EP1145437B1 - Digitaler pll-frequenzsynthesizer - Google Patents

Digitaler pll-frequenzsynthesizer Download PDF

Info

Publication number
EP1145437B1
EP1145437B1 EP99936339A EP99936339A EP1145437B1 EP 1145437 B1 EP1145437 B1 EP 1145437B1 EP 99936339 A EP99936339 A EP 99936339A EP 99936339 A EP99936339 A EP 99936339A EP 1145437 B1 EP1145437 B1 EP 1145437B1
Authority
EP
European Patent Office
Prior art keywords
frequency
phase
pll
voltage
phase delay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99936339A
Other languages
English (en)
French (fr)
Other versions
EP1145437A2 (de
Inventor
Timo Gossmann
Edmund Götz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
Infineon Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies AG filed Critical Infineon Technologies AG
Publication of EP1145437A2 publication Critical patent/EP1145437A2/de
Application granted granted Critical
Publication of EP1145437B1 publication Critical patent/EP1145437B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/0805Details of the phase-locked loop the loop being adapted to provide an additional control signal for use outside the loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/07Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop using several loops, e.g. for redundant clock signal generation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/081Details of the phase-locked loop provided with an additional controlled phase shifter
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/16Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
    • H03L7/18Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop
    • H03L7/197Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop a time difference being used for locking the loop, the counter counting between numbers which are variable in time or the frequency divider dividing by a factor variable in time, e.g. for obtaining fractional frequency division
    • H03L7/1974Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop a time difference being used for locking the loop, the counter counting between numbers which are variable in time or the frequency divider dividing by a factor variable in time, e.g. for obtaining fractional frequency division for fractional frequency division
    • H03L7/1976Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop a time difference being used for locking the loop, the counter counting between numbers which are variable in time or the frequency divider dividing by a factor variable in time, e.g. for obtaining fractional frequency division for fractional frequency division using a phase accumulator for controlling the counter or frequency divider
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S331/00Oscillators
    • Y10S331/02Phase locked loop having lock indicating or detecting means

Definitions

  • the invention relates to a digital PLL (Phase Locked Loop) frequency synthesizer according to the preamble of the claim 1.
  • a synthesizer according to the preamble of the claim is e.g. known from GB 2 107 142.
  • a reference frequency f Ref which is formed by dividing a stable quartz frequency f Q generated with the aid of a quartz-stable oscillator 1 by the division factor 'R' using a reference frequency divider 2, is compared in a phase-frequency detector 3 with a second frequency f 2 , which is derived by dividing a frequency f VCO generated in a voltage controlled oscillator (VCO; Voltage Controlled Oscillator) 4 by the division factor N.
  • VCO Voltage Controlled Oscillator
  • the divider ratio 'N' which can be set by the N frequency divider 5, is an integer, which means that the voltage-controlled oscillator 4 can only oscillate on an integer multiple of the reference frequency f Ref when the phase locked loop PLL is engaged. This fact has several disadvantages.
  • a low reference frequency f Ref In the case of a desired small distance between the frequencies f VCO that can be generated in the voltage-controlled oscillator 4, a low reference frequency f Ref must be used. Since the phase locked loop PLL represents a sampled system with the sampling rate f Ref , the bandwidth of the phase locked loop PLL cannot be selected higher than f Ref / 2 according to the sampling theorem (Nyquist theorem) in order to obtain a stable system. In practice, the bandwidth is usually around 10% of the reference frequency f Ref .
  • a low PLL loop bandwidth means a slow settling behavior when switching over the N frequency divider 5 in order to set a different frequency f VCO of the voltage-controlled oscillator 4, ie a different frequency channel.
  • a reference frequency f Ref which is greater than the required channel grid, can be used when the divider factor 'N' can no longer be set as an integer. Since the N-frequency divider 5 itself can only divide by integer factors, the fractional divider ratio must be set on average over M cycles, ie for the duration of MK cycles by the divider factor 'N' and then for the duration of K cycles the whole. Number '1' increased divisor factor 'N + 1' can be divided.
  • f VCO f Ref * (N + K / M).
  • the frequency f VCO of the voltage-controlled oscillator 4 is stable and set in accordance with the desired fractional divider ratio, it can be shown that during the cycles in which the division factor 'N' divides, the frequency f VCO / N is too high and therefore the phase difference between the reference frequency f Ref and the frequency f VCO / N for each pass by the factor T VCO_soll * K / M is enlarged.
  • the PLL phase lock loop try the voltage controlled oscillator (VCO) constantly adjust, and thus the phase stability influence negatively.
  • VCO voltage controlled oscillator
  • phase jitter Approaches There are several ways to reduce phase jitter Approaches have become known.
  • a well-known method (Company "Marconi”) consists in the use of several cascaded phase accumulators based on the sigma-delta principle the frequency components of the phase jitter in ranges shift, which is strongly attenuated by the loop low-pass filter become. Compensation is then no longer necessary.
  • phase accumulators are required.
  • phase jitter Another known method for reducing phase jitter is the active compensation of the regulation through interventions on the phase-frequency detector or on the loop low-pass filter. For example, in addition to the actual charge pump current a compensation current into the loop low pass filter be fed to the effect of the former To balance current. It must go from cycle to cycle either the size or the duration of the feed changed a quantity of charge dependent on the phase error to provide for compensation.
  • the individual gradations of the different charge quantities depend on the desired frequency f VCO of the voltage-controlled oscillator and can be set, for example, as a function of a reference current depending on the VCO frequency / period.
  • PLLs phase locked loops
  • the current compensation principle is used.
  • the disadvantage of this method is the required setting of the reference current and the intervention in the loop low-pass filter by means of an extended charge pump.
  • FIG. 2 is a block diagram of a corresponding circuit digital PLL (phase Lokked Loop) frequency synthesizers. It is also in this circuit the known elements of an ordinary and already in connection with the FIG. 1 described PLL frequency synthesizer circuit to see, namely a quartz stable Oscillator 1, a reference frequency divider 2, a phase-frequency detector 3, a charge pump 6, a Loop low pass filter 7 and a voltage controlled oscillator (VCO) 4.
  • VCO voltage controlled oscillator
  • the frequency synthesizer shown becomes a reference frequency f Ref , which is formed by dividing the quartz frequency f Q supplied by the quartz-stabilized oscillator 1 in the reference frequency divider 2, with a second frequency f 2, derived by dividing the frequency f VCO of the voltage-controlled oscillator 4, in the phase-frequency Detector 3 compared, the output signal after conduction via the charge pump (Charge Pump) 6 and the loop low-pass filter 7 in the PLL loop serves as a control voltage for the voltage-controlled oscillator 4.
  • f Ref which is formed by dividing the quartz frequency f Q supplied by the quartz-stabilized oscillator 1 in the reference frequency divider 2, with a second frequency f 2, derived by dividing the frequency f VCO of the voltage-controlled oscillator 4, in the phase-frequency Detector 3 compared
  • the output signal after conduction via the charge pump (Charge Pump) 6 and the loop low-pass filter 7 in the PLL loop serves as a control voltage for the voltage-controlled oscillator 4.
  • phase delay device 10 is also switched on, which has two control inputs 11 (DelAdjust) or 12 (DelSel), the control input 12 being implemented by a plurality of lines and, for example, + being a bus with ld (M) lines.
  • a basic delay is set at the control input 11, and the number of these basic delays at which the output 13 of the phase delay device 10 follows its input 14 is set at the control input 12.
  • the phase accumulator 17 is increased with each output pulse of the phase delay device 10 by the adjustable fraction K of the reference frequency f Ref , but modulo-M, for which purpose an adder modulo-M 19 is provided.
  • the N / (N + 1) frequency divider 9 is switched to the division factor (N + 1) for the next period via an overflow output 20 of the phase accumulator 17.
  • the output 21 of the phase accumulator 17 directly provides the control word DelSel for the control input 12 of the PLL phase delay device 10.
  • control voltage DelAdjust with which this time T delmin is set via the control input 11 on each delay element 16 of the phase delay chain 15 in the phase delay device 10, with the aid of a further phase delay device 22 and a further phase Frequency detector 23 is derived directly from the frequency f VCO of the voltage-controlled oscillator 4.
  • FIG. 4 shows the further phase delay device 22 constructed in exactly the same way as the phase delay device 10, i.e. it is in accordance with the decoupling lines in the delay elements 16 of the phase delay device 10 according to FIG. 3 for all delay elements 24 loaded by dummy decoupling elements 25 to the same Delay conditions as in the one with the M: 1 multiplexer 18 equipped PLL phase delay device 10.
  • the further phase delay device 22 not M-1 delay elements as in the Phase delay device 10, but M delay elements 24 connected in series, which is of great importance is.
  • the frequency f VCO of the voltage-controlled oscillator 4 is fed into the further phase delay device 22 at an input 26 via a buffer amplifier 27, and the phase of the signal at the output 28 of the further phase delay device 22 is in turn directly connected with the aid of the further phase-frequency detector 23 the frequency f VCO of the voltage-controlled oscillator 4, which is conducted via the same buffer amplifier 26.
  • the comparison result derived from the output 28 of the further phase delay device 22 is low-pass filtered in a second loop low-pass filter 29 and then forms the control voltage for the further phase delay device 22, which is fed there to a control input 30.
  • auxiliary phase locked loop auxiliary PLL
  • the Auxiliary PLL have a very high loop bandwidth.
  • each delay element 24 of the further phase delay device 22 delays by exactly the Mth part of T VCO_soll .
  • phase delay device 10 Main PLL contained phase delay chain 15. Because the Delay elements 16 and 24 in both phase delay devices 10 or 22 regarding their temporal behavior are constructed the same, the control voltage for the further phase delay device 22 also as a control voltage DelAdjust for supply to the control input 11 of the phase delay device 10 can be used.
  • a frequency synthesizer designed in accordance with the invention can be integrated in a particularly advantageous manner Carry out circuit technology.

Description

Die Erfindung betrifft einen digitalen PLL(Phase Locked Loop)-Frequenzsynthesizer gemäß dem Oberbegriff des Patentanspruchs 1. Ein Sythesizer nach dem Oberbegriff des Anspruchs ist z.B. aus GB 2 107 142 bekannt.
Gewöhnliche digitale PLL-Frequenzsynthesizer arbeiten nach dem in FIG. 1 in Blockschaltbildform abgebildeten, bekannten Prinzip. Eine Referenzfrequenz fRef, die durch Herunterteilen einer mit Hilfe eines quarzstabilen Oszillators 1 erzeugten stabilen Quarzfrequenz fQ um den Teilerfaktor 'R' mit Hilfe eines Referenzfrequenzteilers 2 gebildet wird, wird in einem Phasen-Frequenz-Detektor 3 mit einer zweiten Frequenz f2 verglichen, die durch Teilen einer in einem spannungsgesteuerten Oszillator (VCO; Voltage Controlled Oscillator) 4 erzeugten Frequenz fVCO um den Teilerfaktor N abgeleitet wird. Diese Frequenzteilung um den Teilerfaktor 'N' findet in einem N-Frequenzteiler 5 statt. Der Phasen-Frequenz-Detektor 3 erzeugt - je nach Ausführung zusammen mit einer Ladungspumpe (Charge Pump) 6 - und einem Schleifen-Tiefpaßfilter 7 die Steuerspannung, welche den spannungsgesteuerten Oszillator 4 auf einer gewünschten Frequenz fVCO schwingen läßt.
Das durch den N-Frequenzteiler 5 einstellbare Teilerverhältnis 'N' ist ganzzahlig, was bedeutet, daß der spannungsgesteuerte Oszillator 4 bei eingerasteter Phasenregelschleife PLL nur auf einem ganzzahligen Vielfachen der Referenzfrequenz fRef schwingen kann. Diese Tatsache bringt einige Nachteile mit sich.
Bei einem gewünschten geringen Abstand der im spannungsgesteuerten Oszillator 4 erzeugbaren Frequenzen fVCO muß eine niedrige Referenzfrequenz fRef verwendet werden. Da die Phasenregelschleife PLL ein getastetes System mit der Abtastrate fRef darstellt, kann nach dem Abtasttheorem (Nyquist-Theorem) die Bandbreite der Phasenregelschleife PLL nicht höher als fRef/2 gewählt werden, um ein stabiles System zu erhalten. In der Praxis liegt die Bandbreite gewöhnlich bei ca. 10% der Referenz frequenz fRef.
Eine geringe PLL-Schleifen-Bandbreite bedeutet allerdings ein langsames Einschwingverhalten beim Umschalten des N-Frequenzteilers 5, um eine andere Frequenz fVCO des spannungsgesteuerten Oszillators 4, d.h. einen anderen Frequenzkanal, einzustellen.
Ein anderer Nachteil rührt davon her, daß die Frequenz fVCO des spannungsgesteuerten Oszillators 4 sehr weit heruntergeteilt werden muß. Da die geteilte Frequenz fVCO mit der Referenzfrequenz fRef verglichen wird, die ein geringes Phasenrauschen aufweisen muß, wird durch die PLL-Regelung das Phasenrauschen der geteilten Frequenz fVCO zwar optimiert, das Phasenrauschen des spannungsgesteuerten Oszillators 4 selbst verschlechtert sich jedoch mit größer werdendem Teilerfaktor 'N'.
Eine Referenzfrequenz fRef, die größer als das benötigte Kanalraster ist, kann dann verwendet werden, wenn der Teilerfaktor 'N' nicht mehr ganzzahlig eingestellt werden kann. Da der N-Frequenzteiler 5 selbst nur durch ganzzahlige Faktoren teilen kann, muß das gebrochene Teilerverhältnis im zeitlichen Mittel über M Zyklen eingestellt werden, d.h. für die Dauer von M-K Zyklen muß durch den Teilerfaktor 'N' und dann für die Dauer von K Zyklen durch den um die ganze. Zahl '1' erhöhten Teilerfaktor 'N+1' geteilt werden.
Dadurch ergibt sich bei eingeschwungener Phasenregelschleife PLL eine mittlere Frequenz fVCO des spannungsgesteuerten Oszillators 4 zu: fVCO = fRef* (N+K/M).
Wenn von einer stabilen und entsprechend dem gewünschten gebrochenen Teilerverhältnis eingestellten Frequenz fVCO des spannungsgesteuerten Oszillators 4 ausgegangen wird, kann man zeigen, daß während den Zyklen, in denen durch den Teilungsfaktor 'N' geteilt wird, die Frequenz fVCO/N zu hoch ist und deshalb die Phasendifferenz zwischen der Referenzfrequenz fRef und der Frequenz fVCO/N bei jedem Durchgang um den Faktor TVCO_soll*K/M vergrößert wird.
Diese kumulierte Phasendifferenz wächst auf maximal eine VCO-Periodendauer des spannungsgesteuerten Oszillators 4 an und wird insgesamt in den Zyklen, in denen durch den Teilungsfaktor 'N+1' geteilt wird, gerade wieder aufgehoben, so daß nach M Perioden der Referenzfrequenz fRef wieder Phasengleichheit zwischen der Referenzfrequenz fRef und der geteilten Frequenz fVCO herrscht. Der Faktor M ist der Modulus, d.h. je größer der Faktor M ist, desto größer kann die Referenzfrequenz fRef gewählt werden und desto kleinere Frequenzschritte, d.h. um so kleinere Frequenzkanalabstände können eingestellt werden.
Es sind Schaltungsvorschläge bekannt, die es mit Hilfe eines Phasenakkumulators ermöglichen, die Umschaltung des Teilerfaktors des N/(N+1)-Teilers automatisch abzuwickeln. In einem Phasenakkumulator wird auf den Inhalt nach jedem Impuls der geteilten Frequenz fVCO des spannungsgesteuerten Oszillators wieder der Wert K mit einer Modulo-M-Addition addiert. Nach jedem Überlauf des Phasenakkumulators wird im nächsten Zyklus der Teilerfaktor von 'N' auf 'N+1' geändert. Im Phasenakkumulator steht dadurch implizit immer ein Wert, der, mit dem Faktor TVCO_soll/M multipliziert, den aktuellen Phasenwert am Phasen-Frequenz-Detektor darstellt.
Aufgrund der Phasendifferenz, die sich am Phasen-Frequenz-Detektor in jedem Zyklus einstellt, wird die PLL-Phasenregelschleife jedoch versuchen, den spannungsgesteuerten Oszillator (VCO) immer wieder auszuregeln, und wird somit die Phasenstabilität negativ beeinflussen. Für eine konstante VCO-Frequenz und -Phase wird deshalb eine konstante Stellspannung am spannungsgesteuerten Oszillator und somit eine große Zeitkonstante des Schleifen-Tiefpaßfilters benötigt, was dem Wunsch nach einer größeren Schleifen-Bandbreite gerade widerspricht.
Zur Erzielung einer Reduktion des Phasenjitters sind verschiedene Lösungsansätze bekannt geworden. Eine bekannte Methode (Firma "Marconi") besteht in der Verwendung mehrerer kaskadierter Phasenakkumulatoren, die nach dem Sigma-Delta-Prinzip die Frequenzanteile des Phasenjitters in Bereiche verschieben, die durch das Schleifen-Tiefpaßfilter stark gedämpft werden. Eine Kompensation ist dann nicht mehr erforderlich. Allerdings sind mehrere Phasenakkumulatoren erforderlich.
Eine andere bekannte Methode zur Reduzierung des Phasenjitters ist die aktive Kompensation der Regelung durch Eingriffe am Phasen-Frequenz-Detektor bzw. am Schleifen-Tiefpaßfilter. Dabei kann beispielsweise zusätzlich zum eigentlichen Ladungspumpenstrom ein Kompensationsstrom in das Schleifen-Tiefpaßfilter eingespeist werden, um den Effekt des erstgenannten Stromes auszugleichen. Dabei muß von Zyklus zu Zyklus entweder die Größe oder die Dauer der Einspeisung verändert werden, um eine vom Phasenfehler abhängige Ladungsmenge zur Kompensation zur Verfügung zu stellen.
Die einzelnen Abstufungen der unterschiedlichen Ladungsmengen hängen von der gewünschten Frequenz fVCO des spannungsgesteuerten Oszillators ab und sind z.B. als Funktion eines von der VCO-Frequenz/Periodendauer abhängenden Referenzstroms einstellbar. Bei den z.B. von der Firma "Philips" gebauten, sogenannten Fractional-N-Phasenregelschleifen (PLLs) wird das Stromkompensationsprinzip verwendet. Der Nachteil dieser Methode besteht in der erforderlichen Einstellung des Referenzstroms und im Eingriff am Schleifen-Tiefpaßfilter durch eine erweiterte Ladungspumpe.
Eine andere bekannte Methode zur Reduzierung des Phasenjitters, die von der Firma "National Semiconductor" verwendet wird, ist das zyklusabhängige aktive Verzögern der wirksamen Flanke der geteilten Frequenz fVCO des spannungsgesteuerten Oszillators. Auf Grund dieser Sache wird dem Phasen-Frequenz-Detektor stets eine Phasengleichheit vorgespielt und eine Nachregelung der PLL-Phasenregelschleife wird vermieden. Die relative Größe der benötigten Verzögerungen ist mit dem Inhalt des Phasenakkumulators korreliert. Lediglich die absolute Größe der Minimal-Verzögerung ist wiederum von der gewünschten Frequenz fVCO des spannungsgesteuerten Oszillators abhängig.
Mit Ausnahme der erwähnten, von der Firma "Marconi" eingesetzten Methode zur Reduzierung des Phasenjitters ist allen diesen bekannten Verfahren gemeinsam, daß sie eine Referenz entweder im Zeit- oder Spannungs- bzw. Strombereich benötigen, deren Größe von der zu synthetisierenden Frequenz abhängt.
Der Erfindung liegt die Aufgabe zugrunde, für einen digitalen, fractional-N basierten PLL-Frequenzsynthesizer eine Möglichkeit der Phasenfehlerkompensation zu schaffen, bei der alle benötigten Stell- und Referenzsignale aus der Frequenz fVCO des spannungsgesteuerten Oszillators (VCO) abgeleitet werden können.
Diese Aufgabe wird bei einem gattungsgemäßen digitalen PLL-Frequenzsynthesizer durch die im kennzeichnenden Teil des Patentanspruchs 1 angegebenen Merkmale gelöst.
Zweckmäßige Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.
Die Erfindung und deren Weiterbildungen sowie die Vorteile der Erfindung werden im folgenden anhand eines in Zeichnungen dargestellten Ausführungsbeispiels erläutert. Es zeigen:
  • FIG. 1 das bereits in der Beschreibungseinleitung beschriebene Blockschaltbild eines gewöhnlichen, bekannten PLL-Frequenzsynthesizers,
  • FIG. 2 das Blockschaltbild eines Fractional-N-PLL-Frequenzsynthesizers nach der Erfindung,
  • FIG. 3 in einem Blockschaltbild den Aufbau einer in der Schaltung nach FIG. 2 vorgesehenen PLL-Phasenverzögerungseinrichtung mit M-1 Verzögerungselementen und einem M:1-Multiplexer, und
  • FIG. 4 in einem Blockschaltbild den Aufbau einer weiteren, in der Schaltung nach FIG. 2 vorgesehenen Phasenverzögerungseinrichtung mit M Verzögerungselementen.
  • In FIG. 2 ist als Blockschaltbild die Schaltung eines entsprechend der Erfindung ausgeführten digitalen PLL(Phase Lokked Loop)-Frequenzsynthesizers dargestellt. Es sind auch in dieser Schaltung die bekannten Elemente einer gewöhnlichen und bereits im Zusammenhang mit der FIG. 1 beschriebenen PLL-Frequenzsynthesizerschaltung zu sehen, nämlich ein quarzstabiler Oszillator 1, ein Referenzfrequenzteiler 2, ein Phasen-Frequenz-Detektor 3, eine Ladungspumpe (Charge-Pump) 6, ein Schleifen-Tiefpaßfilter 7 und ein spannungsgesteuerter Oszillator (VCO) 4.
    Bei dem in FIG. 2 dargestellten Frequenzsynthesizer wird eine Referenzfrequenz fRef, die durch Teilung der vom quarzstabilisierten Oszillator 1 gelieferten Quarzfrequenz fQ im Referenzfrequenzteiler 2 gebildet wird, mit einer zweiten, durch Teilen der Frequenz fVCO des spannungsgesteuerten Oszillators 4 abgeleiteten Frequenz f2 im Phasen-Frequenz-Detektor 3 verglichen, dessen Ausgangssignal nach Leitung über die Ladungspumpe (Charge Pump) 6 und das Schleifen-Tiefpaßfilter 7 in der PLL-Schleife als Steuerspannung für den spannungsgesteuerten Oszillators 4 dient.
    Zur Teilung der Frequenz des spannungsgesteuerten Oszillators 4 ist in der PLL-Schleife im Gegensatz zur anhand der FIG. 1 beschriebenen, bekannten Frequenzsynthesizer-Schaltung ein zwischen zwei benachbarten ganzzahligen Teilerfaktoren N und N+1 an einem Steuereingang 8 (Select) umschaltbarer und in der Grundteilung durch n programmierbarer N/(N+1)-Frequenzteiler 9 vorgesehenen, der gegebenenfalls nach dem Dual-Modulus-Prinzip realisiert ist.
    Zwischen dem Frequenzteiler 9 und dem Eingang für die Frequenz f2 am Phasen-Frequenz-Detektor 3 ist ebenfalls anders als bei der bekannten Schaltung nach FIG. 1 noch eine Phasenverzögerungseinrichtung 10 eingeschaltet, welche zwei Steuereingänge 11 (DelAdjust) bzw. 12 (DelSel) besitzt, wobei der Steuereingang 12 durch mehrere Leitungen realisiert ist und beispielsweise + ein Bus mit ld(M) Leitungen sein kann. Am Steuereingang 11 wird eine Grundverzögerung eingestellt, und am Steuereingang 12 wird eingestellt, um wie viele dieser Grundverzögerungen später der Ausgang 13 der Phasenverzögerungseinrichtung 10 deren Eingang 14 folgt.
    Wie die den Aufbau der PLL-Phasenverzögerungseinrichtung 10 im einzelnen darstellende FIG. 3 zeigt, sind - entsprechend dem gewählten Modulus M - in der Phasenverzögerungskette 15 M-1 Verzögerungselemente 16 enthalten, die jeweils die gleiche, allerdings über den Steuereingang 11 einstellbare Verzögerungszeit aufweisen. Mit Hilfe des decodierten DelSel-Signalwertes vom Steuereingang 12 wird ausgewählt, hinter welchem Verzögerungselement 16 das Signal für den Phasen-Frequenz-Detektor 3 und einen Phasenakkumulator 17 ausgekoppelt wird.
    Der zur Einstellung der Anzahl der in der Phasenverzögerungskette 15 der PLL-Phasenverzögerungseinrichtung 10 wirksamen Grundverzögerungen vorgesehene Steuereingang 12 ist zugleich der Steuereingang eines M:1-Multiplexers 18, mittels welchem sich in Abhängigkeit vom an seinem Steuereingang liegenden Steuersignal auswählen läßt, hinter welchem der in Reihe geschalteten Verzögerungselemente 16 das einerseits dem einen Eingang des Phasen-Frequenz-Detektors 3 und andererseits dem Phasenakkumulator 17 zuzuführende Signal ausgekoppelt wird. Durch die Verwendung eines Multiplexers zur Auswahl der Anzahl der Verzögerungselemente kann die oben erwähnte Dekodierung gegebenenfalls sogar entfallen.
    Der Phasenakkumulator 17 wird mit jedem Ausgangsimpuls der Phasenverzögerungseinrichtung 10 um den einstellbaren Bruchteil K der Referenzfrequenz fRef erhöht, allerdings Modulo-M, wozu ein Addierer-Modulo-M 19 vorgesehen ist. Bei einem Überlauf wird über einen Überlauf-Ausgang 20 des Phasenakkumulators 17 der N/(N+1)-Frequenzteiler 9 für die nächste Periode auf den Teilerfaktor (N+1) geschaltet. Der Ausgang 21 des Phasenakkumulators 17 stellt direkt das Steuerwort DelSel für den Steuereingang 12 der PLL-Phasenverzögerungseinrichtung 10 bereit.
    Wie in der Beschreibung bereits früher erwähnt wurde, ist der zu kompensierende Phasenfehler sowohl eine Funktion der Zyklennummer innerhalb M aufeinanderfolgender Zyklen als auch eine Funktion der gewünschten Frequenz fVCO des spannungsgesteuerten Oszillators 4. Es läßt sich aufzeigen, was vorher bereits erfolgt ist, daß deshalb die benötigte zyklenabhängige Zeit zur Verzögerung der geteilten fVCO-Phase ein ganzzahliges Vielfaches von Tdelmin = 1/(fVCO_soll*M) betragen muß.
    Wesentlich beim Verfahren nach der Erfindung ist der Schritt, daß die Steuerspannung DelAdjust, mit der diese Zeit Tdelmin über den Steuereingang 11 an jedem Verzögerungselement 16 der Phasenverzögerungskette 15 in der Phasenverzögerungseinrichtung 10 eingestellt wird, mit Hilfe einer weiteren Phasenverzögerungseinrichtung 22 und eines weiteren Phasen-Frequenz-Detektors 23 direkt aus der Frequenz fVCO des spannungsgesteuerten Oszillators 4 abgeleitet wird.
    Wie FIG. 4 zeigt, ist die weitere Phasenverzögerungseinrichtung 22 genauso aufgebaut wie die Phasenverzögerungseinrichtung 10, d.h. sie ist entsprechend den Auskoppelleitungen bei den Verzögerungselementen 16 der Phasenverzögerungseinrichtung 10 nach FIG. 3 bei allen Verzögerungseiementen 24 durch Dummy-Auskoppelelemente 25 belastet, um die gleichen Verzögerungsbedingungen wie in der mit dem M:1-Multiplexer 18 ausgestatteten PLL-Phasenverzögerungseinrichtung 10 nachzubilden. Allerdings sind in der weiteren Phasenverzögerungseinrichtung 22 nicht M-1 Verzögerungselemente wie bei der Phasenverzögerungseinrichtung 10, sondern M Verzögerungselemente 24 hintereinandergeschaltet, was von großer Bedeutung ist.
    In die weitere Phasenverzögerungseinrichtung 22 wird an einem Eingang 26 die Frequenz fVCO des spannungsgesteuerten Oszillators 4 über einen Pufferverstärker 27 eingespeist, und die Phase des Signals am Ausgang 28 der weiteren Phasenverzögerungseinrichtung 22 wird wiederum mit Hilfe des weiteren Phasen-Frequenz-Detektors 23 direkt mit der über den gleichen Pufferverstärker 26 geleiteten Frequenz fVCO des spannungsgesteuerten Oszillators 4 verglichen. Das vom Ausgang 28 der weiteren Phasenverzögerungseinrichtung 22 abgeleitete Vergleichsergebnis wird in einem zweiten Schleifen-Tiefpaßfilter 29 tiefpaßgefiltert und bildet dann für die weitere Phasenverzögerungseinrichtung 22 die Steuerspannung, die dort einem Steuereingang 30 zugeführt wird.
    Mit dieser Steuerspannung DelAdjust wird bei den Verzögerungselementen 24 der weiteren Phasenverzögerungseinrichtung 22 die jeweils gleiche Grundverzögerung eingestellt. Die weitere Phasenverzögerungseinrichtung 22 ist mithin also quasi ein Bestandteil einer Hilfs-Phasenregelschleife (Hilfs-PLL), bei welcher der spannungsgesteuerte Oszillator 4 seine eigene Referenzfrequenz erzeugt. Wegen der hohen Frequenzen kann die Hilfs-PLL eine sehr hohe Schleifen-Bandbreite haben.
    Es genügt jedoch ein Wert, der in der Größenordnung der Referenzfrequenz fRef liegt, da ein wesentlich schnelleres DelAdjust-Steuersignal auch nicht schneller ausgewertet werden kann. Wenn sichergestellt wird, daß in der weiteren Phasenverzögerungseinrichtung 22 genau eine VCO-Periode der Schwingung des spannungsgesteuerten Oszillators 4 enthalten ist, gilt: T22 = M*Tdelmin = TVCO_soll.
    Dies bedeutet, daß jedes Verzögerungselement 24 der weiteren Phasenverzögerungseinrichtung 22 um genau den M-ten Teil von TVCO_soll verzögert.
    Dies ist genau der benötigte Elementarwert der in der eigentlichen, also in der Phasenverzögerungseinrichtung 10 der Haupt-PLL enthaltenen Phasenverzögerungskette 15. Weil die Verzögerungselemente 16 bzw. 24 in beiden Phasenverzögerungseinrichtungen 10 bzw. 22 bezüglich ihres zeitlichen Verhaltens gleich aufgebaut sind, kann die Steuerspannung für die weitere Phasenverzögerungseinrichtung 22 auch als Steuerspannung DelAdjust zur Zuführung an den Steuereingang 11 der Phasenverzögerungseinrichtung 10 verwendet werden.
    Ein entsprechend der Erfindung ausgebildeter Frequenzsynthesizer läßt sich in besonders vorteilhafter Weise in integrierter Schaltkreistechnik ausführen.

    Claims (8)

    1. Digitaler PLL(Phase Locked Loop)-Frequenzsynthesizer, bei dem eine durch Teilung einer stabilen Quarzoszillatorfrequenz (fQ) gebildete Referenzfrequenz (fRef) mit einer zweiten, durch Teilen der Frequenz eines spannungsgesteuerten Oszillators (VCO) abgeleiteten Frequenz (fVCO) in einem Phasen-Frequenz-Detektor (3) verglichen wird, dessen Ausgangssignal nach Leitung über ein Schleifen-Tiefpaßfilter (7) in einer Schleife der PLL als Steuerspannung für den spannungsgesteuerten Oszillators dient, wobei zur Teilung der Frequenz des spannungsgesteuerten Oszillators in der Schleife der PLL ein zwischen zwei benachbarten ganzzahligen Teilerfaktoren N und N+1 umschaltbarer, für die Dauer von M-K Zyklen durch N teilender und dann für die Dauer von K Zyklen durch N+1 teilender N/(N+1)-Frequenzteiler (9) vorgesehen ist und zur Herbeiführung einer automatischen Umschaltung des N/(N+1)-Frequenzteilers ein Phasenakkumulator (17) vorgesehen sind, zu dessen Inhalt mit jedem Impuls der geteilten VCO-Frequenz der Wert K mit einer Modulo-M-Addition addiert wird und der nach jedem Überlauf im nächsten Zyklus eine Änderung des Teilerfaktors von N auf N+1 veranlaßt,
      dadurch gekennzeichnet, daß
      zwischen dem N/(N+1)-Frequenzteiler (9) und dem von diesem Frequenzteiler angesteuerten Eingang des Phasen-Frequenz-Detektors (3) und dem Eingang des Phasenakkumulators (17) eine Phasenverzögerungseinrichtung (10) eingefügt ist, die in einer Phasenverzögerungskette (15) M-1 Verzögerungselemente (16) enthält und die zwei Steuereingänge (11, 12) aufweist, von denen der eine (11) zur Einstellung der jeweils übereinstimmenden Größe der Grundverzögerungen der Verzögerungselemente der Phasenverzögerungskette und der andere (12) zur Einstellung der Anzahl der in dieser Phasenverzögerungskette wirksamen Grundverzögerungen vorgesehen ist, daß der Inhalt des Phasenakkumulators (17) mit jedem Ausgangsimpuls der Phasenverzögerungseinrichtung (10) um den einstellbaren Bruchteil K der Referenzfrequenz Modulo-M erhöht wird und bei einem Überlauf der N/(N+1)-Frequenzteiler für die nächste Periode auf N+1 geschaltet wird, daß der Ausgang (21) des Phasenakkumulators (17) mit dem zur Einstellung der Anzahl der wirksamen Grundverzögerungen vorgesehenen Steuereingang (12) der Phasenverzögerungseinrichtung (10) verbunden ist, und daß eine weitere Phasenverzögerungseinrichtung (22), die M hintereinandergeschaltete Verzögerungselemente (24) aufweist, zwischen dem Ausgang des spannungsgesteuerten Oszillators (4) und dem einen Eingang eines weiteren Phasen-Frequenz-Detektors (23) eingefügt ist, daß an einem zweiten Eingang des weiteren Phasen-Frequenz-Detektors (23) der Ausgang des spannungsgesteuerten Oszillators (4) ohne Zwischenschaltung von Verzögerungselementen angeschlossen ist und daß mit einem Ausgang des weiteren Phasen-Frequenz-Detektors (23) über ein weiteres Schleifen-Tiefpaßfilter (29) unter Bildung einer Hilfs-PLL-Schleife die zur Einstellung der jeweils übereinstimmenden Größe der Grundverzögerungen der Verzögerungselemente vorgesehenen Steuereingänge (11, 30) der beiden Phasenverzögerungseinrichtungen (10, 22) verbunden sind.
    2. Frequenzsynthesizer nach Anspruch 1, dadurch gekennzeichnet, daß der zur Einstellung der Anzahl der in der Phasenverzögerungseinrichtung (10) wirksamen Grundverzögerungen vorgesehene Steuereingang (12) durch den Steuereingang eines M:1-Multiplexers (18) gebildet ist, mittels welchem sich in Abhängigkeit vom an seinem Steuereingang liegenden Steuersignal auswählen läßt, hinter welchem der in Reihe geschalteten Verzögerungselemente (16) das einerseits dem einen Eingang des Phasen-Frequenz-Detektors (3) und andererseits dem Phasenakkumulator (17) zuzuführende Signal ausgekoppelt wird.
    3. Frequenzsynthesizer nach Anspruch 1, dadurch gekennzeichnet, daß die weitere Phasenverzögerungseinrichtung (22) zur Nachbildung von Verzögerungsbedingungen, die mit denjenigen der Phasenverzögerungseinrichtung (10) übereinstimmen, außer den Verzögerungselementen (24) selbst diesen letzteren zugeordnete Dummy-Auskoppelemente (25) enthält.
    4. Frequenzsynthesizer nach den Ansprüchen 2 und 3, dadurch gekennzeichnet, daß die Dummy-Auskoppelelemente (25) Lastelemente sind, welche die Belastung durch den Eingang des M:1-Multiplexers (18) der PLL-Phasenverzögerungseinrichtung (10) nachbilden.
    5. Frequenzsynthesizer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die unter anderem den weiteren Phasen-Frequenz-Detektor (22) enthaltende Hilfs-PLL-Schleife so ausgelegt ist, daß sie eine sehr hohe Schleifenbandbreite aufweist.
    6. Frequenzsynthesizer nach Anspruch 5, dadurch gekennzeichnet, daß die Hilfs-PLL-Schleife so ausgelegt ist, daß ihre Bandbreite in der Größenordnung der Referenzfrequenz (fRef) liegt.
    7. Frequenzsynthesizer nach einem der vorhergehenden Ansprüche, gekennzeichnet durch eine Ausführung in integrierter Schaltkreistechnik.
    8. Frequenzsynthesizer nach einem der vorhergehenden Ansprüche,
      dadurch gekennzeichnet, daß
      eine Ladungspumpe (6) zwischen den Phasen-Frequenz-Detektor (3) und das Schleifenfilter (7) geschaltet ist.
    EP99936339A 1998-09-03 1999-05-28 Digitaler pll-frequenzsynthesizer Expired - Lifetime EP1145437B1 (de)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE19840241 1998-09-03
    DE19840241A DE19840241C1 (de) 1998-09-03 1998-09-03 Digitaler PLL (Phase Locked Loop)-Frequenzsynthesizer
    PCT/DE1999/001569 WO2000014879A2 (de) 1998-09-03 1999-05-28 Digitaler pll-frequenzsynthesizer

    Publications (2)

    Publication Number Publication Date
    EP1145437A2 EP1145437A2 (de) 2001-10-17
    EP1145437B1 true EP1145437B1 (de) 2003-07-30

    Family

    ID=7879726

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP99936339A Expired - Lifetime EP1145437B1 (de) 1998-09-03 1999-05-28 Digitaler pll-frequenzsynthesizer

    Country Status (5)

    Country Link
    US (1) US6359950B2 (de)
    EP (1) EP1145437B1 (de)
    JP (1) JP3597471B2 (de)
    DE (1) DE19840241C1 (de)
    WO (1) WO2000014879A2 (de)

    Families Citing this family (100)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JP2003517237A (ja) * 1999-12-15 2003-05-20 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 周波数合成回路を有する電子装置
    US6658066B1 (en) * 2000-02-17 2003-12-02 Skyworks Solutions, Inc. Method and apparatus for multiple phase splitting for dual band IQ subharmonic mixer
    US6826247B1 (en) 2000-03-24 2004-11-30 Stmicroelectronics, Inc. Digital phase lock loop
    US8176296B2 (en) 2000-10-26 2012-05-08 Cypress Semiconductor Corporation Programmable microcontroller architecture
    US7765095B1 (en) 2000-10-26 2010-07-27 Cypress Semiconductor Corporation Conditional branching in an in-circuit emulation system
    US8103496B1 (en) 2000-10-26 2012-01-24 Cypress Semicondutor Corporation Breakpoint control in an in-circuit emulation system
    US6724220B1 (en) 2000-10-26 2004-04-20 Cyress Semiconductor Corporation Programmable microcontroller architecture (mixed analog/digital)
    US8160864B1 (en) 2000-10-26 2012-04-17 Cypress Semiconductor Corporation In-circuit emulator and pod synchronized boot
    US8149048B1 (en) 2000-10-26 2012-04-03 Cypress Semiconductor Corporation Apparatus and method for programmable power management in a programmable analog circuit block
    US20020184577A1 (en) * 2001-05-29 2002-12-05 James Chow Precision closed loop delay line for wide frequency data recovery
    JP4493887B2 (ja) * 2001-08-03 2010-06-30 セイコーNpc株式会社 フラクショナルn周波数シンセサイザ及びその動作方法
    US6744323B1 (en) * 2001-08-30 2004-06-01 Cypress Semiconductor Corp. Method for phase locking in a phase lock loop
    US7406674B1 (en) 2001-10-24 2008-07-29 Cypress Semiconductor Corporation Method and apparatus for generating microcontroller configuration information
    DE60211460T2 (de) * 2001-10-30 2006-12-21 Stmicroelectronics Pvt. Ltd. Volldigitale Taktrückgewinnung mit Teiler mit gebrochenem Teilungsverhältnis
    US8078970B1 (en) 2001-11-09 2011-12-13 Cypress Semiconductor Corporation Graphical user interface with user-selectable list-box
    US8042093B1 (en) 2001-11-15 2011-10-18 Cypress Semiconductor Corporation System providing automatic source code generation for personalization and parameterization of user modules
    US7774190B1 (en) 2001-11-19 2010-08-10 Cypress Semiconductor Corporation Sleep and stall in an in-circuit emulation system
    US8069405B1 (en) 2001-11-19 2011-11-29 Cypress Semiconductor Corporation User interface for efficiently browsing an electronic document using data-driven tabs
    US7844437B1 (en) 2001-11-19 2010-11-30 Cypress Semiconductor Corporation System and method for performing next placements and pruning of disallowed placements for programming an integrated circuit
    US6971004B1 (en) 2001-11-19 2005-11-29 Cypress Semiconductor Corp. System and method of dynamically reconfiguring a programmable integrated circuit
    US7770113B1 (en) 2001-11-19 2010-08-03 Cypress Semiconductor Corporation System and method for dynamically generating a configuration datasheet
    US8103497B1 (en) 2002-03-28 2012-01-24 Cypress Semiconductor Corporation External interface for event architecture
    US7151810B2 (en) * 2002-04-26 2006-12-19 Intel Corporation Data and clock synchronization in multi-channel communications
    US7308608B1 (en) 2002-05-01 2007-12-11 Cypress Semiconductor Corporation Reconfigurable testing system and method
    US6834084B2 (en) * 2002-05-06 2004-12-21 Rf Micro Devices Inc Direct digital polar modulator
    US7801244B2 (en) * 2002-05-16 2010-09-21 Rf Micro Devices, Inc. Am to AM correction system for polar modulator
    US7991071B2 (en) * 2002-05-16 2011-08-02 Rf Micro Devices, Inc. AM to PM correction system for polar modulator
    TW531966B (en) * 2002-05-20 2003-05-11 Mediatek Inc Phase lock loop with low static state phase error and calibration circuit
    CN100353673C (zh) * 2002-08-14 2007-12-05 联发科技股份有限公司 锁相环频率合成器
    US7761845B1 (en) 2002-09-09 2010-07-20 Cypress Semiconductor Corporation Method for parameterizing a user module
    EP1434352B1 (de) * 2002-12-23 2008-08-27 STMicroelectronics Belgium N.V. Frequenzsynthesizer mit gebrochenem Teilverhältnis und kompensierter Verzögerung
    GB2398942A (en) * 2002-12-30 2004-09-01 Nokia Corp Phase locked loop with delay circuit
    US6822519B1 (en) 2003-02-10 2004-11-23 Analog Devices, Inc. Synthesizer structures and alignment methods that facilitate quadrature demodulation
    CN100521597C (zh) * 2003-05-01 2009-07-29 三菱电机株式会社 时钟数据恢复电路
    US7181180B1 (en) * 2003-05-15 2007-02-20 Marvell International Ltd. Sigma delta modulated phase lock loop with phase interpolation
    JP3934585B2 (ja) * 2003-08-22 2007-06-20 松下電器産業株式会社 広帯域変調pll、広帯域変調pllのタイミング誤差補正システム、変調タイミング誤差補正方法および広帯域変調pllを備えた無線通信装置の調整方法
    US6958635B2 (en) * 2003-10-14 2005-10-25 Qualcomm Incorporated Low-power direct digital synthesizer with analog interpolation
    DE102004014204B4 (de) * 2004-03-23 2006-11-09 Infineon Technologies Ag Phasenregelkreis und Verfahren zur Phasenkorrektur eines frequenzsteuerbaren Oszillators
    US7295049B1 (en) 2004-03-25 2007-11-13 Cypress Semiconductor Corporation Method and circuit for rapid alignment of signals
    US7274748B1 (en) 2004-06-02 2007-09-25 Rf Micro Devices, Inc. AM to FM correction system for a polar modulator
    US7551686B1 (en) 2004-06-23 2009-06-23 Rf Micro Devices, Inc. Multiple polynomial digital predistortion
    US7253671B2 (en) * 2004-06-28 2007-08-07 Intelliserv, Inc. Apparatus and method for compensating for clock drift in downhole drilling components
    US8069436B2 (en) 2004-08-13 2011-11-29 Cypress Semiconductor Corporation Providing hardware independence to automate code generation of processing device firmware
    US8286125B2 (en) 2004-08-13 2012-10-09 Cypress Semiconductor Corporation Model for a hardware device-independent method of defining embedded firmware for programmable systems
    US7529523B1 (en) 2004-08-23 2009-05-05 Rf Micro Devices, Inc. N-th order curve fit for power calibration in a mobile terminal
    DE102005050828B4 (de) * 2004-12-22 2011-08-18 Texas Instruments Deutschland GmbH, 85356 Verfahren und Vorrichtung zur Teilung einer Frequenz durch einen Fraktionalteiler und Fraktional-n-PLL
    US7332976B1 (en) 2005-02-04 2008-02-19 Cypress Semiconductor Corporation Poly-phase frequency synthesis oscillator
    EP1867049B1 (de) * 2005-03-31 2009-12-02 Freescale Semiconductor Inc. Verfahren zur rauschminderung in einem phasenregelkreis und einrichtung mit rauschminderungsfähigkeiten
    US7400183B1 (en) 2005-05-05 2008-07-15 Cypress Semiconductor Corporation Voltage controlled oscillator delay cell and method
    US8224265B1 (en) 2005-06-13 2012-07-17 Rf Micro Devices, Inc. Method for optimizing AM/AM and AM/PM predistortion in a mobile terminal
    US8089461B2 (en) 2005-06-23 2012-01-03 Cypress Semiconductor Corporation Touch wake for electronic devices
    US7274231B1 (en) * 2005-09-15 2007-09-25 Integrated Device Technology, Inc. Low jitter frequency synthesizer
    EP1772794A1 (de) * 2005-10-10 2007-04-11 Axalto S.A. Verfahren und Schaltung zur lokalen Takterzeugung und diese enthaltende Chipkarte
    DE102005060470A1 (de) * 2005-12-17 2007-06-21 Atmel Germany Gmbh PLL-Frequenzgenerator
    DE102005060472B3 (de) * 2005-12-17 2007-04-26 Atmel Germany Gmbh PLL-Frequenzgenerator
    US8085067B1 (en) 2005-12-21 2011-12-27 Cypress Semiconductor Corporation Differential-to-single ended signal converter circuit and method
    US7482885B2 (en) * 2005-12-29 2009-01-27 Orca Systems, Inc. Method of frequency synthesis for fast switching
    US7877060B1 (en) 2006-02-06 2011-01-25 Rf Micro Devices, Inc. Fast calibration of AM/PM pre-distortion
    US7519349B2 (en) * 2006-02-17 2009-04-14 Orca Systems, Inc. Transceiver development in VHF/UHF/GSM/GPS/bluetooth/cordless telephones
    US8067948B2 (en) 2006-03-27 2011-11-29 Cypress Semiconductor Corporation Input/output multiplexer bus
    US7962108B1 (en) 2006-03-29 2011-06-14 Rf Micro Devices, Inc. Adaptive AM/PM compensation
    US7689182B1 (en) 2006-10-12 2010-03-30 Rf Micro Devices, Inc. Temperature compensated bias for AM/PM improvement
    US7664196B2 (en) 2006-11-08 2010-02-16 Raytheon Company Frequency agile phase locked loop
    US8149022B2 (en) * 2007-02-09 2012-04-03 Mediatek Inc. Digital delay line based frequency synthesizer
    US8092083B2 (en) 2007-04-17 2012-01-10 Cypress Semiconductor Corporation Temperature sensor with digital bandgap
    US9564902B2 (en) 2007-04-17 2017-02-07 Cypress Semiconductor Corporation Dynamically configurable and re-configurable data path
    US8516025B2 (en) 2007-04-17 2013-08-20 Cypress Semiconductor Corporation Clock driven dynamic datapath chaining
    US8040266B2 (en) 2007-04-17 2011-10-18 Cypress Semiconductor Corporation Programmable sigma-delta analog-to-digital converter
    US8130025B2 (en) 2007-04-17 2012-03-06 Cypress Semiconductor Corporation Numerical band gap
    US8009762B1 (en) 2007-04-17 2011-08-30 Rf Micro Devices, Inc. Method for calibrating a phase distortion compensated polar modulated radio frequency transmitter
    US7737724B2 (en) 2007-04-17 2010-06-15 Cypress Semiconductor Corporation Universal digital block interconnection and channel routing
    US8026739B2 (en) 2007-04-17 2011-09-27 Cypress Semiconductor Corporation System level interconnect with programmable switching
    US8266575B1 (en) 2007-04-25 2012-09-11 Cypress Semiconductor Corporation Systems and methods for dynamically reconfiguring a programmable system on a chip
    US9720805B1 (en) 2007-04-25 2017-08-01 Cypress Semiconductor Corporation System and method for controlling a target device
    US8065653B1 (en) 2007-04-25 2011-11-22 Cypress Semiconductor Corporation Configuration of programmable IC design elements
    US8049569B1 (en) 2007-09-05 2011-11-01 Cypress Semiconductor Corporation Circuit and method for improving the accuracy of a crystal-less oscillator having dual-frequency modes
    US7969252B2 (en) * 2007-12-17 2011-06-28 Micron Technology, Inc. System and method for reducing lock time in a phase-locked loop
    US8655296B2 (en) * 2007-12-18 2014-02-18 Harris Corporation Frequency synthesizer and related method for generating wideband signals
    US7848266B2 (en) 2008-07-25 2010-12-07 Analog Devices, Inc. Frequency synthesizers for wireless communication systems
    US8049540B2 (en) * 2008-09-19 2011-11-01 Analog Devices, Inc. Calibration system and method for phase-locked loops
    GB2469473A (en) * 2009-04-14 2010-10-20 Cambridge Silicon Radio Ltd Digital phase locked loop
    US9448964B2 (en) 2009-05-04 2016-09-20 Cypress Semiconductor Corporation Autonomous control in a programmable system
    US8081042B2 (en) * 2009-05-19 2011-12-20 Nokia Corporation Apparatus, method and computer program
    US8489042B1 (en) 2009-10-08 2013-07-16 Rf Micro Devices, Inc. Polar feedback linearization
    KR101045072B1 (ko) * 2009-12-28 2011-06-29 주식회사 하이닉스반도체 위상고정루프 및 그 구동방법
    US8493107B2 (en) 2010-07-27 2013-07-23 Mediatek Inc. Clock generator for generating output clock having non-harmonic relationship with input clock and related clock generating method thereof
    US8816780B2 (en) * 2010-07-27 2014-08-26 Mediatek Inc. Apparatus and method for calibrating timing mismatch of edge rotator operating on multiple phases of oscillator
    US8497716B2 (en) * 2011-08-05 2013-07-30 Qualcomm Incorporated Phase locked loop with phase correction in the feedback loop
    JP5792557B2 (ja) * 2011-08-16 2015-10-14 株式会社メガチップス 周波数シンセサイザ
    JP6094730B2 (ja) * 2012-11-07 2017-03-15 セイコーエプソン株式会社 周波数変換回路、原子発振器、電子機器及び周波数変換回路の制御方法
    US8803574B2 (en) * 2012-12-04 2014-08-12 Cambridge Silicon Radio Limited Generating a tuned frequency output from a signal generator
    DE102014104478B4 (de) * 2014-03-31 2022-05-12 Apple Inc. Eine Schaltung, eine integrierte Schaltung, ein Sender, ein Empfänger, ein Sende-Empfangs-Gerät, ein Verfahren zum Erhalten von Kalibrierungsdaten und ein Verfahren zum Erzeugen einesLokaloszillatorsignals
    CN105322962B (zh) * 2014-07-03 2019-01-29 清华大学 频率振荡器稳定度优化装置及方法
    US9685961B2 (en) 2014-09-17 2017-06-20 Htc Corporation High resolution timing device and radar detection system having the same
    CN105490666B (zh) * 2014-09-19 2018-08-24 宏达国际电子股份有限公司 高解析度时脉产生装置及雷达侦测系统
    US9853650B1 (en) * 2016-11-21 2017-12-26 Realtek Semiconductor Corp. Method and apparatus of frequency synthesis
    US10090845B1 (en) * 2017-03-28 2018-10-02 Stmicroelectronics International N.V. Fraction-N digital PLL capable of canceling quantization noise from sigma-delta modulator
    US10749535B2 (en) 2017-06-28 2020-08-18 Analog Devices, Inc. Apparatus and methods for distributed timing using digital time stamps from a time-to-digital converter
    US11038511B2 (en) 2017-06-28 2021-06-15 Analog Devices International Unlimited Company Apparatus and methods for system clock compensation
    US11791829B2 (en) 2021-02-24 2023-10-17 Morse Micro Pty. Ltd. Digital phase-locked loop with fast output frequency digital control

    Family Cites Families (8)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR2481549A1 (fr) * 1980-04-25 1981-10-30 Thomson Brandt Dispositif de synthese et de demodulation combinees pour recepteurs d'ondes modulees en frequence et recepteur le comportant
    US4409564A (en) * 1981-03-20 1983-10-11 Wavetek Pulse delay compensation for frequency synthesizer
    GB2107142B (en) * 1981-10-07 1984-10-10 Marconi Co Ltd Frequency synthesisers
    GB2140232B (en) * 1983-05-17 1986-10-29 Marconi Instruments Ltd Frequency synthesisers
    GB8512912D0 (en) * 1985-05-22 1985-06-26 Plessey Co Plc Phase modulators
    DE3544371A1 (de) * 1985-12-14 1987-06-19 Wandel & Goltermann Generator mit digitaler frequenzeinstellung
    US5495206A (en) * 1993-10-29 1996-02-27 Motorola, Inc. Fractional N frequency synthesis with residual error correction and method thereof
    US5907253A (en) * 1997-11-24 1999-05-25 National Semiconductor Corporation Fractional-N phase-lock loop with delay line loop having self-calibrating fractional delay element

    Also Published As

    Publication number Publication date
    JP2003515963A (ja) 2003-05-07
    DE19840241C1 (de) 2000-03-23
    WO2000014879A3 (de) 2002-07-11
    EP1145437A2 (de) 2001-10-17
    US20010036240A1 (en) 2001-11-01
    US6359950B2 (en) 2002-03-19
    JP3597471B2 (ja) 2004-12-08
    WO2000014879A2 (de) 2000-03-16

    Similar Documents

    Publication Publication Date Title
    EP1145437B1 (de) Digitaler pll-frequenzsynthesizer
    DE69828300T2 (de) Digitale frequenzsynthese durch sequentielle annäherungen von bruchteilen
    DE69930361T2 (de) LVDS-Interface mit einer Phasenregelschleife für eine programmierbare logische Vorrichtung
    DE19807026C2 (de) Frequenzsynthese-Vorrichtung und -Verfahren
    DE60008203T2 (de) Phasenregelschleife mit digital gesteuertem frequenzvervielfachendem Oszillator
    AT402246B (de) Bruchteils-n-synthese mit verriegelten speicherwerken und mit verringerung des restfehlers
    DE112014006322T5 (de) Ladungspumpen-Kalibrierung für eine Zweiwege-Phasenregelungsschleife
    DE1964912C3 (de) Frequenz-Synthesizer
    DE102012108279A1 (de) Phasenregelkreis mit nicht-ganzzahligem Teiler
    DE60225426T2 (de) Fraktional-n-frequenzsynthesizer mit fraktional-kompensationsverfahren
    DE60202057T2 (de) Phasenregelschleife mit einem linearen phasendetektor
    DE2848490B2 (de) Programmierbare Frequenzteilerschaltung
    DE2844139A1 (de) Motordrehzahl-regelschaltung
    DE69333686T2 (de) Rauscharmer Frequenzsynthetisierer unter Anwendung von halbzahligen Teilern und Analoggewinnkompensation
    DE60216582T2 (de) Fraktional-n-synthesizer und verfahren zur synchronisation der ausgangsphase
    DE102007001148A1 (de) Phasenregelschleife zum schnellen Einregeln und darauf bezogenes Verfahren
    DE4325728C2 (de) Teilerschaltung mit rationalem Verhältnis für einen Frequenzsynthesizer
    DE3321601A1 (de) Steuerschaltung fuer eine phasenstarre schleife
    DE10205680B4 (de) Ein-Punkt-Modulator mit PLL-Schaltung
    DE60002233T2 (de) Phasenregelkreis und Frequenzmodulationsverfahren zu dessen Nutzung
    EP1525662B1 (de) Digital gesteuerter oszillator
    DE60125764T2 (de) Lineare digitale phasendetektion ohne toten bereich
    DE69535211T2 (de) Einrichtung zur kontinuierlichen phasenmodulation mit frequenzsynthetisierer mit phasenregelscheife
    WO2000028666A1 (de) Frequenzsynthesizer, verfahren zum betreiben eines frequenzsynthesizers und integrierte schaltung mit einem frequenzsynthesizer
    DE3538858A1 (de) PLL-Frequenzsynthesizer

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20010129

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): FR GB

    XX Miscellaneous (additional remarks)

    Free format text: DERZEIT SIND DIE WIPO-PUBLIKATIONSDATEN A3 NICHT VERFUEGBAR.

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Designated state(s): FR GB

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    XX Miscellaneous (additional remarks)

    Free format text: DERZEIT SIND DIE WIPO-PUBLIKATIONSDATEN A3 NICHT VERFUEGBAR.

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20031114

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20040427

    Year of fee payment: 6

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20040504

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050131

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050528

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20050528