EP0818603B1 - Procédé et installation de pompage d'un effluent pétrolier - Google Patents

Procédé et installation de pompage d'un effluent pétrolier Download PDF

Info

Publication number
EP0818603B1
EP0818603B1 EP97401594A EP97401594A EP0818603B1 EP 0818603 B1 EP0818603 B1 EP 0818603B1 EP 97401594 A EP97401594 A EP 97401594A EP 97401594 A EP97401594 A EP 97401594A EP 0818603 B1 EP0818603 B1 EP 0818603B1
Authority
EP
European Patent Office
Prior art keywords
well
liquid
chamber
source
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97401594A
Other languages
German (de)
English (en)
Other versions
EP0818603A1 (fr
Inventor
Michel Iato
Alain Viard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elf Exploration Production SAS
Original Assignee
Elf Exploration Production SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elf Exploration Production SAS filed Critical Elf Exploration Production SAS
Publication of EP0818603A1 publication Critical patent/EP0818603A1/fr
Application granted granted Critical
Publication of EP0818603B1 publication Critical patent/EP0818603B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • E21B43/121Lifting well fluids
    • E21B43/122Gas lift
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/34Arrangements for separating materials produced by the well
    • E21B43/38Arrangements for separating materials produced by the well in the well

Definitions

  • the present invention relates to a pumping process a liquid effluent and, more particularly to a process pumping hydrocarbons from an oil well.
  • the present invention also relates to a pumping plant for petroleum effluent from from an underground source.
  • the natural flow of hydrocarbons from the bottom to the surface is insufficient for allow or maintain commercial production. This is due either to the high viscosity of the hydrocarbons, or to too low natural pressure at the bottom of the well, or still a combination of the two. Water inflows into the wells can also limit the natural flow of hydrocarbons.
  • a assistance system or well activation system In order to allow the production of the well on a commercial scale use a assistance system or well activation system. Through example, we can mount a pump at the lower end a production tube located in the well, where you can provide a gas injection system at the bottom of the well. The latter type of installation more commonly called "gas lift", used to lighten the column of hydrocarbons located in the well to facilitate its ascent to the surface.
  • Another assistance system consists in pumping the hydrocarbons made from the surface.
  • EP-A-579497 describes a method of pumping liquid from one end of a well to a outlet at the opposite end of the well, where regulates the gas pressure in one or more chambers so that they fill up with liquid. Then a pressure of superior gas is applied to each chamber in order to move the liquid and send it to the outlet.
  • Each chamber is fitted with controlled inlet and outlet valves from level sensors to control the direction liquid flow.
  • the rooms can either be overlaid on top of each other inside the well, either be arranged side by side in a point near the exit of the well.
  • the positioning of the chambers superimposed in the well has advantages in that it allows to have a less bulky installation and energy efficiency optimized.
  • this type of installation presents disadvantages since the superimposition of the rooms, each being provided with various valves and level detectors, requires one or more chambers to be removed from the well when there is a breakdown or failure in one of the lower rooms.
  • the use of multiple rooms, each equipped with valves and detectors levels makes maintenance forecasts difficult installation.
  • the subject of the present invention is an installation for pumping allowing the implementation of the pumping process.
  • the invention proposes a installation for pumping a liquid from a source underground including a well extending from the surface towards the liquid source, the well comprising a chamber extending substantially over its entire length, at least a casing crossing the chamber and communicating with it, and a set of valves for selectively placing the room in communication with a gas source at a first pressure allowing the liquid from the source to fill the chamber, and a source of gas to a second pressure greater than the first pressure, in order to empty the chamber, the liquid being returned to a first outlet by flow through the casing, characterized in what it includes, in addition, a valve mounted in the casing , and a second conduit leading to a second outlet, the valve being susceptible to react to fluid density which surrounds it in order to be able to repress a first liquid towards the first outlet, a second liquid, of density more important, being driven back to the second exit by the second conduit.
  • the present invention has the advantage of using an installation, whose maintenance is infrequent, especially for the components installed in the well, and which can be done in a simple way from the exit of the well.
  • a well generally represented at 10, which, in the example illustrated, is an oil well, extends from the surface 12 of the ground, which can be the bottom of the sea, to a layer of reservoir rock 14.
  • Well 10 is provided with a casing 16, extending along the well, and with a production tubing 18 extending from surface 12 to a point below a seal 20, called "packer", mounted in the casing in a leaktight manner at a point located a few meters, or a few tens of meters, below of the reservoir rock 14.
  • a conduit 22, provided with a valve check valve 24, is arranged in a seal assembly 26, or packer, mounted in the well around the casing 18 at a point above the rock layer 14.
  • the casing 18 comprises, at a point located approximately 100 m from surface 12, a safety valve 27 disposed immediately above a second packer 28 advantageously mounted in the well.
  • the casing 18 AT its upper end, the casing 18 comprises an assembly of production valves 29, or "Christmas tree" intended for control the production rate of the well, and ensure its security. This set of valves communicates with a conduit production 30 forming the outlet of the well.
  • the casing 18 comprises, towards its lower end, a valve non-return 32 intended to allow the liquid to flow only towards exit 30.
  • a distribution system formed by example of a set 34 of control valves is connected to a low pressure gas source 36, and a gas source high pressure 38.
  • the pressure from each of the two sources of gas 36 and 38 is chosen according to the characteristics of the well, for example its depth, or the pressure of the deposit. As will be described in more detail below, these characteristics change over time, during the well production. Also, is it necessary to modify the gas pressures used correspondingly, in function of time.
  • the set of valves 34 communicates with the space annular 40, or chamber, defined between the casing 16 and the casing 18 and delimited by the packer 28 and the set of joint 26 by safety valves 42 and a conduit 44 which passes through a tubing suspension joint 46 or "tubing hanger" mounted at the upper end of the well.
  • a annular space safety valve 48 can be mounted at the end of conduit 44.
  • the seal assembly 26 is provided with a device allowing the re-injection of water, which, in the example illustrated, is a valve 52, shown in more detail in FIG. 1A.
  • This valve 52 comprises a tubular body 54, substantially coextensive with the casing 18 and provided with lateral openings 56, four in the illustrated example, which put the space annular 40 in communication with the lower end 58 tubing 18.
  • This lower end 58 is provided with a non-return valve 60 which allows the flow of fluid, coming from the annular space 40, in the direction of the arrow 62 towards an aquifer underlying reservoir 14, no represented.
  • the valve 52 includes a ball 64 which is adapted to abut on a seat 66 formed in the body 54, thereby closing the passage to the end lower 58 of the casing 18.
  • the density of the ball 64 is chosen to be superior to that of hydrocarbons liquids from reservoir rock 14, but lower to that of water. Located near 0.9, this density results in ball 64 floating in water, but, when in the presence of hydrocarbons, it descends on seat 66, thus closing the end lower 58 of the casing 18.
  • a conduit 50, on the whole seal 26, allows access to the valve 52 for possible maintenance operations.
  • the annular space 40 is put in communication, by the set of control valves 34, with the low pressure gas source 36.
  • the low pressure prevailing in the annular space 40 allows the mixture of hydrocarbons and water forming the effluent, coming from the reservoir layer 14, to go back up inside the well, through valve 24 and conduit 22, filling the annular space 40 to an intermediate level 67 upper, and thus driving the low pressure gas from the reservoir towards its source.
  • the installation is not equipped oil level sensors, this level intermediate is determined according to the characteristics tank, gas pressure and time. Time necessary for the oil to reach its level stabilization is very long, we use a level intermediate, below the maximum possible level, that the hydrocarbons reach after a predetermined time.
  • the effluent from the reservoir rock 14 comprises a mixture of hydrocarbons and water.
  • the hydrocarbons separate from the water, which, being more dense, collects towards the lower end of the annular space 40.
  • the ball 64 of valve 52 being in the water, rises from its seat 66 and opens the passage from the annular space 40 to the aquifer, which however cannot fill the annular space due to valve 60.
  • An intermediate level is determined according to the back pressure on the discharge line, pressure of the gas, geometric characteristics of the well and time. Indeed, the time required for the hydrocarbons reach a level of stabilization, level which must be find above opening 68 to avoid a high pressure gas recirculation is again very long. Also, we use an intermediate level, above the minimum possible that the oil reaches after a predetermined time. Once this time is up, all of the valves 34 are actuated again and the space annular 40 is isolated from the high pressure gas source 38 and put in communication with the low pressure source 36. Thus, the gas pressure in the annular space 40 decreases quickly, allowing liquids from the tank to get back to filling this space 40. Then the cycle of the operation described above is repeated. Like pressure of the well changes over time, it is necessary to proceed to periodic measurements of the static pressure of the well in order to correspondingly modify the pressures of gas.
  • the number of wells, or well sets, will then be determined based on compared durations of the two phases, so as to optimize the overall production throughput.
  • Figure 2 is shown an installation for a oil well which, unlike that of Figure 1, does not have an underlying aquifer to which the water coming from the reservoir rock 14 can be driven back.
  • Figure 2 the elements common with those of the installation of figure 1 carry the same figures of reference.
  • This second casing 70 extends from the assembly of seal 26, through packer 28 and opens in a chamber 72 delimited between the packer 28 and the suspension seal 46 casing.
  • This room 72 communicates with a device common re-injection, or evacuation of water (not represented) by a conduit 74 provided with a safety valve 76. If the well is not equipped with a packer 28, the second casing 70 extends to the surface.
  • the method of implementing the installation of the figure 2 is substantially similar to that of the installation of the figure 1.
  • the pumping method and installation according to the invention may apply to subsea wells or wells earth, as well as vertical or inclined wells. He is at note that this device also allows separation at less partial of the gas dissolved in the effluent from the reservoir 14, the gas thus separated rising through the conduit 44, to the low pressure gas tank 36.
  • the physical separation between phases being carried out at the bottom, the discharge towards the surface could be achieved by a single conduit, the arrival of phases in sequence allowing their individualized treatment at the wellhead level, in order to send the phases towards their respective exits.
  • FIG. 3 differs from that of the Figure 1 in that the pumping installation is intended for pump water separated from hydrocarbons towards the rock reservoir 14 instead of sending it to an aquifer like this is the case in the installation of figure 1.
  • the end 58 of the casing 18 opens immediately below the seal assembly 26, in a chamber 80 defined in the lower end of the well 10.
  • the reservoir rock layer has a thickness more important than that of the embodiment of the Figure 1 and has a very high permeability.
  • the pumping process implemented using the installation of FIG. 3 is substantially similar to that of Figure 1.
  • water is towards the lower end of the annular space 40 and the valve 52 is open.
  • gas from the high pressure source 38 is sent to annular 40, the water is discharged by this gas through the valve 52 and the along the end 58 of the production casing 18 towards the room 80.
  • the water enters, in the direction of the arrows 84, in the lower part of the rock layer 14 by the lower perforations 82.
  • the water propagated in the rock layer 14 it tends to move, or expel the hydrocarbons present in the rock towards the chamber 80, then in the annular space 40.

Description

La présente invention se rapporte à un procédé de pompage d'un effluent liquide et, plus particulièrement à un procédé de pompage d'hydrocarbures provenant d'un puits pétrolier.
La présente invention se rapporte également à une installation de pompage d'un effluent pétrolier provenant d'une source souterraine.
Dans certains puits pétroliers, l'écoulement naturel des hydrocarbures du fond à la surface s'avère insuffisant pour permettre ou maintenir une production commerciale. Ceci est dû soit à la viscosité importante des hydrocarbures, soit à une trop faible pression naturelle au fond du puits, ou encore à une combinaison des deux. Les venues d'eau dans le puits peuvent aussi limiter l'écoulement naturel des hydrocarbones. Afin de permettre la mise en production du puits à une échelle commerciale il convient d'utiliser un système d'assistance ou système d'activation du puits. Par exemple, on peut monter une pompe à l'extrémité inférieure d'un tube de production situé dans le puits, ou on peut prévoir une installation d'injection de gaz au fond du puits. Ce dernier type d'installation plus communément appelée "gas lift", sert à alléger la colonne d'hydrocarbures située dans le puits afin de faciliter sa remontée vers la surface.
Cependant, ces deux systèmes d'assistance nécessitent l'utilisation d'appareils ou d'installations dans le puits, endroit où les températures et pressions sont très élevées et où le milieu environnant peut être très corrosif. Ces conditions existant au fond du puits provoquent des pannes ou des dysfonctionnements de l'équipement d'activation qui, compte tenu de sa situation dans le puits, nécessitent des interventions longues et coûteuses. De plus, pendant ces interventions la production du puits est arrêtée, ce qui entraíne des pertes financières additionnelles.
Un autre système d'assistance consiste en le pompage des hydrocarbures effectué à partir de la surface. Le document EP-A-579497 décrit une méthode de pompage de liquide, provenant d'une extrémité d'un puits, vers une sortie à l'extrémité opposée du puits, dans laquelle on règle la pression de gaz dans une ou plusieurs chambres afin qu'elles s'emplissent de liquide. Ensuite, une pression de gaz supérieure est appliquée à chaque chambre afin de déplacer le liquide et de l'envoyer vers la sortie. Chaque chambre est munie de vannes d'entrée et de sortie commandées à partir de détecteurs de niveau afin de contrôler le sens d'écoulement du liquide. Selon ce document, les chambres peuvent soit être superposées les unes sur les autres à l'intérieur du puits, soit être disposées côte à côte en un point avoisinant la sortie du puits.
Le positionnement des chambres de manière superposée dans le puits présente des avantages en ce qu'il permet d'avoir une installation moins encombrante et un rendement énergétique optimisé. En revanche ce type d'installation présente des inconvénients puisque la superposition des chambres, chacune étant munie de diverses vannes et de détecteurs de niveaux, nécessite de retirer du puits une ou plusieurs chambres lorsqu'il y a une panne ou une défaillance dans une des chambres inférieures. De plus, l'utilisation de plusieurs chambres, chacune équipée de vannes et de détecteurs de niveaux, rend difficiles les prévisions de maintenance de l'installation.
Le document US-A-1,499,589 décrit un procédé de pompage d'un effluent, provenant d'un puits pétrolier faiblement éruptif. Selon ce procédé, l'effluent remplit un espace annulaire défini entre la paroi du puits et un tubage de production qui s'étend du fond du puits jusqu'à la surface. Une fois l'espace annulaire rempli d'effluent, du gaz sous pression est envoyé de la surface dans l'extrémité supérieure de cet espace, ce qui provoque le déplacement de l'effluent et sa remontée jusqu'à la surface par l'intérieur du tubage.
Cependant, ce type de procédé présente des inconvénients en ce qu'il ne tient pas compte du fait que la plupart des effluents provenant d'un puits pétrolier, contiennent, surtout en fin de vie du gisement, une quantité importante d'eau qui peut entraíner l'arrêt de la production naturelle du puits, ou limiter l'efficacité du gas-lift. Il est souhaitable de pouvoir séparer l'eau des hydrocarbures, en fond de puits, afin de pouvoir ne remonter à la surface que des hydrocarbures.
La présente invention a pour objet une installation de pompage permettant la mise en oeuvre du procédé de pompage. Afin de réaliser cet objet, l'invention propose une installation de pompage d'un liquide provenant d'une source souterraine comprenant un puits s'étendant de la surface vers la source de liquide, le puits comportant une chambre s'étendant substantiellement sur toute sa longueur, au moins un tubage traversant la chambre et communiquant avec celle-ci, et un ensemble de vannes destiné à mettre sélectivement la chambre en communication avec une source de gaz à une première pression permettant au liquide provenant de la source d'emplir la chambre, et une source de gaz à une deuxième pression supérieure à la première pression, afin de vider la chambre, le liquide étant refoulé vers une première sortie par écoulement à travers le tubage, caractérisée en ce qu'elle comprend, de plus, un clapet monté dans le tubage , et un deuxième conduit menant à une deuxième sortie , le clapet étant susceptible de réagir à la densité de fluide qui l'entoure afin de pouvoir refouler un premier liquide vers la première sortie, un deuxième liquide, de densité plus importante, étant refoulé vers la deuxième sortie par le deuxième conduit.
La présente invention présente l'avantage de faire appel à une installation, dont la maintenance est peu fréquente, surtout pour les composants installés dans le puits, et qui peut s'effectuer de manière simple à partir de la sortie du puits.
D'autres caractéristiques et avantages de la présente invention ressortiront à la lecture de la description suivante, donnée à titre explicatif mais non limitatif, faite en relation avec les dessins annexés sur lesquels :
  • la figure 1 est une vue schématique en coupe d'un puits selon un premier mode de réalisation de l'invention ;
  • la figure 1A est une vue en détail d'un élément de la figure 1 ;
  • la figure 2 est une vue schématique en coupe d'un deuxième mode de réalisation ; et
  • la figure 3 est une vue schématique en coupe d'un troisième mode de réalisation qui est une variante de celui de la figure 1.
Sur la figure 1, un puits représenté généralement en 10, qui, dans l'exemple illustré, est un puits pétrolier, s'étend de la surface 12 du sol, qui peut être le fond de la mer, vers une couche de roche réservoir 14. Le puits 10 est muni d'un cuvelage 16, s'étendant le long du puits, et d'un tubage de production 18 s'étendant de la surface 12 vers un point au-dessous d'un joint 20, appelé "packer", monté dans le cuvelage de manière étanche en un point se trouvant à quelques mètres, ou quelques dizaines de mètres, au-dessous de la roche réservoir 14. Un conduit 22, muni d'un clapet anti-retour 24, est disposé dans un ensemble de joint 26, ou packer, monté dans le puits autour du tubage 18 en un point au-dessus de la couche de roche 14. Le tubage 18 comporte, en un point situé à environ 100 m de la surface 12, une vanne de sécurité 27 disposée immédiatement au-dessus d'un deuxième packer 28 monté avantageusement dans le puits. A son extrémité supérieure le tubage 18 comporte un ensemble de vannes de production 29, ou "arbre de Noël" destiné à contrôler le débit de production du puits, et à assurer sa sécurité. Cet ensemble de vannes communique avec un conduit de production 30 formant la sortie du puits. De plus, le tubage 18 comprend, vers son extrémité inférieure, un clapet anti-retour 32 destiné à permettre l'écoulement du liquide uniquement vers la sortie 30.
A la surface 12, un système de distribution, formé par exemple d'un ensemble 34 de vannes de commande est relié à une source de gaz à basse pression 36, et une source de gaz haute pression 38. La pression de chacune des deux sources de gaz 36 et 38 est choisie en fonction des caractéristiques du puits, par exemple sa profondeur, ou la pression du gisement. Comme il sera décrit plus en détail ci-après, ces caractéristiques évoluent avec le temps, pendant la phase de production du puits. Aussi, est-il nécessaire de modifier les pressions de gaz utilisées de manière correspondante, en fonction du temps.
L'ensemble de vannes 34 communique avec l'espace annulaire 40, ou chambre, défini entre le cuvelage 16 et le tubage 18 et délimité par le packer 28 et l'ensemble de joint 26 par des vannes de sécurité 42 et un conduit 44 qui passe à travers un joint 46 de suspension du tubage ou "tubing hanger" monté à l'extrémité supérieure du puits. Une vanne de sécurité de l'espace annulaire 48 peut être montée à l'extrémité du conduit 44.
L'ensemble de joint 26 est muni d'un dispositif permettant la ré-injection de l'eau, qui, dans l'exemple illustré, est un clapet 52, représenté plus en détail sur la figure 1A. Ce clapet 52 comprend un corps tubulaire 54, sensiblement coextensif avec le tubage 18 et muni d'ouvertures latérales 56, quatre dans l'exemple illustré, qui mettent l'espace annulaire 40 en communication avec l'extrémité inférieure 58 du tubage 18. Cette extrémité inférieure 58 est munie d'un clapet anti-retour 60 qui permet l'écoulement de fluide, provenant de l'espace annulaire 40, dans le sens de la flèche 62 vers un aquifère sous-jacent au réservoir 14, non représenté. Le clapet 52 comporte une bille 64 qui est adaptée pour venir en butée sur un siège 66 formé dans le corps 54, fermant ainsi le passage vers l'extrémité inférieure 58 du tubage 18. La densité de la bille 64 est choisie afin d'être supérieure à celle des hydrocarbures liquides provenant de la roche réservoir 14, mais inférieure à celle de l'eau. Située au voisinage de 0,9, cette densité a pour résultat que la bille 64 flotte dans l'eau, mais, lorsqu'elle se trouve en présence d'hydrocarbures, elle descend sur le siège 66, fermant ainsi l'extrémité inférieure 58 du tubage 18. Un conduit 50, dans l'ensemble de joint 26, permet l'accès au clapet 52 pour d'éventuelles opérations de maintenance.
Le procédé de mise en oeuvre de l'installation ainsi décrite est le suivant :
Dans un premier temps, l'espace annulaire 40 est mis en communication, par l'ensemble de vannes de commande 34, avec la source de gaz à basse pression 36. La faible pression régnant dans l'espace annulaire 40 permet au mélange d'hydrocarbures et d'eau formant l'effluent, provenant de la couche de réservoir 14, de remonter à l'intérieur du puits, à travers le clapet 24 et le conduit 22, remplissant l'espace annulaire 40 jusqu'à un niveau intermédiaire 67 supérieur, et refoulant ainsi le gaz basse pression du réservoir vers sa source. L'installation n'étant pas munie de capteurs du niveau des hydrocarbures, ce niveau intermédiaire est déterminé en fonction des caractéristiques du réservoir, de la pression du gaz et du temps. Le temps nécessaire pour que les hydrocarbures atteignent leur niveau de stabilisation étant très long, on utilise un niveau intermédiaire, en dessous du niveau maximum possible, que les hydrocarbures atteignent après un temps prédéterminé.
L'effluent provenant de la roche réservoir 14 comprend un mélange d'hydrocarbures et d'eau. Pendant la période de remplissage de l'espace annulaire 40, les hydrocarbures se séparent de l'eau, qui, étant plus dense, se rassemble vers l'extrémité inférieure de l'espace annulaire 40. La bille 64 du clapet 52, se trouvant dans l'eau, se lève de son siège 66 et ouvre le passage de l'espace annulaire 40 vers l'aquifère, qui ne peut toutefois remplir l'espace annulaire en raison du clapet 60.
Une fois que ce temps de remplissage/séparation est écoulé, l'ensemble des vannes de commande est actionné afin d'isoler l'espace annulaire 40 de la source de gaz à basse pression 36 et de le mettre en communication avec la source de gaz 38 à haute pression. La pression de gaz dans l'extrémité supérieure de l'espace annulaire 40 agit sur les hydrocarbures et l'eau et tend à les repousser vers le fond du puits, le clapet anti-retour 24 empêchant les liquides de retourner vers le réservoir 14.
Lorsque les effluents dans l'espace annulaire 40 sont déplacés vers le bas par le gaz haute pression, l'eau se trouvant vers l'extrémité inférieure de l'espace annulaire passe par le clapet 52 vers l'aquifère dans le sens de la flèche 62, l'intérieur du puits 10 étant isolé de l'aquifère par le joint 20. Une fois que l'eau a été déplacée de l'espace annulaire, et que les hydrocarbures arrivent à l'extrémité inférieure, la bille 64, se trouvant dans un milieu moins dense, descend vers son siège 66, fermant le passage vers l'aquifère. Une fois que ce passage est fermé, les hydrocarbures déplacés par le gaz haute pression passent par une ouverture 68 ménagée dans le tubage 18 en un point au-dessous du clapet 32 et remontent vers la sortie 30 à la surface 12. Il est à noter que, suivant le profil d'évolution de la pression dans l'espace annulaire 40, et les caractéristiques du puits (pression d'aquifère, pression en tête de puits,...), l'expulsion des deux phases peut se faire de façon simultanée.
Ainsi, selon l'invention, une partie importante de l'eau provenant du réservoir 14 sera ré-injectée dans un aquifère sous-jacent, améliorant ainsi de façon sensible la teneur en hydrocarbures de l'effluent remonté en surface.
Un niveau intermédiaire est déterminé en fonction de la contre pression sur la ligne d'évacuation, de la pression du gaz, des caractéristiques géométriques du puits et du temps. En effet, le temps nécessaire pour que les hydrocarbures atteignent un niveau de stabilisation, niveau qui doit se trouver au-dessus de l'ouverture 68 afin d'éviter une recirculation du gaz haute pression, est à nouveau très long. Aussi, on utilise un niveau intermédiaire, au-dessus du minimum possible, que les hydrocarbures atteignent après un temps prédéterminé. Une fois que ce temps est écoulé, l'ensemble des vannes 34 est actionné à nouveau et l'espace annulaire 40 est isolé de la source de gaz haute pression 38 et mis en communication avec la source basse pression 36. Ainsi, la pression de gaz dans l'espace annulaire 40 décroít rapidement, permettant aux liquides provenant du réservoir de se remettre à remplir cet espace 40. Ensuite le cycle de fonctionnement décrit ci-avant est répété. Comme la pression du puits évolue avec le temps, il est nécessaire de procéder à des mesures périodiques de la pression statique du puits afin de modifier de manière correspondante les pressions de gaz.
Afin d'obtenir un lissage dans le temps de la production des hydrocarbures, mais aussi de la consommation de gaz haute pression, on peut disposer deux ou plusieurs puits, ou ensembles de puits, reliés vers une sortie 30 commune, agencés de façon que, lorsqu'un est en phase de purge, les autres sont en phase de remplissage. Le nombre de puits, ou d'ensembles de puits, sera alors déterminé en fonction des durées comparées des deux phases, de façon à optimiser le débit global de production.
Sur la figure 2 est représentée une installation pour un puits pétrolier qui, contrairement à celui de la figure 1, ne comporte pas d'aquifère sous-jacent vers lequel l'eau provenant de la roche réservoir 14 peut être refoulée. Sur cette figure, les éléments communs avec ceux de l'installation de la figure 1 portent les mêmes chiffres de référence.
Comme représenté sur la figure 2, le tubage 18, au lieu d'être prolongé par une extrémité inférieure 58, communique, à l'intérieur de l'ensemble de joint 26, avec un deuxième tubage 70. Ce deuxième tubage 70 s'étend de l'ensemble de joint 26, à travers le packer 28 et s'ouvre dans une chambre 72 délimitée entre le packer 28 et le joint 46 de suspension du tubage. Cette chambre 72 communique avec un dispositif commun de ré-injection, ou d'évacuation de l'eau (non représenté) par un conduit 74 muni d'une vanne de sécurité 76. Dans le cas où le puits n'est pas muni d'un packer 28, le deuxième tubage 70 s'étend jusqu'à la surface.
Le procédé de mise en oeuvre de l'installation de la figure 2 est sensiblement analogue à celui de l'installation de la figure 1. Une fois que l'espace annulaire est rempli d'effluent, et que la séparation des hydrocarbures d'avec l'eau s'est effectuée, l'envoi de gaz haute pression dans l'espace annulaire 40 déplace vers le bas les liquides présents dans cet espace. Dans un premier temps, l'eau se trouvant à l'extrémité inférieure de l'espace annulaire est refoulée vers le dispositif de ré-injection de l'eau par l'intermédiaire du deuxième conduit 70, la chambre 72 et le conduit 74, le clapet 52 étant ouvert. Il est à noter que, pendant cette phase, la pression statique exercée sur l'eau par la colonne d'hydrocarbures, présente dans l'espace annulaire, vient s'ajouter à la pression du gaz dans l'espace annulaire. Cette pression statique additionnelle facilite la remontée de l'eau vers la surface.
Une fois que le niveau des hydrocarbures est descendu jusqu'au clapet 52, la bille 64 se ferme sur son siège 66. A partir de ce moment, les hydrocarbures sont refoulés par le gaz haute pression, par l'intermédiaire de l'ouverture 68 et du tubage 18, vers la sortie 30. La suite du procédé est analogue à celle relative à l'installation de la figure 1. Comme dans l'exemple précédent, l'expulsion des deux phases peut se faire de façon simultanée.
Le procédé et l'installation de pompage selon l'invention peuvent s'appliquer aux puits sous-marins ou aux puits à terre, ainsi qu'aux puits verticaux ou inclinés. Il est à noter que ce dispositif permet également une séparation au moins partielle du gaz dissous dans l'effluent provenant du réservoir 14, le gaz ainsi séparé remontant, par le conduit 44, vers le réservoir de gaz basse pression 36.
De manière alternative, la séparation physique entre phases étant effectuée au fond, le refoulement vers la surface pourrait être réalisé par un conduit unique, l'arrivée des phases en séquence permettant leur traitement individualisé au niveau de la tête de puits, afin d'envoyer les phases vers leurs sorties respectives.
Le mode de réalisation de la figure 3 diffère de celui de la figure 1 en ce que l'installation de pompage est destinée à refouler l'eau séparée des hydrocarbures vers la roche réservoir 14 au lieu de l'envoyer vers un aquifère comme c'est le cas dans l'installation de la figure 1.
Sur le figure 3, les éléments déjà présents dans la figure 1 portent les mêmes chiffres de références.
Comme représenté sur la figure 3 , l'extrémité 58 du tubage de production 18 s'ouvre, immédiatement en-dessous de l'ensemble de joint 26, dans une chambre 80 définie dans l'extrémité inférieure du puits 10. Des perforations 82, formées dans la couche de roche réservoir, s'ouvrent dans la chambre 80. La couche de roche réservoir a une épaisseur plus importante que celle du mode de réalisation de la figure 1 et présente une perméabilité très forte.
Le procédé de pompage mis en oeuvre en utilisant l'installation de la figure 3 est sensiblement analogue à celui de la figure 1. Après la phase de séparation, de l'eau se trouve vers l'extrémité inférieure de l'espace annulaire 40 et le clapet 52 est ouvert. Lorsque du gaz, provenant de la source haute pression 38, est envoyé dans annulaire 40, l'eau est refoulée par ce gaz à travers le clapet 52 et le long de l'extrémité 58 du tubage de production 18 vers la chambre 80. Ensuite, l'eau pénètre, dans le sens des flèches 84, dans la partie inférieure de la couche de roche 14 par les perforations 82 inférieures. Aussi, une fois que l'eau s'est propagée dans la couche de roche 14, elle tend à déplacer, ou chasser les hydrocarbures présents dans la roche vers la chambre 80, puis dans l'espace annulaire 40.

Claims (4)

  1. Installation de pompage d'un liquide provenant d'une source souterraine comprenant un puits (10) s'étendant de la surface (12) vers la source de liquide (14), le puits comportant une chambre (40) s'étendant substantiellement sur toute sa longueur, au moins un tubage (18) traversant la chambre et communiquant avec celle-ci, et un ensemble de vannes (34) destiné à mettre sélectivement la chambre en communication avec une source de gaz à une première pression (36) permettant au liquide provenant de la source d'emplir la chambre, et une source de gaz à une deuxième pression (38) supérieure à la première pression, afin de vider la chambre, le liquide étant refoulé vers une première sortie (30) par écoulement à travers le tubage, caractérisée en ce qu'elle comprend, de plus, un clapet (52) monté dans le tubage (18), et un deuxième conduit (58;70) menant à une deuxième sortie (74), le clapet étant susceptible de réagir à la densité de fluide qui l'entoure afin de pouvoir refouler un premier liquide vers la première sortie (30), un deuxième liquide, de densité plus importante, étant refoulé vers la deuxième sortie (74) par le deuxième conduit (58;70).
  2. Installation selon la revendication 1 caractérisée en ce que le clapet (52) comprend une bille (64) agencée pour obturer un siège (66) dans le deuxième conduit (58;70), la densité de la bille étant de l'ordre de 0,9.
  3. Installation selon la revendication 1 ou 2 caractérisée en ce que la deuxième sortie est constituée par un aquifère.
  4. Installation selon la revendication 1 ou 2 caractérisée en ce que la deuxième sortie est constituée par la source (14) du liquide.
EP97401594A 1996-07-08 1997-07-04 Procédé et installation de pompage d'un effluent pétrolier Expired - Lifetime EP0818603B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9608478 1996-07-08
FR9608478A FR2750732B1 (fr) 1996-07-08 1996-07-08 Procede et installation de pompage d'un effluent petrolier

Publications (2)

Publication Number Publication Date
EP0818603A1 EP0818603A1 (fr) 1998-01-14
EP0818603B1 true EP0818603B1 (fr) 2002-10-02

Family

ID=9493808

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97401594A Expired - Lifetime EP0818603B1 (fr) 1996-07-08 1997-07-04 Procédé et installation de pompage d'un effluent pétrolier

Country Status (8)

Country Link
US (1) US5873410A (fr)
EP (1) EP0818603B1 (fr)
AT (1) ATE225459T1 (fr)
CA (1) CA2209515C (fr)
DE (1) DE69715981D1 (fr)
FR (1) FR2750732B1 (fr)
NO (1) NO312044B1 (fr)
OA (1) OA10434A (fr)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO313895B1 (no) * 2001-05-08 2002-12-16 Freyer Rune Anordning og fremgangsmÕte for begrensning av innströmning av formasjonsvann i en brönn
GB2396169B (en) * 2002-12-12 2005-03-16 Schlumberger Holdings Downhole separation of oil and water
US7290606B2 (en) 2004-07-30 2007-11-06 Baker Hughes Incorporated Inflow control device with passive shut-off feature
WO2006015277A1 (fr) 2004-07-30 2006-02-09 Baker Hughes Incorporated Dispositif de fond pour reguler le flux entrant au moyen d'un dispositif de fermeture
US7331397B1 (en) 2004-11-12 2008-02-19 Jet Lifting Systems, Ltd Gas drive fluid lifting system
US8096351B2 (en) * 2007-10-19 2012-01-17 Baker Hughes Incorporated Water sensing adaptable in-flow control device and method of use
US7942206B2 (en) * 2007-10-12 2011-05-17 Baker Hughes Incorporated In-flow control device utilizing a water sensitive media
US8312931B2 (en) 2007-10-12 2012-11-20 Baker Hughes Incorporated Flow restriction device
US20090301726A1 (en) * 2007-10-12 2009-12-10 Baker Hughes Incorporated Apparatus and Method for Controlling Water In-Flow Into Wellbores
US7784543B2 (en) * 2007-10-19 2010-08-31 Baker Hughes Incorporated Device and system for well completion and control and method for completing and controlling a well
US8544548B2 (en) * 2007-10-19 2013-10-01 Baker Hughes Incorporated Water dissolvable materials for activating inflow control devices that control flow of subsurface fluids
US7775271B2 (en) 2007-10-19 2010-08-17 Baker Hughes Incorporated Device and system for well completion and control and method for completing and controlling a well
US7891430B2 (en) 2007-10-19 2011-02-22 Baker Hughes Incorporated Water control device using electromagnetics
US7793714B2 (en) 2007-10-19 2010-09-14 Baker Hughes Incorporated Device and system for well completion and control and method for completing and controlling a well
US7789139B2 (en) 2007-10-19 2010-09-07 Baker Hughes Incorporated Device and system for well completion and control and method for completing and controlling a well
US7918272B2 (en) * 2007-10-19 2011-04-05 Baker Hughes Incorporated Permeable medium flow control devices for use in hydrocarbon production
US8069921B2 (en) 2007-10-19 2011-12-06 Baker Hughes Incorporated Adjustable flow control devices for use in hydrocarbon production
US7913765B2 (en) * 2007-10-19 2011-03-29 Baker Hughes Incorporated Water absorbing or dissolving materials used as an in-flow control device and method of use
US7775277B2 (en) * 2007-10-19 2010-08-17 Baker Hughes Incorporated Device and system for well completion and control and method for completing and controlling a well
US20090101329A1 (en) * 2007-10-19 2009-04-23 Baker Hughes Incorporated Water Sensing Adaptable Inflow Control Device Using a Powered System
US7913755B2 (en) 2007-10-19 2011-03-29 Baker Hughes Incorporated Device and system for well completion and control and method for completing and controlling a well
US7918275B2 (en) 2007-11-27 2011-04-05 Baker Hughes Incorporated Water sensitive adaptive inflow control using couette flow to actuate a valve
US7597150B2 (en) * 2008-02-01 2009-10-06 Baker Hughes Incorporated Water sensitive adaptive inflow control using cavitations to actuate a valve
US8839849B2 (en) * 2008-03-18 2014-09-23 Baker Hughes Incorporated Water sensitive variable counterweight device driven by osmosis
US7992637B2 (en) * 2008-04-02 2011-08-09 Baker Hughes Incorporated Reverse flow in-flow control device
US8931570B2 (en) * 2008-05-08 2015-01-13 Baker Hughes Incorporated Reactive in-flow control device for subterranean wellbores
US8171999B2 (en) 2008-05-13 2012-05-08 Baker Huges Incorporated Downhole flow control device and method
US8555958B2 (en) * 2008-05-13 2013-10-15 Baker Hughes Incorporated Pipeless steam assisted gravity drainage system and method
US8113292B2 (en) 2008-05-13 2012-02-14 Baker Hughes Incorporated Strokable liner hanger and method
US7762341B2 (en) * 2008-05-13 2010-07-27 Baker Hughes Incorporated Flow control device utilizing a reactive media
US7789152B2 (en) 2008-05-13 2010-09-07 Baker Hughes Incorporated Plug protection system and method
US8132624B2 (en) * 2009-06-02 2012-03-13 Baker Hughes Incorporated Permeability flow balancing within integral screen joints and method
US8151881B2 (en) * 2009-06-02 2012-04-10 Baker Hughes Incorporated Permeability flow balancing within integral screen joints
US20100300675A1 (en) * 2009-06-02 2010-12-02 Baker Hughes Incorporated Permeability flow balancing within integral screen joints
US8056627B2 (en) * 2009-06-02 2011-11-15 Baker Hughes Incorporated Permeability flow balancing within integral screen joints and method
US20100300674A1 (en) * 2009-06-02 2010-12-02 Baker Hughes Incorporated Permeability flow balancing within integral screen joints
US8893809B2 (en) * 2009-07-02 2014-11-25 Baker Hughes Incorporated Flow control device with one or more retrievable elements and related methods
US8550166B2 (en) * 2009-07-21 2013-10-08 Baker Hughes Incorporated Self-adjusting in-flow control device
US9016371B2 (en) * 2009-09-04 2015-04-28 Baker Hughes Incorporated Flow rate dependent flow control device and methods for using same in a wellbore

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1499589A (en) * 1923-08-27 1924-07-01 Navin Frank Method and apparatus for extracting oil from wells
US2986215A (en) * 1958-09-23 1961-05-30 Shell Oil Co Salt water disposal system
US3894583A (en) * 1974-08-09 1975-07-15 Thomas H Morgan Artificial lift for oil wells
US4390061A (en) * 1980-12-31 1983-06-28 Charles Short Apparatus for production of liquid from wells
US4497714A (en) * 1981-03-06 1985-02-05 Stant Inc. Fuel-water separator
US4384962A (en) * 1981-03-06 1983-05-24 Stant Inc. Fuel-water separator
US4585060B1 (en) * 1983-02-28 1994-02-01 Q.E.D. Environmental Systems, Inc. Fluid sampling apparatus
US4766957A (en) * 1987-07-28 1988-08-30 Mcintyre Jack W Method and apparatus for removing excess water from subterranean wells
US4791985A (en) * 1987-09-11 1988-12-20 Lagoven, S.A. System to proportion assisting fluids in a well
US5161956A (en) * 1990-05-11 1992-11-10 Isco, Inc. Valve pump
US5183391A (en) * 1990-05-11 1993-02-02 Isco, Inc. Valve pump
US5238060A (en) * 1992-09-08 1993-08-24 Oed Environmental Systems, Inc. Sampling pump with packer

Also Published As

Publication number Publication date
OA10434A (fr) 2001-12-07
FR2750732A1 (fr) 1998-01-09
US5873410A (en) 1999-02-23
NO973141L (no) 1998-01-09
NO312044B1 (no) 2002-03-04
ATE225459T1 (de) 2002-10-15
DE69715981D1 (de) 2002-11-07
CA2209515A1 (fr) 1998-01-08
FR2750732B1 (fr) 1998-10-30
CA2209515C (fr) 2005-10-25
EP0818603A1 (fr) 1998-01-14
NO973141D0 (no) 1997-07-07

Similar Documents

Publication Publication Date Title
EP0818603B1 (fr) Procédé et installation de pompage d'un effluent pétrolier
EP0013854B1 (fr) Procédé et dispositif de sécurité pour stockage souterrain d'un fluide sous pression
CA2159097C (fr) Systeme de regulation d'air pour reservoir hydropneumatique
RU2000116624A (ru) Способ и устройство для увеличения добычи жидкости из подземных пластов
EP0251881A1 (fr) Méthode de production assistée d'un effluent à produire contenu dans une formation géologique
FR2974585A1 (fr) Dispositif d'extraction de materiau solide sur le fond d'une etendue d'eau et procede associe
FR2656651A1 (fr) Methode et dispositif pour stimuler une zone souterraine par injection differee de fluide provenant d'une zone voisine, le long de fractures faites depuis un drain fore dans une couche intermediaire peu permeable.
CA2251611C (fr) Installation de pompage d'un effluent biphasique liquide/gaz
EP0435727B1 (fr) Méthode et dispositif pour stimuler une zone souterraine par injection controlée de fluide provenant d'une zone voisine que l'on relie à la première par un drain traversant une couche intermédiaire peu perméable
CA2163711C (fr) Methode et systeme de pompage comportant une pompe volumetrique entrainee par un tube continu - application aux puits devies
FR2787827A1 (fr) Methode de reglage a une valeur objectif d'un niveau de liquide de forage dans un tube prolongateur d'une installation de forage d'un puits et dispositif pour la mise en oeuvre de cette methode
US4826406A (en) Pressure extraction pump system for recovering liquid hydrocarbons from ground water
FR2723143A1 (fr) Installation pour puits petrolier
CA2971753C (fr) Dispositif d'evacuation de liquides accumules dans un puits
CA2250101A1 (fr) Procede de pompage d'un fluide
EP1182355B1 (fr) Dispositif pour drainer un sol en profondeur
US5518341A (en) Production fluid assembly for remote offshore facilities storage
EP3870802A1 (fr) Procede et systeme d'injection de gaz en sous-sol
FR2786822A1 (fr) Dispositif a air comprime, fonctionnant en discontinu, pour pomper les lixiviats de decharge ou les liquides pollues et charges, et d'asservissement de la pompe au niveau de liquides ou jus dans le puits de pompage
SU1350336A1 (ru) Устройство дл добычи углеводородов из обводн ющейс скважины
OA10433A (fr) Suspension de la colonne de production d'un puits pétrolier
FR2707270A1 (fr) Puisard pour cavité de stockage souterrain d'hydrocarbures à maintenance et exploitation simultanées.
EP0389362A1 (fr) Méthode et dispositif de diagraphie de production en puits éruptif
FR2738004A1 (fr) Dispositif de securite de reservoirs par formation de joint hydraulique
FR2502683A1 (fr) Procede et equipement de forage d'une couche souterraine contenant des hydrocarbures, sans utilisation de boue de forage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19970709

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AKX Designation fees paid

Free format text: AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20020213

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021002

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021002

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021002

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021002

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021002

REF Corresponds to:

Ref document number: 225459

Country of ref document: AT

Date of ref document: 20021015

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20021002

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

REF Corresponds to:

Ref document number: 69715981

Country of ref document: DE

Date of ref document: 20021107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030102

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030102

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030103

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030429

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 0818603E

Country of ref document: IE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030731

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030731

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030703

BERE Be: lapsed

Owner name: *ELF EXPLORATION PRODUCTION

Effective date: 20030731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160627

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160627

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20170703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20170703