EP0992075A1 - Brennstoffzelle-methanolreformer mit einem energiespeicher und verfahren zur steuerung des energieflusses des systems - Google Patents

Brennstoffzelle-methanolreformer mit einem energiespeicher und verfahren zur steuerung des energieflusses des systems

Info

Publication number
EP0992075A1
EP0992075A1 EP98932094A EP98932094A EP0992075A1 EP 0992075 A1 EP0992075 A1 EP 0992075A1 EP 98932094 A EP98932094 A EP 98932094A EP 98932094 A EP98932094 A EP 98932094A EP 0992075 A1 EP0992075 A1 EP 0992075A1
Authority
EP
European Patent Office
Prior art keywords
fuel cell
energy store
charge
state
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98932094A
Other languages
English (en)
French (fr)
Inventor
Karl-Heinz Hauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Priority to DE29824703U priority Critical patent/DE29824703U1/de
Publication of EP0992075A1 publication Critical patent/EP0992075A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • H01M16/006Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers of fuel cells with rechargeable batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • B60L50/62Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles charged by low-power generators primarily intended to support the batteries, e.g. range extenders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/25Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by controlling the electric load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/40Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/14Boost converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • Fuel cell methanol reformer with an energy store and method for controlling the energy flow of the system
  • the invention relates to a fuel cell with an upstream methanol reformer to which an energy store is connected in parallel and a method for controlling the energy flow of the system.
  • Such fuel cells are known in particular as low-emission drives in the field of motor vehicles.
  • the methanol in a tank like conventional fuel, is converted into electrical energy. This then serves to drive an electric motor.
  • a large number of such fuel cells are operated in series (fuel cell stack).
  • the energy storage connected in parallel, the z. B. is designed as a battery, serves as a starting aid, since the fuel cell can only be started up slowly in its operating state, and as a power buffer for providing power peaks of the drive.
  • a particular disadvantage of this system is the poor efficiency with a full battery and low driving performance requirements (extreme part-load operation).
  • the invention is therefore based on the technical problem of creating a fuel cell with a methanol reformer to which an energy store is connected in parallel and a method for controlling this system in order to operate the system with a higher degree of energy efficiency.
  • the solution to the technical problem results from the features of claims 1 and 9.
  • the state of charge of the energy store is detected by means of a state of charge sensor and fed to a control unit.
  • the control unit changes the operating point of the fuel cell only if the state of charge of the energy store falls below a first threshold value or exceeds a second. This will ensures that the dynamic change in the power requirement can only be covered by the energy store, whereas the fuel cell can work statically at an operating point that is optimal for this, so that the energy efficiency of the system is considerably increased. Further advantageous embodiments of the invention result from the subclaims.
  • the invention is explained in more detail below on the basis of a preferred exemplary embodiment.
  • the single figure shows a block diagram of a fuel cell with a methanol reformer with an energy storage device connected in parallel for an electric lift.
  • the system comprises a methanol tank 1, a fuel cell stack 2 with a methanol reformer, an energy store 3, a control device 4, a current measuring device 5, a temperature sensor 6, a step-up converter 7 and a drive control 8 for a motor 9 Methanol reformer supplied with the amount of methanol required for operation.
  • the methanol is converted in the fuel cell 2 with a methanol reformer to generate electrical power.
  • An energy store 3 is connected in parallel to the fuel cell 2 and is designed, for example, as a battery or supercapacitor. Because of the parallel connection, the voltages of the fuel cell 2 and the energy store 3 must be matched to one another.
  • the step-up converter 7 is arranged between the fuel cell 2 and the energy store 3, by means of which the voltage of the fuel cell 2 can be adapted to that of the energy store 3.
  • a current measuring device 5 is connected in series with it.
  • the ammeter can, for. B. be designed as a shunt or current transformer.
  • the signal outputs of the current measuring device 5 and the terminals of the energy store 3 are connected to the control device 4, which can then draw conclusions about the state of charge and load from current and voltage.
  • all methods for determining the state of charge of the energy store 3 can be used for determining the state of charge. For a battery this would be e.g. B.
  • the temperature sensor 6 is assigned to the energy store 3, the signal output of which is also connected to the control device 4.
  • the fuel cell 2 is preferably operated statically at an operating point with good efficiency, as long as the state of charge of the energy store 3 falls below a certain threshold value.
  • the drive control 8 receives a manipulated variable 10 which, for. B. is derived from the accelerator pedal position and means an increased power requirement for the engine 9, this additional power is taken exclusively from the energy store 3.
  • the fuel cell 2 clearly supplies a constant base load, whereas the energy store 3 provides the peak load. If, on the other hand, the charge level of the energy store is undershot, the control device 4 starts up the fuel cell 2, ie the power output of the fuel cell 2 increases.
  • the control unit 4 controls the fuel cell 2 back to the original operating point.
  • the original operating point can also be the point zero fuel cell power. Since an overload of the energy store 3 can impair its functionality, when a second threshold value for the state of charge of the energy store 3 is exceeded, the fuel cell 2 is shut down or briefly switched off completely until the optimal state of charge has been restored. Possible threshold values for the state of charge are, for example, 70% for the first and 90% for the second threshold.
  • the previously described control of the energy flow is independent of the control variable 10. If an upper temperature limit of the energy store is exceeded, the performance of the reformer fuel system can be reduced and, if necessary, regulated to zero.
  • the control variable 10 is not completely disregarded.
  • a safety reserve is necessary so that such operating states are derived from the control unit 4 from the control variable 10 and the operating point of the fuel cell 2 is raised regardless of the state of charge of the energy store 3.
  • the current integral can be recorded over a certain time and, if a certain percentage of the nominal capacity of the energy store 3 is exceeded, the fuel cell 2 can be started up before the lower switch-on threshold is reached.
  • the procedure described is not based on methanol Fuel cells limited but is also suitable for similar fuels or fuel cells.

Abstract

Die Erfindung betrifft eine Brennstoffzelle (2) mit Methanolreformer mit einem Energiespeicher (3) und ein Verfahren zur Steuerung des Energieflusses dieses Systems, bei dem die Abgabeleistung der Brennstoffzelle (2) in Abhängigkeit vom Ladezustand des Energiespeichers (3) gesteuert wird.

Description

Brennstoffzelle-Methanolreformer mit einem Energiespeicher und Verfahren zur Steuerung des Energieflusses des Systems
Die Erfindung betrifft eine Brennstoffzelle mit vorgeschaltetem Methanolreformer zu der parallel ein Energiespeicher geschaltet ist sowie ein Verfahren zur Steuerung des Energieflusses des Systems.
Derartige Brennstoffzellen sind insbesondere als emissionsarme Antriebe im Bereich der Kraftfahrzeuge bekannt. Dabei wird in der Brennstoffzelle mit Methanolreformer das wie herkömmlicher Kraftstoff in einem Tank befindliche Methanol in elektrische Energie umgesetzt. Diese dient dann zum Antrieb eines Elektromotors. Zur Erzeugung einer ausreichend großen Spannung werden eine Vielzahl derartiger Brennstoffzellen in Reihe betrieben (Brennstoffzellenstack). Der parallel geschaltete Energiespeicher, der z. B. als Batterie ausgebildet ist, dient dabei als Starthilfe, da die Brennstoffzelle nur langsam in seinen Betriebszustand hochgefahren werden kann, und als Leistungspuffer zur Bereitstellung von Leistungsspitzen des Antriebs. Nachteilig an diesem System ist insbesondere der schlechte Wirkungsgrad bei voller Batterie und geringen Fahrleistungsanforderungen (extremer Teillastbetrieb).
Der Erfindung liegt daher das technische Problem zugrunde, eine Brennstoffzelle mit Methanolreformer zu der parallel ein Energiespeicher geschaltet ist und ein Verfahren zur Steuerung dieses Systems zu schaffen, um das System mit einem höheren Energienutzungsgrad zu betreiben.
Die Lösung des technischen Problems ergibt sich durch die Merkmale der Patentansprüche 1 und 9. Dabei wird mittels eines Ladezustandssensors der Ladezustand des Energiespeichers erfaßt und einem Steuergerät zugeführt. Das Steuergerät ändert den Betriebspunkt der Brennstoffzelle nur dann, falls der Ladezustand des Energiespeichers einen ersten Schwellwert unterschreitet oder einen zweiten überschreitet. Dadurch wird sichergestellt, daß die dynamische Änderung des Leistungsbedarfs nur vom Energiespeicher gedeckt werden, wohingegen die Brennstoffzelle in einem für diese optimalen Betriebspunkt statisch arbeiten kann, so daß der Energienutzungsgrad des Systems erheblich erhöht wird. Weiter vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen.
Die Erfindung wird nachfolgend anhand eines bevorzugten Ausführungsbeispieles näher erläutert. Die einzige Figur zeigt ein Blockschaltbild einer Brennstoffzelle mit Methanolreformer mit parallel geschaltetem Energiespeicher für einen Elektroantheb.
Das System umfaßt einen Methanoltank 1, einen Brennstoffzellenstack 2 mit Methanolreformer, einen Energiespeicher 3, ein Steuergerät 4, ein Strommeßgerät 5, einen Temperatursensor 6, einen Hochsetzsteller 7 und eine Antriebssteuerung 8 für einen Motor 9. Über den Methanoltank 1 wird der Brennstoffzellenstack 2 mit Methanolreformer mit der für den Betrieb notwendigen Methanolmenge versorgt. Das Methanol wird in der Brennstoffzelle 2 mit Methanolreformer zur Erzeugung einer elektrischen Leistung umgesetzt. Parallel zur Brennstoffzelle 2 ist ein Energiespeicher 3 geschaltet, der z.B. als Batterie oder Superkondensator ausgebildet ist. Aufgrund der Parallelschaltung müssen die Spannungen der Brennstoffzelle 2 und des Energiespeichers 3 aufeinander abgestimmt sein. Um jedoch bei der Auswahl vorhandener Energiespeicher 3 einen größeren Freiheitsgrad zu erhalten, ist zwischen der Brennstoffzelle 2 und dem Energiespeicher 3 der Hochsetzsteller 7 angeordnet, mittels dessen die Spannung der Brennstoffzelle 2 an die des Energiespeichers 3 adaptiert werden kann. Um den Ladezustand des Energiespeichers 3 zu erfassen, ist zu diesem in Reihe ein Strommeßgerät 5 geschaltet . Das Strommeßgerät kann dabei z. B. als Shunt oder Stromwandler ausgebildet sein. Die Signalausgänge des Strommeßgerätes 5 und die Klemmen des Energiespeichers 3 sind mit dem Steuergerät 4 verbunden, das dann aus Strom und Spannung auf den Ladezustand und Belastung zurückschließen kann. Prinzipiell kommen für die Ladezustandsbestimmung alle Verfahren in Frage, mit denen der Ladezustand des Energiespeichers 3 erfaßbar ist. Für eine Batterie wären dies z. B. Säuredichtebestimmung, Zelldruck und Stromintegral. Des weiteren ist dem Energiespeicher 3 der Temperatursensor 6 zugeordnet, dessen Signalausgang ebenfalls mit dem Steuergerät 4 verbunden ist. Die Brennstoffzelle 2 wird vorzugsweise in einem Betriebspunkt mit gutem Wirkungsgrad statisch betrieben, solange der Ladezustand des Energiespeichers 3 einen bestimmten Schwellwert unterschreitet. Erhält die Antriebssteuerung 8 eine Stellgröße 10, die z. B. von der Gaspedalstellung abgeleitet wird und einen erhöhten Leistungsbedarf für den Motor 9 bedeutet, so wird diese zusätzliche Leistung ausschließlich dem Energiespeicher 3 entnommen. Anschaulich liefert die Brennstoffzelle 2 eine konstante Grundlast, wohingegen der Energiespeicher 3 die Spitzenlast zur Verfügung stellt. Wird hingegen der Ladezustand des Energiespeichers unterschritten, so fährt das Steuergerät 4 die Brennstoffzelle 2 hoch, d. h. die Leistungsabgabe der Brennstoffzelle 2 erhöht sich. Erhöht sich der Ladezustand des Energiespeichers 3 derart, daß der Schwellwert wieder überschritten wird, so steuert das Steuergerät 4 die Brennstoffzelle 2 wieder in den ursprünglichen Betriebspunkt. Die Einführung einer Hysterese, um ein Schwingen um den Schwellwert herum zu vermeiden ist zweckmäßig. Der ursprüngliche Betriebspunkt kann auch der Punkt Brennstoffzellenleistung Null sein. Da eine Überladung des Energiespeichers 3 dessen Funktionalität beeinträchtigen kann, wird bei Überschreitung eines zweiten Schwellwertes für den Ladezustand des Energiespeichers 3 die Brennstoffzelle 2 heruntergefahren oder kurzzeitig ganz abgeschaltet, bis sich der optimale Ladezustand wieder eingestellt hat. Mögliche Schwellwerte für den Ladezustand sind z.B. 70 % für den ersten und 90 % für den zweiten Schwellwert. Die bisher beschriebene Steuerung des Energieflusses ist unabhängig von der Steuergröße 10. Bei Überschreiten einer oberen Temperaturgrenze des Energiespeichers kann die Leistung des Reformer-Brennstoffsystems reduziert und ggf. auf Null geregelt werden.
Um die Steuerung jedoch vorausschauender bzw. eine gewisse Sicherheitsreserve zur Verfügung zu stellen, wird die Steuergröße 10 nicht gänzlich unberücksichtigt gelassen. Insbesondere bei Beschleunigungsvorgängen oder Fahrten mit Höchstgeschwindigkeit ist eine Sicherheitsreserve notwendig, so daß solche Betriebszustände vom Steuergerät 4 aus der Steuergröße 10 abgeleitet werden und der Betriebspunkt der Brennstoffzelle 2 unabhängig vom Ladezustand des Energiespeichers 3 hochgefahren wird. Zur Erfassung solcher Betriebszustände kann dabei z.B. das Stromintegral über eine bestimmte Zeit erfaßt werden und bei Überschreitung eines gewissen Prozentsatzes der Nennkapazität des Energiespeichers 3 die Brennstoffzelle 2 hochgefahren werden bevor die untere Einschaltschwelle erreicht ist. Das beschriebene Verfahren ist nicht auf Methanol- Brennstoffzellen beschränkt sondern ist auch für ähnliche Kraftstoffe bzw. Brennstoffzellen geeignet.

Claims

PATENTANSPRÜCHE
1. Brennstoffzelle mit Methanolreformer zu dessen Ausgang parallel ein elektrischer Energiespeicher geschaltet ist, dadurch gekennzeichnet, daß dem elektrischen Energiespeicher (3) ein Ladezustandssensor (5) zugeordnet ist, dessen Signalausgänge mit einem Steuergerät (4) verbunden sind, das Steuergerät
(4) mit der Brennstoffzelle (2) verbunden ist und diese in Abhängigkeit vom Ladezustand des Energiespeichers (3) ansteuert.
2. Brennstoffzelle nach Anspruch 1 , dadurch gekennzeichnet, daß der Energiespeicher
(5) als Batterie oder Superkondensator ausgebildet ist.
3. Brennstoffzelle nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Ladezustandssensor (5) als Strommeßgerät (5) ausgebildet ist.
4. Brennstoffzelle nach Anspruch 3, dadurch gekennzeichnet, daß das Strommeßgerät (5) als Shunt oder Stromwandler ausgebildet ist.
5. Brennstoffzelle nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß den Energiespeicher (3) ein Temperatursensor (6) zugeordnet ist, dessen Signalausgang mit den Steuergerät (4) verbunden ist.
6. Brennstoffzelle nach einem der vorangegangen Ansprüche, dadurch gekennzeichnet, daß parallel zwischen den Ausgängen der Brennstoffzelle (2) und des Energiespeichers (3) ein Hochsetzsteller (7) angeordnet ist.
7. Brennstoffzelle nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß das Steuergerät (4) mit einer Antriebsstellgröße (10) beaufschlagt wird.
8. Verwendung einer Brennstoffzelle nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß die Brennstoffzelle (2) in einem Kraftfahrzeug mit Elektrobetrieb eingesetzt wird.
9. Verfahren zur Steuerung des Energieflusses einer Brennstoffzelle (2) mit Methanolreformer, zu dessen Ausgang parallel ein elektrischer Energiespeicher (3) geschaltet ist, mittels eines Ladezustandssensor (5) und eines Steuergerätes (4), bei dem eine zu betreibende Vorrichtung die Energie von der Brennstoffzelle (2) und/oder dem Energiespeicher (3) bezieht, umfassend folgende Verfahrensschritte:
a) mittels des Ladezustandssensor (5) wird kontinuierlich oder diskret der Ladezustand des Energiespeichers (3) erfaßt, b) der Ladezustand des Energiespeichers (3) wird dem Steuergerät (4) zugeführt, c) das Steuergerät (4) steuert in Abhängigkeit vom Ladezustand des Energiespeichers (3) den Betriebspunkt der Brennstoffzelle (2), wobei der Betriebspunkt der Brennstoffzelle (2) solange unverändert bleibt, bis der Ladezustand des Energiespeichers (3) einen ersten Schwellwert unterschreitet.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß die Brennstoffzelle (2) bei Überschreitung eines zweiten Schwellwertes für den Ladezustand des Energiespeichers (3) durch das Steuergerät (4) abgeschaltet oder heruntergefahren wird.
11. Verfahren nach Anspruch 9 oder 10, dadurch gekennzeichnet, daß dem Steuergerät (4) eine Stellgröße (10) für eine Antriebssteuerung (8) zugeführt wird, aus der dieses die Fahrsituationen ableitet, bei denen unabhängig vom Ladezustand des Energiespeichers (3) die Brennstoffzelle (2) abgeschaltet oder hochgefahren wird.
EP98932094A 1997-06-06 1998-05-28 Brennstoffzelle-methanolreformer mit einem energiespeicher und verfahren zur steuerung des energieflusses des systems Withdrawn EP0992075A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE29824703U DE29824703U1 (de) 1997-06-06 1998-05-28 Brennstoffzelle-Methanolreformer mit einem Energiespeicher

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19723746 1997-06-06
DE19723746 1997-06-06
PCT/EP1998/003154 WO1998056058A1 (de) 1997-06-06 1998-05-28 Brennstoffzelle-methanolreformer mit einem energiespeicher und verfahren zur steuerung des energieflusses des systems

Publications (1)

Publication Number Publication Date
EP0992075A1 true EP0992075A1 (de) 2000-04-12

Family

ID=7831583

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98932094A Withdrawn EP0992075A1 (de) 1997-06-06 1998-05-28 Brennstoffzelle-methanolreformer mit einem energiespeicher und verfahren zur steuerung des energieflusses des systems

Country Status (3)

Country Link
US (1) US6214484B1 (de)
EP (1) EP0992075A1 (de)
WO (1) WO1998056058A1 (de)

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6387556B1 (en) 1997-11-20 2002-05-14 Avista Laboratories, Inc. Fuel cell power systems and methods of controlling a fuel cell power system
JP4550955B2 (ja) * 1999-06-09 2010-09-22 本田技研工業株式会社 燃料電池システム
EP1523054B1 (de) * 1999-07-27 2012-12-26 IdaTech, LLC. Brennstoffzellensystemsteuerung
JP2003524864A (ja) * 1999-07-27 2003-08-19 アイダテック・エルエルシー 燃料電池装置コントローラ
US6979507B2 (en) 2000-07-26 2005-12-27 Idatech, Llc Fuel cell system controller
US6383670B1 (en) 1999-10-06 2002-05-07 Idatech, Llc System and method for controlling the operation of a fuel processing system
US6835481B2 (en) * 2000-03-29 2004-12-28 Idatech, Llc Fuel cell system with load management
US6428918B1 (en) 2000-04-07 2002-08-06 Avista Laboratories, Inc. Fuel cell power systems, direct current voltage converters, fuel cell power generation methods, power conditioning methods and direct current power conditioning methods
US6468682B1 (en) * 2000-05-17 2002-10-22 Avista Laboratories, Inc. Ion exchange membrane fuel cell
JP4788018B2 (ja) 2000-06-08 2011-10-05 トヨタ自動車株式会社 燃料電池用燃料補給システムおよび移動体
JP3875458B2 (ja) 2000-06-30 2007-01-31 株式会社東芝 送受信一体型高周波装置
DE20017073U1 (de) * 2000-10-04 2002-02-14 Sachsenring Entwicklungsgmbh Brennstoffzellensystem
US6761988B1 (en) * 2000-11-21 2004-07-13 Mti Microfuel Cells Inc. Fuel cell system with active methanol concentration control
US6580977B2 (en) * 2001-01-16 2003-06-17 Ford Global Technologies, Llc High efficiency fuel cell and battery for a hybrid powertrain
US20030070850A1 (en) * 2001-02-16 2003-04-17 Cellex Power Products, Inc. Hybrid power supply apparatus for battery replacement applications
FR2821297B1 (fr) * 2001-02-23 2003-06-20 Renault Procede et dispositif de chauffage d'un habitacle d'un vehicule equipe d'une pile a combustible
JP4294884B2 (ja) * 2001-04-05 2009-07-15 本田技研工業株式会社 燃料電池電源装置
US6649290B2 (en) 2001-05-11 2003-11-18 Cellex Power Products, Inc. Fuel cell thermal management system and method
US6559621B2 (en) 2001-05-21 2003-05-06 Cellex Power Products, Inc. Hybrid energy storage device charge equalization system and method
US6534950B2 (en) 2001-05-25 2003-03-18 Cellex Power Products, Inc. Hybrid power supply control system and method
JP3822139B2 (ja) * 2001-06-28 2006-09-13 本田技研工業株式会社 燃料電池電源装置
US6841275B2 (en) 2001-12-14 2005-01-11 Ballard Power Systems Inc. Method and apparatus for controlling voltage from a fuel cell system
US7144646B2 (en) * 2001-12-14 2006-12-05 Ballard Power Systems Inc. Method and apparatus for multiple mode control of voltage from a fuel cell system
US6573682B1 (en) * 2001-12-14 2003-06-03 Ballard Power Systems Inc. Fuel cell system multiple stage voltage control method and apparatus
US7087327B2 (en) * 2002-05-16 2006-08-08 Ballard Power Systems Inc. Electric power plant with adjustable array of fuel cell systems
DE10223117B4 (de) * 2002-05-24 2014-04-30 Nucellsys Gmbh Verfahren und Anordnung zur Steuerung der Energieversorgung eines elektrischen Antriebs mit einem hybriden Energieversorgungssystem in einem Fahrzeug
JP3715608B2 (ja) * 2002-09-30 2005-11-09 株式会社東芝 電子機器システムおよび電池ユニット
US7341609B2 (en) 2002-10-03 2008-03-11 Genesis Fueltech, Inc. Reforming and hydrogen purification system
US20040081867A1 (en) * 2002-10-23 2004-04-29 Edlund David J. Distributed fuel cell network
US20040081868A1 (en) * 2002-10-23 2004-04-29 Edlund David J. Distributed fuel cell network
JP3704123B2 (ja) 2002-12-27 2005-10-05 株式会社東芝 電子機器および電池ユニット
JP3764426B2 (ja) * 2003-01-21 2006-04-05 株式会社東芝 電子機器及び動作制御方法
JP2004227139A (ja) 2003-01-21 2004-08-12 Toshiba Corp 電子機器及びその動作制御方法
JP3842744B2 (ja) 2003-02-28 2006-11-08 株式会社東芝 電子機器および同機器の給電状態表示方法
JP3764429B2 (ja) 2003-02-28 2006-04-05 株式会社東芝 電子機器および電子機器の給電切り換え制御方法
US7632583B2 (en) * 2003-05-06 2009-12-15 Ballard Power Systems Inc. Apparatus for improving the performance of a fuel cell electric power system
US7419734B2 (en) * 2003-05-16 2008-09-02 Ballard Power Systems, Inc. Method and apparatus for fuel cell systems
US6838923B2 (en) * 2003-05-16 2005-01-04 Ballard Power Systems Inc. Power supply and ultracapacitor based battery simulator
JP4703104B2 (ja) 2003-06-06 2011-06-15 株式会社東芝 通信端末装置
JP4381038B2 (ja) 2003-06-06 2009-12-09 株式会社東芝 送受信装置およびケーブルモデムモジュール装置
US7250231B2 (en) * 2003-06-09 2007-07-31 Idatech, Llc Auxiliary fuel cell system
US20050095471A1 (en) * 2003-11-04 2005-05-05 Vince Winstead Method of operating a hybrid power system within a state of charge window
JP4529429B2 (ja) * 2003-12-05 2010-08-25 トヨタ自動車株式会社 ハイブリッド燃料電池システム
US7117044B2 (en) * 2003-12-30 2006-10-03 Square D Company Alternative energy system control method and apparatus
US7521138B2 (en) * 2004-05-07 2009-04-21 Ballard Power Systems Inc. Apparatus and method for hybrid power module systems
US8277997B2 (en) * 2004-07-29 2012-10-02 Idatech, Llc Shared variable-based fuel cell system control
US7842428B2 (en) * 2004-05-28 2010-11-30 Idatech, Llc Consumption-based fuel cell monitoring and control
JP2006127874A (ja) * 2004-10-28 2006-05-18 Yamaha Motor Co Ltd 燃料電池システムおよびその制御方法
US20070042233A1 (en) * 2005-08-19 2007-02-22 Lyman Scott W Systems and methods for initiating auxiliary fuel cell system operation
ES2392726T3 (es) * 2006-04-21 2012-12-13 Truma Gerätetechnik GmbH & Co. KG Sistema de alimentación de energía eléctrica, con un sistema de células de combustible y un reformador, y un convertidor de continua a continua
EP1848057A1 (de) * 2006-04-21 2007-10-24 Truma Gerätetechnik GmbH & Co. KG Stromversorgungssystem mit Reformer-Brennstoffzellen-System und Batterie
US7887958B2 (en) * 2006-05-15 2011-02-15 Idatech, Llc Hydrogen-producing fuel cell systems with load-responsive feedstock delivery systems
US20070275275A1 (en) * 2006-05-23 2007-11-29 Mesa Scharf Fuel cell anode purge systems and methods
JP5094058B2 (ja) * 2006-06-30 2012-12-12 三洋電機株式会社 電源システム
US7754361B2 (en) * 2007-05-30 2010-07-13 Idatech, Llc Fuel cell systems with maintenance hydration by displacement of primary power
US20080299423A1 (en) * 2007-05-30 2008-12-04 Laven Arne Fuel cell systems with maintenance hydration
US8122985B2 (en) * 2007-07-30 2012-02-28 GM Global Technology Operations LLC Double-ended inverter drive system for a fuel cell vehicle and related operating method
DE102008020418A1 (de) * 2008-04-24 2009-10-29 Howaldtswerke-Deutsche Werft Gmbh Verfahren zur Energieversorgung
DE102008045099A1 (de) * 2008-06-19 2009-12-31 GM Global Technology Operations, Inc., Detroit Doppelseitiges Wechselrichterantriebssystem für ein Brennstoffzellenfahrzeug und zugehöriges Betriebsverfahren
MX2011013358A (es) 2009-06-12 2012-01-20 Ida Tech Llc Sistemas y metodos para controlar independientemente la operacion de pilas de celulas energeticas y sistemas de celulas energeticas que incorporan los mismos.
CN110126642A (zh) * 2019-06-27 2019-08-16 解重庆 甲醇电动集装箱增程式重卡牵引车及其驱动总成
DE102019132088A1 (de) * 2019-11-27 2021-05-27 Mtu Friedrichshafen Gmbh Brennstoffzellensystem, Verfahren zum Betreiben eines Brennstoffzellensystems, Fahrzeug, Klimasystem

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4000003A (en) * 1976-01-02 1976-12-28 The United States Of America As Represented By The Secretary Of The Army Fuel cell-secondary cell combination
JPS63236269A (ja) * 1987-03-25 1988-10-03 Fuji Electric Co Ltd 燃料電池制御方法
JPH0831328B2 (ja) * 1987-05-08 1996-03-27 富士電機株式会社 燃料電池発電装置
US4904548A (en) * 1987-08-03 1990-02-27 Fuji Electric Co., Ltd. Method for controlling a fuel cell
JPH01211860A (ja) * 1988-02-18 1989-08-25 Fuji Electric Co Ltd 燃料電池発電システムの制御装置
JPH02168803A (ja) * 1988-12-22 1990-06-28 Toyota Autom Loom Works Ltd 電気車
JP2893344B2 (ja) * 1989-05-02 1999-05-17 ヤマハ発動機株式会社 燃料電池システム
US5154986A (en) * 1991-03-22 1992-10-13 Yamaha Hatsudoki Kabushiki Kaisha Shut-off device for fuel cell system
JP2989353B2 (ja) * 1991-11-29 1999-12-13 三洋電機株式会社 ハイブリッド燃料電池システム
JP3687991B2 (ja) * 1994-02-24 2005-08-24 株式会社エクォス・リサーチ ハイブリッド電源装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9856058A1 *

Also Published As

Publication number Publication date
WO1998056058A1 (de) 1998-12-10
US6214484B1 (en) 2001-04-10

Similar Documents

Publication Publication Date Title
EP0992075A1 (de) Brennstoffzelle-methanolreformer mit einem energiespeicher und verfahren zur steuerung des energieflusses des systems
DE112007002394B4 (de) Betriebsverfahren eines Brennstoffzellensystems und Brennstoffzellensystem
EP3207585B1 (de) Verfahren zum betrieb eines stromnetzes, insbesondere eines stromnetzes eines wasserfahrzeugs
EP0771688B1 (de) Verfahren zur dynamischen Einstellung der Leistung für ein Fahrzeug mit Brennstoffzelle
DE4322765C1 (de) Verfahren und Vorrichtung zur dynamischen Leistungsregelung für ein Fahrzeug mit Brennstoffzelle
DE60318381T2 (de) Steuerungsgerät für ein Brennstoffzellen-Fahrzeug
DE10240763A1 (de) Regelung für ein Brennstoffzellensystem
DE102018109395A1 (de) Brennstoffzellensystem
DE10223117A1 (de) Verfahren und Anordnung zur Steuerung der Energieversorgung eines elektrischen Antriebs mit einem hybriden Energieversorgungssystem in einem Fahrzeug
DE102016214662A1 (de) Verfahren zum Steuern eines Brennstoffzellensystems, Verfahren zum Steuern eines Brennstoffzellenautomobils und Brennstoffzellenautomobil
DE4116899A1 (de) Elektrofahrzeug
EP0751045A2 (de) Stromerzeugungssystem für ein Fahrzeug mit Brennkraftmaschine
DE112006003337T5 (de) Brennstoffzellensystem
DE112007002072T5 (de) Brennstoffzellensystem
DE10046631A1 (de) Verfahren zur Regelung der Generatorspannung in einem Kraftfahrzeug
DE102004019085B4 (de) Brennstoffzellensystem und Verfahren zur Bestimmung eines Versatzkorrekturwerts
DE112009004880T5 (de) Brennstoffzellensystem und Leistungssteuerungsverfahren für selbiges
EP0773131A1 (de) Verfahren zur Ermittlung eines Last-Sollwertes für ein lastabhängiges Stromerzeugungssystem in einem Elektrofahrzeug
DE19703171A1 (de) Fahrzeug mit einem Antriebs-Verbrennungsmotor
DE112007002040T5 (de) Brennstoffzellensystem und mobile Karosserie
DE112008003478T5 (de) Brennstoffzellensystem und mobiles Objekt
DE102017128131A9 (de) Antriebssystem und Fahrzeug
DE102018102687A1 (de) Brennstoffzellensystem
DE102013114364B4 (de) Brennstoffzellenelektrofahrzeug und steuerungsverfahren
DE112008000622T5 (de) Brennstoffzellensystem

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000107

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20000703

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 20011123