EP0639067B1 - Use of perfluorcarbons for the preparation of potentiators of the ultrasound induced hyperthermia treatment of biological tissues - Google Patents

Use of perfluorcarbons for the preparation of potentiators of the ultrasound induced hyperthermia treatment of biological tissues Download PDF

Info

Publication number
EP0639067B1
EP0639067B1 EP92912400A EP92912400A EP0639067B1 EP 0639067 B1 EP0639067 B1 EP 0639067B1 EP 92912400 A EP92912400 A EP 92912400A EP 92912400 A EP92912400 A EP 92912400A EP 0639067 B1 EP0639067 B1 EP 0639067B1
Authority
EP
European Patent Office
Prior art keywords
gas
ultrasound
tumor
solution
potentiators
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92912400A
Other languages
German (de)
French (fr)
Other versions
EP0639067A4 (en
EP0639067A1 (en
Inventor
Inc. Imarx Therapeutics
Original Assignee
ImaRx Therapeutics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ImaRx Therapeutics Inc filed Critical ImaRx Therapeutics Inc
Priority to EP01201028A priority Critical patent/EP1104678A2/en
Priority to EP97202273A priority patent/EP0804944A3/en
Publication of EP0639067A1 publication Critical patent/EP0639067A1/en
Publication of EP0639067A4 publication Critical patent/EP0639067A4/en
Application granted granted Critical
Publication of EP0639067B1 publication Critical patent/EP0639067B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N7/02Localised ultrasound hyperthermia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00681Aspects not otherwise provided for
    • A61B2017/00707Dummies, phantoms; Devices simulating patient or parts of patient
    • A61B2017/00716Dummies, phantoms; Devices simulating patient or parts of patient simulating physical properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22082Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for after introduction of a substance
    • A61B2017/22088Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for after introduction of a substance ultrasound absorbing, drug activated by ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/04Liquids
    • A61M2202/0468Liquids non-physiological
    • A61M2202/0476Oxygenated solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N7/02Localised ultrasound hyperthermia
    • A61N2007/025Localised ultrasound hyperthermia interstitial

Definitions

  • the present invention relates to the use of perfluorocarbons for the preparation of hyperthermia potentiators for use in combination with ultrasound to facilitate the selective heating of the tissues and fluids.
  • the use of the ultrasound induced heat serves to increase blood flow to the affected regions, resulting in various beneficial effects.
  • the temperature of the tumorous tissue rises, generally at a higher rate than in normal tissue. As this temperature reaches above about 43°C, the tumorous cells begin to die and, if all goes well, the tumor eventually disappears.
  • Ultrasound induced heat treatment of biological tissues and fluids is known in the art as hyperthermic ultrasound.
  • hyperthermia ultrasound technique The non-invasive nature of the hyperthermia ultrasound technique is one of its benefits. Nonetheless, in employing hyperthermic ultrasound, certain precautions must be taken. Specifically, one must be careful to focus the ultrasound energy on only the areas to be treated, in an attempt to avoid heat-induced damage to the surrounding, non-targeted, tissues. In the treatment of tumors, for example, when temperatures exceeding about 43°C are reached, damage to the surrounding normal tissue is of particular concern. This concern with over heating the non-target tissues thus places limits on the use of hyperthermic ultrasound. Such therapeutic treatments would clearly be more effective and more widely employed if a way of targeting the desired tissues and fluids, and of maximizing the heat generated in those targeted tissues, could be devised.
  • the present invention is directed toward improving the effectiveness and utility of hyperthermic ultrasound by providing agents capable of promoting the selective heating of targeted tissues and body fluids.
  • WO93/05819 which forms part of the state of the art by virtue of Article 54(3) EPC, describes gaseous ultrasound contrast media comprising microbubbles of gases that have life spans in solution that are long enough to enable in vivo imaging.
  • the long life spans in solution are achieved by selection of suitable gases for forming the microbubbles.
  • US-A-4865836 describes the use of emulsions of brominated perfluorocarbon liquids as contrast media in vivo.
  • WO80/02365 describes microbubbles of gas encapsulated in a suitable membrane for use in diagnostic imaging in vivo.
  • WO92/22249 which forms part of the state of the art by virtue of Article 54(3) EPC, describes the use of ultrasonic energy to heat biological tissues and fluids, and more specifically, the use of gas filled liposomes prepared by a vacuum drying gas instillation method, and/or gas filled liposomes substantially devoid of liquid in the interior thereof, as hyperthermia potentiators in combination with ultrasound to facilitate the selective heating of the tissues and fluids.
  • WO91/03267 describes the use of liquid perfluorocarbons to temporarily fill pulmonary air passages and thereby provide a heat transfer medium for hyperthermia treatment of lung cancer.
  • the liquid perfluorocarbon may be heated by ultrasound.
  • the present invention provides use of perfluorocarbons for the preparation of a product for use in the potentiation of ultrasound induced hyperthermia treatment of biological tissues and fluids, wherein the perfluorocarbon is encapsulated in a liposome.
  • hyperthermic ultrasound becomes a better, more selective and more effective therapeutic method for the treatment of tumors, inflammation, and arthritis, as well as other various conditions.
  • the hyperthermia potentiators employed in the method of the subject invention comprise one or more perfluorocarbons, preferably a perfluorocarbon compound selected from the group consisting of perfluoro- octyliodide, perfluorotributylamine, perfluorotripropyl- amine and perfluorooctlybromide, and any and all combinations thereof.
  • perfluorocarbons described herein, are encapsulated in liposomes prior to administration.
  • Liposomes may be prepared using any one or a combination of conventional liposome preparatory techniques.
  • conventional techniques include sonication, chelate dialysis, homogenization, solvent infusion coupled with extrusion, freeze-thaw extrusion, microemulsification, as well as others. These techniques, as well as others, are discussed, for example, in U.S. Patent No. 4,728,578, U.K. Patent Application G.B. 2193095 A, U.S. Patent No. 4,728,575, U.S. Patent No. 4,737,323, International Application WO86/00238 Mayer et al., Biochimica et Biophysica Acta, Vol. 858, pp.
  • the materials which may be utilized in preparing the liposomes of the present invention include any of the materials or combinations thereof known to those skilled in the art as suitable in liposome construction.
  • the lipids used may be of either natural or synthetic origin. Such materials include, but are not limited to, lipids such as cholesterol, cholesterol hemisuccinate, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylglycerol, phosphatidic acid, phosphatidylinositol, lysolipids, fatty acids, sphingomyelin, glycosphingolipids, glucolipids, glycolipids, sulphatides, lipids with ether and ester-linked fatty acids, polymerizable lipids, and combinations thereof.
  • the liposomes may be synthesized in the absence or presence of incorporated glycolipid, complex carbohydrate, protein or synthetic polymer, using conventional procedures.
  • the surface of a liposome may also be modified with a polymer, such as, for example, with polyethylene glycol (PEG), using procedures readily apparent to those skilled in the art.
  • PEG polyethylene glycol
  • lipid Any species of lipid may be used, with the sole proviso that the lipid or combination of lipids and associated materials incorporated within the lipid matrix should form a bilayer phase under physiologically relevant conditions.
  • composition of the liposomes may be altered to modulate the biodistribution and clearance properties of the resulting liposomes.
  • the size of the vesicles can be adjusted by a variety of procedures including filtration, sonication, homogenization and similar methods to modulate liposomal biodistribution and clearance.
  • the vesicles can be subjected to repeated cycles of freezing and thawing.
  • the liposomes employed may be of varying sizes, but preferably have a mean outer diameter between about 30 nanometers and about 10 microns.
  • vesicle size influences biodistribution and, therefore, different size vesicles are selected for various purposes.
  • vesicle size is generally no larger than about 2 microns, and generally no smaller than about 30 nanometers, in mean outer diameter.
  • larger vesicles e.g., between about 2 and about 10 micron mean outside diameter may be employed, if desired.
  • the lipids employed may be selected to optimize the particular therapeutic use, minimize toxicity and maximize shelf-life of the product.
  • Neutral vesicles composed of either saturated or unsaturated phosphatidyl- choline, with or without sterol, such as cholesterol, function quite well as intravascular hyperthermia potentiators to entrap gas and perfluorocarbons.
  • a negatively charged lipid such as phosphatidylglycerol, phosphatidylserine or similar materials is added.
  • the liposome can be polymerized using polymerizable lipids, or the surface of the vesicle can be coated with polymers such as polyethylene glycol so as to protect the surface of the vesicle from serum proteins, or gangliosides such as GM1 can be incorporated within the lipid matrix.
  • Vesicles or micelles may also be prepared with attached receptors or antibodies to facilitate their targeting to specific cell types such as tumors.
  • the perfluorocarbons can be encapsulated by the liposome by being added to the medium in which the liposome is being formed, in accordance with conventional protocol.
  • the hyperthermic potentiators of the present invention are administered to a biological tissue or to biological fluids, whereupon ultrasound is then applied to the biological matter.
  • the invention is particularly useful when employed in relation to such biological matter as tumor tissue, muscle tissue or blood fluids.
  • administration may be carried out in various fashions, such as intravascularly, intralymphatically, parenterally, subcutaneously, intramuscularly, intraperitoneally, interstitially, hyperbarically or intratumorly using a variety of dosage forms, the particular route of administration and the dosage used being dependent upon the type of therapeutic use sought, and the particular potentiating agent employed.
  • Perfluorocarbons are preferably administered either intravascularly or interstitially. Typically, dosage is initiated at lower levels and increased until the desired temperature increase effect is achieved. In tumors with a principal dominant arterial supply such as the kidney, these hyperthermic potentiating agents may be administered intra-arterially.
  • the patient can be any type of mammal, but most preferably is a human.
  • the method of the invention is particularly useful in the treatment of tumors, various inflammatory conditions, and arthritis, especially in the treatment of tumors.
  • the perfluorocarbons accumulate in tumors, particularly in the brain, because of the leaky capillaries and delayed wash-out from the diseased tissues. Similarly, in other regions of the body where tumor vessels are leaky, the hyperthermic potentiating agents will accumulate.
  • the potentiators prepared by the invention may be employed in combination with other therapeutic and/or diagnostic agents.
  • the hyperthermic potentiators may be administered in combination with various chemotherapeutic agents.
  • ultrasound imaging devices Any of the various types of ultrasound imaging devices can be employed, the particular type or model of the device not being critical to the invention. Preferably, however, devices specially designed for administering ultrasonic hyperthermia are preferred. Such devices are described U.S. Patent Nos. 4,620,546, 4,658,828 and 4,586,512.
  • hyperthermic potentiators prepared by the present invention are believed to possess their excellent results because of the following scientific postulates.
  • Ultrasonic energy may either be transmitted through a tissue, reflected or absorbed. It is believed that the potentiators prepared by the invention serve to increase the absorption of sound energy within the biological tissues or fluids, which results in increased heating, thereby increasing the therapeutic effectiveness of ultrasonic hyperthermia.
  • Absorption of sound is believed to be increased in acoustic regions which have a high degree of ultrasonic heterogeneity.
  • Soft tissues and fluids with a higher degree of heterogeneity will absorb sound at a higher rate than tissues or liquids which are more homogeneous acoustically.
  • When sound encounters an interface which has a different acoustic impedance than the surrounding medium there is believed to be both increased reflection of sound and increased absorption of sound.
  • the degree of absorption of sound is believed to rise as the difference between the acoustic impedances between the two tissues or structures comprising the interface increases.
  • Intense sonic energy is also believed to cause cavitation and, when cavitation occurs, this in turn is thought to cause intense local heating.
  • perfluorocarbons have high acoustic impedance differences between liquids and soft tissues, as well as decrease the cavitation threshold, the perfluorocarbons may act to increase the rate of absorption of ultrasonic energy and effect a conversion of that energy into local heat.
  • the potentiators prepared by the present invention may serve to increase the acoustic heterogeneity and generate cavitation nuclei in tumors and tissues thereby acting as a potentiator of heating in ultrasonic hyperthermia. Because the perfluorocarbons create an acoustic impedance mismatch between tissues and adjacent fluids, the perfluorocarbons increase the absorption of sound and conversion of the energy into heat.
  • a 1.0 megahertz continuous wave ultrasonic transducer (Medco Mark IV Sonlator) was used to apply the ultrasonic energy.
  • Degassing of the solution that is, removal of the gas from the solution, was accomplished by using standard vacuum procedures.
  • Example 2 Gas bubbles of nitrogen were passed through a standard solution of PBS. A degassed solution of PBS was prepared. Ultrasound energy was applied to each solution, during which time the temperature was measured with a thermometer. The solution containing gas bubbles (Sample 2) reached a significantly higher temperature than the degassed solution (Sample 1). The results in this example are shown in Figure 2, and are qualitatively similar to those observed in Example 1.
  • Liposomes encapsulating gas were prepared via a pressurization process as previously described in WO 91/09629. A liposome without gas was also prepared. The two samples were exposed to ultrasonic energy as described above. The results revealed improved heating for the liposomes that encapsulated the gas similar to that shown in Figure 2. The gas, whether or not entrapped in an outer stabilizing covering such as a liposome, serves to potentiates the heating.
  • Albumin microspheres were prepared as previously described U.S. Patent No. 4,718,433 to encapsulate air. Two solutions of PBS were prepared, one containing albumin microspheres encapsulating gas and the other containing a solution of the same concentration of albumin in degassed PBS. The concentration of albumin in both cases was 1%. Ultrasonic energy was then applied as in Example 1. The solution containing the gas filled albumin microspheres reached a significantly higher temperature than the solution of albumin without gas. The temperature increase observed for the gassed solution was similar to that observed for the samples containing gas described in Examples 1 through 3.
  • Stabilized air bubbles were prepared as previously described using a mixture of the polymers polyoxyethylene and polyoxypropylene as in U.S. Patent No. 4,466,442 in solution. Ultrasonic energy was applied. Again, the temperature measurements showed a higher temperature for the solution containing the stabilized air bubbles.
  • a solution containing emulsions of perfluorooctylbromide (PFOB) was prepared as described in U.S. Patent No. 4,865,836 (Sample 1), and the solution was exposed to ultrasonic hyperthermia. Additionally, a second solution of PFOB emulsion was prepared following the same procedures, except that this second solution was gassed with oxygen as described in U.S. Patent No. 4,927,623 (Sample 2). Sample 2 was then exposed to ultrasonic hyperthermia. The Samples 1 and 2 containing the PFOB both achieved a higher temperature upon ultrasound treatment than the degassed PBS of Examples and 2. In addition, Sample 2 reached an even higher temperature with ultrasonic hyperthermia than Sample 1.
  • PFOB perfluorooctylbromide
  • a tissue equivalent phantom was prepared using low temperature agar gel with a 50°C gelling temperature.
  • a phantom was prepared from degassed PBS and 4% agar gel.
  • Another phantom was prepared, but in this case the liquid gel was pressurized with nitrogen gas at 1.2 MPa (180 psi) for 24 hours in a custom built pressurization chamber at 52°C. The pressure was released over a period of 5 seconds thus forming microbubbles in the liquid yet viscous gel.
  • Both gel samples (degassed and that containing microbubbles) were allowed to gel and to cool to 37°C. The samples were then exposed to ultrasonic energy as above and the temperatures recorded. The sample containing microbubbles again had a much higher rate of heating than the gel prepared from the degassed solution.
  • Two rats bearing C2 clonal derived epithelial carcinoma are treated with ultrasonic therapy.
  • 2 cc of nitrogen gas is injected into approximately 4 cc of tumor volume.
  • Hyperthermia is administered to both rats and the intra-tumoral temperature monitored.
  • the rat treated with an interstitial injection of nitrogen has a higher tumor temperature.
  • One group of rabbits bearing VX2 carcinoma of the brain are treated with ultrasonic hyperthermia while the tumor temperature and the temperature of the surrounding tissue is monitored with a probe.
  • a volume of 3 to 5 cc of perfluorooctybromide emulsion is injected into a second group of rabbits in the carotid artery ipsilateral to the brain tumor, while monitoring the tumor and surrounding tissue.
  • the rabbits treated with the PFOB show increased tumor temperatures and a more selective heating of the brain tumor as compared to the normal tissue.
  • Example 9 The same experiment as in Example 9 is repeated using a 3 cc injection of liposomes encapsulating gas. Again temperature measurements of tumor and normal tissue show increased temperature in the tumor relative to normal tissue of the animal treated with the gas filled liposomes.
  • a solution of liposomes encapsulating the gaseous precursor methylactate is prepared and suspended in PBS.
  • a control solution of PBS and the solution containing the liposomes encapsulating methylactate is heated with ultrasound and the temperature measured.
  • the temperature of the solution containing the liposomes encapsulating methylactate has a biexponential rate of heating reflecting the improvement in heating efficiency past the point at which gas is formed from the gaseous precursor.
  • the left femoral artery is catheterized using standard technique.
  • the renal artery is catheterized and 10 cc of a 1% solution of sonicated albumin microspheres entrapping gas is injected into the renal artery.
  • Therapeutic ultrasound is used to heat the tumor and the microbubbles of gas delivered to the tumor cause improved tumor heating.
  • Example 12 is repeated in another patient but this case gas bubbles encapsulated in the tensides polyoxyethylene and polyoxypropylene are used to embolize the kidney. Again therapeutic ultrasound is applied to the kidney and the result is improved heating of the tumor.
  • Example 13 is repeated but this time using liposomes encapsulating both chemotherapy and carbon dioxide gas. Again hyperthermia is applied to the tumor using ultrasound and not only is there improved tumor heating, but also improved tumor response caused by the interaction of simultaneous heating and chemotherapy.
  • Small liposomes are prepared to entrap nitrogen gas under pressure.
  • Phase sensitive lipids are selected with gel to liquid crystalline transition temperature of 42.5°C. These are administered intravenously to a patient with glioblastoma multiforme, which is a usually deadly brain tumor.
  • Ultrasonic hyperthermia is applied to the region of the brain tumor through a skull flap which has been previously made surgically.
  • the microbubbles entrapped in the liposomes accumulate in the patient's tumor because of the leakiness of the tumor vessels.
  • the microbubbles are excluded from the normal brain because of the integrity of the blood-brain barrier.
  • the ultrasonic energy raises the tumor temperature to 42.5 degrees centigrade and the liposomes underwent phase transition allowing the bubbles to expand.
  • the intratumoral bubbles increases the effectiveness of heating in the tumor by the therapeutic ultrasound.
  • Air bubbles are entrapped in lipid monolayers as previously described in U.S. Patent No. 4,684,479.
  • these lipid monolayer stabilized air bubbles are administered I.V. every day for 7 days during daily treatments with ultrasonic hyperthermia.
  • the stabilized air bubbles accumulate in the patient's tumor and the patient has improved response to treatment with ultrasonic hyperthermia.

Abstract

Gas, gaseous precursors and prefluorocarbons are presented as novel potentiators for ultrasonic hyperthermia. The gas, gaseous precursors and perfluorocarbons which may be administered into the vasculature, interstitially or into any body cavity are designed to accumulate in cancerous and diseased tissues. When therapeutic ultrasonic energy is applied to the diseased region heating is increased because of the greater effectiveness of sound energy absorption caused by these agents.

Description

  • The present invention relates to the use of perfluorocarbons for the preparation of hyperthermia potentiators for use in combination with ultrasound to facilitate the selective heating of the tissues and fluids.
  • The usefulness of heat to treat various inflammatory and arthritic conditions has long been known. The use of ultrasound to generate such heat for these as well as other therapeutic purposes, such as in, for example, the treatment of tumors has, however, been a fairly recent development.
  • Where the treatment of inflammation and arthritis is concerned, the use of the ultrasound induced heat serves to increase blood flow to the affected regions, resulting in various beneficial effects. Moreover, when ultrasonic energy is delivered to a tumor, the temperature of the tumorous tissue rises, generally at a higher rate than in normal tissue. As this temperature reaches above about 43°C, the tumorous cells begin to die and, if all goes well, the tumor eventually disappears. Ultrasound induced heat treatment of biological tissues and fluids is known in the art as hyperthermic ultrasound.
  • The non-invasive nature of the hyperthermia ultrasound technique is one of its benefits. Nonetheless, in employing hyperthermic ultrasound, certain precautions must be taken. Specifically, one must be careful to focus the ultrasound energy on only the areas to be treated, in an attempt to avoid heat-induced damage to the surrounding, non-targeted, tissues. In the treatment of tumors, for example, when temperatures exceeding about 43°C are reached, damage to the surrounding normal tissue is of particular concern. This concern with over heating the non-target tissues thus places limits on the use of hyperthermic ultrasound. Such therapeutic treatments would clearly be more effective and more widely employed if a way of targeting the desired tissues and fluids, and of maximizing the heat generated in those targeted tissues, could be devised.
  • The present invention is directed toward improving the effectiveness and utility of hyperthermic ultrasound by providing agents capable of promoting the selective heating of targeted tissues and body fluids.
  • WO93/05819, which forms part of the state of the art by virtue of Article 54(3) EPC, describes gaseous ultrasound contrast media comprising microbubbles of gases that have life spans in solution that are long enough to enable in vivo imaging. The long life spans in solution are achieved by selection of suitable gases for forming the microbubbles.
  • US-A-4865836 describes the use of emulsions of brominated perfluorocarbon liquids as contrast media in vivo.
  • WO80/02365 describes microbubbles of gas encapsulated in a suitable membrane for use in diagnostic imaging in vivo.
  • WO92/22249, which forms part of the state of the art by virtue of Article 54(3) EPC, describes the use of ultrasonic energy to heat biological tissues and fluids, and more specifically, the use of gas filled liposomes prepared by a vacuum drying gas instillation method, and/or gas filled liposomes substantially devoid of liquid in the interior thereof, as hyperthermia potentiators in combination with ultrasound to facilitate the selective heating of the tissues and fluids.
  • WO91/03267 describes the use of liquid perfluorocarbons to temporarily fill pulmonary air passages and thereby provide a heat transfer medium for hyperthermia treatment of lung cancer. The liquid perfluorocarbon may be heated by ultrasound.
  • The present invention provides use of perfluorocarbons for the preparation of a product for use in the potentiation of ultrasound induced hyperthermia treatment of biological tissues and fluids, wherein the perfluorocarbon is encapsulated in a liposome.
  • By using the present invention, hyperthermic ultrasound becomes a better, more selective and more effective therapeutic method for the treatment of tumors, inflammation, and arthritis, as well as other various conditions.
  • The present invention will now be described in detail with reference to the accompanying drawings, which relate to comparative experiments, as follows:-
  • Figure 1 provides a graph which plots the temperature over time for three different samples subject to ultrasound treatment using a 1.0 megahertz continuous wave source of ultrasonic energy. Both Sample 1 (multimellar vesicles composed of egg phosphatidylcholine and having encapsulated therein CO2 gas) and Sample 3 )a phosphate buffered saline solution pressurized with CO2 gas) have a similar increase in temperature over time. Sample 2 (a degassed phosphate buffered saline solution) exhibited a much lower increase in temperature over time, as compared with Samples 1 and 3.
  • Figure 2 provides a graph which plots the temperature over time for different samples subjected to ultrasound treatment using a 1.0 megahertz continuous wave source of ultrasonic energy. Sample 2 (a phosphate buffered saline solution pressurized with CO2 gas) shows a much greater increase in temperature over time than Sample 1 (a degassed phosphate buffered saline solution).
  • As used herein the phrase "hyperthermia potentiator" denotes any product prepared from perfluorocarbon capable of increasing the rate of ultrasound induced heating in biological tissues and fluids to which it is administered.
  • The hyperthermia potentiators employed in the method of the subject invention comprise one or more perfluorocarbons, preferably a perfluorocarbon compound selected from the group consisting of perfluoro- octyliodide, perfluorotributylamine, perfluorotripropyl- amine and perfluorooctlybromide, and any and all combinations thereof. The perfluorocarbons described herein, are encapsulated in liposomes prior to administration.
  • Liposomes may be prepared using any one or a combination of conventional liposome preparatory techniques. As will be readily apparent to those skilled in the art, such conventional techniques include sonication, chelate dialysis, homogenization, solvent infusion coupled with extrusion, freeze-thaw extrusion, microemulsification, as well as others. These techniques, as well as others, are discussed, for example, in U.S. Patent No. 4,728,578, U.K. Patent Application G.B. 2193095 A, U.S. Patent No. 4,728,575, U.S. Patent No. 4,737,323, International Application WO86/00238 Mayer et al., Biochimica et Biophysica Acta, Vol. 858, pp. 161-168 (1986), Hope et al., Biochimica et Biophysica Acta, Vol. 812, pp. 55-65 (1985), U.S. Patent No. 4,533,254, Mahew et al., Methods In Enzymology, Vol. 149, pp. 64-77 (1987), Mahew et al., Biochimica et Biophysica Acta, Vol. 75, pp. 169-174 (1984), and Cheng et al., Investigative Radiology, Vol. 22, pp. 47-55 (1987), and WO 90/04943. As a preferred technique, a solvent free system similar to that described in International Application WO 86/00238 is employed in preparing the liposome constructions.
  • The materials which may be utilized in preparing the liposomes of the present invention include any of the materials or combinations thereof known to those skilled in the art as suitable in liposome construction. The lipids used may be of either natural or synthetic origin. Such materials include, but are not limited to, lipids such as cholesterol, cholesterol hemisuccinate, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylglycerol, phosphatidic acid, phosphatidylinositol, lysolipids, fatty acids, sphingomyelin, glycosphingolipids, glucolipids, glycolipids, sulphatides, lipids with ether and ester-linked fatty acids, polymerizable lipids, and combinations thereof. As one skilled in the art will recognize, the liposomes may be synthesized in the absence or presence of incorporated glycolipid, complex carbohydrate, protein or synthetic polymer, using conventional procedures. The surface of a liposome may also be modified with a polymer, such as, for example, with polyethylene glycol (PEG), using procedures readily apparent to those skilled in the art.
  • Any species of lipid may be used, with the sole proviso that the lipid or combination of lipids and associated materials incorporated within the lipid matrix should form a bilayer phase under physiologically relevant conditions. As one skilled in the art will recognize, the composition of the liposomes may be altered to modulate the biodistribution and clearance properties of the resulting liposomes.
  • In addition, the size of the vesicles can be adjusted by a variety of procedures including filtration, sonication, homogenization and similar methods to modulate liposomal biodistribution and clearance. To increase internal aqueous trap volume, the vesicles can be subjected to repeated cycles of freezing and thawing.
  • The liposomes employed may be of varying sizes, but preferably have a mean outer diameter between about 30 nanometers and about 10 microns. As is known to those skilled in the art, vesicle size influences biodistribution and, therefore, different size vesicles are selected for various purposes. For intravascular use, for example, vesicle size is generally no larger than about 2 microns, and generally no smaller than about 30 nanometers, in mean outer diameter. For non-vascular uses, larger vesicles, e.g., between about 2 and about 10 micron mean outside diameter may be employed, if desired.
  • The lipids employed may be selected to optimize the particular therapeutic use, minimize toxicity and maximize shelf-life of the product. Neutral vesicles composed of either saturated or unsaturated phosphatidyl- choline, with or without sterol, such as cholesterol, function quite well as intravascular hyperthermia potentiators to entrap gas and perfluorocarbons. To improve uptake by cells such as the reticuloendothelial system (RES), a negatively charged lipid such as phosphatidylglycerol, phosphatidylserine or similar materials is added. For even greater vesicle stability, the liposome can be polymerized using polymerizable lipids, or the surface of the vesicle can be coated with polymers such as polyethylene glycol so as to protect the surface of the vesicle from serum proteins, or gangliosides such as GM1 can be incorporated within the lipid matrix. Vesicles or micelles may also be prepared with attached receptors or antibodies to facilitate their targeting to specific cell types such as tumors.
  • The perfluorocarbons can be encapsulated by the liposome by being added to the medium in which the liposome is being formed, in accordance with conventional protocol.
  • The hyperthermic potentiators of the present invention are administered to a biological tissue or to biological fluids, whereupon ultrasound is then applied to the biological matter. The invention is particularly useful when employed in relation to such biological matter as tumor tissue, muscle tissue or blood fluids.
  • Where the usage is in vivo, administration may be carried out in various fashions, such as intravascularly, intralymphatically, parenterally, subcutaneously, intramuscularly, intraperitoneally, interstitially, hyperbarically or intratumorly using a variety of dosage forms, the particular route of administration and the dosage used being dependent upon the type of therapeutic use sought, and the particular potentiating agent employed. Perfluorocarbons are preferably administered either intravascularly or interstitially. Typically, dosage is initiated at lower levels and increased until the desired temperature increase effect is achieved. In tumors with a principal dominant arterial supply such as the kidney, these hyperthermic potentiating agents may be administered intra-arterially.
  • For in vivo usage, the patient can be any type of mammal, but most preferably is a human. The method of the invention is particularly useful in the treatment of tumors, various inflammatory conditions, and arthritis, especially in the treatment of tumors. The perfluorocarbons accumulate in tumors, particularly in the brain, because of the leaky capillaries and delayed wash-out from the diseased tissues. Similarly, in other regions of the body where tumor vessels are leaky, the hyperthermic potentiating agents will accumulate.
  • The potentiators prepared by the invention may be employed in combination with other therapeutic and/or diagnostic agents. In tumor therapy applications, for example, the hyperthermic potentiators may be administered in combination with various chemotherapeutic agents.
  • Any of the various types of ultrasound imaging devices can be employed, the particular type or model of the device not being critical to the invention. Preferably, however, devices specially designed for administering ultrasonic hyperthermia are preferred. Such devices are described U.S. Patent Nos. 4,620,546, 4,658,828 and 4,586,512.
  • Although applicant does not intend to be limited to any particular theory of operation, the hyperthermic potentiators prepared by the present invention are believed to possess their excellent results because of the following scientific postulates.
  • Ultrasonic energy may either be transmitted through a tissue, reflected or absorbed. It is believed that the potentiators prepared by the invention serve to increase the absorption of sound energy within the biological tissues or fluids, which results in increased heating, thereby increasing the therapeutic effectiveness of ultrasonic hyperthermia.
  • Absorption of sound is believed to be increased in acoustic regions which have a high degree of ultrasonic heterogeneity. Soft tissues and fluids with a higher degree of heterogeneity will absorb sound at a higher rate than tissues or liquids which are more homogeneous acoustically. When sound encounters an interface which has a different acoustic impedance than the surrounding medium, there is believed to be both increased reflection of sound and increased absorption of sound. The degree of absorption of sound is believed to rise as the difference between the acoustic impedances between the two tissues or structures comprising the interface increases.
  • Intense sonic energy is also believed to cause cavitation and, when cavitation occurs, this in turn is thought to cause intense local heating.
  • Since perfluorocarbons have high acoustic impedance differences between liquids and soft tissues, as well as decrease the cavitation threshold, the perfluorocarbons may act to increase the rate of absorption of ultrasonic energy and effect a conversion of that energy into local heat.
  • The potentiators prepared by the present invention may serve to increase the acoustic heterogeneity and generate cavitation nuclei in tumors and tissues thereby acting as a potentiator of heating in ultrasonic hyperthermia. Because the perfluorocarbons create an acoustic impedance mismatch between tissues and adjacent fluids, the perfluorocarbons increase the absorption of sound and conversion of the energy into heat.
  • The following examples are merely illustrative of the present invention and should not be considered as limiting the scope of the invention as defined in the accompanying claims.
  • In all of the examples which follow, a 1.0 megahertz continuous wave ultrasonic transducer (Medco Mark IV Sonlator) was used to apply the ultrasonic energy. Degassing of the solution, that is, removal of the gas from the solution, was accomplished by using standard vacuum procedures.
  • EXAMPLES Example 1 (comparative)
  • A cooled degassed solution of phosphate buffered saline (PBS) was subjected to ultrasonic hyperthermia. Another equal volume of standard PBS was pressurized in a commercial soda syphon with carbon dioxide. The pressure was released and the solution was then subjected to ultrasound with identical parameters as for the previously described solution of PBS. The gassed solution reached a significantly higher temperature than the degassed solution. These results are illustrated in Figure 1.
  • Example 2 (comparative)
  • Gas bubbles of nitrogen were passed through a standard solution of PBS. A degassed solution of PBS was prepared. Ultrasound energy was applied to each solution, during which time the temperature was measured with a thermometer. The solution containing gas bubbles (Sample 2) reached a significantly higher temperature than the degassed solution (Sample 1). The results in this example are shown in Figure 2, and are qualitatively similar to those observed in Example 1.
  • In both Examples 1 and 2, it should be noted that the ultrasonic hyperthermia was commenced immediately after gasing the solutions. When ultrasonic hyperthermia was delayed more than five minutes after the gasing step, the resultant temperature was only slightly greater than for the degassed PBS. This is attributed to the relatively rapid decay of the non-stabilized gas bubbles in solution.
  • Example 3 (comparative)
  • Liposomes encapsulating gas were prepared via a pressurization process as previously described in WO 91/09629. A liposome without gas was also prepared. The two samples were exposed to ultrasonic energy as described above. The results revealed improved heating for the liposomes that encapsulated the gas similar to that shown in Figure 2. The gas, whether or not entrapped in an outer stabilizing covering such as a liposome, serves to potentiates the heating.
  • The advantage of using liposomes or other such stabilizing methods is that in vivo the stabilized bubbles may perhaps be more readily directed to sites, e.g., tumors than unencapsulated bubbles. Note that the nonencapsulated bubbles as described in Examples 1 and 2 were only stable for several minutes in solution, whereas the liposomal bubbles will have a much longer stablilty.
  • Example 4 (comparative)
  • Albumin microspheres were prepared as previously described U.S. Patent No. 4,718,433 to encapsulate air. Two solutions of PBS were prepared, one containing albumin microspheres encapsulating gas and the other containing a solution of the same concentration of albumin in degassed PBS. The concentration of albumin in both cases was 1%. Ultrasonic energy was then applied as in Example 1. The solution containing the gas filled albumin microspheres reached a significantly higher temperature than the solution of albumin without gas. The temperature increase observed for the gassed solution was similar to that observed for the samples containing gas described in Examples 1 through 3.
  • Example 5 (comparative)
  • Stabilized air bubbles were prepared as previously described using a mixture of the polymers polyoxyethylene and polyoxypropylene as in U.S. Patent No. 4,466,442 in solution. Ultrasonic energy was applied. Again, the temperature measurements showed a higher temperature for the solution containing the stabilized air bubbles.
  • Example 6 (comparative)
  • A solution containing emulsions of perfluorooctylbromide (PFOB) was prepared as described in U.S. Patent No. 4,865,836 (Sample 1), and the solution was exposed to ultrasonic hyperthermia. Additionally, a second solution of PFOB emulsion was prepared following the same procedures, except that this second solution was gassed with oxygen as described in U.S. Patent No. 4,927,623 (Sample 2). Sample 2 was then exposed to ultrasonic hyperthermia. The Samples 1 and 2 containing the PFOB both achieved a higher temperature upon ultrasound treatment than the degassed PBS of Examples and 2. In addition, Sample 2 reached an even higher temperature with ultrasonic hyperthermia than Sample 1.
  • Example 7 (comparative)
  • A tissue equivalent phantom was prepared using low temperature agar gel with a 50°C gelling temperature. A phantom was prepared from degassed PBS and 4% agar gel. Another phantom was prepared, but in this case the liquid gel was pressurized with nitrogen gas at 1.2 MPa (180 psi) for 24 hours in a custom built pressurization chamber at 52°C. The pressure was released over a period of 5 seconds thus forming microbubbles in the liquid yet viscous gel. Both gel samples (degassed and that containing microbubbles) were allowed to gel and to cool to 37°C. The samples were then exposed to ultrasonic energy as above and the temperatures recorded. The sample containing microbubbles again had a much higher rate of heating than the gel prepared from the degassed solution.
  • The above was repeated but in this case liposomes entrapping gas were placed in the gel and the gel again cooled to 37°C. Ultrasonic heating again showed an improved rate of heating. The purpose of the tissue equivalent phantom was to demonstrate how the bubbles might potentiate heating in tissues, e.g., a tumor.
  • Example 8 (comparative)
  • Two rats bearing C2 clonal derived epithelial carcinoma are treated with ultrasonic therapy. In one of these rats, 2 cc of nitrogen gas is injected into approximately 4 cc of tumor volume. Hyperthermia is administered to both rats and the intra-tumoral temperature monitored. The rat treated with an interstitial injection of nitrogen has a higher tumor temperature.
  • Example 9 (comparative)
  • One group of rabbits bearing VX2 carcinoma of the brain are treated with ultrasonic hyperthermia while the tumor temperature and the temperature of the surrounding tissue is monitored with a probe. A volume of 3 to 5 cc of perfluorooctybromide emulsion is injected into a second group of rabbits in the carotid artery ipsilateral to the brain tumor, while monitoring the tumor and surrounding tissue. The rabbits treated with the PFOB show increased tumor temperatures and a more selective heating of the brain tumor as compared to the normal tissue.
  • Example 10 (comparative)
  • The same experiment as in Example 9 is repeated using a 3 cc injection of liposomes encapsulating gas. Again temperature measurements of tumor and normal tissue show increased temperature in the tumor relative to normal tissue of the animal treated with the gas filled liposomes.
  • Example 11 (comparative)
  • A solution of liposomes encapsulating the gaseous precursor methylactate is prepared and suspended in PBS. A control solution of PBS and the solution containing the liposomes encapsulating methylactate is heated with ultrasound and the temperature measured. The temperature of the solution containing the liposomes encapsulating methylactate has a biexponential rate of heating reflecting the improvement in heating efficiency past the point at which gas is formed from the gaseous precursor.
  • Example 12 (comparative)
  • In a patient with cancer of the kidney, the left femoral artery is catheterized using standard technique. The renal artery is catheterized and 10 cc of a 1% solution of sonicated albumin microspheres entrapping gas is injected into the renal artery. Therapeutic ultrasound is used to heat the tumor and the microbubbles of gas delivered to the tumor cause improved tumor heating.
  • Example 13 (comparative)
  • Example 12 is repeated in another patient but this case gas bubbles encapsulated in the tensides polyoxyethylene and polyoxypropylene are used to embolize the kidney. Again therapeutic ultrasound is applied to the kidney and the result is improved heating of the tumor.
  • Example 14 (comparative)
  • Example 13 is repeated but this time using liposomes encapsulating both chemotherapy and carbon dioxide gas. Again hyperthermia is applied to the tumor using ultrasound and not only is there improved tumor heating, but also improved tumor response caused by the interaction of simultaneous heating and chemotherapy.
  • Example 15 (comparative)
  • Small liposomes, less than about 100 nm diameter, are prepared to entrap nitrogen gas under pressure. Phase sensitive lipids are selected with gel to liquid crystalline transition temperature of 42.5°C. These are administered intravenously to a patient with glioblastoma multiforme, which is a usually deadly brain tumor. Ultrasonic hyperthermia is applied to the region of the brain tumor through a skull flap which has been previously made surgically. The microbubbles entrapped in the liposomes accumulate in the patient's tumor because of the leakiness of the tumor vessels. The microbubbles are excluded from the normal brain because of the integrity of the blood-brain barrier. The ultrasonic energy raises the tumor temperature to 42.5 degrees centigrade and the liposomes underwent phase transition allowing the bubbles to expand. The intratumoral bubbles increases the effectiveness of heating in the tumor by the therapeutic ultrasound.
  • Example 16 (comparative)
  • Air bubbles are entrapped in lipid monolayers as previously described in U.S. Patent No. 4,684,479. In a patient with glioblastoma multiforme, these lipid monolayer stabilized air bubbles are administered I.V. every day for 7 days during daily treatments with ultrasonic hyperthermia. The stabilized air bubbles accumulate in the patient's tumor and the patient has improved response to treatment with ultrasonic hyperthermia.
  • Various modifications within the scope of the appended claims in addition to those shown and described herein will be apparent to those skilled in the art from the foregoing description.

Claims (2)

  1. Use of perfluorocarbons for the preparation of a product for use in the potentiation of ultrasound induced hyperthermia treatment of biological tissues and fluids, wherein the perfluorocarbon is encapsulated in a liposome
  2. Use according to claim 1, wherein the perfluorocarbon is selected from the group consisting of perfluorooctyliodide, perfluorotributylamine, perfluorotripropylamine and perfluorooctylbromide.
EP92912400A 1990-09-11 1992-05-04 Use of perfluorcarbons for the preparation of potentiators of the ultrasound induced hyperthermia treatment of biological tissues Expired - Lifetime EP0639067B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP01201028A EP1104678A2 (en) 1992-05-04 1992-05-04 Method for hyperthermic potentiation of tissue
EP97202273A EP0804944A3 (en) 1992-05-04 1992-05-04 A method of providing a gas composition in a biological tissue or fluid in vivo

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/581,027 US5149319A (en) 1990-09-11 1990-09-11 Methods for providing localized therapeutic heat to biological tissues and fluids
PCT/US1992/003705 WO1993021889A1 (en) 1990-09-11 1992-05-04 Method for hyperthermic potentiation of tissue

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP97202273A Division EP0804944A3 (en) 1992-05-04 1992-05-04 A method of providing a gas composition in a biological tissue or fluid in vivo
EP01201028A Division EP1104678A2 (en) 1992-05-04 1992-05-04 Method for hyperthermic potentiation of tissue

Publications (3)

Publication Number Publication Date
EP0639067A1 EP0639067A1 (en) 1995-02-22
EP0639067A4 EP0639067A4 (en) 1995-04-19
EP0639067B1 true EP0639067B1 (en) 2002-03-27

Family

ID=24323604

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92912400A Expired - Lifetime EP0639067B1 (en) 1990-09-11 1992-05-04 Use of perfluorcarbons for the preparation of potentiators of the ultrasound induced hyperthermia treatment of biological tissues

Country Status (7)

Country Link
US (1) US5149319A (en)
EP (1) EP0639067B1 (en)
JP (1) JPH07506032A (en)
AT (1) ATE214903T1 (en)
AU (2) AU678341B2 (en)
DE (1) DE69232518T2 (en)
WO (1) WO1993021889A1 (en)

Families Citing this family (237)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5585112A (en) 1989-12-22 1996-12-17 Imarx Pharmaceutical Corp. Method of preparing gas and gaseous precursor-filled microspheres
US5656211A (en) * 1989-12-22 1997-08-12 Imarx Pharmaceutical Corp. Apparatus and method for making gas-filled vesicles of optimal size
US5733572A (en) * 1989-12-22 1998-03-31 Imarx Pharmaceutical Corp. Gas and gaseous precursor filled microspheres as topical and subcutaneous delivery vehicles
US6146657A (en) 1989-12-22 2000-11-14 Imarx Pharmaceutical Corp. Gas-filled lipid spheres for use in diagnostic and therapeutic applications
US5776429A (en) 1989-12-22 1998-07-07 Imarx Pharmaceutical Corp. Method of preparing gas-filled microspheres using a lyophilized lipids
US5305757A (en) * 1989-12-22 1994-04-26 Unger Evan C Gas filled liposomes and their use as ultrasonic contrast agents
US6551576B1 (en) 1989-12-22 2003-04-22 Bristol-Myers Squibb Medical Imaging, Inc. Container with multi-phase composition for use in diagnostic and therapeutic applications
US5922304A (en) 1989-12-22 1999-07-13 Imarx Pharmaceutical Corp. Gaseous precursor filled microspheres as magnetic resonance imaging contrast agents
US5469854A (en) * 1989-12-22 1995-11-28 Imarx Pharmaceutical Corp. Methods of preparing gas-filled liposomes
US5542935A (en) 1989-12-22 1996-08-06 Imarx Pharmaceutical Corp. Therapeutic delivery systems related applications
US5352435A (en) * 1989-12-22 1994-10-04 Unger Evan C Ionophore containing liposomes for ultrasound imaging
US6088613A (en) 1989-12-22 2000-07-11 Imarx Pharmaceutical Corp. Method of magnetic resonance focused surgical and therapeutic ultrasound
US5580575A (en) * 1989-12-22 1996-12-03 Imarx Pharmaceutical Corp. Therapeutic drug delivery systems
US5705187A (en) * 1989-12-22 1998-01-06 Imarx Pharmaceutical Corp. Compositions of lipids and stabilizing materials
US5209720A (en) * 1989-12-22 1993-05-11 Unger Evan C Methods for providing localized therapeutic heat to biological tissues and fluids using gas filled liposomes
US5773024A (en) * 1989-12-22 1998-06-30 Imarx Pharmaceutical Corp. Container with multi-phase composition for use in diagnostic and therapeutic applications
US6001335A (en) 1989-12-22 1999-12-14 Imarx Pharmaceutical Corp. Contrasting agents for ultrasonic imaging and methods for preparing the same
IN172208B (en) 1990-04-02 1993-05-01 Sint Sa
US7083778B2 (en) * 1991-05-03 2006-08-01 Bracco International B.V. Ultrasound contrast agents and methods of making and using them
USRE39146E1 (en) 1990-04-02 2006-06-27 Bracco International B.V. Long-lasting aqueous dispersions or suspensions of pressure-resistant gas-filled microvesicles and methods for the preparation thereof
US5445813A (en) * 1992-11-02 1995-08-29 Bracco International B.V. Stable microbubble suspensions as enhancement agents for ultrasound echography
US5578292A (en) 1991-11-20 1996-11-26 Bracco International B.V. Long-lasting aqueous dispersions or suspensions of pressure-resistant gas-filled microvesicles and methods for the preparation thereof
US6989141B2 (en) * 1990-05-18 2006-01-24 Bracco International B.V. Ultrasound contrast agents and methods of making and using them
US6613306B1 (en) 1990-04-02 2003-09-02 Bracco International B.V. Ultrasound contrast agents and methods of making and using them
US20040208826A1 (en) * 1990-04-02 2004-10-21 Bracco International B.V. Ultrasound contrast agents and methods of making and using them
US20010024638A1 (en) * 1992-11-02 2001-09-27 Michel Schneider Stable microbubble suspensions as enhancement agents for ultrasound echography and dry formulations thereof
US20030194376A1 (en) * 1990-05-18 2003-10-16 Bracco International B.V. Ultrasound contrast agents and methods of making and using them
CA2063529A1 (en) * 1991-03-22 1992-09-23 Katsuro Tachibana Booster for therapy of diseases with ultrasound and pharmaceutical liquid composition containing the same
US5205290A (en) * 1991-04-05 1993-04-27 Unger Evan C Low density microspheres and their use as contrast agents for computed tomography
US5874062A (en) 1991-04-05 1999-02-23 Imarx Pharmaceutical Corp. Methods of computed tomography using perfluorocarbon gaseous filled microspheres as contrast agents
US6723303B1 (en) 1991-09-17 2004-04-20 Amersham Health, As Ultrasound contrast agents including protein stabilized microspheres of perfluoropropane, perfluorobutane or perfluoropentane
MX9205298A (en) * 1991-09-17 1993-05-01 Steven Carl Quay GASEOUS ULTRASOUND CONTRASTING MEDIA AND METHOD FOR SELECTING GASES TO BE USED AS ULTRASOUND CONTRASTING MEDIA
US5409688A (en) * 1991-09-17 1995-04-25 Sonus Pharmaceuticals, Inc. Gaseous ultrasound contrast media
JPH0596012A (en) * 1991-10-07 1993-04-20 Olympus Optical Co Ltd Thermotherapic device
FR2685732B1 (en) * 1991-12-31 1994-02-25 Snecma BLADE OF TURBOMACHINE IN COMPOSITE MATERIAL.
IL104084A (en) * 1992-01-24 1996-09-12 Bracco Int Bv Long-lasting aqueous suspensions of pressure-resistant gas-filled microvesicles their preparation and contrast agents consisting of them
IL108416A (en) 1993-01-25 1998-10-30 Sonus Pharma Inc Phase shift colloids as ultrasound contrast agents
US5855865A (en) * 1993-07-02 1999-01-05 Molecular Biosystems, Inc. Method for making encapsulated gas microspheres from heat denatured protein in the absence of oxygen gas
US5798091A (en) 1993-07-30 1998-08-25 Alliance Pharmaceutical Corp. Stabilized gas emulsion containing phospholipid for ultrasound contrast enhancement
DE69434119T3 (en) * 1993-07-30 2011-05-05 Imcor Pharmaceutical Co., San Diego STABILIZED MICROGAS BLOWER COMPOSITIONS FOR ECHOGRAPHY
PT682530E (en) * 1993-12-15 2003-06-30 Bracco Research Sa UTEIS GAS MIXTURES AS CONTRAST MEANS FOR ULTRASSONS
US5736121A (en) * 1994-05-23 1998-04-07 Imarx Pharmaceutical Corp. Stabilized homogenous suspensions as computed tomography contrast agents
US5509896A (en) * 1994-09-09 1996-04-23 Coraje, Inc. Enhancement of thrombolysis with external ultrasound
US5540909A (en) * 1994-09-28 1996-07-30 Alliance Pharmaceutical Corp. Harmonic ultrasound imaging with microbubbles
US6743779B1 (en) 1994-11-29 2004-06-01 Imarx Pharmaceutical Corp. Methods for delivering compounds into a cell
US5590651A (en) * 1995-01-17 1997-01-07 Temple University - Of The Commonwealth System Of Higher Education Breathable liquid elimination analysis
US5830430A (en) 1995-02-21 1998-11-03 Imarx Pharmaceutical Corp. Cationic lipids and the use thereof
US6176842B1 (en) 1995-03-08 2001-01-23 Ekos Corporation Ultrasound assembly for use with light activated drugs
DE69630285T2 (en) * 1995-03-08 2004-07-15 Ekos Corp., Bothell ULTRASOUND THERAPY DEVICE
EP0825834A4 (en) * 1995-05-15 2000-01-05 Coraje Inc Enhancement of ultrasound thrombolysis
US5558092A (en) * 1995-06-06 1996-09-24 Imarx Pharmaceutical Corp. Methods and apparatus for performing diagnostic and therapeutic ultrasound simultaneously
US5997898A (en) 1995-06-06 1999-12-07 Imarx Pharmaceutical Corp. Stabilized compositions of fluorinated amphiphiles for methods of therapeutic delivery
US6139819A (en) 1995-06-07 2000-10-31 Imarx Pharmaceutical Corp. Targeted contrast agents for diagnostic and therapeutic use
US5804162A (en) 1995-06-07 1998-09-08 Alliance Pharmaceutical Corp. Gas emulsions stabilized with fluorinated ethers having low Ostwald coefficients
US5741248A (en) * 1995-06-07 1998-04-21 Temple University-Of The Commonwealth System Of Higher Education Fluorochemical liquid augmented cryosurgery
US6033645A (en) 1996-06-19 2000-03-07 Unger; Evan C. Methods for diagnostic imaging by regulating the administration rate of a contrast agent
US6521211B1 (en) 1995-06-07 2003-02-18 Bristol-Myers Squibb Medical Imaging, Inc. Methods of imaging and treatment with targeted compositions
US6231834B1 (en) 1995-06-07 2001-05-15 Imarx Pharmaceutical Corp. Methods for ultrasound imaging involving the use of a contrast agent and multiple images and processing of same
US6821506B2 (en) * 1995-06-08 2004-11-23 Barnes-Jewish Hospital Site specific binding system, imaging compositions and methods
US20050089958A1 (en) * 1996-01-09 2005-04-28 Genentech, Inc. Apo-2 ligand
US6998116B1 (en) * 1996-01-09 2006-02-14 Genentech, Inc. Apo-2 ligand
US5840276A (en) * 1996-01-11 1998-11-24 Apfel Enterprises, Inc. Activatable infusable dispersions containing drops of a superheated liquid for methods of therapy and diagnosis
HU226714B1 (en) * 1996-03-05 2009-07-28 Acusphere Microencapsulated fluorinated gases for use as imaging agents
US5611344A (en) * 1996-03-05 1997-03-18 Acusphere, Inc. Microencapsulated fluorinated gases for use as imaging agents
US5861175A (en) * 1996-03-15 1999-01-19 Alliance Pharmaceutical Corp. Use of fluorocarbons for diagnosis and treatment of articular disorders
US5676692A (en) * 1996-03-28 1997-10-14 Indianapolis Center For Advanced Research, Inc. Focussed ultrasound tissue treatment method
EP0935415B1 (en) * 1996-05-01 2006-11-22 Imarx Pharmaceutical Corp. In vitro methods for delivering nucleic acids into a cell
BE1010407A4 (en) * 1996-07-04 1998-07-07 Undatim Ultrasonics Method and installation of water treatment.
US5837221A (en) * 1996-07-29 1998-11-17 Acusphere, Inc. Polymer-lipid microencapsulated gases for use as imaging agents
US6414139B1 (en) 1996-09-03 2002-07-02 Imarx Therapeutics, Inc. Silicon amphiphilic compounds and the use thereof
US5846517A (en) 1996-09-11 1998-12-08 Imarx Pharmaceutical Corp. Methods for diagnostic imaging using a renal contrast agent and a vasodilator
ATE366588T1 (en) 1996-09-11 2007-08-15 Imarx Pharmaceutical Corp METHOD FOR DIAGNOSTIC IMAGING OF THE KIDNEY REGION USING A CONTRAST AGENT AND A VASODILATOR
US6451044B1 (en) * 1996-09-20 2002-09-17 Board Of Regents, The University Of Texas System Method and apparatus for heating inflammed tissue
US6120751A (en) 1997-03-21 2000-09-19 Imarx Pharmaceutical Corp. Charged lipids and uses for the same
US6090800A (en) 1997-05-06 2000-07-18 Imarx Pharmaceutical Corp. Lipid soluble steroid prodrugs
US6143276A (en) 1997-03-21 2000-11-07 Imarx Pharmaceutical Corp. Methods for delivering bioactive agents to regions of elevated temperatures
US6537246B1 (en) 1997-06-18 2003-03-25 Imarx Therapeutics, Inc. Oxygen delivery agents and uses for the same
US6582392B1 (en) * 1998-05-01 2003-06-24 Ekos Corporation Ultrasound assembly for use with a catheter
US6723063B1 (en) 1998-06-29 2004-04-20 Ekos Corporation Sheath for use with an ultrasound element
US6676626B1 (en) 1998-05-01 2004-01-13 Ekos Corporation Ultrasound assembly with increased efficacy
US6416740B1 (en) 1997-05-13 2002-07-09 Bristol-Myers Squibb Medical Imaging, Inc. Acoustically active drug delivery systems
WO1998055605A1 (en) * 1997-06-04 1998-12-10 William Drewes Method of destroying cells via resonant destruction of intracellular structures
US5954675A (en) * 1997-07-07 1999-09-21 Dellagatta; Enrico Michael Method of ultrasonic therapy
US6548047B1 (en) 1997-09-15 2003-04-15 Bristol-Myers Squibb Medical Imaging, Inc. Thermal preactivation of gaseous precursor filled compositions
US6050943A (en) 1997-10-14 2000-04-18 Guided Therapy Systems, Inc. Imaging, therapy, and temperature monitoring ultrasonic system
US6623430B1 (en) 1997-10-14 2003-09-23 Guided Therapy Systems, Inc. Method and apparatus for safety delivering medicants to a region of tissue using imaging, therapy and temperature monitoring ultrasonic system
US6123923A (en) 1997-12-18 2000-09-26 Imarx Pharmaceutical Corp. Optoacoustic contrast agents and methods for their use
US20010003580A1 (en) 1998-01-14 2001-06-14 Poh K. Hui Preparation of a lipid blend and a phospholipid suspension containing the lipid blend
JPH11244283A (en) * 1998-03-05 1999-09-14 Ge Yokogawa Medical Systems Ltd Ultrasonic image pickup method and its device
US6074352A (en) * 1998-03-26 2000-06-13 Brigham And Women's Hospital Method for the treatment of joint diseases characterized by unwanted pannus
WO1999049788A1 (en) * 1998-03-30 1999-10-07 Focus Surgery, Inc. Ablation system
US6685640B1 (en) * 1998-03-30 2004-02-03 Focus Surgery, Inc. Ablation system
IL127967A (en) * 1999-01-07 2004-05-12 Moris Topaz Irrigation solution for use in ultrasound energy assisted surgery
ATE262891T1 (en) * 1999-01-07 2004-04-15 Moris Topaz BIOCOMPATIBLE INJECTABLE AQUEOUS SOLUTION FOR USE IN ULTRASONIC ENERGY-ASSISTED SURGERY
US20050061335A1 (en) * 1999-01-07 2005-03-24 Morris Topaz Irrigation solution for use in ultrasound energy assisted surgery
DE19940220B4 (en) * 1999-08-19 2007-05-03 Magforce Nanotechnologies Ag Medical preparation for the treatment of osteoarthritis, arthritis and other rheumatic joint diseases
KR20010088022A (en) * 2000-03-10 2001-09-26 모리스 토파즈 Biocompatible, injectable aqueous solution for use in ultrasound energy assisted surgery
US6514221B2 (en) * 2000-07-27 2003-02-04 Brigham And Women's Hospital, Inc. Blood-brain barrier opening
US7914453B2 (en) 2000-12-28 2011-03-29 Ardent Sound, Inc. Visual imaging system for ultrasonic probe
AU2007201577B2 (en) * 2001-01-30 2008-10-02 Barnes-Jewish Hospital Enhanced ultrasound detection with temperature-dependent contrast agents
US7179449B2 (en) * 2001-01-30 2007-02-20 Barnes-Jewish Hospital Enhanced ultrasound detection with temperature-dependent contrast agents
US7846096B2 (en) * 2001-05-29 2010-12-07 Ethicon Endo-Surgery, Inc. Method for monitoring of medical treatment using pulse-echo ultrasound
US7211044B2 (en) 2001-05-29 2007-05-01 Ethicon Endo-Surgery, Inc. Method for mapping temperature rise using pulse-echo ultrasound
US20030069502A1 (en) 2001-05-29 2003-04-10 Makin Inder Raj. S. Ultrasound feedback in medically-treated patients
JP4660024B2 (en) * 2001-06-26 2011-03-30 帝人株式会社 MMP activity lowering apparatus and method
IL144661A0 (en) 2001-07-31 2002-05-23 Medisim Ltd A method for detection of cancer using a thermal enhancement agent, and non-invasive thermal monitoring
ATE520362T1 (en) * 2001-12-03 2011-09-15 Ekos Corp CATHETER WITH MULTIPLE ULTRASONIC EMITTING PARTS
WO2003051208A1 (en) * 2001-12-14 2003-06-26 Ekos Corporation Blood flow reestablishment determination
US8808268B2 (en) 2002-02-14 2014-08-19 Gholam A. Peyman Method and composition for hyperthermally treating cells
US7964214B2 (en) * 2006-07-13 2011-06-21 Peyman Gholam A Method and composition for hyperthermally treating cells in the eye with simultaneous imaging
US8932636B2 (en) 2002-02-14 2015-01-13 Gholam A. Peyman Method and composition for hyperthermally treating cells
US9233157B2 (en) 2002-02-14 2016-01-12 Gholam A. Peyman Method and composition for hyperthermally treating cells
US9289491B2 (en) 2002-02-14 2016-03-22 Gholam A. Peyman Method and composition for hyperthermally treating cells
US9320813B2 (en) 2002-02-14 2016-04-26 Gholam A. Peyman Method and composition for hyperthermally treating cells
US8709488B2 (en) 2002-02-14 2014-04-29 Gholam A. Peyman Method and composition for hyperthermally treating cells
US8668935B2 (en) 2002-02-14 2014-03-11 Gholam A. Peyman Method and composition for hyperthermally treating cells
US9393396B2 (en) 2002-02-14 2016-07-19 Gholam A. Peyman Method and composition for hyperthermally treating cells
US8481082B2 (en) 2002-02-14 2013-07-09 Gholam A. Peyman Method and composition for hyperthermally treating cells
US9017729B2 (en) 2002-02-14 2015-04-28 Gholam A. Peyman Method and composition for hyperthermally treating cells
US8801690B2 (en) 2002-02-14 2014-08-12 Gholam A. Peyman Method and composition for hyperthermally treating cells
US7101571B2 (en) 2002-02-14 2006-09-05 Peyman Gholam A Method and composition for hyperthermally treating cells
US9302087B2 (en) 2002-02-14 2016-04-05 Gholam A. Peyman Method and composition for hyperthermally treating cells
US8795251B2 (en) 2002-02-14 2014-08-05 Gholam A. Peyman Method and composition for hyperthermally treating cells
US8119165B2 (en) 2002-02-14 2012-02-21 Peyman Gholam A Method and composition for hyperthermally treating cells
US8137698B2 (en) * 2002-02-14 2012-03-20 Peyman Gholam A Method and composition for hyperthermally treating cells
US8226629B1 (en) 2002-04-01 2012-07-24 Ekos Corporation Ultrasonic catheter power control
AU2003272341A1 (en) * 2002-09-11 2004-04-30 Duke University Methods and compositions for blood pool identification, drug distribution quantification and drug release verification
US7769423B2 (en) * 2002-09-11 2010-08-03 Duke University MRI imageable liposomes for the evaluation of treatment efficacy, thermal distribution, and demonstration of dose painting
US7357937B2 (en) * 2002-09-24 2008-04-15 Therox, Inc. Perfluorocarbon emulsions with non-fluorinated surfactants
US6921371B2 (en) 2002-10-14 2005-07-26 Ekos Corporation Ultrasound radiating members for catheter
US20030191396A1 (en) * 2003-03-10 2003-10-09 Sanghvi Narendra T Tissue treatment method and apparatus
DE10315538A1 (en) * 2003-04-04 2004-10-21 Siemens Ag Particles with a membrane
US7048863B2 (en) * 2003-07-08 2006-05-23 Ashland Licensing And Intellectual Property Llc Device and process for treating cutting fluids using ultrasound
CN100475275C (en) * 2004-01-05 2009-04-08 董永华 Thromboembolism agent, storage and releasing device thereof
WO2005072409A2 (en) * 2004-01-29 2005-08-11 Ekos Corporation Method and apparatus for detecting vascular conditions with a catheter
US7341569B2 (en) * 2004-01-30 2008-03-11 Ekos Corporation Treatment of vascular occlusions using ultrasonic energy and microbubbles
US7662114B2 (en) * 2004-03-02 2010-02-16 Focus Surgery, Inc. Ultrasound phased arrays
US7494467B2 (en) 2004-04-16 2009-02-24 Ethicon Endo-Surgery, Inc. Medical system having multiple ultrasound transducers or an ultrasound transducer and an RF electrode
US7883468B2 (en) * 2004-05-18 2011-02-08 Ethicon Endo-Surgery, Inc. Medical system having an ultrasound source and an acoustic coupling medium
US7951095B2 (en) * 2004-05-20 2011-05-31 Ethicon Endo-Surgery, Inc. Ultrasound medical system
US7473250B2 (en) 2004-05-21 2009-01-06 Ethicon Endo-Surgery, Inc. Ultrasound medical system and method
US8012457B2 (en) 2004-06-04 2011-09-06 Acusphere, Inc. Ultrasound contrast agent dosage formulation
US7806839B2 (en) 2004-06-14 2010-10-05 Ethicon Endo-Surgery, Inc. System and method for ultrasound therapy using grating lobes
EP1761284B1 (en) 2004-06-23 2012-08-29 Ashland Licensing and Intellectual Property LLC Device and method for treating fluids utilized in electrocoating processes with ultrasound
US7824348B2 (en) 2004-09-16 2010-11-02 Guided Therapy Systems, L.L.C. System and method for variable depth ultrasound treatment
US7393325B2 (en) 2004-09-16 2008-07-01 Guided Therapy Systems, L.L.C. Method and system for ultrasound treatment with a multi-directional transducer
US9011336B2 (en) 2004-09-16 2015-04-21 Guided Therapy Systems, Llc Method and system for combined energy therapy profile
US7530958B2 (en) * 2004-09-24 2009-05-12 Guided Therapy Systems, Inc. Method and system for combined ultrasound treatment
US8535228B2 (en) 2004-10-06 2013-09-17 Guided Therapy Systems, Llc Method and system for noninvasive face lifts and deep tissue tightening
US10864385B2 (en) 2004-09-24 2020-12-15 Guided Therapy Systems, Llc Rejuvenating skin by heating tissue for cosmetic treatment of the face and body
US8444562B2 (en) 2004-10-06 2013-05-21 Guided Therapy Systems, Llc System and method for treating muscle, tendon, ligament and cartilage tissue
US9827449B2 (en) 2004-10-06 2017-11-28 Guided Therapy Systems, L.L.C. Systems for treating skin laxity
US11883688B2 (en) 2004-10-06 2024-01-30 Guided Therapy Systems, Llc Energy based fat reduction
US20060111744A1 (en) 2004-10-13 2006-05-25 Guided Therapy Systems, L.L.C. Method and system for treatment of sweat glands
ES2643864T3 (en) 2004-10-06 2017-11-24 Guided Therapy Systems, L.L.C. Procedure and system for the treatment of tissues by ultrasound
US9694212B2 (en) 2004-10-06 2017-07-04 Guided Therapy Systems, Llc Method and system for ultrasound treatment of skin
US7758524B2 (en) 2004-10-06 2010-07-20 Guided Therapy Systems, L.L.C. Method and system for ultra-high frequency ultrasound treatment
WO2006042163A2 (en) 2004-10-06 2006-04-20 Guided Therapy Systems, L.L.C. Method and system for cosmetic enhancement
US8133180B2 (en) 2004-10-06 2012-03-13 Guided Therapy Systems, L.L.C. Method and system for treating cellulite
US11235179B2 (en) 2004-10-06 2022-02-01 Guided Therapy Systems, Llc Energy based skin gland treatment
US8690779B2 (en) 2004-10-06 2014-04-08 Guided Therapy Systems, Llc Noninvasive aesthetic treatment for tightening tissue
US11207548B2 (en) 2004-10-07 2021-12-28 Guided Therapy Systems, L.L.C. Ultrasound probe for treating skin laxity
US11724133B2 (en) 2004-10-07 2023-08-15 Guided Therapy Systems, Llc Ultrasound probe for treatment of skin
US7833221B2 (en) 2004-10-22 2010-11-16 Ethicon Endo-Surgery, Inc. System and method for treatment of tissue using the tissue as a fiducial
US7452357B2 (en) 2004-10-22 2008-11-18 Ethicon Endo-Surgery, Inc. System and method for planning treatment of tissue
US8364256B2 (en) * 2004-11-15 2013-01-29 Coraje, Inc. Method and apparatus of removal of intravascular blockages
EP1828059B1 (en) 2004-11-17 2013-11-20 Ashland Licensing and Intellectual Property LLC Method for treating cooling fluids utilized in tire manufacturing
US20060264809A1 (en) * 2005-04-12 2006-11-23 Hansmann Douglas R Ultrasound catheter with cavitation promoting surface
EP1875327A2 (en) 2005-04-25 2008-01-09 Guided Therapy Systems, L.L.C. Method and system for enhancing computer peripheral saftey
US8038631B1 (en) * 2005-06-01 2011-10-18 Sanghvi Narendra T Laparoscopic HIFU probe
CN101291705A (en) * 2005-06-07 2008-10-22 皇家飞利浦电子股份有限公司 Method and apparatus for ultrasound drug delivery and thermal therapy with phase-convertible fluids
US20070038096A1 (en) * 2005-07-06 2007-02-15 Ralf Seip Method of optimizing an ultrasound transducer
US20070010805A1 (en) * 2005-07-08 2007-01-11 Fedewa Russell J Method and apparatus for the treatment of tissue
JP2009506873A (en) * 2005-09-07 2009-02-19 ザ ファウンドリー, インコーポレイテッド Apparatus and method for disrupting subcutaneous structures
US10548659B2 (en) 2006-01-17 2020-02-04 Ulthera, Inc. High pressure pre-burst for improved fluid delivery
US8518069B2 (en) 2005-09-07 2013-08-27 Cabochon Aesthetics, Inc. Dissection handpiece and method for reducing the appearance of cellulite
US9358033B2 (en) 2005-09-07 2016-06-07 Ulthera, Inc. Fluid-jet dissection system and method for reducing the appearance of cellulite
US9486274B2 (en) 2005-09-07 2016-11-08 Ulthera, Inc. Dissection handpiece and method for reducing the appearance of cellulite
US9011473B2 (en) 2005-09-07 2015-04-21 Ulthera, Inc. Dissection handpiece and method for reducing the appearance of cellulite
US7967763B2 (en) 2005-09-07 2011-06-28 Cabochon Aesthetics, Inc. Method for treating subcutaneous tissues
US7885793B2 (en) 2007-05-22 2011-02-08 International Business Machines Corporation Method and system for developing a conceptual model to facilitate generating a business-aligned information technology solution
US9248317B2 (en) * 2005-12-02 2016-02-02 Ulthera, Inc. Devices and methods for selectively lysing cells
US20080197517A1 (en) * 2005-12-02 2008-08-21 Cabochon Aesthetics, Inc. Devices and methods for selectively lysing cells
US20080014627A1 (en) * 2005-12-02 2008-01-17 Cabochon Aesthetics, Inc. Devices and methods for selectively lysing cells
US20080200864A1 (en) * 2005-12-02 2008-08-21 Cabochon Aesthetics, Inc. Devices and methods for selectively lysing cells
US20080195036A1 (en) * 2005-12-02 2008-08-14 Cabochon Aesthetics, Inc. Devices and methods for selectively lysing cells
US20080200863A1 (en) * 2005-12-02 2008-08-21 Cabochon Aesthetics, Inc. Devices and methods for selectively lysing cells
EP2015846A2 (en) 2006-04-24 2009-01-21 Ekos Corporation Ultrasound therapy system
WO2007127958A2 (en) * 2006-04-27 2007-11-08 Barnes-Jewish Hospital Detection and imaging of target tissue
US9271932B2 (en) 2006-04-28 2016-03-01 Children's Hospital Medical Center Fusogenic properties of saposin C and related proteins and peptides for application to transmembrane drug delivery systems
US9566454B2 (en) 2006-09-18 2017-02-14 Guided Therapy Systems, Llc Method and sysem for non-ablative acne treatment and prevention
US7559905B2 (en) 2006-09-21 2009-07-14 Focus Surgery, Inc. HIFU probe for treating tissue with in-line degassing of fluid
US8192363B2 (en) 2006-10-27 2012-06-05 Ekos Corporation Catheter with multiple ultrasound radiating members
US9050448B2 (en) * 2006-12-19 2015-06-09 Cedars-Sinai Medical Center Ultrasonic bath to increase tissue perfusion
US10182833B2 (en) 2007-01-08 2019-01-22 Ekos Corporation Power parameters for ultrasonic catheter
US20150174388A1 (en) 2007-05-07 2015-06-25 Guided Therapy Systems, Llc Methods and Systems for Ultrasound Assisted Delivery of a Medicant to Tissue
WO2008137942A1 (en) 2007-05-07 2008-11-13 Guided Therapy Systems, Llc. Methods and systems for modulating medicants using acoustic energy
EP2494932B1 (en) 2007-06-22 2020-05-20 Ekos Corporation Apparatus for treatment of intracranial hemorrhages
US8235902B2 (en) 2007-09-11 2012-08-07 Focus Surgery, Inc. System and method for tissue change monitoring during HIFU treatment
US8439940B2 (en) 2010-12-22 2013-05-14 Cabochon Aesthetics, Inc. Dissection handpiece with aspiration means for reducing the appearance of cellulite
JP2011508870A (en) 2007-11-21 2011-03-17 フォーカス サージェリー,インコーポレーテッド Tumor diagnosis and treatment method using high-density focused ultrasound
CN104545998B (en) 2008-06-06 2020-07-14 奥赛拉公司 System and method for cosmetic treatment and imaging
GB0811856D0 (en) * 2008-06-27 2008-07-30 Ucl Business Plc Magnetic microbubbles, methods of preparing them and their uses
JP2012513837A (en) 2008-12-24 2012-06-21 ガイデッド セラピー システムズ, エルエルシー Method and system for fat loss and / or cellulite treatment
US11096708B2 (en) 2009-08-07 2021-08-24 Ulthera, Inc. Devices and methods for performing subcutaneous surgery
US9358064B2 (en) 2009-08-07 2016-06-07 Ulthera, Inc. Handpiece and methods for performing subcutaneous surgery
US8715186B2 (en) 2009-11-24 2014-05-06 Guided Therapy Systems, Llc Methods and systems for generating thermal bubbles for improved ultrasound imaging and therapy
WO2012003457A1 (en) * 2010-07-01 2012-01-05 Mtm Research Llc Anti-fibroblastic fluorochemical emulsion therapies
US9149658B2 (en) 2010-08-02 2015-10-06 Guided Therapy Systems, Llc Systems and methods for ultrasound treatment
US9504446B2 (en) 2010-08-02 2016-11-29 Guided Therapy Systems, Llc Systems and methods for coupling an ultrasound source to tissue
US8857438B2 (en) 2010-11-08 2014-10-14 Ulthera, Inc. Devices and methods for acoustic shielding
US11458290B2 (en) 2011-05-11 2022-10-04 Ekos Corporation Ultrasound system
KR102068724B1 (en) 2011-07-10 2020-01-21 가이디드 테라피 시스템스, 엘.엘.씨. Systems and methods for improving an outside appearance of skin using ultrasound as an energy source
KR20140047709A (en) 2011-07-11 2014-04-22 가이디드 테라피 시스템스, 엘.엘.씨. Systems and methods for coupling an ultrasound source to tissue
US20150305924A1 (en) * 2011-07-18 2015-10-29 Kenji Ryotokuji Stimulus method for releasing stress, and stress-free medical treatment method by the stimulus method
US9263663B2 (en) 2012-04-13 2016-02-16 Ardent Sound, Inc. Method of making thick film transducer arrays
US9510802B2 (en) 2012-09-21 2016-12-06 Guided Therapy Systems, Llc Reflective ultrasound technology for dermatological treatments
CN204017181U (en) 2013-03-08 2014-12-17 奥赛拉公司 Aesthstic imaging and processing system, multifocal processing system and perform the system of aesthetic procedure
US10561862B2 (en) 2013-03-15 2020-02-18 Guided Therapy Systems, Llc Ultrasound treatment device and methods of use
US10064940B2 (en) 2013-12-11 2018-09-04 Siva Therapeutics Inc. Multifunctional radiation delivery apparatus and method
EP3131630B1 (en) 2014-04-18 2023-11-29 Ulthera, Inc. Band transducer ultrasound therapy
US10092742B2 (en) 2014-09-22 2018-10-09 Ekos Corporation Catheter system
US11419543B1 (en) 2016-03-03 2022-08-23 Gholam A. Peyman Early disease detection and therapy
CA2972423A1 (en) 2014-12-31 2016-07-07 Lantheus Medical Imaging, Inc. Lipid-encapsulated gas microsphere compositions and related methods
US10656025B2 (en) 2015-06-10 2020-05-19 Ekos Corporation Ultrasound catheter
US9849092B2 (en) 2015-12-21 2017-12-26 Gholam A. Peyman Early cancer detection and enhanced immunotherapy
US11090385B2 (en) 2015-12-21 2021-08-17 Gholam A. Peyman Early cancer detection and enhanced immunotherapy
US11660229B2 (en) 2015-12-21 2023-05-30 Gholam A. Peyman Cancer treatment methods using thermotherapy and/or enhanced immunotherapy
US11433260B2 (en) 2015-12-21 2022-09-06 Gholam A. Peyman Cancer treatment methods using thermotherapy and/or enhanced immunotherapy
US10136820B2 (en) 2015-12-21 2018-11-27 Gholam A. Peyman Method to visualize very early stage neoplasm or other lesions
US10300121B2 (en) 2015-12-21 2019-05-28 Gholam A. Peyman Early cancer detection and enhanced immunotherapy
PL3405294T3 (en) 2016-01-18 2023-05-08 Ulthera, Inc. Compact ultrasound device having annular ultrasound array peripherally electrically connected to flexible printed circuit board
US10376600B2 (en) 2016-03-03 2019-08-13 Gholam A. Peyman Early disease detection and therapy
TWI740937B (en) 2016-05-04 2021-10-01 美商藍瑟斯醫學影像公司 Methods and devices for preparation of ultrasound contrast agents
US9789210B1 (en) 2016-07-06 2017-10-17 Lantheus Medical Imaging, Inc. Methods for making ultrasound contrast agents
CN114631846A (en) 2016-08-16 2022-06-17 奥赛拉公司 System and method for cosmetic ultrasound treatment of skin
US11944849B2 (en) 2018-02-20 2024-04-02 Ulthera, Inc. Systems and methods for combined cosmetic treatment of cellulite with ultrasound

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0077752A2 (en) * 1981-10-16 1983-04-27 Schering Aktiengesellschaft Liquid mixture for absorbing and stabilizing gas bubbles to be used as contrast agent in ultrasonic diagnosis and process for its preparation
US4718433A (en) * 1983-01-27 1988-01-12 Feinstein Steven B Contrast agents for ultrasonic imaging
WO1991003267A1 (en) * 1989-08-28 1991-03-21 Sekins K Michael Lung cancer hyperthermia via ultrasound and/or convection with perfluorocarbon liquids
WO1992022249A1 (en) * 1991-06-18 1992-12-23 Unger Evan C Methods for providing localized therapeutic heat to biological tissues and fluids using gas filled liposomes

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4276885A (en) * 1979-05-04 1981-07-07 Rasor Associates, Inc Ultrasonic image enhancement
US4315514A (en) * 1980-05-08 1982-02-16 William Drewes Method and apparatus for selective cell destruction
US4657756A (en) * 1980-11-17 1987-04-14 Schering Aktiengesellschaft Microbubble precursors and apparatus for their production and use
DE3173476D1 (en) * 1980-11-17 1986-02-20 Schering Ag Composition generating microbubbles
US4681119A (en) * 1980-11-17 1987-07-21 Schering Aktiengesellschaft Method of production and use of microbubble precursors
US4442843A (en) * 1980-11-17 1984-04-17 Schering, Ag Microbubble precursors and methods for their production and use
US4533254A (en) * 1981-04-17 1985-08-06 Biotechnology Development Corporation Apparatus for forming emulsions
EP0068961A3 (en) * 1981-06-26 1983-02-02 Thomson-Csf Apparatus for the local heating of biological tissue
US4569836A (en) * 1981-08-27 1986-02-11 Gordon Robert T Cancer treatment by intracellular hyperthermia
EP0111386B1 (en) * 1982-10-26 1987-11-19 University Of Aberdeen Ultrasound hyperthermia unit
US4900540A (en) * 1983-06-20 1990-02-13 Trustees Of The University Of Massachusetts Lipisomes containing gas for ultrasound detection
FR2563725B1 (en) * 1984-05-03 1988-07-15 Dory Jacques APPARATUS FOR EXAMINING AND LOCATING ULTRASONIC TUMORS WITH A LOCALIZED HYPERTHERMAL TREATMENT DEVICE
US4728575A (en) * 1984-04-27 1988-03-01 Vestar, Inc. Contrast agents for NMR imaging
CA1264668A (en) * 1984-06-20 1990-01-23 Pieter R. Cullis Extrusion techniques for producing liposomes
US4620546A (en) * 1984-06-30 1986-11-04 Kabushiki Kaisha Toshiba Ultrasound hyperthermia apparatus
US4689986A (en) * 1985-03-13 1987-09-01 The University Of Michigan Variable frequency gas-bubble-manipulating apparatus and method
US4684479A (en) * 1985-08-14 1987-08-04 Arrigo Joseph S D Surfactant mixtures, stable gas-in-liquid emulsions, and methods for the production of such emulsions from said mixtures
US4865836A (en) * 1986-01-14 1989-09-12 Fluoromed Pharmaceutical, Inc. Brominated perfluorocarbon emulsions for internal animal use for contrast enhancement and oxygen transport
US4927623A (en) * 1986-01-14 1990-05-22 Alliance Pharmaceutical Corp. Dissolution of gas in a fluorocarbon liquid
US4737323A (en) * 1986-02-13 1988-04-12 Liposome Technology, Inc. Liposome extrusion method
IL79559A0 (en) * 1986-07-29 1986-10-31 Univ Ramot Contrast agents for nmr medical imaging
US4728578A (en) * 1986-08-13 1988-03-01 The Lubrizol Corporation Compositions containing basic metal salts and/or non-Newtonian colloidal disperse systems and vinyl aromatic containing polymers
DE3741199A1 (en) * 1987-12-02 1989-08-17 Schering Ag USE OF ULTRASONIC CONTRASTING AGENTS FOR ULTRASONIC LITHOTRIPSY
US4844882A (en) * 1987-12-29 1989-07-04 Molecular Biosystems, Inc. Concentrated stabilized microbubble-type ultrasonic imaging agent
US4898734A (en) * 1988-02-29 1990-02-06 Massachusetts Institute Of Technology Polymer composite for controlled release or membrane formation
US4893624A (en) * 1988-06-21 1990-01-16 Massachusetts Institute Of Technology Diffuse focus ultrasound hyperthermia system
US5158071A (en) * 1988-07-01 1992-10-27 Hitachi, Ltd. Ultrasonic apparatus for therapeutical use
JP3231768B2 (en) * 1991-09-17 2001-11-26 ソーナス ファーマシューティカルス,インコーポレイテッド Gaseous ultrasonic contrast agent and method for selecting gas to be used as ultrasonic contrast agent

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0077752A2 (en) * 1981-10-16 1983-04-27 Schering Aktiengesellschaft Liquid mixture for absorbing and stabilizing gas bubbles to be used as contrast agent in ultrasonic diagnosis and process for its preparation
US4718433A (en) * 1983-01-27 1988-01-12 Feinstein Steven B Contrast agents for ultrasonic imaging
WO1991003267A1 (en) * 1989-08-28 1991-03-21 Sekins K Michael Lung cancer hyperthermia via ultrasound and/or convection with perfluorocarbon liquids
WO1992022249A1 (en) * 1991-06-18 1992-12-23 Unger Evan C Methods for providing localized therapeutic heat to biological tissues and fluids using gas filled liposomes

Also Published As

Publication number Publication date
EP0639067A4 (en) 1995-04-19
AU694973B2 (en) 1998-08-06
AU1221297A (en) 1997-03-06
JPH07506032A (en) 1995-07-06
AU678341B2 (en) 1997-05-29
DE69232518D1 (en) 2002-05-02
US5149319A (en) 1992-09-22
EP0639067A1 (en) 1995-02-22
DE69232518T2 (en) 2002-10-31
AU1992692A (en) 1993-11-29
WO1993021889A1 (en) 1993-11-11
ATE214903T1 (en) 2002-04-15

Similar Documents

Publication Publication Date Title
EP0639067B1 (en) Use of perfluorcarbons for the preparation of potentiators of the ultrasound induced hyperthermia treatment of biological tissues
EP0660687B1 (en) Methods for providing localized therapeutic heat to biological tissues and fluids using gas filled liposomes
US5769080A (en) Gas filled liposomes and stabilized gas bubbles and their use as ultrasonic contrast agents
EP0616508B2 (en) Gas filled liposomes and their use as ultrasonic contrast agents
EP0660714B1 (en) Novel liposomal drug delivery systems
EP1056473B1 (en) Targeted delivery of biologically active media
US4844904A (en) Liposome composition
van Raath et al. Tranexamic acid-encapsulating thermosensitive liposomes for site-specific pharmaco-laser therapy of port wine stains
US20030211045A1 (en) Magnetoliposome composition for targeted treatment of biological tissue and associated methods
WO2001056546A2 (en) Magnetoliposome composition for targeted treatment of biological tissue
CA2211517C (en) Uses of compositions comprising gaseous precursors as potentiators for ultrasonic hyperthermia
EP0804944A2 (en) A method of providing a gas composition in a biological tissue or fluid in vivo
AU9136998A (en) Method for hyperthermic potentiation of tissue
CA2118016A1 (en) Methods for providing localized therapeutic heat to biological tissues and fluids
JPH10130169A (en) Ultrasonotherapeutic composition
CA2110491C (en) Gas filled liposomes and their use as ultrasonic contrast agents

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19941124

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU MC NL SE

RHK1 Main classification (correction)

Ipc: A61F 7/00

A4 Supplementary search report drawn up and despatched

Effective date: 19950227

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU MC NL SE

17Q First examination report despatched

Effective date: 19970306

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RTI1 Title (correction)

Free format text: USE OF PERFLUORCARBONS FOR THE PREPARATION OF POTENTIATORS OF THE ULTRASOUND INDUCED HYPERTHERMIA TREATMENT OF BIOLOGICAL TISSUES

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: UNGER, EVAN C

RIN1 Information on inventor provided before grant (corrected)

Inventor name: UNGER, EVAN C

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: IMARX THERAPEUTICS, INC.

RIN1 Information on inventor provided before grant (corrected)

Inventor name: IMARX THERAPEUTICS, INC.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU MC NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020327

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020327

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020327

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020327

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020327

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020327

REF Corresponds to:

Ref document number: 214903

Country of ref document: AT

Date of ref document: 20020415

Kind code of ref document: T

XX Miscellaneous (additional remarks)

Free format text: TEILANMELDUNG 97202273.5 EINGEREICHT AM 21/07/97.

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69232518

Country of ref document: DE

Date of ref document: 20020502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020504

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020504

RIN2 Information on inventor provided after grant (corrected)

Free format text: UNGER, EVAN, C.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020627

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020627

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020925

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20021230

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080529

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080630

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080529

Year of fee payment: 17

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090504

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090602

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080519

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090504