EP0617480A1 - Radiating structure with variable directivity - Google Patents

Radiating structure with variable directivity Download PDF

Info

Publication number
EP0617480A1
EP0617480A1 EP94400622A EP94400622A EP0617480A1 EP 0617480 A1 EP0617480 A1 EP 0617480A1 EP 94400622 A EP94400622 A EP 94400622A EP 94400622 A EP94400622 A EP 94400622A EP 0617480 A1 EP0617480 A1 EP 0617480A1
Authority
EP
European Patent Office
Prior art keywords
radiating
structure according
elements
radiating elements
excitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP94400622A
Other languages
German (de)
French (fr)
Inventor
Gérard Raguenet
Michel Gomez-Henry
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Espace Industries SA
Alcatel Lucent NV
Original Assignee
Alcatel Espace Industries SA
Alcatel NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel Espace Industries SA, Alcatel NV filed Critical Alcatel Espace Industries SA
Publication of EP0617480A1 publication Critical patent/EP0617480A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array

Definitions

  • the field of the invention is that of array antennas, and more specifically printed array antennas, the radiating elements of which are produced by the microstrip technique.
  • Such antennas are produced by etching conductive tracks and blocks on dielectric substrates, which are generally but not exclusively planar. More elaborate configurations exist with several dielectric substrates, ground planes, resonator cavities, et cetera, some examples of which will be described in more detail below.
  • radio electricians have therefore made improvements by building more elaborate solutions.
  • the improvement of the bandwidth of the elementary radiator can be obtained by inserting additional resonance poles on the structure.
  • Many means are possible such as the superposition of pellets; double or multi-resonance structures, or the insertion of these poles in the supply circuit, either by coupling devices, or by equivalent RLC circuits.
  • the directivity of the antenna remains partitioned between 5dB at 8 or 9 dB, depending on the embodiment technology, and it is hardly possible to change this parameter by known techniques.
  • the invention aims to overcome these drawbacks of the prior art: the design and implementation difficulties of the distributor and its associated losses, the discretization of the directivity, and the gain cap.
  • planar or shaped antenna allows effective management of the directivity of the radiator and therefore gives planar or shaped solutions the flexibility and sizing capacity as they exist in the context of more conventional solutions with horns or with radiating openings.
  • the invention provides a radiating structure with microstrip technology for array antenna, this structure comprising a plurality of radiating elements distributed over an insulating surface, these elements being excited by a distribution of the electromagnetic excitation energy between said elements, characterized in that said distribution is carried out by coupling the magnetic currents generated by each element during its excitation.
  • This structure is a sub-network of radiating elements, comparable to a sub-network of the prior art, except that there is no distributor; the distribution is made by coupling the magnetic currents of the radiating elements together.
  • the structure according to the invention is produced by "splitting" the printed patch into several small disjointed conductive patches which are not necessarily identical, and by placing them on an insulating surface so as to optimize the couplings between the small patches for the purpose of the antenna.
  • an antenna according to the invention consists in exciting by an appropriate means currents (electric and magnetic) on a metallic pad (the printed "patch") whose precise geometric definition depends on the required application.
  • the initial current distribution can be obtained by an excitation conveyed by a coaxial, microstrip, or stripline transmission line, or even by electromagnetic coupling, these techniques being known to those skilled in the art. .
  • the simple radiator can be placed in an environment having electrical conditions particular, for example it can be surrounded by an electric or magnetic wall so as to secure its networking.
  • an approach developed by the Applicant is described in French patent no. 89.11829 of September 11, 1989 of Dusseux, Raguenet et al. which forms an integral part of the present application for its description of the prior art.
  • FIG 1 we see an embodiment of a radiating element according to the prior art.
  • this element comprises an etched conductive patch 2 on a dielectric substrate 1 covered on its rear face by a ground plane 6.
  • the patch 2 is powered by the microstrip 4b, which is an etched conductive track , usually of the same material as the patch.
  • the patch 2 is placed at the bottom of a closed system which consists for example of a cavity 7 defined by conductive walls 8 delimiting the radial extent of the cavity 7 around the patch 2.
  • this cavity 7 determines its radioelectric characteristics according to rules known to those skilled in the art; as a result, these dimensions can be chosen by the designer in order to provide the desired bandwidth at the operating frequency of the radiating element, and this without increasing the thickness of dielectric 1 behind patch 2.
  • the dimensioning of such structures is well known and the main parameters are conditioned by the criteria of the central operating frequency and the bandwidth around this central frequency.
  • FIG. 2 illustrates the method of this embodiment, which consists in adding to a basic patch 2 radiator, a second resonator 12 positioned above the first resonator 2.
  • the configuration is therefore that of FIG. 2, except that the resonant cavity 7 is partially closed on its front face by a second resonator 12 which may for example be a printed patch on a dielectric support 11.
  • the second element is implanted flush with the cavity 7, but it could be placed, by means of more elaborate constructions, either at a greater height or at a height smaller than the height of the conducting walls 8 of the cavity 7.
  • the approach which consists of making the interpatch distance and the height of the cavity identical, makes technological realization very simple.
  • the second resonator 12 can be etched on a carrier substrate 11 of small thickness and mass and its mounting can be done by simple bonding or screwing.
  • FIG. 3 we see the geometry common to FIGS. 1 and 2, of a circular patch 2 printed on a substrate 1, and surrounded by a metallic mass 8 to form a resonant cavity 7, so as to widen the strip of operation. Patch 2 is excited via a supply line 4b.
  • the approach developed to produce a device with variable directivity according to the invention consists in fragmenting the radiating element into a multitude of small disjointed and not necessarily identical sub-elements as shown in FIG. 4.
  • the printed patch (item 2 of FIG. 3) is divided into several sub-elements (21, 22, 23, 24, 25, 26, 27, 28) .
  • Patch 2 of the prior art can be considered according to the model of magnetic currents, as generator of currents on its periphery 20.
  • the sub-elements of the invention generate equivalent magnetic currents on all the peripheries of all the elements. These currents generate couplings between the elements, which have the effect of increasing the equivalent sensing surface of the radiating element.
  • the supply of the sub-elements is carried out as in the prior art for a simple resonator, and the distribution is carried out passively thanks to the couplings between the elements, so there is no need for a distributor.
  • FIG. 5 we see in the upper part a rectangular printed patch 1 on an insulating substrate 2, with an instantaneous view of the electric fields generated on the periphery of the patch when it is excited by a signal carried on a non-transmissible transmission line. -shown.
  • these electric fields are equivalent to those which would be excited in a rectangular slot 33 formed by a rectangular conductive patch 32 surrounded by a ground plane 31 extended around the patch 32, when the latter is excited by the same signal as before.
  • the lower part of Figure 5 shows the magnetic currents equivalent to electric fields in the other two parts, according to Maxwell's equations for electromagnetic propagation.
  • the operation of the fragmented structure offers an extension of the available parameters so as to make it possible, on the one hand, to control the central operating frequency, and on the other hand to develop the "equivalent" radiating surface of the whole, as well as the distribution on the different pellets and, by the same, the radiated diagram.
  • the device of the invention as a set of microstrip lines fixed and coupled together.
  • the initial exciter device probe, coupling slot, patch at a lower level
  • these currents can be considered without interactions.
  • the relative arrangement of the different patterns printed with respect to each other modifies this initial distribution of currents due strong interactive couplings. We can thus proceed to the realization of many possible possibilities within the framework of a simple structure.
  • An object of the invention is to manage the fragmentation of the radiating element so as to increase the equivalent radiating surface of the assembly compared to a structure with a solid pellet and not fragmented.
  • each fragmented patch is equivalent to 2 magnetic current lines (see Figure 6) for an antenna in linear polarization.
  • the radiation behavior of each of these equivalent slits is dependent on the one hand on the initial excitation induced by the excitation supply system, and on the other hand on the influence of the set of mutual couplings of all the slots, relative to each other.
  • the structure must be correctly dimensioned and arranged according to a geometry (which includes the sizes of the pellets, their spacing, their shape and their relative arrangement ....), designed to ensure the phasing of all current sources.
  • the phasing of the sources creates a maximum radiation normal to the plane of the elementary slits.
  • the second condition to be satisfied in order to maximize the directivity of the surface consists in achieving an equi-amplitude distribution of the current sources. Obtaining the equi-phase and the equi-amplitude over an entire surface, ensures the maximum yield with respect to this.
  • Producing a variable directivity element according to the invention therefore consists in managing coupled multi-pattern geometries fulfilling the above conditions, the equivalent area of which will be varied. All other conditions being equal, the fact of modifying the equivalent sensing surface results in a simultaneous evolution of the directivity. This is how variable directivity is obtained by the invention. Thus, the bringing into play of new parameters therefore makes possible solutions which cannot be proposed using conventional devices.
  • the reference antenna is a double resonator structure as described in the aforementioned French patent of DUSSEUX, RAGUENET et al. : planar antenna , N ° 89 11 829.
  • the distance between the two resonators is typically 13 to 14mm.
  • the radiation pattern of this reference structure is presented in Figure 7.
  • the integrated directivity is 8.6dB / 8.7dB according to the different section plans studied.
  • the results are shown in the following table MAXIMUM AMPLITUDE (dB / ISO) MERIDIEN (Azimuth) POLARIZATION 8.6 .00 VERTICAL -11.4 .00 HORIZONTAL 8.7 90.00 VERTICAL -15.4 90.00 HORIZONTAL 8.7 45.00 VERTICAL -10.6 45.00 HORIZONTAL 8.7 135.00 VERTICAL -11.2 135.00 HORIZONTAL 8.6 22.50 VERTICAL -11.3 22.50 HORIZONTAL
  • a first exemplary embodiment was measured according to the invention.
  • a simple fragmentation of the second resonator has been carried out and consists of bursting into 4 equal square parts said upper resonator.
  • the radiator considered is therefore always a thin assembly constantly retaining its excitation device by a first supply resonator.
  • the invention relates, in essence, to the terminal surface which, thanks to the fragmentation of the second resonator into multiple elements, offers numerous possibilities to the designer, in view of the increase in the number of degrees of freedom available for the design in view of 'a desired result.
  • the radiant structure works on the principle of interposed couplings, it takes all the skill of man art to optimize the increase in the directivity of the device as well as its impedance adaptation.
  • Figure 9 presents the radiation diagram of a structure identical to the previous one, except for the fragmentation of the second radiator into four blocks of 39x39mm2, separated by 32mm. The results of the measurements are shown in the following table:
  • Figure 10 shows the measurement results for a structure fragmented into four square patches of 40x40mm2. The measured values are shown in the following table: MAXIMUM AMPLITUDE (dB / ISO) MERIDIEN (Azimuth) POLARIZATION 10.1 .00 VERTICAL -11.0 .00 HORIZONTAL 10.3 90.00 VERTICAL -23.2 90.00 HORIZONTAL 10.2 45.00 VERTICAL -9.2 45.00 HORIZONTAL 10.3 135.00 VERTICAL -8.9 135.00 HORIZONTAL 10.3 22.50 VERTICAL -9.2 22.50 HORIZONTAL
  • the only modification relates to the production of the second final resonator which is therefore a conventional solid patch in the case of the reference antenna according to the prior art, and which takes on a fragmented geometry in the other cases which illustrate examples of embodiments according to the invention.
  • a variant of the invention relates to the use of the fragmentation technique in order to obtain a given radiation pattern. For example, one may wish to obtain particular characteristics in radiation: quality of the side lobes, width of main lobe at 3dB, level of diffuse. By repeating the representation of FIG. 6, it can be considered that a network of elementary sources has been produced with regard to the representation of the pellets as equivalent magnetic currents.
  • a second variant concerns the use of the fragmentation technique according to the invention in order to obtain multiple resonances.
  • Another variant concerns the use of single- or multi-frequency (s) or broadband antennas exploiting the principles set out above, in the configuration of networks or sub-networks of fragmented elements according to the invention.
  • Another variant concerns the use of the geometry of the fragmented patches so as to generate polarized waves. For example, one can use a rectilinear geometry , made of coupled bars, to obtain linear polarization. Another possibility would be the use of fault geometry , which then acts as a polarizing pattern for circularly polarized waves.
  • a final variant proposed relates to the use of the invention for producing a dichroic surface with variable directivity.
  • a fragmented assembly according to the invention is arranged so as to absorb incident radiation at a certain frequency, while radiation of any other frequency will be reflected.

Abstract

The invention relates to a radiating structure with microstrip technology for an array antenna, comprising a plurality of unconnected and not necessarily identical radiating elements, distributed over an insulating surface and comprising electromagnetic means for exciting these radiating elements. These elements are excited by distribution of the electromagnetic excitation energy, and the structure of the invention is characterized in that the distribution is performed by coupling of the magnetic currents generated by each element when it is excited. According to one advantageous embodiment, the elements are arranged in such a way as to obtain a phase and amplitude condition on the surface; in effect, the best directivity is obtained when the illumination is equi-phase and equi-amplitude on the surface. The invention also relates to an antenna including the radiating structure, when installed on a planar surface or a surface shaped in three dimensions. <IMAGE>

Description

Le domaine de l'invention est celui des antennes réseau, et plus spécifiquement des antennes réseau imprimées dont les éléments rayonnants sont réalisés par la technique microruban. De telles antennes sont réalisées par gravure de pistes et de pavés conducteurs sur des substrats diélectriques, qui sont généralement mais non-exclusivement plans. Des configurations plus élaborées existent ayant plusieurs substrats diélectriques, plans de masse, cavités résonateurs, et cetera, dont quelques exemples seront décrits plus en détail ci-après.The field of the invention is that of array antennas, and more specifically printed array antennas, the radiating elements of which are produced by the microstrip technique. Such antennas are produced by etching conductive tracks and blocks on dielectric substrates, which are generally but not exclusively planar. More elaborate configurations exist with several dielectric substrates, ground planes, resonator cavities, et cetera, some examples of which will be described in more detail below.

Ces antennes planes ou de faibles épaisseurs sont largement utilisées sous de nombreuses formes depuis une quinzaine d'années. Elles se sont mêmes largement imposées dans bon nombre de domaines, en égard à leurs qualités intrinsèques: masse, volume, coût de réalisation faibles.These flat or thin antennas have been widely used in many forms for the past fifteen years. They have even imposed themselves widely in a number of fields, in view of their intrinsic qualities: mass, volume, low cost of production.

Il est largement connu de l'homme de l'art que les réalisations les plus simples d'éléments rayonnants, à savoir la piste microruban gravée sur un substrat, souffrent de limitations fondamentales radioélectriques, et en particulier au niveau de la bande passante, de la directivité et de la qualité de rayonnement. Ce dernier présente, d'une part, des asymétries importantes pour un élément fonctionnant en polarisation linéaire selon les différents plans de coupes, et d'autre part, des niveaux de polarisation croisée bien souvent incompatibles avec les spécifications de missions spatiales.It is widely known to those skilled in the art that the simplest embodiments of radiating elements, namely the microstrip track etched on a substrate, suffer from fundamental radioelectric limitations, and in particular in terms of bandwidth, the directivity and the quality of radiation. The latter presents, on the one hand, significant asymmetries for an element operating in linear polarization according to the different section planes, and on the other hand, crossed polarization levels very often incompatible with the specifications of space missions.

Les caractéristiques principales des dispositifs simples qui sont les pastilles imprimées rondes ou carrées sont décrites dans le papier de Keith Carver et Joseph Mink, publié par - IEEE - A.P., vol. 29 (n° 1), Janvier 1981.The main characteristics of the simple devices which are the round or square printed tablets are described in the paper by Keith Carver and Joseph Mink, published by - IEEE - A.P., vol. 29 (no.1), January 1981.

A partir de ces structures simples, les radioélectriciens ont donc effectué des améliorations en construisant des solutions plus élaborées. L'amélioration de la bande passante du radiateur élémentaire peut être obtenue en insérant des pôles de résonance supplémentaires sur la structure. De nombreux moyens sont envisageables tels, la superposition de pastilles; des structures à double ou multi-résonances, ou l'insertion de ces pôles dans le circuit d'alimentation, soit par des dispositifs de couplage, soit par des circuits R.L.C. équivalents.From these simple structures, radio electricians have therefore made improvements by building more elaborate solutions. The improvement of the bandwidth of the elementary radiator can be obtained by inserting additional resonance poles on the structure. Many means are possible such as the superposition of pellets; double or multi-resonance structures, or the insertion of these poles in the supply circuit, either by coupling devices, or by equivalent RLC circuits.

Ces techniques déjà largement pratiquées dans le domaine permettent d'obtenir des bandes passantes de plusieurs dizaines de pour cent et ont en général un impact favorable sur les diagrammes de rayonnement, puisqu'elles symétrisent les signaux copolaires et font significativement baisser les composantes de polarisation croisées.These techniques, already widely practiced in the field, make it possible to obtain bandwidths of several tens of percent and generally have a favorable impact on the radiation patterns, since they symmetrical the co-polar signals and significantly lower the crossed polarization components. .

En revanche, la directivité de l'antenne reste cloisonnée entre 5dB à 8 ou 9 dB, selon la technologie de réalisation, et il n'est guère possible de faire évoluer ce paramètre par les techniques connues.On the other hand, the directivity of the antenna remains partitioned between 5dB at 8 or 9 dB, depending on the embodiment technology, and it is hardly possible to change this parameter by known techniques.

L'obtention d'antennes ou d'éléments directifs passe donc de façon quasi incontournable par la mise en sous-réseaux de radiateurs élémentaires. Cette méthode, connue sous le nom anglophone "sub-arraying" , pose un certain nombre de difficultés et présente ses limites. La principale difficulté concerne la nécessaire réalisation d'un dispositif de distribution ou répartiteur, dont la fonction est de répartir un signal d'excitation parmi les éléments de chaque sous-réseau. Plusieurs technologies peuvent être employées, à choisir en fonction de l'application. Quelques exemples : cavité à mode radial et couplages multiples ; répartiteur en chandelier répartiteur semi-résonant ou progressif.Obtaining antennas or directive elements therefore goes almost inevitably through the sub-networks of elementary radiators. This method, known under the English name "sub-arraying", poses a certain number of difficulties and has its limits. The main difficulty relates to the necessary production of a distribution device or distributor, whose function is to distribute an excitation signal among the elements of each sub-network. Several technologies can be used, to choose according to the application. Some examples: radial mode cavity and multiple couplings; candlestick distributor semi-resonant or progressive distributor.

La conception, la mise au point, et la définition technologique du répartiteur constituent ensemble un poste d'accroissement de complexité majeur dans la réalisation d'un réseau ou sous-réseau d'antennes élémentaires. De plus, avec les conceptions actuelles, des problèmes subsistent car il y a des performances souhaitables, en termes de directivité et/ou de qualité de rayonnement qui ne peuvent être obtenues.The design, development and technological definition of the distributor together constitute a major increase in complexity in the creation of a network or sub-network of elementary antennas. In addition, with current designs, problems remain because there are desirable performances, in terms of directivity and / or quality of radiation which cannot be obtained.

Une limitation importante de cette technique est la discrétisation des situations réalisables de directivité qui s'incrémentent en raison de 10 log₁₀ (N) (N étant le nombre de sources individuelles participant au réseau); ce qui veut dire qu'à partir d'un concept d'élément rayonnant seules les valeurs discrètes de directivité pourront être obtenues :

Figure imgb0001
An important limitation of this technique is the discretization of achievable directivity situations which are incremented due to 10 log₁₀ (N) (N being the number of individual sources participating in the network); which means that from a radiating element concept only discrete directivity values can be obtained:
Figure imgb0001

Une autre grandeur limite les performances qui peuvent être obtenues, la capacité des grands sous-réseaux apparaît comme le gain effectif réalisé par l'antenne directive et traduit le rendement en puissance de la solution. Le gain sera limité par deux facteurs principaux:

  • les pertes du répartiteur, dues principalement à la technologie utilisée pour réaliser celui-ci.
  • l'efficacité de l'échantillonnage en surface des radiateurs rapportés à la maille choisie pour la mise en réseau.
Another quantity limits the performance that can be obtained, the capacity of large sub-networks appears as the effective gain achieved by the directive antenna and translates the power yield of the solution. The gain will be limited by two main factors:
  • losses of the dispatcher, mainly due to the technology used to make it.
  • the efficiency of the surface sampling of radiators compared to the mesh chosen for networking.

L'invention a pour but de pallier ces inconvénients de l'art antérieur : les difficultés de conception et de réalisation du répartiteur et ses pertes associées, la discrétisation de la directivité, et le plafonnement du gain.The invention aims to overcome these drawbacks of the prior art: the design and implementation difficulties of the distributor and its associated losses, the discretization of the directivity, and the gain cap.

La nouvelle réalisation d'une antenne plane ou conformée selon l'invention permet une gestion effective de la directivité du radiateur et donne de ce fait aux solutions planaires ou conformées la souplesse et la capacité de dimensionnement telles qu'elles existent dans le cadre de solutions plus classiques à cornets où à ouvertures rayonnantes.The new embodiment of a planar or shaped antenna according to the invention allows effective management of the directivity of the radiator and therefore gives planar or shaped solutions the flexibility and sizing capacity as they exist in the context of more conventional solutions with horns or with radiating openings.

A ces fins, l'invention propose une structure rayonnante à technologie microruban pour antenne réseau, cette structure comprenant une pluralité d'éléments rayonnants distribués sur une surface isolante, ces éléments étant excités par une répartition de l'énergie électromagnétique d'excitation entre lesdits éléments, caractérisée en ce que ladite répartition est effectuée par un couplage des courants magnétiques engendrés par chaque élément lors de son excitation.For these purposes, the invention provides a radiating structure with microstrip technology for array antenna, this structure comprising a plurality of radiating elements distributed over an insulating surface, these elements being excited by a distribution of the electromagnetic excitation energy between said elements, characterized in that said distribution is carried out by coupling the magnetic currents generated by each element during its excitation.

Cette structure est un sous-réseau d'éléments rayonnants, comparable à un sous-réseau de l'art antérieur, à cette différence près qu'il n'y a point de répartiteur ; la répartition se fait par le couplage des courants magnétiques des éléments rayonnants entre eux.This structure is a sub-network of radiating elements, comparable to a sub-network of the prior art, except that there is no distributor; the distribution is made by coupling the magnetic currents of the radiating elements together.

La structure selon l'invention est réalisée en "fractionnant" le patch imprimé en plusieurs petits patches conducteurs disjoints et non obligatoirement identiques, et en les disposant sur une surface isolante de manière à optimiser les couplages entre les petits patches en vue de la mission de l'antenne.The structure according to the invention is produced by "splitting" the printed patch into several small disjointed conductive patches which are not necessarily identical, and by placing them on an insulating surface so as to optimize the couplings between the small patches for the purpose of the antenna.

Le fonctionnement de base d'une antenne selon l'invention consiste à exciter par un moyen approprié des courants (électriques et magnétiques) sur un pavé métallique (le "patch" imprimé) dont la définition géométrique précise dépend de l'application requise. Selon différentes variantes de l'invention, la distribution initiale de courant peut être obtenue par une excitation véhiculée par une ligne de transmission coaxiale, microruban, ou stripline, ou encore par couplage électromagnétique, ces techniques étant connues de l'homme de l'art.The basic operation of an antenna according to the invention consists in exciting by an appropriate means currents (electric and magnetic) on a metallic pad (the printed "patch") whose precise geometric definition depends on the required application. According to different variants of the invention, the initial current distribution can be obtained by an excitation conveyed by a coaxial, microstrip, or stripline transmission line, or even by electromagnetic coupling, these techniques being known to those skilled in the art. .

Avantageusement, par une autre technique connue de l'art antérieur, le radiateur simple peut être disposé dans un environnement ayant des conditions électriques particulières, par exemple il peut être entouré d'un mur électrique ou magnétique de façon à sécuriser sa mise en réseau. Une telle démarche élaborée par la Demanderesse est décrite dans le brevet Français n° 89.11829 du 11 septembre 1989 de Dusseux, Raguenet et al. qui fait partie intégrante de la présente demande pour sa description de l'art antérieur.Advantageously, by another technique known from the prior art, the simple radiator can be placed in an environment having electrical conditions particular, for example it can be surrounded by an electric or magnetic wall so as to secure its networking. Such an approach developed by the Applicant is described in French patent no. 89.11829 of September 11, 1989 of Dusseux, Raguenet et al. which forms an integral part of the present application for its description of the prior art.

Les principes de l'invention, ainsi que quelques réalisations et les avantages acquis par l'utilisation de l'invention seront compris plus en détail par la description qui suit, ainsi que ses dessins annexes, dont :

  • la figure 1 montre schématiquement et en coupe partielle un élément rayonnant imprimé de l'art antérieur, comprenant un premier résonateur qui consiste en un patch conducteur disposé au fond d'une cavité métallique ;
  • la figure 2 montre schématiquement et en coupe partielle un élément rayonnant imprimé de l'art antérieur, comprenant un premier résonateur qui consiste en un patch conducteur disposé au fond d'une cavité métallique, ainsi qu'un second résonateur disposé devant le premier résonateur (dans le sens du rayonnement) ;
  • la figure 3 montre schématiquement et en vue de dessus, un élément rayonnant imprimé de l'art antérieur, conforme à la géométrie commune aux figures 1 et 2 ;
  • la figure 4 montre un exemple d'un élément rayonnant selon l'invention, dont le deuxième résonateur a une structure fragmentée multi-éléments ;
  • la figure 5 montre schématiquement un modèle théorique du rayonnement d'un patch rectangulaire simple selon l'art antérieur, comme étant engendré par des courants magnétiques ;
  • la figure 6 montre une vue schématique d'un élément rayonnant selon l'invention montré sur la figure 4, montrant les courants magnétiques équivalents principaux ;
  • la figure 7 montre un exemple des mesures de diagramme de rayonnement effectuées sur un élément rayonnant selon l'art antérieur telle que montrée sur la figure 2 ;
  • la figure 8 montre un exemple des mesures de diagramme de rayonnement effectuées sur un élément rayonnant selon l'invention, qui consiste en quatre patches carrés de 31x31mm² avec une séparation de 10 mm entre patches adjacents ;
  • la figure 9 montre un exemple des mesures de diagramme de rayonnement effectuées sur un élément rayonnant selon l'invention, qui consiste en quatre patches carrés de 39x39mm² avec une séparation de 32 mm entre patches adjacents ;
  • la figure 10 montre un exemple des mesures de diagramme de rayonnement effectuées sur un élément rayonnant selon l'invention, qui consiste en quatre patches carrés de 40x40mm².
The principles of the invention, as well as some embodiments and the advantages acquired by the use of the invention will be understood in more detail by the following description, as well as its accompanying drawings, including:
  • Figure 1 shows schematically and in partial section a radiating element printed from the prior art, comprising a first resonator which consists of a conductive patch disposed at the bottom of a metal cavity;
  • FIG. 2 shows schematically and in partial section a radiating element printed from the prior art, comprising a first resonator which consists of a conductive patch placed at the bottom of a metal cavity, as well as a second resonator placed in front of the first resonator ( in the direction of the radiation);
  • Figure 3 shows schematically and in top view, a printed radiating element of the prior art, conforming to the common geometry in Figures 1 and 2;
  • FIG. 4 shows an example of a radiating element according to the invention, the second resonator of which has a fragmented multi-element structure;
  • FIG. 5 schematically shows a theoretical model of the radiation of a simple rectangular patch according to the prior art, as being generated by magnetic currents;
  • Figure 6 shows a schematic view of a radiating element according to the invention shown in Figure 4, showing the main equivalent magnetic currents;
  • FIG. 7 shows an example of the radiation diagram measurements carried out on a radiating element according to the prior art as shown in FIG. 2;
  • FIG. 8 shows an example of the radiation diagram measurements carried out on a radiating element according to the invention, which consists of four square patches of 31 × 31 mm² with a separation of 10 mm between adjacent patches;
  • FIG. 9 shows an example of the radiation diagram measurements carried out on a radiating element according to the invention, which consists of four square patches of 39x39mm² with a separation of 32 mm between adjacent patches;
  • FIG. 10 shows an example of the radiation diagram measurements carried out on a radiating element according to the invention, which consists of four square patches of 40 × 40 mm².

Ainsi les radiateurs de faible épaisseur de l'art antérieur se présentent-ils bien souvent comme des structures telles que schématisées sur les figures 1, 2 et 3, et décrites plus en détail dans la demande de brevet français no. 92 13744 du 16 novembre 1992 au nom de la Demanderesse.Thus the thin radiators of the prior art are often presented as structures as shown schematically in Figures 1, 2 and 3, and described in more detail in French patent application no. 92 13744 of November 16, 1992 in the name of the Claimant.

Sur la figure 1, l'on voit un exemple de réalisation d'un élément rayonnant selon l'art antérieur. A titre d'exemple, on suppose que cet élément comprend un patch gravé conducteur 2 sur un substrat diélectrique 1 recouvert sur sa face arrière par un plan de masse 6. Le patch 2 est alimenté par le microruban 4b, qui est une piste gravée conductrice, généralement du même matériau que le patch. Selon cet exemple, le patch 2 est placé au fond d'un système fermé qui consiste par exemple en une cavité 7 définie par des parois conductrices 8 délimitant l'étendue radiale de la cavité 7 autour du patch 2. Les dimensions de cette cavité 7 déterminent ses caractéristiques radioélectriques selon des règles connues de l'homme de l'art ; en conséquence, ces dimensions peuvent être choisies par le concepteur afin de procurer la bande passante voulue à la fréquence de fonctionnement de l'élément rayonnant, et ceci sans augmentation de l'épaisseur de diélectrique 1 derrière le patch 2. Le dimensionnement de telles structures est bien connu et les paramètres principaux sont conditionnés par les critères de la fréquence centrale de fonctionnement et de la bande passante autour de cette fréquence centrale.In Figure 1, we see an embodiment of a radiating element according to the prior art. By way of example, it is assumed that this element comprises an etched conductive patch 2 on a dielectric substrate 1 covered on its rear face by a ground plane 6. The patch 2 is powered by the microstrip 4b, which is an etched conductive track , usually of the same material as the patch. According to this example, the patch 2 is placed at the bottom of a closed system which consists for example of a cavity 7 defined by conductive walls 8 delimiting the radial extent of the cavity 7 around the patch 2. The dimensions of this cavity 7 determine its radioelectric characteristics according to rules known to those skilled in the art; as a result, these dimensions can be chosen by the designer in order to provide the desired bandwidth at the operating frequency of the radiating element, and this without increasing the thickness of dielectric 1 behind patch 2. The dimensioning of such structures is well known and the main parameters are conditioned by the criteria of the central operating frequency and the bandwidth around this central frequency.

Un deuxième exemple d'une réalisation d'antenne utilisant un élément très large bande selon l'art antérieur est montré sur la figure 2. La figure 2 illustre la méthode de cette réalisation, qui consiste à adjoindre à un radiateur patch 2 de base, un deuxième résonateur 12 positionné au dessus du premier résonateur 2. La configuration est donc celle de la figure 2, à ceci près que la cavité résonante 7 est partiellement fermée sur sa face avant par un deuxième résonateur 12 qui peut être par exemple un patch imprimé sur un support diélectrique 11. Dans ce cas précis, le deuxième élément est implanté au ras de la cavité 7, mais on pourrait le placer, moyennant des constructions plus élaborées, soit à une hauteur plus grande ou soit à une hauteur plus petite que la hauteur des parois conductrices 8 de la cavité 7.A second example of an antenna embodiment using a very wide band element according to the prior art is shown in FIG. 2. FIG. 2 illustrates the method of this embodiment, which consists in adding to a basic patch 2 radiator, a second resonator 12 positioned above the first resonator 2. The configuration is therefore that of FIG. 2, except that the resonant cavity 7 is partially closed on its front face by a second resonator 12 which may for example be a printed patch on a dielectric support 11. In this specific case, the second element is implanted flush with the cavity 7, but it could be placed, by means of more elaborate constructions, either at a greater height or at a height smaller than the height of the conducting walls 8 of the cavity 7.

L'approche, toutefois, qui consiste à rendre identique la distance interpatch et la hauteur de la cavité en rend la réalisation technologique fort simple. Le deuxième résonateur 12 peut être gravé sur un substrat porteur 11 de faible épaisseur et masse et son montage peut se faire par simple collage ou vissage.The approach, however, which consists of making the interpatch distance and the height of the cavity identical, makes technological realization very simple. The second resonator 12 can be etched on a carrier substrate 11 of small thickness and mass and its mounting can be done by simple bonding or screwing.

Sur la figure 3, on voit la géométrie commune aux figures 1 et 2, d'un patch circulaire 2 imprimé sur un substrat 1, et entouré d'une masse métallique 8 pour former une cavité résonante 7, de façon à élargir la bande de fonctionnement. Le patch 2 est excité via une ligne d'alimentation 4b.In FIG. 3, we see the geometry common to FIGS. 1 and 2, of a circular patch 2 printed on a substrate 1, and surrounded by a metallic mass 8 to form a resonant cavity 7, so as to widen the strip of operation. Patch 2 is excited via a supply line 4b.

La démarche élaborée pour réaliser un dispositif à directivité variable selon l'invention consiste à fragmenter l'élément rayonnant en une multitude de petits sous-éléments disjoints et non obligatoirement identiques tel que montré sur la figure 4.The approach developed to produce a device with variable directivity according to the invention consists in fragmenting the radiating element into a multitude of small disjointed and not necessarily identical sub-elements as shown in FIG. 4.

Sur la figure 4, qui est à comparer avec la figure 3 déjà décrite, le patch imprimé (repère 2 de la figure 3) est fractionné en plusieurs sous éléments (21, 22, 23, 24, 25, 26, 27, 28). Le patch 2 de l'art antérieur peut être considéré selon le modèle de courants magnétiques, comme générateur de courants sur sa périphérie 20. Les sous-éléments de l'invention, en revanche, génèrent des courants magnétiques équivalents sur toutes les périphéries de tous les éléments. Ces courants génèrent des couplages entre les éléments, qui ont pour effet d'accroître la surface captrice équivalente de l'élément rayonnant. L'alimentation des sous éléments est effectué comme dans l'art antérieur pour un résonateur simple, et la répartition est effectuée passivement grâce au couplages entre les éléments, donc il n'y a pas besoin de répartiteur.In FIG. 4, which is to be compared with FIG. 3 already described, the printed patch (item 2 of FIG. 3) is divided into several sub-elements (21, 22, 23, 24, 25, 26, 27, 28) . Patch 2 of the prior art can be considered according to the model of magnetic currents, as generator of currents on its periphery 20. The sub-elements of the invention, on the other hand, generate equivalent magnetic currents on all the peripheries of all the elements. These currents generate couplings between the elements, which have the effect of increasing the equivalent sensing surface of the radiating element. The supply of the sub-elements is carried out as in the prior art for a simple resonator, and the distribution is carried out passively thanks to the couplings between the elements, so there is no need for a distributor.

Nous allons décrire le principe de fonctionnement dans le cas simple d'une structure mononiveau, à l'aide de la figure 5.We will describe the operating principle in the simple case of a single-level structure, using Figure 5.

Sur la figure 5, on voit dans la partie supérieure un patch imprimé rectangulaire 1 sur un substrat isolant 2, avec une vue instantannée des champs électriques engendrés sur la périphérie du patch lorsqu'il est excité par un signal véhiculé sur une ligne de transmission non-montrée. On voit sur la partie au milieu de la figure que ces champs électriques sont équivalents à ceux qui seraient excités dans une fente rectangulaire 33 formée par un patch rectangulaire conducteur 32 entouré d'un plan de masse 31 étendu autour du patch 32, quand ce dernier est excité par le même signal que précédemment. La partie inférieure de la figure 5 montre les courants magnétiques équivalents aux champs électriques dans les deux autres parties, selon les équations de Maxwell sur la propagation électromagnétique.In FIG. 5, we see in the upper part a rectangular printed patch 1 on an insulating substrate 2, with an instantaneous view of the electric fields generated on the periphery of the patch when it is excited by a signal carried on a non-transmissible transmission line. -shown. We see on the part in the middle of the figure that these electric fields are equivalent to those which would be excited in a rectangular slot 33 formed by a rectangular conductive patch 32 surrounded by a ground plane 31 extended around the patch 32, when the latter is excited by the same signal as before. The lower part of Figure 5 shows the magnetic currents equivalent to electric fields in the other two parts, according to Maxwell's equations for electromagnetic propagation.

On peut assimiler le comportement en rayonnement d'un patch (voir rapport interne de l'université de Louvain octobre 1988 - UDC -421.394.47) à celui de 2 courants magnétiques de surfaces correspondant aux terminaisons abruptes de la ligne microruban . La géométrie du patch est avantageusement de dimensions de λε/2 environ de façon à ce que les deux courants magnétiques principaux rayonnent en phase (voir la figure 5). Le côté résonnant d'un tel dispositif est donc dérivé de la condition précédente : a = q λ ε avec q ≅ 0.49

Figure imgb0002
We can assimilate the radiation behavior of a patch (see internal report of the University of Louvain October 1988 - UDC -421.394.47) to that of two magnetic surface currents corresponding to the steep terminations of the microstrip line. The geometry of the patch is advantageously of dimensions of λ ε / 2 approximately so that the two main magnetic currents radiate in phase (see FIG. 5). The resonant side of such a device is therefore derived from the previous condition: a = q λ ε with q ≅ 0.49
Figure imgb0002

Ainsi les dimensions de la pastille, pour fonctionner correctement, sont figées par cette condition de résonance. Et pour un élément fonctionnant en polarisation circulaire, il n'y a aucun moyen de faire évoluer la surface captrice, donc la directivité se trouve figée à son tour.Thus the dimensions of the patch, to function correctly, are fixed by this resonance condition. And for an element operating in circular polarization, there is no way to change the sensing surface, so the directivity is frozen in turn.

Le fonctionnement de la structure fragmentée offre une extension des paramètres disponibles de façon à rendre possible, d'une part la maîtrise de la fréquence centrale de fonctionnement, et d'autre part de faire évoluer la surface "équivalente" rayonnante de l'ensemble, ainsi que la distribution sur les différentes pastilles et, par la même, le diagramme rayonné.The operation of the fragmented structure offers an extension of the available parameters so as to make it possible, on the one hand, to control the central operating frequency, and on the other hand to develop the "equivalent" radiating surface of the whole, as well as the distribution on the different pellets and, by the same, the radiated diagram.

Pour mieux comprendre comment ces effets sont obtenus, on peut considérer le dispositif de l'invention comme un ensemble de lignes microrubans fixées et couplées entre elles. Ainsi, le dispositif excitateur initial (sonde, fente de couplage, patch à un niveau inférieur), induit directement des courants sur chaque pastille selon une distribution initiale. Dans une première approximation grossière ces courants peuvent être considérés sans intéractions. Selon une analyse plus fine, qui révèle le principe de l'invention, la disposition relative des différents motifs imprimés les uns par rapport aux autres modifie cette distribution initiale de courants en raison des forts couplages interactifs. On peut ainsi procéder à la réalisation de nombreuses possibilités envisageables dans le cadre d'une structure simple.To better understand how these effects are obtained, we can consider the device of the invention as a set of microstrip lines fixed and coupled together. Thus, the initial exciter device (probe, coupling slot, patch at a lower level), directly induces currents on each pellet according to an initial distribution. In a first rough approximation these currents can be considered without interactions. According to a more detailed analysis, which reveals the principle of the invention, the relative arrangement of the different patterns printed with respect to each other modifies this initial distribution of currents due strong interactive couplings. We can thus proceed to the realization of many possible possibilities within the framework of a simple structure.

Un but de l'invention est de gérer la fragmentation de l'élément rayonnant de façon à augmenter la surface équivalente rayonnante de l'ensemble comparativement à une structure à pastille pleine et non fragmentée.An object of the invention is to manage the fragmentation of the radiating element so as to increase the equivalent radiating surface of the assembly compared to a structure with a solid pellet and not fragmented.

Dans ce cas, on peut considérer, qu'en son rayonnement, chaque pastille fragmentée est équivalente à 2 lignes de courant magnétique (voir la figure 6) pour une antenne en polarisation linéaire. Le comportement en rayonnement de chacune de ces fentes équivalentes est dépendant d'une part de l'excitation initiale induite par le système d'alimentation d'excitation, et d'autre part de l'influence de l'ensemble des couplages mutuels de toutes les fentes, les unes par rapport aux autres.In this case, we can consider that, in its radiation, each fragmented patch is equivalent to 2 magnetic current lines (see Figure 6) for an antenna in linear polarization. The radiation behavior of each of these equivalent slits is dependent on the one hand on the initial excitation induced by the excitation supply system, and on the other hand on the influence of the set of mutual couplings of all the slots, relative to each other.

En raison des nouveaux mécanismes mis en jeu dans le dispositif selon l'invention, la structure doit être correctement dimensionnée et disposée selon une géométrie (qui comprend les tailles des pastilles, leur espacement, leur forme et leur disposition relative....), conçue de manière à assurer la mise en phase de toutes les sources de courant. La mise en phase des sources crée un rayonnement maximal normal au plan des fentes élémentaires. La deuxième condition à satisfaire en vu de maximiser la directivité de la surface consiste à réaliser une distribution équi-amplitude des sources de courant. Obtenir l'équi-phase et l'équi-amplitude sur toute une surface, assure le rendement maximal par rapport à celle-ci.Because of the new mechanisms brought into play in the device according to the invention, the structure must be correctly dimensioned and arranged according to a geometry (which includes the sizes of the pellets, their spacing, their shape and their relative arrangement ....), designed to ensure the phasing of all current sources. The phasing of the sources creates a maximum radiation normal to the plane of the elementary slits. The second condition to be satisfied in order to maximize the directivity of the surface consists in achieving an equi-amplitude distribution of the current sources. Obtaining the equi-phase and the equi-amplitude over an entire surface, ensures the maximum yield with respect to this.

Réaliser un élément à directivité variable selon l'invention consiste donc à gérer des géométries multi-motifs couplées réalisant les conditions ci-dessus dont on fera varier la surface équivalente. Toutes conditions égales par ailleurs le fait de modifier la surface captrice équivalente se traduit par une évolution simultanée de la directivité. C'est ainsi que la directivité variable est obtenue par l'invention. Ainsi, la mise en jeu de nouveaux paramètres rend donc possible des solutions qui ne peuvent être proposées à l'aide de dispositifs conventionnels.Producing a variable directivity element according to the invention therefore consists in managing coupled multi-pattern geometries fulfilling the above conditions, the equivalent area of which will be varied. All other conditions being equal, the fact of modifying the equivalent sensing surface results in a simultaneous evolution of the directivity. This is how variable directivity is obtained by the invention. Thus, the bringing into play of new parameters therefore makes possible solutions which cannot be proposed using conventional devices.

L'invention proposée concerne donc l'utilisation d'une surface terminale de rayonnement composée d'une multitude de motifs imprimés métalliques, non forcément identiques lesquels motifs étant disposés de manière à ce que quand ils sont éclairés par une onde électromagnétique, ils se couplent entre eux de façon à créer une distribution de courant en amplitude et phase contribuant au rayonnement de la structure. L'excitation du motif global ainsi élaborée n'est pas en pas en soi une difficulté majeure et on peut considérer que l'illumination primaire peut se faire de façon très classique, par exemple :

  • à l'aide d'un premier résonateur de type patch couplé à la structure multi-motif fragmentée,
  • à l'aide d'une fente couplée, celle-ci pouvant être linéaire ou circulaire,
  • ou même directement à l'aide d'une sonde connectée à l'un des motifs.
The proposed invention therefore relates to the use of a terminal radiation surface composed of a multitude of metallic printed patterns, not necessarily identical, which patterns being arranged so that when they are lit by an electromagnetic wave, they couple between them so as to create a current distribution in amplitude and phase contributing to the radiation of the structure. The excitation of the overall pattern thus developed is not in itself a major difficulty and we can consider that the primary illumination can be done in a very classic way, for example:
  • using a first patch type resonator coupled to the fragmented multi-pattern structure,
  • using a coupled slot, which can be linear or circular,
  • or even directly using a probe connected to one of the patterns.

Les techniques ci-dessus sont largement connues et maîtrisées dans le domaine de l'alimentation d'antennes imprimées ou planes.The above techniques are widely known and mastered in the field of feeding printed or planar antennas.

Exemples de réalisationsExamples of realizations

Le principe fondamental de la fragmentation couplée a été appliqué sur une série de radiateurs dont les diagrammes de rayonnement ont été mesurés en rayonnement. Ainsi à partir d'une réalisation de référence selon l'art antérieur, est-il possible d'apprécier l'impact de la fragmentation selon l'invention sur la directivité.The fundamental principle of coupled fragmentation has been applied to a series of radiators whose radiation patterns have been measured in radiation. Thus from a reference embodiment according to the prior art, is it possible to assess the impact of the fragmentation according to the invention on the directivity.

L'antenne de référence est une structure à double résonateur telle que décrite dans le brevet français précité de DUSSEUX, RAGUENET et al. : antenne plane, N° 89 11 829.The reference antenna is a double resonator structure as described in the aforementioned French patent of DUSSEUX, RAGUENET et al. : planar antenna , N ° 89 11 829.

Le deuxième résonateur est une pastille pleine circulaire de diamètre ⌀ = 80mm. L'excitation est effectuée à l'aide d'un premier résonateur patch circulaire de diamètre ⌀ = 63mm implanté dans une cavité cylindrique de 100mm de diamètre, réalisant une fente annulaire d'une largeur de 19mm environ.The second resonator is a full circular patch of diameter ⌀ = 80mm. The excitation is carried out using a first circular patch resonator of diameter ⌀ = 63mm implanted in a cylindrical cavity of 100mm in diameter, making an annular slot with a width of about 19mm.

La distance entre les deux résonateurs est typiquement de 13 à 14mm. Le diagramme de rayonnement de cette structure de référence est présenté sur la figure 7.The distance between the two resonators is typically 13 to 14mm. The radiation pattern of this reference structure is presented in Figure 7.

La directivité intégrée est de 8.6dB/8.7dB selon les différents plans de coupes étudiés. Les résultats sont portés sur le tableau suivant AMPLITUDE MAXIMUM (dB/ISO) MERIDIEN (Azimut) POLARISATION 8.6 .00 VERTICALE -11.4 .00 HORIZONTALE 8.7 90.00 VERTICALE -15.4 90.00 HORIZONTALE 8.7 45.00 VERTICALE -10.6 45.00 HORIZONTALE 8.7 135.00 VERTICALE -11.2 135.00 HORIZONTALE 8.6 22.50 VERTICALE -11.3 22.50 HORIZONTALE The integrated directivity is 8.6dB / 8.7dB according to the different section plans studied. The results are shown in the following table MAXIMUM AMPLITUDE (dB / ISO) MERIDIEN (Azimuth) POLARIZATION 8.6 .00 VERTICAL -11.4 .00 HORIZONTAL 8.7 90.00 VERTICAL -15.4 90.00 HORIZONTAL 8.7 45.00 VERTICAL -10.6 45.00 HORIZONTAL 8.7 135.00 VERTICAL -11.2 135.00 HORIZONTAL 8.6 22.50 VERTICAL -11.3 22.50 HORIZONTAL

Un premier exemple de réalisation a été mesuré selon l'invention. Une fragmentation simple du deuxième résonateur a été réalisée et consiste à éclater en 4 parties carrées égales ledit résonateur supérieur. Ainsi a-t-on fait évoluer paramétriquement la géométrie en taille et en position relative de façon à réaliser des structures à directivité variable. Le radiateur considéré est donc toujours un ensemble de faible épaisseur conservant constamment son dispositif d'excitation par un premier résonateur d'alimentation. L'invention concerne, par essence, la surface terminale qui, grâce à la fragmentation du deuxième résonateur en multiples éléments, offre de nombreuses possibilités au concepteur, en égard à l'augmentation du nombre de degrés de liberté disponibles pour la conception en vue d'un résultat désiré.A first exemplary embodiment was measured according to the invention. A simple fragmentation of the second resonator has been carried out and consists of bursting into 4 equal square parts said upper resonator. Thus, the geometry was changed parametrically in size and in relative position so as to produce structures with variable directivity. The radiator considered is therefore always a thin assembly constantly retaining its excitation device by a first supply resonator. The invention relates, in essence, to the terminal surface which, thanks to the fragmentation of the second resonator into multiple elements, offers numerous possibilities to the designer, in view of the increase in the number of degrees of freedom available for the design in view of 'a desired result.

La structure rayonnante fonctionnant sur le principe de couplages interposés, il faut toute l'adresse de l'homme de l'art pour optimiser l'accroissement de la directivité du dispositif ainsi que son adaptation d'impédance.The radiant structure works on the principle of interposed couplings, it takes all the skill of man art to optimize the increase in the directivity of the device as well as its impedance adaptation.

La figure 8 présente le diagramme de rayonnement d'une structure fragmenté à quatre patches carrés de taille 31x31mm², séparés par une distance de 10mm entre des patches adjacents. Ces quatre patches carrés remplacent donc la pastille circulaire de diamètre 80mm de l'antenne de référence selon l'art antérieur. Une bonne disposition des pavés supérieurs fractionnés par rapport au dispositif de couplage inférieur permet:

  • d'obtenir une excellente adaptation d'impédance dans la même bande de fonctionnement que l'antenne de référence.
  • d'engager le processus d'augmentation de surface rayonnante équivalente donc d'évolution de directivité qui passe de 8.6/8.7 dB sur l'antenne de référence d'un diamètre ⌀ = 80mm, à 9.10 dB sur l'antenne à quatre patches carrés de 31x31mm². Les résultats sont portés sur le tableau suivant :
AMPLITUDE MAXIMUM (dB/ISO) MERIDIEN (Azimut) POLARISATION 9.1 .00 VERTICALE -10.3 .00 HORIZONTALE 9.1 45.00 VERTICALE -9.8 45.00 HORIZONTALE 9.1 90.00 VERTICALE 19.1 90.00 HORIZONTALE 9.1 135.00 VERTICALE -11.5 135.00 HORIZONTALE Figure 8 presents the radiation diagram of a fragmented structure with four square patches of size 31x31mm², separated by a distance of 10mm between adjacent patches. These four square patches therefore replace the circular patch of 80mm diameter of the reference antenna according to the prior art. A good arrangement of the upper blocks divided with respect to the lower coupling device allows:
  • to obtain an excellent impedance matching in the same operating band as the reference antenna.
  • to initiate the process of increasing the equivalent radiating surface, therefore the change in directivity, which goes from 8.6 / 8.7 dB on the reference antenna with a diameter ⌀ = 80mm, to 9.10 dB on the antenna with four square patches of 31x31mm². The results are shown in the following table:
MAXIMUM AMPLITUDE (dB / ISO) MERIDIEN (Azimuth) POLARIZATION 9.1 .00 VERTICAL -10.3 .00 HORIZONTAL 9.1 45.00 VERTICAL -9.8 45.00 HORIZONTAL 9.1 90.00 VERTICAL 19.1 90.00 HORIZONTAL 9.1 135.00 VERTICAL -11.5 135.00 HORIZONTAL

La figure 9 présente le diagramme de rayonnement d'une structure identique à la précédente, hormis la fragmentation du deuxième radiateur en quatre pavés de 39x39mm², séparés de 32mm. Les résultats des mesures sont portés sur le tableau suivant :

Figure imgb0003
Figure imgb0004
Figure 9 presents the radiation diagram of a structure identical to the previous one, except for the fragmentation of the second radiator into four blocks of 39x39mm², separated by 32mm. The results of the measurements are shown in the following table:
Figure imgb0003
Figure imgb0004

La figure 10 montre les résultats des mesures pour une structure fragmentée en quatre patches carrés de 40x40mm². Les valeurs mesurées sont reportées sur le tableau suivant : AMPLITUDE MAXIMUM (dB/ISO) MERIDIEN (Azimut) POLARISATION 10.1 .00 VERTICALE -11.0 .00 HORIZONTALE 10.3 90.00 VERTICALE -23.2 90.00 HORIZONTALE 10.2 45.00 VERTICALE -9.2 45.00 HORIZONTALE 10.3 135.00 VERTICALE -8.9 135.00 HORIZONTALE 10.3 22.50 VERTICALE -9.2 22.50 HORIZONTALE Figure 10 shows the measurement results for a structure fragmented into four square patches of 40x40mm². The measured values are shown in the following table: MAXIMUM AMPLITUDE (dB / ISO) MERIDIEN (Azimuth) POLARIZATION 10.1 .00 VERTICAL -11.0 .00 HORIZONTAL 10.3 90.00 VERTICAL -23.2 90.00 HORIZONTAL 10.2 45.00 VERTICAL -9.2 45.00 HORIZONTAL 10.3 135.00 VERTICAL -8.9 135.00 HORIZONTAL 10.3 22.50 VERTICAL -9.2 22.50 HORIZONTAL

Le tableau suivant résume les différentes situations de directivité pour les cas étudiés expérimentalement. toutes valeurs: dB Antenne de référence Fragmentée 4x31x31mm² Fragmentée 4x39x39mm² Fragmentée 4x40x40mm² Directivité 8.60 9.10 10.0 10.30 écart référence - +.50 +1.40 +1.70 The following table summarizes the different directivity situations for the cases studied experimentally. all values: dB Reference antenna Fragmented 4x31x31mm² Fragmented 4x39x39mm² Fragmented 4x40x40mm² Directivity 8.60 9.10 10.0 10.30 am reference deviation - +.50 +1.40 +1.70

Entre ces quatre configurations, la seule modification concerne la réalisation du deuxième résonateur final qui est donc une pastille pleine classique dans le cas de l'antenne de référence selon l'art antérieur, et qui prend une géométrie fragmentée dans les autres cas qui illustrent des exemples de réalisations selon l'invention.Between these four configurations, the only modification relates to the production of the second final resonator which is therefore a conventional solid patch in the case of the reference antenna according to the prior art, and which takes on a fragmented geometry in the other cases which illustrate examples of embodiments according to the invention.

Cette technique permet d'accroître la directivité mesurée expérimentalement de près de 2dB sur l'ensemble des maquettes réalisées et décrites.This technique makes it possible to increase the directivity measured experimentally by almost 2 dB on all of the models produced and described.

De nombreuses applications de l'invention peuvent être proposées, sans sortir du cadre de l'invention qui a été décrite ci-dessus. On peut citer quelques exemples non-limitatifs parmi l'ensemble des variantes imaginables.Many applications of the invention can be proposed, without departing from the scope of the invention which has been described above. We can cite a few non-limiting examples among all the imaginable variants.

Une variante de l'invention concerne l'utilisation de la technique de fragmentation en vue d'obtenir un diagramme de rayonnement donné. Par exemple, on peut désirer obtenir des caractéristiques particulières en rayonnement : qualité des lobes latéraux, largeur de lobe principal à 3dB, niveau des diffus. En reprenant la représentation de la figure 6, on peut considérer que l'on a réalisé un réseau de sources élémentaires eu égard à la représentation des pastilles comme des courants magnétiques équivalents.A variant of the invention relates to the use of the fragmentation technique in order to obtain a given radiation pattern. For example, one may wish to obtain particular characteristics in radiation: quality of the side lobes, width of main lobe at 3dB, level of diffuse. By repeating the representation of FIG. 6, it can be considered that a network of elementary sources has been produced with regard to the representation of the pellets as equivalent magnetic currents.

En raison de la création de ces multiples sources on peut gérer les couplages ainsi que les géométries de ces éléments de façon à créer une distribution de courant primaire donnée. Il est évident que la condition équi-phase et équi-amplitude sur l'ensemble des sources élémentaires n'est qu'un cas particulier des possibilités de l'approche fragmentée.Due to the creation of these multiple sources, it is possible to manage the couplings as well as the geometries of these elements so as to create a given primary current distribution. It is obvious that the condition equi-phase and equi-amplitude on the set of the elementary sources is only one particular case of the possibilities of the fragmented approach.

Ainsi n'est-il pas illusoire, de penser à des distributions de sources de rayonnement, à haut degré de pureté, ou à symétrie parfaite, etc....It is therefore not illusory to think of distributions of radiation sources, with a high degree of purity, or with perfect symmetry, etc.

Ces capacités nouvelles sont un résultat de la technique de fragmentation du deuxième résonateur selon l'invention.These new capacities are a result of the fragmentation technique of the second resonator according to the invention.

Une deuxième variante concerne l'utilisation de la technique de fragmentation selon l'invention en vue d'obtenir des résonances multiples.A second variant concerns the use of the fragmentation technique according to the invention in order to obtain multiple resonances.

Les pastilles peuvent avoir des formes et des géométries dont les variantes ne sont limitées que par l'imagination du concepteur. Une autre variante de l'invention consiste à exploiter les aspects géométriques des résonateurs couplés de façon à obtenir:

  • a) soit des comportements multifréquences
  • b) soit une réponse large bande.
The pads can have shapes and geometries whose variants are limited only by the imagination of the designer. Another variant of the invention consists in exploiting the geometric aspects of the coupled resonators so as to obtain:
  • a) either multi-frequency behaviors
  • b) or a broadband response.

Une telle capacité est immédiate en raison des principes de structures couplées dégagés par la démarche de l'invention.Such a capacity is immediate because of the principles of coupled structures released by the approach of the invention.

Une autre variante concerne l'utilisation d'antennes mono- ou multi-fréquence(s) ou large bande exploitant les principes énoncés ci-dessus, en configuration de réseaux ou de sous réseaux d'éléments fragmentés selon l'invention.Another variant concerns the use of single- or multi-frequency (s) or broadband antennas exploiting the principles set out above, in the configuration of networks or sub-networks of fragmented elements according to the invention.

Une variante importante concerne l'utilisation de ce type d'antennes sur des surfaces non planes ou conformées en 3 dimensions. Il est entendu que la disposition des éléments fragmentés sur une surface conformée va introduire encore des paramètres nouveaux qui se prêteront à une optimisation de la part du concepteur, en vue de la mission de l'antenne.An important variant concerns the use of this type of antenna on surfaces that are not flat or shaped in 3 dimensions. It is understood that the arrangement of the fragmented elements on a shaped surface will further introduce new parameters which will lend themselves to optimization by the designer, with a view to the mission of the antenna.

Une autre variante concerne l'utilisation de la géométrie des patches fragmentés de façon à générer des ondes polarisées. Par exemple, on peut utiliser une géométrie rectiligne, réalisée de barres couplées, pour obtenir la polarisation linéaire. Une autre possibilité serait l'utilisation d'une géométrie à défauts, qui agit alors comme motif polariseur pour les ondes polarisées circulairement.Another variant concerns the use of the geometry of the fragmented patches so as to generate polarized waves. For example, one can use a rectilinear geometry , made of coupled bars, to obtain linear polarization. Another possibility would be the use of fault geometry , which then acts as a polarizing pattern for circularly polarized waves.

Une dernière variante proposée concerne l'utilisation de l'invention pour réaliser une surface dichroïque à directivité variable.A final variant proposed relates to the use of the invention for producing a dichroic surface with variable directivity.

Selon cette idée, un ensemble fragmenté selon l'invention est disposé de manière à absorber un rayonnement incident à une certaine fréquence, alors qu'un rayonnement de toute autre fréquence sera reflété.According to this idea, a fragmented assembly according to the invention is arranged so as to absorb incident radiation at a certain frequency, while radiation of any other frequency will be reflected.

Claims (13)

Structure rayonnante à technologie microruban pour antenne réseau, cette structure comprenant une pluralité d'éléments rayonnants (21, 22, 23, 24, 25, 26, 27, 28) distribués sur une surface isolante (1) et des moyens d'excitation électromagnétique de ces éléments rayonnants, ces éléments étant excités par une répartition de l'énergie électromagnétique d'excitation entre lesdits éléments, caractérisée en ce que ladite répartition est effectuée par un couplage des courants magnétiques [J m 1
Figure imgb0005
, J m 2
Figure imgb0006
, J m 3
Figure imgb0007
, J m 4
Figure imgb0008
] engendrés par chaque élément (21, 22, 23, 24, 25, 26, 27, 28) lors de son excitation.
Radiant structure with microstrip technology for array antenna, this structure comprising a plurality of radiating elements (21, 22, 23, 24, 25, 26, 27, 28) distributed on an insulating surface (1) and electromagnetic excitation means of these radiating elements, these elements being excited by a distribution of the electromagnetic excitation energy between said elements, characterized in that said distribution is carried out by coupling magnetic currents [J m 1
Figure imgb0005
, J m 2
Figure imgb0006
, J m 3
Figure imgb0007
, J m 4
Figure imgb0008
] generated by each element (21, 22, 23, 24, 25, 26, 27, 28) during its excitation.
Structure rayonnante selon la revendication 1, caractérisée en ce que ladite pluralité d'éléments rayonnants consiste en plusieurs petits patches conducteurs imprimés (21, 22, 23, 24, 25, 26, 27, 28), disjoints et non obligatoirement identiques, disposés sur une surface isolante (1) de manière à optimiser les couplages entre lesdits patches.Radiant structure according to claim 1, characterized in that said plurality of radiating elements consists of several small printed conductive patches (21, 22, 23, 24, 25, 26, 27, 28), separate and not necessarily identical, arranged on an insulating surface (1) so as to optimize the couplings between said patches. Structure rayonnante selon la revendication 1 ou 2, caractérisée en ce qu'elle ne comprend pas de moyens spécifiques de répartition de l'énergie électromagnétique d'excitation entre lesdits éléments, cette répartition étant effectuée uniquement par un couplage des courants magnétiques [J m 1
Figure imgb0009
, J m 2
Figure imgb0010
, J m 3
Figure imgb0011
, J m 4
Figure imgb0012
] engendrés par chaque élément lors de son excitation.
Radiant structure according to claim 1 or 2, characterized in that it does not comprise specific means for distributing the electromagnetic excitation energy between said elements, this distribution being effected only by coupling magnetic currents [J m 1
Figure imgb0009
, J m 2
Figure imgb0010
, J m 3
Figure imgb0011
, J m 4
Figure imgb0012
] generated by each element during its excitation.
Structure rayonnante selon l'une quelconque des revendications 1 à 3, caractérisée en ce que lesdits éléments rayonnants sont disposés de manière à obtenir leur mise en phase sur toute ladite surface isolante.Radiating structure according to any one of Claims 1 to 3, characterized in that the said radiating elements are arranged so as to obtain their phasing over the whole of the said insulating surface. Structure rayonnante selon l'une quelconque des revendications 1 à 4, caractérisée en ce que lesdits éléments rayonnants sont disposés de manière à obtenir une distribution équi-amplitude desdits courants magnétiques [J m 1
Figure imgb0013
, J m 2
Figure imgb0014
, J m 3
Figure imgb0015
, J m 4
Figure imgb0016
] sur ladite surface isolante.
Radiating structure according to any one of Claims 1 to 4, characterized in that the said radiating elements are arranged so as to obtain an equi-amplitude distribution of said magnetic currents [J m 1
Figure imgb0013
, J m 2
Figure imgb0014
, J m 3
Figure imgb0015
, J m 4
Figure imgb0016
] on said insulating surface.
Structure rayonnante selon l'une quelconque des revendications 1 à 5, caractérisée en ce que ladite structure comprend en outre des moyens autour de ladite pluralité d'éléments rayonnants pour imposer des conditions électriques et magnétiques particulières.Radiating structure according to any one of Claims 1 to 5, characterized in that the said structure further comprises means around the said plurality of radiating elements for imposing particular electrical and magnetic conditions. Structure rayonnante selon l'une quelconque des revendications 1 à 6, caractérisée en ce que lesdits moyens d'excitation sont alimentés par une ligne de transmission.Radiant structure according to any one of Claims 1 to 6, characterized in that the said excitation means are supplied by a transmission line. Structure rayonnante selon l'une quelconque des revendications 1 à 7, caractérisée en ce que ladite excitation desdits éléments rayonnants est effectuée à l'aide d'un premier résonateur de type patch couplé à la structure multi-éléments (21, 22, 23, 24, 25, 26, 27, 28).Radiant structure according to any one of Claims 1 to 7, characterized in that the said excitation of the said radiating elements is carried out using a first patch type resonator coupled to the multi-element structure (21, 22, 23, 24, 25, 26, 27, 28). Structure rayonnante selon l'une quelconque des revendications 1 à 8, caractérisée en ce que ladite excitation desdits éléments rayonnants est effectuée à l'aide d'une fente couplée, linéaire ou circulaire.Radiating structure according to any one of Claims 1 to 8, characterized in that the said excitation of the said radiating elements is carried out using a coupled, linear or circular slot. Structure rayonnante selon l'une quelconque des revendications 1 à 9, caractérisée en ce que ladite excitation desdits éléments rayonnants est effectuée à l'aide d'une sonde connectée à l'un desdits éléments rayonnants.Radiating structure according to any one of Claims 1 to 9, characterized in that the said excitation of the said radiating elements is carried out using a probe connected to one of the said radiating elements. Structure rayonnante selon l'une quelconque des revendications 1 à 10, caractérisée en ce que ladite surface isolante est sensiblement plane.Radiant structure according to any one of Claims 1 to 10, characterized in that the said insulating surface is substantially planar. Structure rayonnante selon l'une quelconque des revendications 1 à 11, caractérisée en ce que ladite surface isolante est conformée en 3 dimensions.Radiant structure according to any one of Claims 1 to 11, characterized in that the said insulating surface is shaped in 3 dimensions. Antenne électromagnétique à directivité variable comprenant au moins une pluralité d'éléments rayonnants organisés dans une structure rayonnante selon l'une quelconque des revendications 1 à 12.Electromagnetic antenna with variable directivity comprising at least a plurality of radiating elements organized in a radiating structure according to any one of claims 1 to 12.
EP94400622A 1993-03-26 1994-03-23 Radiating structure with variable directivity Withdrawn EP0617480A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9303502A FR2703190B1 (en) 1993-03-26 1993-03-26 Radiant structure with variable directivity.
FR9303502 1993-03-26

Publications (1)

Publication Number Publication Date
EP0617480A1 true EP0617480A1 (en) 1994-09-28

Family

ID=9445380

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94400622A Withdrawn EP0617480A1 (en) 1993-03-26 1994-03-23 Radiating structure with variable directivity

Country Status (3)

Country Link
EP (1) EP0617480A1 (en)
FI (1) FI941350A (en)
FR (1) FR2703190B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0901185A1 (en) * 1997-07-29 1999-03-10 Alcatel Dual polarisation patch antenna
EP1428291A1 (en) * 2001-08-31 2004-06-16 The Trustees of Columbia University in the City of New York Systems and methods for providing optimized patch antenna excitation for mutually coupled patches
EP2194602A1 (en) 2008-12-05 2010-06-09 Thales Antenna with shared sources and design process for a multi-beam antenna with shared sources
WO2010149605A1 (en) * 2009-06-26 2010-12-29 Thales Method of helping to steer an antenna, power-assisted steering antenna using this method and mobile terminal comprising such an antenna

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2225677A1 (en) * 1997-12-22 1999-06-22 Philippe Lafleur Multiple parasitic coupling to an outer antenna patch element from inner path elements

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989007838A1 (en) * 1988-02-15 1989-08-24 British Telecommunications Public Limited Company Microstrip antenna
EP0342175A2 (en) * 1988-05-10 1989-11-15 COMSAT Corporation Dual-polarized printed circuit antenna having its elements, including gridded printed circuit elements, capacitively coupled to feedlines
EP0403910A1 (en) * 1989-06-20 1990-12-27 Alcatel Espace Radiating, diplexing element
EP0484241A1 (en) * 1990-10-31 1992-05-06 France Telecom Printed circuit antenna for a dual polarized antenna array

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989007838A1 (en) * 1988-02-15 1989-08-24 British Telecommunications Public Limited Company Microstrip antenna
EP0342175A2 (en) * 1988-05-10 1989-11-15 COMSAT Corporation Dual-polarized printed circuit antenna having its elements, including gridded printed circuit elements, capacitively coupled to feedlines
EP0403910A1 (en) * 1989-06-20 1990-12-27 Alcatel Espace Radiating, diplexing element
EP0484241A1 (en) * 1990-10-31 1992-05-06 France Telecom Printed circuit antenna for a dual polarized antenna array

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0901185A1 (en) * 1997-07-29 1999-03-10 Alcatel Dual polarisation patch antenna
EP1428291A1 (en) * 2001-08-31 2004-06-16 The Trustees of Columbia University in the City of New York Systems and methods for providing optimized patch antenna excitation for mutually coupled patches
EP1428291A4 (en) * 2001-08-31 2004-12-08 Univ Columbia Systems and methods for providing optimized patch antenna excitation for mutually coupled patches
US7298329B2 (en) 2001-08-31 2007-11-20 The Trustees Of Columbia University In The City Of New York Systems and methods for providing optimized patch antenna excitation for mutually coupled patches
EP2194602A1 (en) 2008-12-05 2010-06-09 Thales Antenna with shared sources and design process for a multi-beam antenna with shared sources
US8299963B2 (en) 2008-12-05 2012-10-30 Thales Antenna with shared feeds and method of producing an antenna with shared feeds for generating multiple beams
EP2194602B1 (en) 2008-12-05 2015-09-02 Thales Antenna with shared sources and design process for a multi-beam antenna with shared sources
WO2010149605A1 (en) * 2009-06-26 2010-12-29 Thales Method of helping to steer an antenna, power-assisted steering antenna using this method and mobile terminal comprising such an antenna
FR2947388A1 (en) * 2009-06-26 2010-12-31 Thales Sa ANTENNA POINT ASSISTING METHOD, ASSISTED POINT ANTENNA USING THE SAME, AND NOMAD TERMINAL HAVING SUCH ANTENNA

Also Published As

Publication number Publication date
FI941350A (en) 1994-09-27
FR2703190B1 (en) 1995-05-12
FI941350A0 (en) 1994-03-23
FR2703190A1 (en) 1994-09-30

Similar Documents

Publication Publication Date Title
CA2004870C (en) Multifrequency radiating device
EP2194602B1 (en) Antenna with shared sources and design process for a multi-beam antenna with shared sources
FR2706085A1 (en) Multilayer radiating structure with variable directivity.
EP0315141B1 (en) Excitation arrangement of a circular polarised wave with a patch antenna in a waveguide
EP0542595A1 (en) Microstrip antenna device especially for satellite telephone transmissions
EP2564466A1 (en) Compact radiating element having resonant cavities
EP0783189A1 (en) Microwave planar antenna array for communicating with geostationary television satellites
EP2710676B1 (en) Radiating element for an active array antenna consisting of elementary tiles
FR2668305A1 (en) DEVICE FOR SUPPLYING A RADIANT ELEMENT OPERATING IN DOUBLE POLARIZATION.
EP1325537A1 (en) Improvements to transmission/reception sources of electromagnetic waves for multireflector antenna
EP1690317B1 (en) Multiband dual-polarised array antenna
FR2866480A1 (en) MULTIPOLARIZED COMPACT RADIATION DEVICE WITH ORTHOGONAL POWER SUPPLY BY SURFACE FIELD LINE (S)
EP0617480A1 (en) Radiating structure with variable directivity
CA2994728C (en) Surface-wave antenna, antenna array and use of an antenna or an antenna array
EP1188202B1 (en) Device for transmitting and/or receiving signals
CA2808511C (en) Flat antenna for a terminal operating in dual circular polarisation, airborne terminal and satellite telecommunication system featuring at least one antenna
EP2432072B1 (en) Wideband balun on a multilayer circuit for a network antenna
FR2901062A1 (en) Radiating device for e.g. passive focal array fed reflector antenna, has air resonant cavity with dielectric cover to establish electromagnetic field in transverse electromagnetic mode presenting uniform distribution on opening of device
EP0831550B1 (en) Versatile array antenna
EP4092831A1 (en) Antenna with lacunary distribution network
EP2889955B1 (en) Compact antenna structure for satellite telecommunication
WO2012131086A1 (en) Wide-band directional printed-circuit array antenna
FR2956250A1 (en) Millimeter antenna for high speed short range telecommunication applications, has excitation line extended from edge of substrate parallel to symmetry axis and coupled to point of edge from metallic element closest to symmetry axis

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19950202

17Q First examination report despatched

Effective date: 19961129

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCATEL N.V.

Owner name: ALCATEL SPACE INDUSTRIES

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19990313