EP1064680A1 - Verdrahtungsverfahren zur herstellung einer vertikalen integrierten schaltungsstruktur und vertikale integrierte schaltungsstruktur - Google Patents

Verdrahtungsverfahren zur herstellung einer vertikalen integrierten schaltungsstruktur und vertikale integrierte schaltungsstruktur

Info

Publication number
EP1064680A1
EP1064680A1 EP99924682A EP99924682A EP1064680A1 EP 1064680 A1 EP1064680 A1 EP 1064680A1 EP 99924682 A EP99924682 A EP 99924682A EP 99924682 A EP99924682 A EP 99924682A EP 1064680 A1 EP1064680 A1 EP 1064680A1
Authority
EP
European Patent Office
Prior art keywords
substrate
metallization level
via holes
main surface
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99924682A
Other languages
English (en)
French (fr)
Inventor
Peter Ramm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP1064680A1 publication Critical patent/EP1064680A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76898Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8221Three dimensional integrated circuits stacked in different levels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0688Integrated circuits having a three-dimensional layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06513Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06541Conductive via connections through the device, e.g. vertical interconnects, through silicon via [TSV]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a wiring method for producing a vertical integrated circuit structure with the features of the preamble of claim 1. More specifically, the invention relates to a wiring method for vertical system integration. The method can be carried out with CMOS-compatible standard semiconductor technologies and enables one compared to known methods Reduction in manufacturing costs and a substantial increase in the integration density of microelectronic systems The present invention also relates to a vertical integrated circuit structure
  • a method with the features of the preamble of claim 1 is known from German Offenlegungssch ⁇ ft DE 44 38 846 A1.
  • the individual component layers in different substrates are first processed independently and then joined together.
  • Vialocher are opened on the front of the top substrate, all of them Penetrate the existing component layers Then the top substrate is thinned from the back to the via hole.
  • a finished bottom substrate is then connected to the top substrate.
  • the via holes are then extended to a metallization level of the bottom substrate (so-called interchip via hole), and by filling the via hole with metallic material and structuring of the metallic material on the surface of the chip tape, so that there is a connection between the via hole and the contact surface of the top metallization level, the contact between top and bottom substrate manufactured (wiring) 2
  • the present invention is therefore based on the object of specifying a CMOS-compatible method for vertical system integration with freely selectable vertical contacts between circuit structures of the assembled component layers, which enables a high integration density and low manufacturing costs.
  • the present invention is further based on the object of providing a to provide vertical integrated circuit structure with high integration density that is easy to manufacture
  • the present invention further provides the vertical integrated circuit structure of claim 23
  • the present invention thus provides a wiring method for producing a vertical integrated circuit structure, comprising the steps of providing a first substrate which contains one or more first layers with circuit structures and at least one uppermost metallization level with contact areas in the region of a first, opening of vial holes in a first Step in the area of the first main area of the first substrate, providing a second substrate which contains at least one layer with circuit structures and at least one metallization level in the area of the second main area, connecting the first substrate to the second substrate, the side of the first substrate that the lies opposite the first main area, and the side of the second main area of the second substrate is brought together in an adjusted manner, opening the existing via holes in a second step up to a predetermined metallization level of the second substrate, Establishing an electrically conductive connection between the first metallization level of the first substrate and the 3 predetermined metallization level of the second substrate via via holes, the opening of via holes being carried out in such a way that the via holes adjoin the contact surfaces of the uppermost metallization level of the first substrate
  • the present invention also provides a wiring method for producing a vertical integrated circuit structure, comprising the steps of providing a first substrate which contains one or more first layers with circuit structures in the region of a first main area and whose uppermost metallization level has not been completed, opening vial holes in one first step in the area of the first main area of the first substrate, providing a second substrate which contains at least one layer with circuit structures and at least one metallization level in the area of the second main area, connecting the first substrate to the second substrate, the side of the first substrate, the is opposite to the first main surface, and the side of the second main surface of the second substrate is brought together in an adjusted manner, opening the existing one
  • the individual component layers are processed independently of one another in different substrates and then joined together.
  • the finished substrate first substrate, hereinafter referred to as the top substrate
  • the component layers of a further substrate second substrate, hereinafter referred to as bottom substrate
  • vial holes penetrate the via holes structures of the uppermost metallization. They preferably also penetrate all component layers and metallization levels present in the top substrate.
  • the via holes preferably end a few micrometers below the component layers of the top substrate, if an SOI substrate is used, preferably at the buried oxide layer. If the etching technique used here and later requires it, the top substrate can be provided with a so-called hard mask before the via holes are produced.
  • the top substrate can be thinned from the back.
  • the thinning can be carried out, for example, by wet chemical etching and / or by mechanical and / or chemomechanical grinding, the top substrate optionally having an auxiliary substrate which, for. B. is applied by means of an adhesive layer on the front, is mechanically stabilized (handling substrate).
  • the adhesive layer can have a passivating and / or planarizing function.
  • the thinning can also be done without using a handling substrate. For example, with current techniques it is possible to thin the top substrate to a residual thickness of up to 50 ⁇ m without using a handling substrate.
  • the buried insulator layer can advantageously serve as an etching stop when thinning.
  • the thinning can take place up to the via holes, so that these are then opened on both sides of the top substrate.
  • the front of the bottom substrate or / and the back of the top substrate can be provided with a transparent adhesive layer.
  • the adhesive layer can simultaneously take on a passivating and / or planarizing function. Then the top substrate and bottom substrate are aligned with one another and the back of the top substrate is connected to the front of the bottom substrate
  • the adjustment can advantageously be carried out with the aid of a telescope based on alignment marks in the visible spectral range.
  • the alignment marks are preferably produced in the top substrate analogously to the vial holes by opening corresponding alignment structures from the front through all component layers of the top substrate.
  • the alignment marks of the bottom substrate can be in the top metallization level of the bottom substrate
  • the existing substrate stack can then be processed further like a standard substrate.
  • the existing via holes are now covered from the front of the top substrate through the remaining layers (e.g. oxide layer of the SOI top substrate, adhesive layer, passivation layer of the bottom substrate) down to the metallization layer of a metallization level Bottom substrate extended (e.g. by dry etching), where appropriate the existing hard mask of the top substrate serves as an etching mask. Via this via hole, the electrical contact between the metallization of the top metallization level of the top substrate and a metallization level of the bottom substrate is finally established
  • the present invention describes a new type of wiring method which, especially for vertical system integration, leads to a significant increase in the integration density compared to the prior art (DE 44 38 846 A1), in which the wiring of the substrate stack by means of the vial holes to a metallization level of the Bottom substrates and further adjacent contact holes to a metallization level of the top substrate via additional 6 conductor tracks must be realized, the electrical connection is established by means of metal structures to be contacted directly one above the other in the method according to the invention
  • the side walls of the vialochers are preferably first isolated, for example by separating Si0 2 , and then the surface of the uppermost metallization level is exposed, thus creating contact surfaces for the metal structures of the uppermost metallization level permeated by the vialochem / and mechanical or / and chemomechanical grinding (and thus without a lithography step) are carried out.
  • conductive material is deposited on the surface and in the vialoch of the substrate sape and in a preferred embodiment by chemical etching and / or mechanical and / and chemomechanical grinding again from the surface the top substrate is removed so that the via holes are still filled with conductive material (so-called plug technology).
  • the contact to the top metallization level of the top substrate is made after a corresponding lithography step by means of structured etching and subsequent standard metallization steps
  • Wiring process for vertical system integration can be achieved by the connection of an incompletely metallized top substrate with the bottom substrate, with the restriction that the vertically integrated component substrates are not yet fully processed before stacking.This is the manufacturing of the top substrate immediately before the processing of the interrupted top metal level, and only after stacking the top and bottom substrates in one step with the wiring of the filled Vialocher completed. This is before connecting the top and bottom substrates 7 Open the via holes in the top substrate at the points where the corresponding metal structures of the top metallization level will be generated later, so that they directly contact the via holes filled with conductive material when wiring the substrate stack
  • FIG. 1 shows the finished processed top substrate before opening a via hole
  • FIG. 2 shows the finished processed top substrate after opening a via hole
  • FIG. 3 shows the step for joining the top substrate and bottom substrate
  • FIG. 4 shows the joined substrates with a deeply etched via hole
  • FIG. 5 shows the joined substrates with an isolated via hole
  • FIG. 6 shows the via hole filled with metallic material
  • FIG. 6a shows that with metallic material filled via hole according to a further embodiment of the present invention
  • FIG. 7 shows the finished processed and contacted substrate stack
  • FIG. 7a shows the finished processed and contacted substrate stack in a preferred embodiment of the present invention
  • reference numeral 0 denotes the top substrate, which in this example is a bulk silicon wafer 1 with completely processed MOS circuits 2 and one or more metallization levels 3, 4, 4a, which typically consist of an aluminum alloy and for electrical insulation from a dielectric layer 5, for example an intermetallic dielectric, the top metallization level is typically covered by a dielectric passivation layer 6, which can also take on a planarizing function.
  • titanium nitride 7 and silicon dioxide 8 are first deposited and a photo technique performed for the Vialocher 9 With the help of a lacquer mask, the silicon oxide 8 and the titanium nitride 7 as well as the underlying dielectric layers 5 are anisotropically etched 8 microns etched into monocrystalline silicon 1, the silicon oxide layer 8 serving as a mask (hard mask). The result is shown in FIG. 2
  • top substrate 0 is now optionally thinned mechanically from the rear side. If necessary, a silicon wafer 11 can then be glued to the top substrate by means of an organic adhesive layer 10 as a handling substrate and subsequently the top substrate 0 can be thinned from the back side wet-chemically and / or chemomechanically to the vialochers, so that they are opened from the rear, as shown in Fig. 3 above
  • a polyimide layer 18 is deposited as a connection layer, as shown in FIG. 3 below. Then the aligned connection of top 1 and bottom substrate 12 takes place in a disk bonding device (see FIG. 3).
  • connection layer 18 and the passivation layer 17 are anisotropically etched over the metal structures 15 in the via holes 9, wherein the titanium nitride layer 7 serves as a mask for the dry etching process and is later removed. As shown in FIG. 4, the connection layer 18 and the passivation layer 17 are anisotropically etched over the metal structures 15 in the via holes 9, wherein the titanium nitride layer 7 serves as a mask for the dry etching process and is later removed. As shown in FIG. 4, the connection layer 18 and the passivation layer 17 are anisotropically etched over the metal structures 15 in the via holes 9, wherein the titanium nitride layer 7 serves as a mask for the dry etching process and is later removed. As shown in FIG. 4, the connection layer 18 and the passivation layer 17 are anisotropically etched over the metal structures 15 in the via holes 9, wherein the titanium nitride layer 7 serves as a mask for the dry etching process and is later removed. As shown in FIG. 4, the connection layer
  • Oxide deposition and subsequent strongly directed dry etching process realizes the isolation of the side walls of the via holes, which comprises, for example, a spacer oxide 20
  • the contact surfaces 4a of the top metallization level 4 are exposed by means of chemomechanical grinding and deposited on the surface of the substrate stack 19 and in the Vialoch tungsten and again by means of chemical etching (so-called plug technology) from the surface of the top substrate 9 is removed so that the via holes are still filled with conductive material 21, for example tungsten, as shown in FIG. 6.
  • the contact between the metallization levels of the bottom substrate 15 and the top metallization level 4 of the top metallization produced by means of deposition and appropriate structuring of an aluminum alloy 22.
  • the substrate stack can be passivated with a dielectric layer 23 according to standard methods and bond pads opened
  • the contact to the top metallization level of the top substrate is produced as follows. Starting from FIG. 5, the via hole is filled with metallic material, for example tungsten, and by means of chemical etching (so-called plug technique ) again removed from the surface of the top substrate, so that the via holes are still filled with conductive material 21. After a corresponding lithography step, contact surfaces 24 on the metal structure 4 are then opened. A subsequent standard metallization step produces a metallization 25 which, for example, comprises an aluminum alloy, FIG. 7a shows the wired substrate stack after the final passivation with a passivation layer 26 and opening of the bond pads

Abstract

Die Erfindung betrifft ein Verdrahtungsverfahren zur vertikalen System-Integration. Beim erfindungsgemäßen Verfahren werden zunächst gemäß dem Stand der Technik (DE 44 33 846 A1) die einzelnen Bauelementelagen in unterschiedlichen Substraten unabhängig voneinander prozessiert und nachfolgend zusammengefügt. Zunächst werden auf der Vorderseite des Topsubstrates Vialöcher (9) geöffnet, die vorzugsweise alle vorhandenen Bauelementelagen durchdringen. Danach wird das Topsubstrat (0) von der Rückseite her bis an die Vialöcher (9) gedünnt. Anschließend wird ein fertig prozessiertes Bottemsubstrat (12) mit dem Topsubstrat (0) verbunden. Nachfolgend werden die Vialöcher (9) bis auf eine Metallisierungsebene des Bottomsubstrates verlängert (sog. Interchip-Vialöcher) und der Kontakt zwischen Top- und Bottomsubstrat hergestellt (Verdrahtung). Die Verdrahtung wird gemäß vorliegender Erfindung in einer Weise ausgeführt, die eine maximale Dichte der vertikalen Kontakte zwischen der Metallisierung des Topsubstrates (0) und der Metallisierung des Bottomsubstrates (12) ermöglicht.

Description

Verdrahtungsverfahren zur Herstellung einer vertikalen integrierten Schaltungsstruktur und vertikale integrierte Schaltungsstruktur
Die vorliegende Erfindung betrifft ein Verdrahtungsverfahren zur Herstellung einer vertikalen integrierten Schaltungsstruktur mit den Merkmalen des Oberbegriffs von Patentanspruch 1 Genauer gesagt, betrifft die Erfindung ein Verdrahtungsverfahren zur vertikalen System-Integration Das Verfahren ist mit CMOS-kompatiblen Standard-Halbleitertechnologien durchfuhrbar und ermöglicht gegenüber bekannten Verfahren eine Senkung der Fertigungskosten, sowie eine wesentliche Steigerung der Integrationsdichte mikroelektronischer Systeme Die vorliegende Erfindung betrifft darüber hinaus eine vertikale integrierte Schaltungsstruktur
Ein Verfahren mit den Merkmalen des Oberbegriffs von Patentanspruch 1 ist aus der deutschen Offenlegungsschπft DE 44 38 846 A1 bekannt Bei diesem Verfahren werden zunächst die einzelnen Bauelementelagen in unterschiedlichen Substraten unabhängig voneinander prozessiert und nachfolgend zusammengefugt Zuerst werden auf der Vorderseite des Topsubstrates Vialocher geöffnet, die alle vorhandenen Bauelementelagen durchdringen Danach wird das Topsubstrat von der Ruckseite her bis an die Vialocher gedunnt Anschließend wird ein fertig prozessiertes Bottomsubstrat mit dem Topsubstrat verbunden Nachfolgend werden die Vialocher bis auf eine Metallisierungsebene des Bottomsubstrates verlängert (sog Interchip-Vialocher), und durch Auffüllen des Vialochs mit metallischem Material und Strukturieren des metallischen Materials auf der Oberflache des Chipstapeis, so daß sich eine Verbindung zwischen Vialoch und Kontaktflache der obersten Metallisierungsebene ergibt, wird der Kontakt zwischen Top- und Bottomsubstrat hergestellt (Verdrahtung) 2
Nachteilig ist bei diesem Verfahren jedoch, daß die Integrationsdichte nicht zufriedenstellend ist
Der vorliegenden Erfindung liegt somit die Aufgabe zugrunde, ein CMOS- kompatibles Verfahren zur vertikalen System-Integration mit frei wahlbaren vertikalen Kontakten zwischen Schaltungsstrukturen der zusammengefugten Bauelementelagen anzugeben, das eine hohe Integrationsdichte und niedrige Fertigungskosten ermöglicht Der vorliegenden Erfindung liegt darüber hinaus die Aufgabe zugrunde, eine vertikale integrierte Schaltungsstruktur mit hoher Integrationsdichte bereitzustellen, die einfach hergestellt werden kann
Gemäß der vorliegenden Erfindung wird die Aufgabe durch die kennzeichnenden Merkmale von Anspruch 1 sowie den Gegenstand des Anspruchs 2 gelost
Die vorliegende Erfindung stellt darüber hinaus die vertikale integrierte Schaltungsstruktur nach Anspruch 23 bereit
Die bevorzugten Ausfuhrungsformen sind Gegenstand der Unteranspruche
Die vorliegende Erfindung schafft somit ein Verdrahtungsverfahren zur Herstellung einer vertikalen integrierten Schaltungsstruktur mit den Schritten zum Bereitstellen eines ersten Substrats, das im Bereich einer ersten Hauptflache eine oder mehrere erste Lagen mit Schaltungsstrukturen und zumindest eine oberste Metallisierungsebene mit Kontaktflachen enthalt, Offnen von Vialochern in einem ersten Schritt im Bereich der ersten Hauptflache des ersten Substrats, Bereitstellen eines zweiten Substrats, das im Bereich der zweiten Hauptflache mindestens eine Lage mit Schaltungsstrukturen und mindestens eine Metallisierungsebene enthalt, Verbinden des ersten Substrats mit dem zweiten Substrat, wobei die Seite des ersten Substrats, die der ersten Hauptflache gegenüberliegt, und die Seite der zweiten Hauptflache des zweiten Substrats justiert zusammengeführt werden, Offnen der vorhandenen Vialocher in einem zweiten Schritt bis zu einer vorbestimmten Metallisierungsebene des zweiten Substrats, Herstellen einer elektrisch leitfahigen Verbindung zwischen der ersten Metallisierungsebene des ersten Substrats und der 3 vorbestimmten Metallisierungsebene des zweiten Substrats über Vialocher, wobei das Offnen von Vialochern derart erfolgt, daß die Vialocher an die Kontaktflachen der obersten Metallisierungsebene des ersten Substrats angrenzen
Die vorliegende Erfindung schafft darüber hinaus ein Verdrahtungsverfahren zur Herstellung einer vertikalen integrierten Schaltungsstruktur mit den Schritten zum Bereitstellen eines ersten Substrats, das im Bereich einer ersten Hauptflache eine oder mehrere erste Lagen mit Schaltungsstrukturen enthalt und dessen oberste Metallisierungsebene nicht fertiggestellt ist, Offnen von Vialochern in einem ersten Schritt im Bereich der ersten Hauptflache des ersten Substrats, Bereitstellen eines zweiten Substrats, das im Bereich der zweiten Hauptflache mindestens eine Lage mit Schaltungsstrukturen und mindestens eine Metallisierungsebene enthalt, Verbinden des ersten Substrats mit dem zweiten Substrat, wobei die Seite des ersten Substrats, die der ersten Hauptflache gegenüberliegt, und die Seite der zweiten Hauptflache des zweiten Substrats justiert zusammengeführt werden, Offnen der vorhandenen
Vialocher in einem zweiten Schritt bis zu einer vorbestimmten Metallisierungsebene des zweiten Substrats, Einbringen eines metallischen Materials in die Vialocher sowie selektive Metallisierung der Oberflache, wodurch eine oberste Metallisierungsebene des ersten Substrats in Kontakt mit der vorbestimmten Metallisierungsebene des zweiten Substrats durch das metallische Material in den Vialochern gebracht wird, wobei das Offnen von Vialochern derart erfolgt, daß die Vialocher an die vorgesehenen Kontaktflachen der obersten Metallisierungsebene angrenzen
Beim erfmdungsgemaßen Verfahren werden die einzelnen Bauelementelagen in unterschiedlichen Substraten unabhängig voneinander prozessiert und nachfolgend zusammengefugt Zunächst wird das fertig prozessierte Substrat (erstes Substrat, im folgenden als Topsubstrat bezeichnet) mit einer oder mehreren Bauelementelagen und Metal sierungsebenen, dessen Bauelementelagen im fertigen vertikal integrierten mikroelektronischen System oberhalb der Bauelementelagen eines weiteren Substrates (zweites Substrat, im folgenden als Bottomsubstrat bezeichnet) liegen soll an den Stellen vorderseitig mit Vialochern versehen, an denen spater ein vertikaler Kontakt zu den darunterliegenden Bauelementelagen des Bottomsubstrates erzeugt werden soll 4 Dabei durchdringen abweichend vom aus der Offenlegungsschrift DE 44 38 846 A1 bekannten Stand der Technik beim erfindungsgemäßen Verfahren die Vialöcher Strukturen der obersten Metallisierung. Vorzugsweise durchdringen sie auch alle im Topsubstrat vorhandenen Bauelementelagen und Metallisierungsebenen. Die Vialöcher enden vorzugsweise einige Mikrometer unterhalb der Bauelementelagen des Topsubstrates, bei Verwendung eines SOI-Substrates vorzugsweise an der vergrabenen Oxidschicht. Falls die hierbei und später angewandte Ätztechnik es benötigt, kann vor der Herstellung der Vialöcher das Topsubstrat mit einer sog. Hardmask versehen werden.
Nach dem Öffnen der Vialöcher kann das Topsubstrat von der Rückseite her gedünnt werden. Das Dünnen kann beispielsweise durch naßchemisches Ätzen oder/und durch mechanisches oder/und chemomechanisches Schleifen erfolgen, wobei das Topsubstrat gegebenenfalls mit einem Hilfssubstrat, das z. B. mittels einer Haftschicht auf der Vorderseite aufgebracht wird, mechanisch stabilisiert wird (Handlingsubstrat). Dabei kann die Haftschicht eine passivierende und/oder planarisierende Funktion haben. Das Dünnen kann aber auch ohne Verwendung eines Handlingsubstrats erfolgen. Beispielsweise ist es mit gegenwärtigen Techniken möglich, das Topsubstrat auf eine Restdicke bis zu 50μm ohne Verwendung eines Handlingsubstrats zu dünnen.
Bei Verwendung eines SOI-Substrates kann beim Dünnen vorteilhafterweise die vergrabene Isolatorschicht als Ätzstopp dienen. Bei Verwendung eines herkömmliche Substrates (aus sog. Bulkmaterial) kann das Dünnen bis an die Vialöcher erfolgen, so daß diese danach nach beiden Seiten des Topsubstrates geöffnet sind.
Es ist alternativ natürlich auch möglich, von vornherein ein dünnes Topsubstrat zu verwenden, so daß nicht mehr gedünnt werden muß.
Anschließend wird ein weiteres fertig prozessiertes Substrat mit einer oder mehreren Bauelementelagen und Metallisierungsebenen, das Bottomsubstrat, mit dem Topsubstrat verbunden. Hierzu kann ohne Einschränkung der Allgemeinheit die 5 Vorderseite des Bottomsubstrates oder/und die Ruckseite des Topsubstrates mit einer transparenten Haftschicht versehen werden Die Haftschicht kann gleichzeitig eine passivierende und/oder planarisierende Funktion übernehmen Dann werden Topsubstrat und Bottomsubstrat aufeinander justiert und die Ruckseite des Topsubstrates mit der Vorderseite des Bottomsubstrates verbunden
Die Justierung kann dabei vorteilhafterwe.se mit Hilfe einer Sp toptik anhand von Justiermarken im sichtbaren Spektralbereich erfolgen Die Justiermarken werden hierbei vorzugsweise im Topsubstrat analog zu den Vialochern durch Offnen von entsprechenden Justierstrukturen von der Vorderseite durch samtliche Bauelementelagen des Topsubstrats hergestellt Die Justiermarken des Bottomsubstrates können in der obersten Metallisierungsebene des Bottomsubstrates enthalten sein
Nach dem Zusammenfugen des Top- und Bottomsubstrates wird das gegebenenfalls eingesetzte Handlingsubstrat entfernt
Der nun vorliegende Substratstapel kann sodann wie ein Standardsubstrat weiter bearbeitet werden Die bereits vorhandenen Vialocher werden nun von der Vorderseite des Topsubstrates durch die verbleibenden Schichten (z B Oxidschicht des SOI-Topsubstrates, Haftschicht, Passivierungsschicht des Bottomsubstrates) bis auf die Metal sierungsschicht einer Metallisierungsebene des Bottomsubstrates verlängert (z B durch Trockenatzen), wobei gegebenfalls die vorhandene Hardmask des Topsubstrates als Atzmaske dient Über diese Vialocher wird schließlich der elektrische Kontakt zwischen der Metallisierung der obersten Metallisierungsebene des Topsubstates und einer Metallisierungsebene des Bottomsubstrates hergestellt
Die vorliegende Erfindung beschreibt hierfür ein neuartiges Verdrahtungsverfahren, das speziell für die vertikale System-Integration zu einer wesentlichen Steigerung der Integrationsdichte fuhrt Gegenüber dem Stand der Technik (DE 44 38 846 A1 ), bei dem die Verdrahtung des Substratstapels mittels den Vialochern zu einer Metallisierungsebene des Bottomsubstrates und weiteren danebenliegenden Kontaktlochern zu einer Metallisierungsebene des Topsubstrates über zusätzliche 6 Leiterbahnen realisiert werden muß, wird beim erfmdungsgemaßen Verfahren die elektrische Verbindung mittels direkt ubereinanderliegenden zu kontaktierenden Metallstrukturen hergestellt
Hierzu werden vorzugsweise zunächst die Seitenwande der Vialocher beispielsweise durch Abscheiden von Sι02 isoliert und anschließend die Oberflache der obersten Metallisierungsebene freigelegt und somit Kontaktflachen für die von den Vialochem durchdrungenen Metallstrukturen der obersten Metallisierungsebene geschaffen Dies kann ohne Beschrankung der Allgemeinheit mittels chemischem Atzen (Ruckatzen) oder/und mechanischem oder/und chemomechanischem Schleifen (und somit ohne Lithographieschritt) erfolgen Anschließend wird auf die Oberflache und in die Vialocher des Substratsapeis leitendes Material abgeschieden und in einer bevorzugten Ausfuhrungsform mittels chemischen Atzen oder/und mechanischem oder/und chemomechanischem Schleifen wieder von der Oberflache des Topsubstrates entfernt, so daß die Vialocher weiterhin mit leitendem Material gefüllt sind (sog Plug-Technik) Anschließend wird z B durch einen Standardmetallisierungsschπtt, beispielsweise mittels Deposition und Strukturieren einer Aluminiumlegierung, nachfolgender Passivierung und Offnen der Bondpads die Verdrahtung des Substratstapels und somit die vertikale System-Integration fertiggestellt In einer weiteren Ausfuhrungsform wird der Kontakt zur obersten Metallisierungsebene des Topsubstrates nach einem entsprechenden Litographieschritt mittels strukturiertem Atzen und nachfolgendem Standardmetallisierungsschπtt hergestellt
Eine wesentliche Vereinfachung des vorstehend beschriebenen
Verdrahtungsverfahrens zur vertikalen System-Integration kann unter der Einschränkung, daß die vertikal zu integrierenden Bauelementesubstrate vor dem Stapeln noch nicht fertig prozessiert sind, durch die Verbindung eines nicht vollständig metallisierten Topsubstrates mit dem Bottomsubstrat erreicht werden Hierbei wird die Fertigung des Topsubstrates unmittelbar vor der Prozessierung der obersten Metallebene unterbrochen, und erst nach der Stapelung des Top- und des Bottomsubstrates in einem Schritt mit der Verdrahtung der gefüllten Vialocher abgeschlossen Hierbei wird vor dem Verbinden der Top- und Bottomsubstrate das 7 Offnen der Vialocher beim Topsubstrat an den Stellen durchgeführt, an denen spater die entsprechenden Metallstrukturen der obersten Metallisierungsebene generiert werden, so daß diese beim Verdrahten des Substratstapels direkt die mit leitendem Material gefüllten Vialocher kontaktieren
Das erfindungsgemaße Verfahren wird im folgenden an Hand des Ausfuhrungsbeispiels und der entsprechenden Zeichnungen naher erläutert
Fig 1 zeigt das fertigprozessierte Topsubstrat vor Offnen eines Vialochs, Fig 2 zeigt das fertigprozessierte Topsubstrat nach Offnen eines Vialochs,
Fig 3 zeigt den Schritt zum Zusammenfugen von Topsubstrat und Bottomsubstrat, Fig 4 zeigt die zusammengefugten Substrate mit tiefer geatztem Vialoch, Fig 5 zeigt die zusammengefugten Substrate mit isoliertem Vialoch, Fig 6 zeigt das mit metallischem Material gefüllte Vialoch, Fig 6a zeigt das mit metallischem Material gefüllte Vialoch gemäß einer weiteren Ausfuhrungsform der vorliegenden Erfindung,
Fig 7 zeigt den fertigprozessierten und -kontaktierten Substratstapel, und Fig 7a zeigt den fertigprozessierten und -kontaktierten Substratstapel bei einer bevorzugten Ausfuhrungsform der vorliegenden Erfindung
In Fig 1 bezeichnet Bezugszeichen 0 das Topsubstrat, das in diesem Beispiel eine Bulk-Siliziumscheibe 1 mit fertigprozessierten MOS-Schaltungen 2 und einer oder mehrere Metalhsierungsebenen 3, 4, 4a ist, die typischerweise aus einer Aluminiumlegierung bestehen und zur elektrischen Isolation von einer dielektrischen Schicht 5, beispielsweise einem Intermetalldielektnkum, umgeben sind Die oberste Metallisierungsebene ist hierbei typischerweise von einer dielektrischen Passivierungsschicht 6, die auch eine planarisierende Funktion übernehmen kann, abgedeckt Als Maskierungslagen (sog Hardmask) für spater folgendes Trockenatzen wird zunächst Titannitrid 7 und Siliziumdioxid 8 abgeschieden und eine Fototechnik für die Vialocher 9 durchgeführt Mit Hilfe einer Lackmaske werden das Siliziumoxid 8 und das Titannitrid 7 sowie darunterliegende dielektrische Schichten 5 anisotrop geatzt Nach dem Lackentfernen wird im sog Trenchatzverfahren bis einige 8 Mikrometer ins monokristalline Silizium 1 geatzt, wobei die Siliziumoxidschicht 8 als Maskierung (Hardmask) dient Das Ergebnis ist in Fig 2 dargestellt
Das Topsubstrat 0 wird nun gegebenenfalls von der Ruckseite mechanisch gedunnt Falls erforderlich kann sodann auf das Topsubstrat mittels einer organischen Haftschicht 10 eine Siliziumscheibe 1 1 als Handlingsubstrat geklebt und nachfolgend das Topsubstrat 0 von der Ruckseite naßchemisch oder/und chemomechanisch bis an die Vialocher gedunnt werden, so daß diese von der Ruckseite geöffnet sind, wie in Fig 3 oben gezeigt ist
Auf das Bottomsubstrat 12, welches eine Bulk-Siliziumscheibe 13 mit fertigprozessierten MOS-Schaltungen 14 und einer oder mehreren Metalhsierungsebenen 15, die typischerweise aus einer Aluminiumlegierung bestehen und zur elektrischen Isolation von einer dielektrischen Schicht 16 umgeben sind und deren Oberflache mit einer planaπsierten Passivierungsschicht 17 passiviert und planaπsiert ist, umfaßt, wird eine Polyimidschicht 18 als Verbindungsschicht abgeschieden, wie in Fig 3 unten gezeigt ist Dann erfolgt das justierte Verbinden von Top- 1 und Bottomsubstrat 12 in einem Scheibenbondgerat (siehe Fig 3)
Nach dem Entfernen des Handlingsubstrates 1 1 und der Haftschicht 10 kann nun der so entstandene Scheibenstapel 19 wie eine Standardsiliziumscheibe weiter prozessiert werden Wie in Fig 4 gezeigt ist, werden die Verbindungsschicht 18 und die Passivierungsschicht 17 über den Metallstrukturen 15 in den Vialochern 9 anisotrop geatzt, wobei die Titannitπdschicht 7 als Maskierung für den Trockenatzprozeß dient und spater entfernt wird Wie in Fig 5 gezeigt ist, wird mittels konformer
Oxidabscheidung und nachfolgenden stark gerichtetem Trockenatzverfahren (sog Spacer-Atzverfahren) die Isolierung der Seitenwande der Vialocher, die beispielsweise ein Spacer-Oxid 20 umfaßt, realisiert
Anschließend werden die Kontaktflachen 4a der obersten Metallisierungsebene 4 mittels chemomechanischem Schleifen freigelegt und auf die Oberflache des Substratstapels 19 und in die Vialocher Wolfram abgeschieden und mittels chemischen Atzen (sog Plug-Technik) wieder von der Oberflache des Topsubstrates 9 entfernt, so daß die Vialocher weiterhin mit leitendem Material 21 , beispielsweise Wolfram, gefüllt sind, wie in Fig 6 gezeigt ist Anschließend wird, wie in Fig 7 gezeigt ist, der Kontakt zwischen der Metalhsierungsebenen des Bottomsubstrates 15 und der obersten Metallisierungsebene 4 der Topmetalhsierung mittels Deposition und entsprechender Strukturieren einer Aluminiumlegierung 22 hergestellt Abschließend kann der Substratstapel gemäß Standardverfahren mit einer dielektrischen Schicht 23 passiviert und Bondpads geöffnet werden
Gemäß einer weiteren Ausfuhrungsform, die in den Figuren 6a und 7a gezeigt ist, wird der Kontakt zur obersten Metallisierungsebene des Topsubstrats wie folgt hergestellt Ausgehend von Fig 5 wird das Vialoch mit metallischem Material, beispielsweise Wolfram, aufgefüllt und mittels chemischen Atzen (sog Plug-Technik) wieder von der Oberflache des Topsubstrats entfernt, so daß die Vialocher weiterhin mit leitendem Material 21 gefüllt sind Sodann werden nach einem entsprechenden Lithographieschritt Kontaktflachen 24 auf der Metallstruktur 4 geöffnet Durch einen nachfolgenden Standardmetalhsierungsschritt wird eine Metallisierung 25 hergestellt, die beispielsweise eine Aluminiumlegierung umfaßt Fig 7a zeigt den verdrahteten Substratstapel nach abschließendem Passivieren mit einer Passivierungsschicht 26 und Offnen der Bondpads

Claims

10Patentansprüche
1. Verdrahtungsverfahren zur Herstellung einer vertikalen integrierten Schaltungsstruktur mit den Schritten zum:
- Bereitstellen eines ersten Substrats (0), das im Bereich einer ersten Hauptfläche eine oder mehrere erste Lagen mit Schaltungsstrukturen (2) und zumindest eine oberste Metallisierungsebene (4) mit Kontaktflächen (4a) enthält;
- Öffnen von Vialöchern (9) in einem ersten Schritt im Bereich der ersten Hauptfläche des ersten Substrats (0);
- Bereitstellen eines zweiten Substrats (12), das im Bereich der zweiten Hauptfläche mindestens eine Lage mit Schaltungsstrukturen (14) und mindestens eine Metallisierungsebene (15) enthält;
- Verbinden des ersten Substrats (0) mit dem zweiten Substrat (12), wobei die Seite des ersten Substrats (0), die der ersten Hauptfläche gegenüberliegt, und die Seite der zweiten Hauptfläche des zweiten Substrats (12) justiert zusammengeführt werden; - Öffnen der vorhandenen Vialöcher (9) in einem zweiten Schritt bis zu einer vorbestimmten Metallisierungsebene des zweiten Substrats; und
- Herstellen einer elektrisch leitfähigen Verbindung zwischen der obersten Metallisierungsebene (4) des ersten Substrats und der vorbestimmten Metallisierungsebene des zweiten Substrats über Vialöcher, dadurch gekennzeichnet, daß das Öffnen von Vialöchern (9) derart erfolgt, daß die Vialöcher an die Kontaktflächen (4a, 24) der obersten Metallisierungsebene angrenzen. 1 1
2. Verdrahtungsverfahren zur Herstellung einer vertikalen integrierten Schaltungsstruktur mit den Schritten zum
- Bereitstellen eines ersten Substrats (0), das im Bereich einer ersten Hauptfläche eine oder mehrere erste Lagen mit Schaltungsstrukturen (2) enthalt und dessen oberste Metallisierungsebene (4) nicht fertiggestellt ist;
- Öffnen von Vialöchern (9) in einem ersten Schritt im Bereich der ersten Hauptfläche des ersten Substrats (0),
- Bereitstellen eines zweiten Substrats (12), das im Bereich der zweiten Hauptfläche mindestens eine Lage mit Schaltungsstrukturen (14) und mindestens eine
Metallisierungsebene (15) enthält;
- Verbinden des ersten Substrats (0) mit dem zweiten Substrat (12), wobei die Seite des ersten Substrats (0), die der ersten Hauptfläche gegenüberliegt, und die Seite der zweiten Hauptfläche des zweiten Substrats (12) justiert zusammengeführt werden;
- Öffnen der vorhandenen Vialöcher (9) in einem zweiten Schritt bis zu einer vorbestimmten Metallisierungsebene des zweiten Substrats (12); und
- Einbringen eines metallischen Materials in die Vialόcher sowie selektive Metallisierung der Oberfläche, wodurch eine oberste Metallisierungsebene (4) des ersten Substrats in Kontakt mit der vorbestimmten Metallisierungsebene des zweiten Substrats durch das metallische Material in den Vialöchern gebracht wird, wobei das Öffnen von Vialöchern derart erfolgt, daß die Vialöcher an die vorgesehenen. Kontaktflächen (4a, 24) der obersten Metallisierungsebene angrenzen.
3. Verfahren nach Anspruch 1 oder 2, gekennzeichnet durch den Schritt zum Verbinden des ersten Substrats mit einem Hilfssubstrat (1 1 ) auf der Seite der ersten Hauptfläche vor dem Schritt zum Bereitstellen des zweiten Substrats (12) und den Schritt zum Entfernen des Hilfssubstrats (1 1) nach dem Verbinden des ersten Substrats (0) mit dem zweiten Substrat (12).
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß das erste Substrat (0) über eine Haftschicht (10) mit dem Hilfssubstrat (1 1) verbunden wird. 12
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß eine passivierende und/oder planarisierende Haftschicht (10) verwendet wird.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß
- im Bereich der ersten Hauptfläche des ersten Substrats (0) erste Justiermarken erzeugt werden, die die ersten Lagen der Schaltungsstrukturen durchdringen,
- das zweite Substrat (12) im Bereich der zweiten Hauptfläche zweite Justiermarken enthält, und
- das justierte Zusammenführen des ersten und zweiten Substrats (0, 12) mittels einer Split-Optik im sichtbaren Spektralbereich anhand der Justiermarken erfolgt.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß die ersten Justiermarken durch die ersten Lagen der Schaltungsstrukturen geätzt werden und die zweiten Justiermarken metallische Strukturen in der zweiten Metallisierungsebene des "zweiten Substrats sind .
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Öffnen der Vialöcher (9) durch Ätzen erfolgt.
9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Vialöcher (9) im ersten Schritt so geöffnet werden, daß sie sämtliche erste Lagen mit Schaltungsstrukturen (2) durchdringen.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß die Vialöcher im ersten Schritt bis einige Mikrometer unterhalb der ersten Lagen der Schaltungsstrukturen (2) geöffnet werden.
1 1. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß das erste Substrat (0) ein SOI-Substrat ist.
13 12. Verfahren nach einem der vorhergehenden Ansprüche, gekennzeichnet durch mindestens einen Schritt zum Dünnen des ersten Substrats (0) vor dem Zusammenfügen mit dem zweiten Substrat (12).
13. Verfahren nach Anspruch 12, bei dem die Vialöcher im ersten Schritt bis einige Mikrometer unterhalb der ersten Lagen der Schaltungsstrukturen (2) geöffnet werden, dadurch gekennzeichnet, daß das Dünnen des ersten Substrats (0) bis an die Vialöcher (9) erfolgt.
14. Verfahren nach Anspruch 12, bei dem das erste Substrat ein SOI-Substrat ist, dadurch gekennzeichnet, daß die Vialöcher (9) im ersten Schritt bis an die Oxidschicht des SOI-Substrats geöffnet werden und das Dünnen des ersten Substrats (0) bis an diese Oxidschicht erfolgt.
15. Verfahren nach einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, daß das Dünnen des ersten Substrats (0) mittels Ätzen, Schleifen und/oder chemomechanischem Polieren erfolgt.
16. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Verbinden der Substrate (0, 12) mittels einer transparenten Haftschicht (18) erfolgt, die auf die zweite Hauptfläche des zweiten
Substrats und/oder auf die Rückseite des ersten Substrats aufgebracht wird.
17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, daß eine passivierende und/oder planarisierende Haftschicht (18) verwendet wird.
18. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Herstellung einer elektrisch leitfähigen Verbindung zwischen der ersten bzw. obersten Metallisierungsebene (4) des ersten Substrats (0) und der vorbestimmten Metallisierungsebene des zweiten Substrats (12) folgende Verfahrensschritte umfaßt:
- Freilegen der Kontaktflächen (4a) der ersten bzw. obersten Metallisierungsebene; 14
- Abscheiden eines Verbindungsmateπals (21) in die Vialöcher (9) und auf die Oberfläche des Substratstapels;
- Entfernen des Verbindungsmateπals (21 ) von der Oberfläche des Substratstapels; - selektives Aufbringen eines Metalhsierungsmateπals (22) zwischen
Kontaktfläche und Verbindungsmateπal.
19. Verfahren nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, daß die Herstellung einer elektrisch leitfähigen Verbindung zwischen der ersten bzw. obersten Metallisierungsebene (4) des ersten Substrats (0) und der vorbestimmten Metallisierungsebene des zweiten Substrats (12) folgende Verfahrensschritte umfaßt:
- Abscheiden eines Verbindungsmateπals (21 ) in die Vialöcher (9) und auf die Oberfläche des Substratstapels;
- Entfernen des Verbindungsmateπals (21) von der Oberfläche des Substratstapels;
- teilweises Freilegen der Kontaktflächen (24) der ersten bzw. obersten Metallisierungsebene; und
- selektives Aufbringen eines Metalhsierungsmateπals (25) zwischen Kontaktfläche (24) und Verbindungsmateπal (21 ).
20 Verfahren nach Anspruch 18 oder 19, dadurch gekennzeichnet, daß das Entfernen des Verbindungsmateπals (21) durch chemisches Ätzen, mechanisches und/oder chemomechanisches Schleifen erfolgt.
21 . Verfahren nach einem der vorhergehenden Ansprüche, gekennzeichnet durch den Schritt zum Aufbringen eines passivierenden Materials (23, 26) nach dem Schritt zum Herstellen der elektrisch leitfähigen Verbindung zwischen der ersten bzw. obersten Metallisierungsebene (4) des ersten Substrats (0) und vorbestimmten Metallisierungsebene des zweiten Substrats (12).
22. Verfahren nach Anspruch 21 , gekennzeichnet durch den Schritt zum Offnen einer Anschlußöffnung zum Metalhsierungsmateπal zwischen Kontaktfläche und Verbindungsmateπal nach dem Schritt zum Aufbringen des passivierenden Materials. 15
23. Vertikale integrierte Schaltungsstruktur, dadurch gekennzeichnet, daß sie durch das Verfahren nach einem der Ansprüche 1 bis 22 hergestellt ist.
EP99924682A 1998-03-26 1999-03-25 Verdrahtungsverfahren zur herstellung einer vertikalen integrierten schaltungsstruktur und vertikale integrierte schaltungsstruktur Withdrawn EP1064680A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19813239 1998-03-26
DE19813239A DE19813239C1 (de) 1998-03-26 1998-03-26 Verdrahtungsverfahren zur Herstellung einer vertikalen integrierten Schaltungsstruktur und vertikale integrierte Schaltungsstruktur
PCT/DE1999/000906 WO1999049509A1 (de) 1998-03-26 1999-03-25 Verdrahtungsverfahren zur herstellung einer vertikalen integrierten schaltungsstruktur und vertikale integrierte schaltungsstruktur

Publications (1)

Publication Number Publication Date
EP1064680A1 true EP1064680A1 (de) 2001-01-03

Family

ID=7862337

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99924682A Withdrawn EP1064680A1 (de) 1998-03-26 1999-03-25 Verdrahtungsverfahren zur herstellung einer vertikalen integrierten schaltungsstruktur und vertikale integrierte schaltungsstruktur

Country Status (5)

Country Link
US (1) US6448174B1 (de)
EP (1) EP1064680A1 (de)
JP (1) JP2002508590A (de)
DE (1) DE19813239C1 (de)
WO (1) WO1999049509A1 (de)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040113222A1 (en) * 2002-09-16 2004-06-17 Ozguz Volkan H Stacked microelectronic module with vertical interconnect vias
US7786562B2 (en) * 1997-11-11 2010-08-31 Volkan Ozguz Stackable semiconductor chip layer comprising prefabricated trench interconnect vias
EP1041624A1 (de) * 1999-04-02 2000-10-04 Interuniversitair Microelektronica Centrum Vzw Transfermethode ultra-dünner Substrate und Anwendung zur Herstellung von Mehrlagen-Dünnschichtstrukturen
EP1171912B1 (de) 1999-05-27 2003-09-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur vertikalen integration von elektrischen bauelementen mittels rückseitenkontaktierung
US6500694B1 (en) * 2000-03-22 2002-12-31 Ziptronix, Inc. Three dimensional device integration method and integrated device
US6984571B1 (en) * 1999-10-01 2006-01-10 Ziptronix, Inc. Three dimensional device integration method and integrated device
US6902987B1 (en) 2000-02-16 2005-06-07 Ziptronix, Inc. Method for low temperature bonding and bonded structure
DE10008386A1 (de) * 2000-02-23 2001-08-30 Giesecke & Devrient Gmbh Verfahren zum Verbinden von Substraten einer vertikal integrierten Schaltungsstruktur
DE10025363A1 (de) * 2000-05-23 2001-12-20 Fraunhofer Ges Forschung Bildsensorelement und Bildsensor
JP3920015B2 (ja) * 2000-09-14 2007-05-30 東京エレクトロン株式会社 Si基板の加工方法
JP2002353424A (ja) * 2001-03-23 2002-12-06 Seiko Epson Corp 基板装置の製造方法及び基板装置、電気光学装置の製造方法及び電気光学装置、並びに電子機器
US20020163072A1 (en) * 2001-05-01 2002-11-07 Subhash Gupta Method for bonding wafers to produce stacked integrated circuits
DE10130864A1 (de) * 2001-06-21 2003-01-02 Giesecke & Devrient Gmbh Vertikal kontaktierte, übereinander gestapelte Chips
US6762076B2 (en) * 2002-02-20 2004-07-13 Intel Corporation Process of vertically stacking multiple wafers supporting different active integrated circuit (IC) devices
US6645832B2 (en) * 2002-02-20 2003-11-11 Intel Corporation Etch stop layer for silicon (Si) via etch in three-dimensional (3-D) wafer-to-wafer vertical stack
US7109092B2 (en) 2003-05-19 2006-09-19 Ziptronix, Inc. Method of room temperature covalent bonding
DE10323394B4 (de) * 2003-05-20 2006-09-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Erzeugen einer elektrischen Kontaktierung zwischen zwei Halbleiterstücken und Verfahren zum Herstellen einer Anordnung von Halbleiterstücken
JP4819320B2 (ja) * 2003-05-28 2011-11-24 株式会社オクテック 半導体装置の製造方法
US7098070B2 (en) * 2004-11-16 2006-08-29 International Business Machines Corporation Device and method for fabricating double-sided SOI wafer scale package with through via connections
DE102004056970B4 (de) * 2004-11-25 2008-07-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zum Erzeugen einer elektrischen Kontaktierung zwischen zwei Halbleiterstücken durch ein mechanisches Element
US7396732B2 (en) * 2004-12-17 2008-07-08 Interuniversitair Microelektronica Centrum Vzw (Imec) Formation of deep trench airgaps and related applications
DE102006035864B4 (de) 2006-08-01 2014-03-27 Qimonda Ag Verfahren zur Herstellung einer elektrischen Durchkontaktierung
KR100790279B1 (ko) * 2006-08-23 2008-01-02 동부일렉트로닉스 주식회사 반도체 소자 및 그 제조방법
DE102006049562A1 (de) * 2006-10-20 2008-04-24 Qimonda Ag Substrat mit Durchführung und Verfahren zur Herstellung desselben
JP5194537B2 (ja) * 2007-04-23 2013-05-08 株式会社デンソー 半導体装置およびその製造方法
US20080296708A1 (en) * 2007-05-31 2008-12-04 General Electric Company Integrated sensor arrays and method for making and using such arrays
US7615480B2 (en) * 2007-06-20 2009-11-10 Lam Research Corporation Methods of post-contact back end of the line through-hole via integration
KR100909969B1 (ko) * 2007-06-28 2009-07-29 삼성전자주식회사 반도체 소자 및 그 제조 방법, 및 반도체 소자를 포함하는스택 모듈, 카드 및 시스템
US8193092B2 (en) * 2007-07-31 2012-06-05 Micron Technology, Inc. Semiconductor devices including a through-substrate conductive member with an exposed end and methods of manufacturing such semiconductor devices
US7727887B2 (en) * 2007-10-30 2010-06-01 International Business Machines Corporation Method for improved power distribution in a three dimensional vertical integrated circuit
US7701064B2 (en) * 2007-10-31 2010-04-20 International Business Machines Corporation Apparatus for improved power distribution in a three dimensional vertical integrated circuit
KR101374338B1 (ko) * 2007-11-14 2014-03-14 삼성전자주식회사 관통 전극을 갖는 반도체 장치 및 그 제조방법
DE102008033395B3 (de) * 2008-07-16 2010-02-04 Austriamicrosystems Ag Verfahren zur Herstellung eines Halbleiterbauelementes und Halbleiterbauelement
FR2928225A1 (fr) * 2008-07-31 2009-09-04 Commissariat Energie Atomique Realisation d'interconnexions verticales conductrices a base d'un polymere conducteur.
KR20100040455A (ko) * 2008-10-10 2010-04-20 주식회사 동부하이텍 반도체 소자의 제조 방법
JP5985136B2 (ja) * 2009-03-19 2016-09-06 ソニー株式会社 半導体装置とその製造方法、及び電子機器
JP5442394B2 (ja) 2009-10-29 2014-03-12 ソニー株式会社 固体撮像装置とその製造方法、及び電子機器
TWI411075B (zh) 2010-03-22 2013-10-01 Advanced Semiconductor Eng 半導體封裝件及其製造方法
US8492878B2 (en) * 2010-07-21 2013-07-23 International Business Machines Corporation Metal-contamination-free through-substrate via structure
US8540118B2 (en) * 2010-11-01 2013-09-24 General Electric Company Water dispenser and method of operating it
US8941222B2 (en) 2010-11-11 2015-01-27 Advanced Semiconductor Engineering Inc. Wafer level semiconductor package and manufacturing methods thereof
US9406658B2 (en) 2010-12-17 2016-08-02 Advanced Semiconductor Engineering, Inc. Embedded component device and manufacturing methods thereof
FR2980037A1 (fr) * 2011-09-12 2013-03-15 St Microelectronics Crolles 2 Procede d'assemblage de circuits integres et structure integree tridimensionnelle correspondante
US9012324B2 (en) * 2012-08-24 2015-04-21 United Microelectronics Corp. Through silicon via process
FR3030881A1 (fr) * 2014-12-22 2016-06-24 Commissariat Energie Atomique Procede de realisation d'un circuit integre en trois dimensions
CN107644836A (zh) * 2017-08-31 2018-01-30 长江存储科技有限责任公司 用于三维存储器的晶圆三维集成引线工艺及其结构
US11315831B2 (en) 2019-07-22 2022-04-26 International Business Machines Corporation Dual redistribution layer structure

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH063837B2 (ja) * 1987-03-03 1994-01-12 シャープ株式会社 三次元半導体集積回路の製造方法
JPH06125013A (ja) * 1992-03-14 1994-05-06 Toshiba Corp 半導体装置及びその製造方法
US5276338A (en) * 1992-05-15 1994-01-04 International Business Machines Corporation Bonded wafer structure having a buried insulation layer
JPH06120419A (ja) * 1992-10-01 1994-04-28 Sharp Corp 積層型半導体集積回路
DE4314913C1 (de) * 1993-05-05 1994-08-25 Siemens Ag Verfahren zur Herstellung eines Halbleiterbauelements mit einer Kontaktstrukturierung für vertikale Kontaktierung mit weiteren Halbleiterbauelementen
DE4314907C1 (de) * 1993-05-05 1994-08-25 Siemens Ag Verfahren zur Herstellung von vertikal miteinander elektrisch leitend kontaktierten Halbleiterbauelementen
US5380681A (en) * 1994-03-21 1995-01-10 United Microelectronics Corporation Three-dimensional multichip package and methods of fabricating
JPH10502493A (ja) * 1994-07-05 1998-03-03 シーメンス アクチエンゲゼルシヤフト 三次元回路装置の製造方法
DE4433833A1 (de) * 1994-09-22 1996-03-28 Fraunhofer Ges Forschung Verfahren zur Herstellung einer dreidimensionalen integrierten Schaltung unter Erreichung hoher Systemausbeuten
DE4433846C2 (de) * 1994-09-22 1999-06-02 Fraunhofer Ges Forschung Verfahren zur Herstellung einer vertikalen integrierten Schaltungsstruktur
DE19516487C1 (de) * 1995-05-05 1996-07-25 Fraunhofer Ges Forschung Verfahren zur vertikalen Integration mikroelektronischer Systeme
US5936280A (en) * 1997-04-21 1999-08-10 Advanced Micro Devices, Inc. Multilayer quadruple gate field effect transistor structure for use in integrated circuit devices

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9949509A1 *

Also Published As

Publication number Publication date
JP2002508590A (ja) 2002-03-19
US6448174B1 (en) 2002-09-10
WO1999049509A1 (de) 1999-09-30
DE19813239C1 (de) 1999-12-23

Similar Documents

Publication Publication Date Title
DE19813239C1 (de) Verdrahtungsverfahren zur Herstellung einer vertikalen integrierten Schaltungsstruktur und vertikale integrierte Schaltungsstruktur
DE19516487C1 (de) Verfahren zur vertikalen Integration mikroelektronischer Systeme
EP0703623B1 (de) Verfahren zur Herstellung einer vertikalen integrierten Schaltungsstruktur
EP0703618B1 (de) Verfahren zur Herstellung einer dreidimensionalen integrierten Schaltung
EP0703619B1 (de) Verfahren zur Herstellung einer dreidimensionalen integrierten Schaltung unter Erreichung hoher Systemausbeuten
EP0862788B1 (de) Herstellungsverfahren eines vertikal integrierten halbleiterbauelements
DE112010000142B4 (de) Kostenoptimiertes Verfahren zum Bilden von hoch dichten passiven Kondensatoren zum Ersetzen diskreter Kondensatoren unter Verwendung eines kostenoptimierten modularen 3D-Wafer-Wafer-Integrationsschemas
DE10200399B4 (de) Verfahren zur Erzeugung einer dreidimensional integrierten Halbleitervorrichtung und dreidimensional integrierte Halbleitervorrichtung
DE102008033395B3 (de) Verfahren zur Herstellung eines Halbleiterbauelementes und Halbleiterbauelement
DE102011088581B4 (de) Verfahren zur Herstellung von Gehäuseverbindungen und damit hergestelltes Bauelement
DE10205026C1 (de) Halbleitersubstrat mit einem elektrisch isolierten Bereich, insbesondere zur Vertikalintegration
DE19834917A1 (de) Verfahren zum Bilden von selbstausrichtenden Durchgängen in integrierten Schaltungen mit mehreren Metallebenen
WO2000035007A1 (de) Verfahren zur vertikalen integration von aktiven schaltungsebenen und unter verwendung desselben erzeugte vertikale integrierte schaltung
EP1016140B1 (de) Verdrahtungsverfahren für halbleiter-bauelemente zur verhinderung von produktpiraterie und produktmanipulation, durch das verfahren hergestelltes halbleiter-bauelement und verwendung des halbleiter-bauelements in einer chipkarte
DE10244077B4 (de) Verfahren zur Herstellung von Halbleiterbauteilen mit Durchkontaktierung
DE10239218A1 (de) Verfahren zum Herstellen einer Halbleitervorrichtung und deren Aufbau
DE102018124699B4 (de) Halbleiterstruktur und Herstellungsverfahren dafür
DE19748666C2 (de) Verdrahtungsverfahren für mikroelektronische Systeme zur Verhinderung von Produktpiraterie und Produktmanipulation, durch das Verfahren hergestelltes mikroelektronisches System und Verwendung des mikroelektronischen Systems in einer Chipkarte
DE102020126928A1 (de) Halbleiter-packages und verfahren zu deren herstellung
DE102011013228B4 (de) Verfahren zur Herstellung eines Halbleiterbauelements für 3D-Integration
DE19746642C2 (de) Verfahren zur Herstellung eines Halbleiterbauelements sowie dessen Verwendung in einer Chipkarte
DE102006046790B4 (de) Integriertes Bauelement und Verfahren zum Trennen einer elektrisch leitfähigen Verbindung
DE102020128429B4 (de) Package-Vorrichtung mit optischem Pfad und Verfahren zu dessen Herstellung
DE19904751C1 (de) Vertikal integrierte Schaltung und Verfahren zum Herstellen einer vertikal integrierten Schaltung
DE19849586C1 (de) Verfahren zum Herstellen dreidimensionaler Schaltungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000919

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE FR GB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DERANGEWAND

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20061109