enhanced filtration efficiency faster than desired for some purposes when exposed to oily aerosols. There is a growing awareness of the need to improve the long-term efficiency of air filters in the presence of aerosol oils, especially in respirators. It is known to blend 1 to 20 weight percent poly(4-methyl-1-pentene) with polypropylene to provide resistance to loss of electret enhanced filtration efficiency on exposure to oily aerosols (see EP-A-325 854).
  • In one aspect, the present invention provides oily mist resistant electret filter media comprising polypropylene electret fibers and a melt processable fluorochemical additive, said additive having a melting temperature of at least 70°C and a molecular weight of 500 to 2500. The fibers may be in the form of meltblown microfibers. Preferred fluorochemical additives are fluorochemical oxazolidinones, fluorochemical piperazines or perfluorinated alkanes.
  • In another aspect, the present invention provides a method for filtering particulate material from air containing oily aerosol particles comprising passing said air through electret filter media comprising polypropylene melt blown microfibers and a melt processable fluorochemical additive.
  • The electret filter media of the present invention have improved electret filtration enhancement and sustain that enhancement upon exposure to oily aerosols. Furthermore, the electret filter media of the present invention maintain functional filtration enhancing charge levels under accelerated aging conditions.
  • The fibrous electret filter is especially useful as an air filter element of a respirator such as a face mask or for such purposes as heating, ventilation, and air-conditioning. In respirator uses, the electret filters may be in the form of molded or folded half-face masks, replaceable cartridges or canisters, or prefilters. In such uses, an air filter element of the invention is surprisingly effective for removing oily aerosols such as in cigarette smoke or in fumes from combustion engines. When used as an air filter, such as in a respirator, the electret filter media has surprisingly better filtration performance than does a comparable electret filter made of 100% polypropylene fibers.
  • The melt blown polypropylene microfibers useful in the present invention can be prepared as described in Van Wente, A., "Superfine Thermoplastic Fibers," Industrial Engineering Chemistry, vol. 48, pp. 1342-1346 and in Report No. 4364 of the Naval Research Laboratories, published May 25, 1954, entitled "Manufacture of Super Fine Organic Fibers" by Van Wente et al. or from microfiber webs containing particulate matter such as those disclosed, for example, in US-A-3,971,373, US-A-4,100,324 and US-A-4,429,001.
  • The polypropylene resin used to form the melt blown microfibers should be substantially free from materials such as antistatic agents which could increase the electrical conductivity or otherwise interfere with the ability of the fibers to accept and hold electrostatic charges.
  • Blown microfibers for fibrous electret filters of the invention typically have an effective fiber diameter of from 5 to 30 micrometers preferably from 7 to 10 micrometers, as calculated according to the method set forth in Davies, C.N., "The Separation of Airborne Dust and Particles," Institution of Mechanical Engineers, London, Proceedings 1B, 1952.
  • The fluorochemical additives useful in the present invention are fluorochemical compounds which can provide oil and water repellency to fibers. The fluorochemical additives must be melt processable, i.e., suffer substantially no degradation under the melt processing conditions used to form the microfibers. The fluorochemical additive is solid at 25°C and has a melting point of at least 70°C, more preferably at least 100°C. The fluorochemical additive preferably exhibits no phase transitions in the range of commonly encountered temperatures, i.e., 0°C to 80°C as such changes in molecular freedom can adversely affect charge stability. The fluorochemical additive has a molecular weight in the range of 500 to 2500, more preferably in the range of 800 to 1500. The fluorochemical additive is preferably substantially free from mobile polar and/or ionic species, contaminants and impurities which could increase the electrical conductivity or otherwise interfere with the ability of the fibers to accept and hold electrostatic charges.
  • Preferred fluorochemical additives include, for example, fluorochemical oxazolidinones which are described in US-A-5,025,052 fluorochemical piperazines which are described in Katritzky, Alan R. et al., "Design and Synthesis of Novel Fluorinated Surfactants for Hydrocarbon Subphases, " Langmuir, vol. 4, pp. 732-735., 1988, and perfluorinated alkanes preferably having 10 to 50 carbon atoms, more preferably 15 to 30 carbon atoms. The fluorochemical additive is preferably present in amounts of 0.2 to 10 weight percent, more preferably 0.5 to 5 weight percent, most preferably 0.5 to 2 weight percent.
  • Preferably, the filter media is annealed, i.e., heated for a sufficient time at a sufficient temperature to cause the fluorochemical additive to bloom to the surface of the fibers. Generally, 1 to 10 minutes at 140°C is sufficient although shorter times may be used at higher temperatures and longer times may be required at lower temperatures.
  • The electret filter media of the present invention preferably has a basis weight in the range of 10 to 500 g/m2, more preferably 10 to 100 g/m2. In making melt-blown microfiber webs, the basis weight can be controlled, for example, by changing either the collector speed or the die throughput. The thickness of the filter media is preferably 0.25 to 20 mm, more preferably 0.5 to 2 mm. The electret filter media and the polypropylene resin from which it is produced should not be subjected to any unnecessary treatment which might increase its electrical conductivity, e.g., exposure to gamma rays, ultraviolet irradiation, pyrolysis, oxidation, etc.
  • The melt-blown microfibers or fibrillated fibers of the electret filters of the invention can be electrostatically charged by a process described in US-Re. 30,782 or Re. 31,285 or by other conventional methods for charging or polarizing electrets, e.g., by a process of US-A-4,375,718; US-A-4,588,537; or US-A-4,592,815. In general, the charging process involves subjecting the material to corona discharge or pulsed high voltage.
  • In the following examples, all percentages and parts are by weight unless otherwise noted. The fluorochemical additives used in the examples were as follows:
  • Additive A
  • A fluorochemical oxazolidinone was prepared following the procedure of Example 5 of US-A-5,099,026 which is incorporated herein by reference. The solid product was ground to form a powder and one part was added to four parts refluxing solvent of 95% ethanol and 5% water and refluxed for ten minutes. The resulting slurry was cooled and the solid filtered and dried at 71°C. The resulting solid had a melting point of 197°C as determined by DSC. The structure is set forth in Table I.
  • Additive B
  • Additive B was prepared using the procedure used for Additive A except the isocyanate used was p-xylene diisocyanate. The resulting solid product had a melting point of 220°C as determined by DSC. The structure is set forth in Table I.
  • Additive C
  • A fluorochemical oxazolidinone was prepared following the procedure of Example 1 of US-A-5,099,026. One part of the solid product was dissolved in five parts dimethyl formamide at 100°C and the resulting solution was allowed to cool. The solid which formed was isolated by filtration and added to 16 times its weight of refluxing ethyl acetate. After cooling, the resulting solid was isolated by filtration and dried. The resulting solid product had a melting point of 169°C as determined by DSC. The structure is set forth in Table I.
  • Additive D
  • Additive D was prepared using the procedure used for Additive A except the isocyanate used was octadecyl isocyanate. The product was recrystallized from ethyl acetate four times. The resulting solid product had a melting point of 145°C as determined by DSC. The structure is set forth in Table I.
  • Additive E
  • To a 500 mL three-neck flask fitted with a thermometer, drying tube and overhead stirrer were added isophorone diisocyanate (148.7 g, 0.669 mol) and 4 drops dibutyl tin dilaurate. The reaction mixture was stirred and pentaerythritol (22.7 g, 0.167 mol) was added. The reaction mixture was heated to 78°C and the reaction was carried out for 20 hours during which time the viscosity of the reaction mixture increased. Ethyl acetate (148 mL) was added to the reaction mixture in portions to reduce the viscosity of the material. A condenser was fitted to the flask. Heating was discontinued when titration with n-butyl amine indicated that 50% of the isocyanate had reacted. The final concentration of the resulting polyfunctional isocyanate intermediate was 50% in ethyl acetate.
  • Additive E was then prepared using the procedure used for Additive A except the isocyanate used was the polyfunctional isocyanate intermediate prepared above. The reaction product was difficult to filter. Filter cakes of the product swollen with ethyl acetate were added to a solution of 70% acetone and 30% water. A white solid rapidly settled out and was isolated by filtration. The product was dried at 71°C. The resulting solid had a melting point of 182°C as determined by DSC. The structure is set forth in Table I.
  • Additive F
  • Additive F was prepared by adding to a 3-neck round bottom 500 ml flask equipped with a nitrogen inlet and a magnetic stirrer N-(perfluorooctylsulfonyl)-piperazine (34.1 g, 60 mmol), triethylamine (6.7 g, 66 mmol)and chloroform (200 mL) and the mixture was stirred. Phthaloyl dichloride (95%, 6.4 g, 30 mmol) was added dropwise as a chloroform solution. After the addition was complete, the reaction mixture was stirred under nitrogen atmosphere for 30 minutes. The reaction product was washed with deionized water several times. The solid was allowed to air dry and then was oven dried at 105°C for three hours. The solid product was ground to form a powder and one part was added to four parts refluxing solvent of 95% ethanol and 5% water and refluxed for ten minutes. The resulting solid product was dried at 71°C. The product had a melting point of 191°C. The structure was confirmed by NMR. The structure is set forth in Table I.
  • Additive G
  • Additive G was C24F50, available from Aldrich Chemical Co., melting point 188-190°C.
  • Additive H
  • To polypropylene resin (ESCORENE PP-3085, available from Exxon Corp.) was added 6-7%
    n-methylperfluorooctylsulfonamidoethyl acrylate and peroxide initiators (0.01 mole percent LUPERSOL 101 and 0.01 mole percent LUPERSOL 130, available from Pennwalt Chemical Co.). A reaction was carried out in a corotating twin screw extruder to graft the n-methylperfluorooctylsulfonamidoethyl acrylate to the polypropylene. The reaction temperature was 220°C and residence time was 6 minutes.
  • Additive I
  • N-methyl-perfluorooctanesulfonamide (450 g) was placed in a two-liter, three-necked, round bottom flask and heated to 80°C. Epichlorohydrin (101 g) was then added, followed by addition of methanol (91 g). The temperature was reduced to 65°C and sodium methoxide (30 g, 25% in methanol) was slowly added while the temperature was maintained below 70°C. Then sodium hydroxide (60 g, 50% aqueous solution) was slowly added with the temperature maintained below 70°C. The resulting reaction was stirred overnight at 65°C. Vacuum was then applied to remove excess methanol and epichlorohydrin. The resulting product, N-methyl-N-glycidylperfluorooctanesulfonamide, was then washed twice with water (450 g) at 65°C. Vacuum (20 mm Hg) was applied and the temperature raised to 90°C to remove any volatile materials.
  • N-methyl-N-glycidyl-perfluorooctanesulfon-amide, (250 g, 0.44 mol) and toluene (250 g) were placed in a one-liter, three-necked, round bottom flask equipped with a stirrer, condenser, gas inlet tube, thermometer and electric heating mantle under a nitrogen atmosphere. The solution was stirred, heated to 60°C and then octadecylamine (118.4 g, 0.44 mol) was added in small portions over 15 minutes. The temperature was then raised to 115°C and the mixture was stirred for 12 hours until gas chromatographic analysis confirmed the epoxide groups had been converted to aminoalcohol groups. The reaction mixture was cooled to 25°C and excess toluene was removed under vacuum with a rotary evaporator. The resulting material was recrystallized from a solution of 5 parts water and 95 parts ethyl alcohol and had a melting point of 63°C as determined by DSC analysis.
  • Additive J
  • Additive J is FS-1265 Fluid, a trimethyl terminated trifluoropropylmethyl polysiloxane, viscosity 10,000 CST available from Dow Corning Corp.
    Figure 00090001
  • Example 1
  • In Example 1, polypropylene (99%, ESCORENE PP-3505, available from Exxon Corporation) and Additive A (1%) were dry blended and extruded as described in Van Wente,A., "Superfine Thermoplastic Fibers," Industrial Engineering Chemistry, vol. 48, pp. 1342-1346 at a melt temperature of 297°C to form melt blown microfiber web having a basis weight of 54 g/m2 and a thickness of 0.79 mm. The web was annealed at 140°C for 10 minutes and then corona charged using a high voltage electric field provided between a corona source and a ground electrode with a corona current of 0.01 milliamp per centimeter of corona source.
  • Examples 2-7 and Comparative Examples C1-C4
  • In Examples 2-7 and Comparative Examples C1- C3 webs were prepared using the procedure of Example 1. Comparative Example C4 contained no additive. The additive, amount of additive, melt temperature, basis weight, thickness and ΔP are set forth in Table II. The ΔP was measured with a flow rate of 32 L/min at a face velocity of 5.2 cm/sec.
    Ex. Additive Additive Amount (%) Melt Temp. (°C) Basis Weight (g/m2) Thickness (mm) Δp (mmH2O)
    1 A 1 297 54 0.79 1.2
    2 B 1 297 54 0.74 1.2
    3 C 1 307 54 0.99 1.7
    4 D 1 303 50 -- 1.5
    5 E 1 280 57 0.94 1.2
    6 F 1 307 52 1.45 2.1
    7 G 1 307 53 1.22 1.1
    C1 H 20 282 55 0.94 1.7
    C2 I 1 287 54 0.99 1.5
    C3 J 1 287 54 0.91 1.6
    C4 -- -- 301 54 0.69 1.4
  • The samples were then tested using the following tests:
  • DOP Penetration and Pressure Drop
  • Dioctyl phthalate (DOP) 0.3 micrometer diameter particles at a concentration of between 70 and 110 mg/m3 are generated using a TSI No. 212 sprayer with four orifices and 0.2 MPa (30 psi) clean air. The particles are forced through a sample of filter media which is 11.43 cm (4.5 inches) in diameter at a rate of 42.5 L/min. at a face velocity of 6.9 centimeters per second. The sample was exposed to the aerosol for 30 to 60 seconds until the readings stabilized. The penetration is measured with an optical scattering chamber, Percent Penetration Meter Model TPA-8F available from Air Techniques Inc. The DOP penetration is preferably less than 40%, more preferably less than 25%. The pressure drop is measured at a flow rate of 42.5 L/min and a face velocity of 6.9 cm/sec using an electronic manometer. Pressure drop is reported as ΔP in mm of water. Preferably the pressure drop is less than 4, more preferably less than 3.
  • The penetration and pressure drop are used to calculate a quality value "QF value" from the natural log (In) of the DOP penetration by the following formula:
    Figure 00110001
    A higher initial QF value indicates better initial filtration performance. Decreased QF values effectively correlate with decreased filtration performance. Generally a QF value of at least 0.25 is preferred, a value of at least 0.4 is more preferred and a value of at least 0.5 is most preferred. The filter media are preferably thermally stable, i.e., show no more than 30% loss in QF value after three days storage at 60°C,
  • DOP Loading Test
  • For the DOP Loading Test, the same test equipment was used as in the penetration and pressure drop tests. The test sample was weighed and then exposed to the DOP aerosol for 45 min. to provide an exposure of between 130 and 200 mg. DOP penetration and pressure drop are measured throughout the test at least as frequently as once per minute. The mass of DOP collected divided by the mass of sample exposed was calculated for each measurement interval from the measured penetration, mass of the filter web and total mass of DOP collected on the filter web during exposure.
  • DOP penetration, pressure drop and loading tests were performed after three days storage at ambient conditions after charging. The initial DOP penetration and pressure drop were measured after one minute exposure to allow the system to equilibrate. The DOP penetration and pressure drop results are also interpolated to 50 and 100 mg exposure. The results are set forth in Table III.
    Initial 50 mg 100 mg
    Ex. PEN ΔP QF PEN ΔP PEN ΔP
    1 29 1.8 0.70 35 2.0 38 2.1
    2 29 1.8 0.71 33 2.0 35 2.1
    3 21 2.3 0.66 24 2.6 26 2.8
    4 15 2.2 0.87 23 2.3 33 2.4
    5 32 1.7 0.67 36 1.9 41 2.0
    6 11 4.1 0.54 22 4.3 40 4.3
    7 37 1.7 0.58 55 1.8 64 1.8
    C1 78 2.4 0.10 -- --- -- ---
    C2 40 2.2 0.41 38 2.4 48 2.5
    C3 34 2.5 0.43 78 2.5 81 2.6
    C4 41 1.9 0.47 77 1.9 81 1.9
    Samples were aged at elevated temperature and again tested. The test results for the aged samples are set forth in Table IV.
    Aging Temp. Aging Time Initial 50 mg 100 mg
    Ex. (°C) (hrs) Pen ΔP QF Pen ΔP Pen ΔP QF
    1 60 72 30 1.8 0.67 32 2.0 32 2.2 0.52
    2 60 72 27 1.8 0.73 29 2.0 30 2.2 0.55
    3 60 73 38 2.1 0.45 35 2.3 33 2.5 0.44
    4 60 47 20 2.2 0.72 22 2.4 29 2.4 0.52
    5 70 70 38 1.7 0.57 39 1.9 40 2.0 0.46
    6 60 73 17 3.6 0.48 24 3.8 34 3.9 0.28
    7 60 73 38 1.6 0.61 44 1.7 57 1.7 0.33
    C1 60 24 83 2.4 0.08 -- --- -- ---
    C2 70 72 83 2.1 0.09 81 2.1 83 2.2 0.08
    C3 70 48 50 2.3 0.30 77 2.3 79 2.4 0.10
    C4 60 72 35 1.8 0.57 66 1.9 76 1.9 0.14
  • As can be seen from the data in Tables III and IV, addition of an appropriate melt processable fluorochemical additive to polypropylene enhances the resistance of the filter media to damage by an oily aerosol. In Examples 1-7, each of the materials tested had QF values of at least 0.5 on initial testing. In the loading test, Examples 1-6 had penetrations less than 50% even after exposure to 100 mg DOP. Although Example 7 had a penetration in excess of 50% at 100 mg DOP exposure, performance was adequate. The filter media of Comparative Example C1 did not retain charge, possibly due to the reaction byproducts in the grafting process or the presence of polar groups. Subsequent to aging, each of Examples 1-7 exhibit a QF value greater than 0.4 and each of Examples 1-6 have penetrations lower than 50% after 100 mg DOP exposure. Comparative Example C2 did not retain charge after elevated temperature aging, possibly due to the low melting point of the fluorochemical additive and the presence of polar groups in the molecule.
  • Comparative Examples C5-C7
  • Samples were prepared as in Example 1 except in Comparative Example C5 the web was not charged, in Comparative Example C6 the web was not annealed, and in Comparative Example C7 the web contained no additive, was annealed and charged. The webs were tested as were the webs of Examples 1-7. The results are set forth in Table V together with the results of Example 1 tests for comparison.
    Initial 50 mg 100 mg
    Ex. PEN ΔP QF PEN ΔP PEN ΔP
    1 29 1.8 0.70 35 2.0 38 2.1
    C5 84 1.9 0.09 81 2.0 79 2.0
    C6 30 2.1 0.58 69 2.1 81 2.1
    C7 41 1.9 0.47 77 1.9 81 1.9
  • As can be seen from the results in Table V, the fluorochemical additive, the annealing and the charging are each important in the practice of the present invention.
  • Examples 8-10 and Comparative Example C8
  • In Examples 8-10, samples were prepared as in Example 1 using 0.5, 1 and 2 weight percent, respectively of Additive A. In Comparative Example C8 no additive was used. The samples were stored at 70°C for 72 hours. Testing was carried out as in the previous examples. The results are set forth in Table VI.
    Initial 50 mg 100 mg
    Ex. PEN ΔP QF PEN ΔP PEN ΔP
    C8 44 2.2 0.4 70 2.2 83 2.3
    8 30 2.3 0.5 32 2.5 38 2.6
    9 31 2.1 0.6 28 2.4 27 2.6
    10 39 1.7 0.5 39 1.9 37 2.1
  • As can be seen from the data in Table VI, at addition levels of only 0.5 weight percent, Additive A provides improved performance.

Claims (9)

  1. An oily mist resistant electret filter media comprising polypropylene electret fibers, characterized in that the media also comprises a melt processable fluorochemical additive having a melting point of at least 70°C and a molecular weight of 500 to 2500.
  2. The filter media of claim 1 wherein said additive is present in an amount of 0.2 to 10 weight percent.
  3. The filter media of claim 1 or 2 wherein the fluorochemical additive is selected from fluorochemical oxazolidinones, fluorochemical piperazines or perfluorinated alkanes.
  4. The filter media of any one of claims 1 to 3 wherein said additive has a molecular weight of 800 to 1500.
  5. The filter media of any one of claims 1 to 4 wherein said additive is substantially free of mobile polar species.
  6. The filter media of any one of claims 1 to 5 wherein said additive is substantially free of mobile ionic species.
  7. The filter media of any one of claims 1 to 6 wherein said fibers are melt blown microfibers.
  8. A method for filtering particulate material from air containing oily aerosol particles comprising passing said air through the electret filter media of claim 1.
  9. The use of the electret filter media of any one of claims 1 to 7 as an air filter element in a respirator or for heating, ventilation or air-conditioning purposes.
EP94104430A 1993-03-26 1994-03-21 Oily mist resistant electret filter media Expired - Lifetime EP0616831B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US3814593A 1993-03-26 1993-03-26
US38145 1993-03-26

Publications (2)

Publication Number Publication Date
EP0616831A1 EP0616831A1 (en) 1994-09-28
EP0616831B1 true EP0616831B1 (en) 1999-06-30

Family

ID=21898311

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94104430A Expired - Lifetime EP0616831B1 (en) 1993-03-26 1994-03-21 Oily mist resistant electret filter media

Country Status (9)

Country Link
US (2) US5411576A (en)
EP (1) EP0616831B1 (en)
JP (1) JP3464520B2 (en)
KR (1) KR100336186B1 (en)
AU (1) AU669420B2 (en)
BR (1) BR9401208A (en)
CA (1) CA2116983C (en)
DE (1) DE69419272T2 (en)
ES (1) ES2135498T3 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7674425B2 (en) 2005-11-14 2010-03-09 Fleetguard, Inc. Variable coalescer
US7828869B1 (en) 2005-09-20 2010-11-09 Cummins Filtration Ip, Inc. Space-effective filter element
US7959714B2 (en) 2007-11-15 2011-06-14 Cummins Filtration Ip, Inc. Authorized filter servicing and replacement
US8114183B2 (en) 2005-09-20 2012-02-14 Cummins Filtration Ip Inc. Space optimized coalescer
US8231752B2 (en) 2005-11-14 2012-07-31 Cummins Filtration Ip Inc. Method and apparatus for making filter element, including multi-characteristic filter element
US8545707B2 (en) 2005-09-20 2013-10-01 Cummins Filtration Ip, Inc. Reduced pressure drop coalescer

Families Citing this family (138)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU669420B2 (en) * 1993-03-26 1996-06-06 Minnesota Mining And Manufacturing Company Oily mist resistant electret filter media
KR100336012B1 (en) * 1993-08-17 2002-10-11 미네소타 마이닝 앤드 매뉴팩춰링 캄파니 How to charge the electret filter media
CA2124237C (en) 1994-02-18 2004-11-02 Bernard Cohen Improved nonwoven barrier and method of making the same
CA2136576C (en) 1994-06-27 2005-03-08 Bernard Cohen Improved nonwoven barrier and method of making the same
AU4961696A (en) 1994-12-08 1996-06-26 Kimberly-Clark Worldwide, Inc. Method of forming a particle size gradient in an absorbent article
CA2153278A1 (en) 1994-12-30 1996-07-01 Bernard Cohen Nonwoven laminate barrier material
US5645627A (en) * 1995-02-28 1997-07-08 Hollingsworth & Vose Company Charge stabilized electret filter media
US5742303A (en) * 1995-05-24 1998-04-21 Hewlett-Packard Company Trap door spittoon for inkjet aerosol mist control
AU5747396A (en) 1995-05-25 1996-12-11 Kimberly-Clark Worldwide, Inc. Filter matrix
ZA965786B (en) 1995-07-19 1997-01-27 Kimberly Clark Co Nonwoven barrier and method of making the same
US5908598A (en) * 1995-08-14 1999-06-01 Minnesota Mining And Manufacturing Company Fibrous webs having enhanced electret properties
US5774141A (en) * 1995-10-26 1998-06-30 Hewlett-Packard Company Carriage-mounted inkjet aerosol reduction system
US5834384A (en) 1995-11-28 1998-11-10 Kimberly-Clark Worldwide, Inc. Nonwoven webs with one or more surface treatments
US5667562A (en) * 1996-04-19 1997-09-16 Kimberly-Clark Worldwide, Inc. Spunbond vacuum cleaner webs
GB9609811D0 (en) * 1996-05-10 1996-07-17 Web Dynamics Ltd A process for producing meltblown polyolefin fibres for mechanical filtration
US6162535A (en) 1996-05-24 2000-12-19 Kimberly-Clark Worldwide, Inc. Ferroelectric fibers and applications therefor
US5817415A (en) * 1996-09-12 1998-10-06 E. I. Du Pont De Nemours And Company Meltblown ionomer microfibers and non-woven webs made therefrom for gas filters
US5706804A (en) * 1996-10-01 1998-01-13 Minnesota Mining And Manufacturing Company Liquid resistant face mask having surface energy reducing agent on an intermediate layer therein
DE19645666A1 (en) * 1996-11-06 1998-05-07 Mann & Hummel Filter Filter insert
JP3566477B2 (en) * 1996-12-26 2004-09-15 興研株式会社 Electrostatic filter
SE512593C2 (en) * 1997-05-06 2000-04-10 Blue Air Ab Process and apparatus for purifying a gaseous medium
US6123076A (en) * 1997-05-09 2000-09-26 Porous Media Corporation Hydrophobic barrier for filters and filter media
DE19720775A1 (en) * 1997-05-17 1998-11-19 Mann & Hummel Filter Device and element for liquid separation in gas flows
US6127485A (en) * 1997-07-28 2000-10-03 3M Innovative Properties Company High temperature-stable fluorochemicals as hydrophobic and oleophobic additives to synthetic organic polymers
US6524488B1 (en) 1998-06-18 2003-02-25 3M Innovative Properties Company Method of filtering certain particles from a fluid using a depth loading filtration media
US6176239B1 (en) * 1997-08-06 2001-01-23 The United States Of America As Represented By The Secretary Of The Army Advanced chemical-biological mask
US6238466B1 (en) * 1997-10-01 2001-05-29 3M Innovative Properties Company Electret articles and filters with increased oily mist resistance
US6213122B1 (en) 1997-10-01 2001-04-10 3M Innovative Properties Company Electret fibers and filter webs having a low level of extractable hydrocarbons
AU755573B2 (en) * 1997-10-01 2002-12-19 Minnesota Mining And Manufacturing Company Electret fibers and filter webs having a low level of extractable hydrocarbons
US6068799A (en) * 1997-10-01 2000-05-30 3M Innovative Properties Company Method of making electret articles and filters with increased oily mist resistance
AU767026B2 (en) * 1997-10-01 2003-10-30 Minnesota Mining And Manufacturing Company Oily mist resistant electret articles and filters
US6062221A (en) 1997-10-03 2000-05-16 3M Innovative Properties Company Drop-down face mask assembly
US6732733B1 (en) 1997-10-03 2004-05-11 3M Innovative Properties Company Half-mask respirator with head harness assembly
US6537932B1 (en) 1997-10-31 2003-03-25 Kimberly-Clark Worldwide, Inc. Sterilization wrap, applications therefor, and method of sterilizing
GB9723740D0 (en) * 1997-11-11 1998-01-07 Minnesota Mining & Mfg Respiratory masks incorporating valves or other attached components
US5948146A (en) * 1997-12-08 1999-09-07 Ceco Filters, Inc. Hydroentangled fluoropolymer fiber bed for a mist eliminator
US6365088B1 (en) 1998-06-26 2002-04-02 Kimberly-Clark Worldwide, Inc. Electret treatment of high loft and low density nonwoven webs
US6759356B1 (en) 1998-06-30 2004-07-06 Kimberly-Clark Worldwide, Inc. Fibrous electret polymeric articles
US6432175B1 (en) 1998-07-02 2002-08-13 3M Innovative Properties Company Fluorinated electret
US6123752A (en) * 1998-09-03 2000-09-26 3M Innovative Properties Company High efficiency synthetic filter medium
US6139308A (en) 1998-10-28 2000-10-31 3M Innovative Properties Company Uniform meltblown fibrous web and methods and apparatus for manufacturing
US6110251A (en) * 1998-11-03 2000-08-29 Johns Manville International, Inc. Gas filtration media and method of making the same
DE19903663A1 (en) * 1999-01-29 2000-08-24 Doerken Ewald Ag Process for producing a nonwoven, in particular for use as roofing underlayment
US6280824B1 (en) 1999-01-29 2001-08-28 3M Innovative Properties Company Contoured layer channel flow filtration media
US6573205B1 (en) * 1999-01-30 2003-06-03 Kimberly-Clark Worldwide, Inc. Stable electret polymeric articles
US6630231B2 (en) 1999-02-05 2003-10-07 3M Innovative Properties Company Composite articles reinforced with highly oriented microfibers
US6110588A (en) 1999-02-05 2000-08-29 3M Innovative Properties Company Microfibers and method of making
US6391807B1 (en) 1999-09-24 2002-05-21 3M Innovative Properties Company Polymer composition containing a fluorochemical oligomer
US6525127B1 (en) 1999-05-11 2003-02-25 3M Innovative Properties Company Alkylated fluorochemical oligomers and use thereof in the treatment of fibrous substrates
US6288157B1 (en) 1999-05-11 2001-09-11 3M Innovative Properties Company Alkylated fluorochemical oligomers and use thereof
US7049379B2 (en) * 1999-05-11 2006-05-23 3M Innovative Properties Company Alkylated fluorochemical oligomers and use thereof in the treatment of fibrous substrates
US6332465B1 (en) 1999-06-02 2001-12-25 3M Innovative Properties Company Face masks having an elastic and polyolefin thermoplastic band attached thereto by heat and pressure
US6273938B1 (en) 1999-08-13 2001-08-14 3M Innovative Properties Company Channel flow filter
US6627563B1 (en) * 1999-08-19 2003-09-30 3M Innovative Properties Company Oily-mist resistant filter that has nondecreasing efficiency
US6174964B1 (en) 1999-09-24 2001-01-16 3M Innovative Properties Company Fluorochemical oligomer and use thereof
US6406657B1 (en) 1999-10-08 2002-06-18 3M Innovative Properties Company Method and apparatus for making a fibrous electret web using a wetting liquid and an aqueous polar liquid
US6454986B1 (en) 1999-10-08 2002-09-24 3M Innovative Properties Company Method of making a fibrous electret web using a nonaqueous polar liquid
US6375886B1 (en) * 1999-10-08 2002-04-23 3M Innovative Properties Company Method and apparatus for making a nonwoven fibrous electret web from free-fiber and polar liquid
US6454839B1 (en) 1999-10-19 2002-09-24 3M Innovative Properties Company Electrofiltration apparatus
US6604524B1 (en) 1999-10-19 2003-08-12 3M Innovative Properties Company Manner of attaching component elements to filtration material such as may be utilized in respiratory masks
WO2001060496A1 (en) 2000-02-15 2001-08-23 Hollingsworth & Vose Company Melt blown composite hepa filter media and vacuum bag
WO2001068658A2 (en) 2000-03-15 2001-09-20 Hollingsworth & Vose Company Melt blown composite hepa vacuum filter
US6743464B1 (en) 2000-04-13 2004-06-01 3M Innovative Properties Company Method of making electrets through vapor condensation
US6419729B1 (en) * 2000-04-17 2002-07-16 3M Innovative Properties Company Filter assemblies with adhesive attachment systems
US6419871B1 (en) 2000-05-25 2002-07-16 Transweb, Llc. Plasma treatment of filter media
US6800117B2 (en) 2000-09-05 2004-10-05 Donaldson Company, Inc. Filtration arrangement utilizing pleated construction and method
US7115150B2 (en) * 2000-09-05 2006-10-03 Donaldson Company, Inc. Mist filtration arrangement utilizing fine fiber layer in contact with media having a pleated construction and floor filter method
US6740142B2 (en) 2000-09-05 2004-05-25 Donaldson Company, Inc. Industrial bag house elements
US7270693B2 (en) * 2000-09-05 2007-09-18 Donaldson Company, Inc. Polymer, polymer microfiber, polymer nanofiber and applications including filter structures
US6673136B2 (en) * 2000-09-05 2004-01-06 Donaldson Company, Inc. Air filtration arrangements having fluted media constructions and methods
US6743273B2 (en) 2000-09-05 2004-06-01 Donaldson Company, Inc. Polymer, polymer microfiber, polymer nanofiber and applications including filter structures
US6746517B2 (en) * 2000-09-05 2004-06-08 Donaldson Company, Inc. Filter structure with two or more layers of fine fiber having extended useful service life
US20020092423A1 (en) * 2000-09-05 2002-07-18 Gillingham Gary R. Methods for filtering air for a gas turbine system
US6716274B2 (en) 2000-09-05 2004-04-06 Donaldson Company, Inc. Air filter assembly for filtering an air stream to remove particulate matter entrained in the stream
US6420024B1 (en) 2000-12-21 2002-07-16 3M Innovative Properties Company Charged microfibers, microfibrillated articles and use thereof
JP4747255B2 (en) * 2000-12-27 2011-08-17 Jnc株式会社 Tow having charging property and laminate using the same
US6802315B2 (en) * 2001-03-21 2004-10-12 Hollingsorth & Vose Company Vapor deposition treated electret filter media
EP1247558A1 (en) 2001-04-07 2002-10-09 3M Innovative Properties Company A combination filter for filtering fluids
WO2002089956A1 (en) * 2001-05-02 2002-11-14 Hollingsworth & Vose Company Filter media with enhanced stiffness and increased dust holding capacity
US6680114B2 (en) 2001-05-15 2004-01-20 3M Innovative Properties Company Fibrous films and articles from microlayer substrates
RU2300543C2 (en) * 2001-05-31 2007-06-10 Дональдсон Компани, Инк. Fine fiber compositions, methods for preparation thereof, and a method of manufacturing fine-fiber material
US6905827B2 (en) * 2001-06-08 2005-06-14 Expression Diagnostics, Inc. Methods and compositions for diagnosing or monitoring auto immune and chronic inflammatory diseases
US6589317B2 (en) 2001-08-10 2003-07-08 3M Innovative Properties Company Structured surface filtration media array
US6514324B1 (en) 2001-08-10 2003-02-04 Rick L. Chapman High efficiency active electrostatic air filter and method of manufacture
US20030203696A1 (en) * 2002-04-30 2003-10-30 Healey David Thomas High efficiency ashrae filter media
KR20110055576A (en) * 2002-09-16 2011-05-25 트리오신 홀딩 아이엔씨 Electrostatically charged filter media incorporating an active agent
US7811949B2 (en) * 2003-11-25 2010-10-12 Kimberly-Clark Worldwide, Inc. Method of treating nonwoven fabrics with non-ionic fluoropolymers
US7931944B2 (en) * 2003-11-25 2011-04-26 Kimberly-Clark Worldwide, Inc. Method of treating substrates with ionic fluoropolymers
US20060110997A1 (en) * 2004-11-24 2006-05-25 Snowden Hue S Treated nonwoven fabrics and method of treating nonwoven fabrics
US20070068391A1 (en) * 2004-12-01 2007-03-29 Stanley Wiener Biological home defense system
CA2599268A1 (en) 2005-03-07 2006-09-14 3M Innovative Properties Company Vehicle passenger compartment air filter devices
US20060207234A1 (en) * 2005-03-18 2006-09-21 Ward Bennett C Coalescing filter elements comprising self-sustaining, bonded fiber structures
US20080276805A1 (en) * 2005-04-22 2008-11-13 Marcus Lotgerink-Bruinenberg Vehicle Passenger Compartment Air Filter Devices
US7244292B2 (en) * 2005-05-02 2007-07-17 3M Innovative Properties Company Electret article having heteroatoms and low fluorosaturation ratio
US7244291B2 (en) * 2005-05-02 2007-07-17 3M Innovative Properties Company Electret article having high fluorosaturation ratio
US7553440B2 (en) * 2005-05-12 2009-06-30 Leonard William K Method and apparatus for electric treatment of substrates
US7393269B2 (en) 2005-09-16 2008-07-01 3M Innovative Properties Company Abrasive filter assembly and methods of making same
US7503326B2 (en) * 2005-12-22 2009-03-17 3M Innovative Properties Company Filtering face mask with a unidirectional valve having a stiff unbiased flexible flap
US7390351B2 (en) * 2006-02-09 2008-06-24 3M Innovative Properties Company Electrets and compounds useful in electrets
ITPS20060012A1 (en) * 2006-05-18 2007-11-19 Cl Com Srl NEW MASK FOR PROTECTION AGAINST BIOLOGICAL AGENTS WITH TWO PORTIONS.
US7338355B2 (en) * 2006-06-13 2008-03-04 3M Innovative Properties Company Abrasive article and methods of making and using the same
US20080233850A1 (en) * 2007-03-20 2008-09-25 3M Innovative Properties Company Abrasive article and method of making and using the same
US7628829B2 (en) * 2007-03-20 2009-12-08 3M Innovative Properties Company Abrasive article and method of making and using the same
US20090000624A1 (en) * 2007-06-28 2009-01-01 3M Innovative Properties Company Respirator having a harness and methods of making and fitting the same
EP2222908B1 (en) * 2007-12-06 2013-01-16 3M Innovative Properties Company Electret webs with charge-enhancing additives
WO2009148744A2 (en) * 2008-06-02 2009-12-10 3M Innovative Properties Company Electret webs with charge-enhancing additives
US7765698B2 (en) * 2008-06-02 2010-08-03 3M Innovative Properties Company Method of making electret articles based on zeta potential
JP2011522101A (en) * 2008-06-02 2011-07-28 スリーエム イノベイティブ プロパティズ カンパニー Electret charge enhancing additive
US20100212272A1 (en) * 2009-02-24 2010-08-26 Hollingsworth & Vose Company Filter media suitable for ashrae applications
US20100252047A1 (en) 2009-04-03 2010-10-07 Kirk Seth M Remote fluorination of fibrous filter webs
ITPD20090117A1 (en) * 2009-05-04 2010-11-05 Euroflex Srl HAND SPRAYER FOR DETERGENT LIQUIDS
BRPI1010701A2 (en) * 2009-06-12 2016-03-15 Clarcor Air Filtration Products Inc air cooling system incorporating membrane-free filtration and / or integrated filter structure
DE202009014001U1 (en) 2009-10-15 2010-03-18 Bolst, Klaus, Dr.-Ing. Filter system consisting of an electret filter and an upstream ionization unit to increase the performance of the electret filter and extend the service life of it in terms of its electrical and electrostatic properties
US8365771B2 (en) 2009-12-16 2013-02-05 3M Innovative Properties Company Unidirectional valves and filtering face masks comprising unidirectional valves
PL2533877T3 (en) * 2010-02-12 2020-08-24 Donaldson Company, Inc. Liquid filters
EP2632600B1 (en) 2010-10-25 2021-04-14 SWM Luxembourg Sarl Filtration material using fiber blends that contain strategically shaped fibers and/or charge control agents
CN103781956B (en) * 2011-06-30 2016-09-28 3M创新有限公司 Non-woven electret fiber net and preparation method thereof
JP2013034941A (en) * 2011-08-08 2013-02-21 Toyobo Co Ltd Oil proof filter
AT512190B1 (en) * 2012-01-27 2013-06-15 Ift Gmbh DEVICE FOR THE DEPOSITION OF SUBSTANCES
US9247788B2 (en) 2013-02-01 2016-02-02 3M Innovative Properties Company Personal protective equipment strap retaining devices
US9259058B2 (en) 2013-02-01 2016-02-16 3M Innovative Properties Company Personal protective equipment strap retaining devices
WO2015152207A1 (en) * 2014-04-04 2015-10-08 東洋紡株式会社 Electret
WO2016021053A1 (en) * 2014-08-08 2016-02-11 ユーエスウラサキ株式会社 Dust collection filter and dust collection device using same
MX2017002907A (en) 2014-09-08 2017-08-18 Clarcor Air Filtration Products Inc Filter with high dust capacity.
WO2016088692A1 (en) * 2014-12-03 2016-06-09 東洋紡株式会社 Method for producing electret filter
WO2016088691A1 (en) * 2014-12-03 2016-06-09 東洋紡株式会社 Electret filter
WO2017100045A1 (en) 2015-12-11 2017-06-15 3M Innovative Properties Company Fluorinated piperazine sulfonamides
CN109311834A (en) 2016-05-31 2019-02-05 3M创新有限公司 Fluorine-containing piperazine amide
US10947348B2 (en) 2016-06-27 2021-03-16 3M Innovative Properties Company Fluorochemical piperazine carboxamides
EP3510017B1 (en) * 2016-09-09 2021-05-05 3M Innovative Properties Company Partially fluorinated aromatic esters
EP3512608B1 (en) 2016-09-16 2023-12-06 3M Innovative Properties Company Exhalation valve and respirator including same
CN106621589A (en) * 2016-12-09 2017-05-10 钦州市钦南区科学技术情报研究所 Anti-haze spraying agent and preparation method thereof
RU2648360C1 (en) * 2017-05-03 2018-03-26 Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный технологический институт (технический университет)" Electret material based on polyethylene and method of its manufacture
US11028252B2 (en) * 2017-06-13 2021-06-08 3M Innovative Properties Company Melt additive compounds, methods of using the same, and articles and compositions including the same
CN110799687B (en) 2017-06-29 2022-04-08 3M创新有限公司 Nonwoven articles and methods of making the same
CN110785684B (en) 2017-06-29 2022-06-03 3M创新有限公司 Article and method of making the same
CN111560140B (en) * 2020-06-19 2020-10-20 金发科技股份有限公司 Special organic electret master batch for melt-blown non-woven fabric for mask, preparation method of master batch and melt-blown non-woven fabric prepared from master batch
CN111607895A (en) * 2020-06-23 2020-09-01 常州工程职业技术学院 Melt-blown fabric suitable for filtering oily particles and preparation method thereof

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3487610A (en) * 1965-03-26 1970-01-06 Du Pont Electrostatic filter unit with high stable charge and its manufacture
DE1961504B2 (en) * 1968-12-09 1971-09-09 ELECTRIC AND METHOD OF ITS MANUFACTURING
US3796778A (en) * 1969-05-01 1974-03-12 American Cyanamid Co Method for preparing fibrous polyolefin materials
US3971373A (en) * 1974-01-21 1976-07-27 Minnesota Mining And Manufacturing Company Particle-loaded microfiber sheet product and respirators made therefrom
NL160303C (en) * 1974-03-25 1979-10-15 Verto Nv METHOD FOR MANUFACTURING A FIBER FILTER
US4100324A (en) * 1974-03-26 1978-07-11 Kimberly-Clark Corporation Nonwoven fabric and method of producing same
NL181632C (en) * 1976-12-23 1987-10-01 Minnesota Mining & Mfg ELECTRIC FILTER AND METHOD FOR MANUFACTURING THAT.
NL7907539A (en) * 1979-10-11 1981-04-14 Tno METHOD FOR MANUFACTURING ELECTRETS
US4375718A (en) * 1981-03-12 1983-03-08 Surgikos, Inc. Method of making fibrous electrets
US4429001A (en) * 1982-03-04 1984-01-31 Minnesota Mining And Manufacturing Company Sheet product containing sorbent particulate material
JPS59126452A (en) * 1983-01-06 1984-07-21 Japan Synthetic Rubber Co Ltd Piezoelectric polymer material
WO1984003193A1 (en) * 1983-02-04 1984-08-16 Minnesota Mining & Mfg Method and apparatus for manufacturing an electret filter medium
US4456648A (en) * 1983-09-09 1984-06-26 Minnesota Mining And Manufacturing Company Particulate-modified electret fibers
JPS60168511A (en) * 1984-02-10 1985-09-02 Japan Vilene Co Ltd Production of electret filter
JPS60225416A (en) * 1984-04-24 1985-11-09 三井化学株式会社 High performance electret and air filter
DE3578820D1 (en) * 1984-05-07 1990-08-30 Kureha Chemical Ind Co Ltd VINYLIDENE FLUORIDE SPLIT YARN, METHOD FOR PRODUCING THE SAME AND FILTER PRODUCED THEREFOR.
US4874659A (en) * 1984-10-24 1989-10-17 Toray Industries Electret fiber sheet and method of producing same
US4676807A (en) * 1985-07-05 1987-06-30 Pall Corporation Process for removal of liquid aerosols from gaseous streams
US5025052A (en) * 1986-09-12 1991-06-18 Minnesota Mining And Manufacturing Company Fluorochemical oxazolidinones
CA1323370C (en) * 1986-09-12 1993-10-19 Davis H. Crater Fluorochemical oxazolidinones
US5099026A (en) * 1986-09-12 1992-03-24 Crater Davis H Fluorochemical oxazolidinones
US4945125A (en) * 1987-01-05 1990-07-31 Tetratec Corporation Process of producing a fibrillated semi-interpenetrating polymer network of polytetrafluoroethylene and silicone elastomer and shaped products thereof
US4874399A (en) * 1988-01-25 1989-10-17 Minnesota Mining And Manufacturing Company Electret filter made of fibers containing polypropylene and poly(4-methyl-1-pentene)
GB2214837B (en) * 1988-02-17 1991-09-04 Process Scient Innovations Oil coalescing filter
JP2672329B2 (en) * 1988-05-13 1997-11-05 東レ株式会社 Electret material
FR2633119B1 (en) * 1988-06-21 1990-11-09 Labo Electronique Physique ACTIVE MICROWAVE CIRCUIT OF THE MASTERPIECE TYPE
US5110667A (en) * 1990-03-26 1992-05-05 Minnesota Mining And Manufacturing Company Polymer composition imparting low surface energy
JPH05214A (en) * 1990-11-30 1993-01-08 Mitsui Petrochem Ind Ltd Electret filter
AU669420B2 (en) * 1993-03-26 1996-06-06 Minnesota Mining And Manufacturing Company Oily mist resistant electret filter media

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7828869B1 (en) 2005-09-20 2010-11-09 Cummins Filtration Ip, Inc. Space-effective filter element
US8114183B2 (en) 2005-09-20 2012-02-14 Cummins Filtration Ip Inc. Space optimized coalescer
US8545707B2 (en) 2005-09-20 2013-10-01 Cummins Filtration Ip, Inc. Reduced pressure drop coalescer
US7674425B2 (en) 2005-11-14 2010-03-09 Fleetguard, Inc. Variable coalescer
US8231752B2 (en) 2005-11-14 2012-07-31 Cummins Filtration Ip Inc. Method and apparatus for making filter element, including multi-characteristic filter element
US7959714B2 (en) 2007-11-15 2011-06-14 Cummins Filtration Ip, Inc. Authorized filter servicing and replacement
US8114182B2 (en) 2007-11-15 2012-02-14 Cummins Filtration Ip, Inc. Authorized filter servicing and replacement

Also Published As

Publication number Publication date
CA2116983C (en) 2004-12-14
BR9401208A (en) 1994-11-08
EP0616831A1 (en) 1994-09-28
DE69419272T2 (en) 2000-03-23
KR100336186B1 (en) 2002-08-17
US5411576A (en) 1995-05-02
AU5756894A (en) 1994-09-29
CA2116983A1 (en) 1994-09-27
AU669420B2 (en) 1996-06-06
DE69419272D1 (en) 1999-08-05
JPH06319923A (en) 1994-11-22
US5472481A (en) 1995-12-05
JP3464520B2 (en) 2003-11-10
ES2135498T3 (en) 1999-11-01
KR940021105A (en) 1994-10-17

Similar Documents

Publication Publication Date Title
EP0616831B1 (en) Oily mist resistant electret filter media
EP0845058B1 (en) Fibrous webs having enhanced electret properties
US6776951B2 (en) Method of making electret fibers
US5645627A (en) Charge stabilized electret filter media
CA1323584C (en) Electret filter made of fibers containing polypropylene and poly(4-methyl-1-pentene)
AU2008335536B2 (en) Electret webs with charge-enhancing additives
JP6163562B2 (en) Electret web with charge enhancing additive
KR20090004851A (en) Electrets and compounds useful in electrets
EP1682247B1 (en) Atmospheric plasma treatment of meltblown fibers used in filtration
CN109689623B (en) Partially fluorinated aromatic esters
US10947348B2 (en) Fluorochemical piperazine carboxamides
AU755573B2 (en) Electret fibers and filter webs having a low level of extractable hydrocarbons
US20220401862A1 (en) Aromatic-heterocyclic ring melt additives
CN116348190A (en) Electret webs with carboxylic acid or carboxylate charge-enhancing additives

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT NL SE

RAX Requested extension states of the european patent have changed

Free format text: SI

17P Request for examination filed

Effective date: 19950126

17Q First examination report despatched

Effective date: 19970409

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT NL SE

REF Corresponds to:

Ref document number: 69419272

Country of ref document: DE

Date of ref document: 19990805

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2135498

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050321

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20050321

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20050407

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20060228

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060317

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060322

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060322

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060329

Year of fee payment: 13

EUG Se: european patent has lapsed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070430

Year of fee payment: 14

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20060322

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070321

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20071001

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20071130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070321

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060331

Year of fee payment: 13

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20080301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081001

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20080301