EP1196965A1 - Helical antenna - Google Patents

Helical antenna

Info

Publication number
EP1196965A1
EP1196965A1 EP00947810A EP00947810A EP1196965A1 EP 1196965 A1 EP1196965 A1 EP 1196965A1 EP 00947810 A EP00947810 A EP 00947810A EP 00947810 A EP00947810 A EP 00947810A EP 1196965 A1 EP1196965 A1 EP 1196965A1
Authority
EP
European Patent Office
Prior art keywords
spiral
spiral antenna
coplanar line
antenna
reference potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00947810A
Other languages
German (de)
French (fr)
Other versions
EP1196965B1 (en
Inventor
Thomas Wixforth
Eberhard Gschwendtner
Jean Parlebas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1196965A1 publication Critical patent/EP1196965A1/en
Application granted granted Critical
Publication of EP1196965B1 publication Critical patent/EP1196965B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q11/00Electrically-long antennas having dimensions more than twice the shortest operating wavelength and consisting of conductive active radiating elements
    • H01Q11/02Non-resonant antennas, e.g. travelling-wave antenna
    • H01Q11/08Helical antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/325Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle
    • H01Q1/3275Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle mounted on a horizontal surface of the vehicle, e.g. on roof, hood, trunk
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/26Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength
    • H01Q9/27Spiral antennas

Definitions

  • the invention is based on a spiral antenna according to the preamble of the main claim.
  • the spiral antenna according to the invention with the features of the main claim has the advantage that the spiral arms are connected at their respective inner spiral arm end to a coplanar line for supplying and / or receiving signals.
  • Coplanar lines can be dispensed with feed networks for setting the phase positions at the feed points of the spiral antenna or for balancing or asymmetrizing the electrical field to be fed in, and thus saving effort.
  • the spiral antenna increases both in a first mode for generating an omnidirectional radiation characteristic and in a second mode Generation of a directional radiation characteristic can be operated perpendicular to the spiral plane. In this way, the spiral antenna can be used as a combination antenna for various radio services.
  • the coplanar line and the spiral antenna can be applied to different carrier materials.
  • the transition from the coplanar line to the spiral antenna is independent of a possible jump in the dielectric constant.
  • a low-permittivity carrier material can be selected for the spiral antenna, with which good radiation is achieved.
  • a highly permeable carrier material can be selected for the coplanar line, which enables a reduction in the length of the coplanar line and suppresses parasitic radiation from the coplanar line, so that the coplanar line can be made independent of the radiation field of the spiral antenna.
  • coplanar line is at least partially designed as a taper. In this way, no additional network is required to match the impedance of the coplanar line to the input impedance of the spiral antenna.
  • FIG. 1 shows a three-dimensional view of a spiral antenna with a coplanar line
  • FIG. 2 shows a Top view of a tapered coplanar line
  • FIG. 3 a top view of a spiral antenna with current vectors for an omnidirectional radiation mode
  • FIG. 4 a spiral antenna with current vectors for a radiation mode with directional radiation
  • FIG. 5 a three-port with symmetrical electrical field distribution
  • FIG. 6 a three-port with asymmetrical electrical field distribution
  • FIG. 1, 1 denotes a spiral antenna which comprises a first spiral arm 11, a second spiral arm 12, a third spiral arm 13 and a fourth spiral arm 14.
  • the first spiral arm 11 has a first inner spiral arm end 5, the second spiral arm 12 a second inner spiral arm end 6, the third spiral arm 13 a third inner spiral arm end 7 and the fourth spiral arm 14 a fourth inner spiral arm end 8.
  • the third inner spiral arm end 7 cannot be seen on the basis of the perspective illustration in FIG. 1, but is shown in the top view according to FIGS. 3 and 4.
  • the four spiral arms 11, 12, 13, 14 are guided approximately in parallel.
  • FIG. 1, 2 characterizes a coplanar line with a first inner conductor 21, a first reference potential area 22 and a second one
  • the four spiral arms 11, 12, 13, 14 are formed from electrically conductive material and applied to a first carrier material 45.
  • the spiral arms 11, 12, 13, 14 can be formed, for example, from a metal.
  • the first inner conductor 21, the first reference potential area 22 and the second reference potential area 23 are likewise formed from electrically conductive material and applied to a second carrier material 50.
  • the first carrier material 45 and the second carrier material 50 can be the act the same carrier material.
  • the first carrier material 45 can also be different from the second carrier material 50.
  • the first inner spiral arm end 5 is electrically conductively connected to the third inner spiral arm end 7 via an electrically conductive first bridge 40, which is applied, for example, to the first carrier material 45.
  • the first inner spiral arm end 5 and the third inner spiral arm end 7 according to FIG. 3 and FIG. 4 lie opposite one another.
  • the second inner spiral arm end 6 and the fourth inner spiral arm end 8 also lie opposite one another, but without being connected to one another by an electrically conductive bridge.
  • the supply of the spiral arms 11, 12, 13, 14 with signals to be radiated from the spiral antenna 1 takes place via the corresponding inner spiral arm ends 5, 6, 7, 8 and
  • the coplanar line 2 is arranged perpendicular to the plane of the spiral antenna 1 and guided into the center of the spiral antenna 1.
  • the first inner conductor 21 is electrically conductively connected to the first bridge 40.
  • the first reference potential surface 22 is electrically conductively connected to the second inner spiral arm end 6.
  • the second reference potential surface 23 is electrically conductively connected to the fourth inner spiral arm end 8.
  • the coplanar line 2 serves to supply the spiral antenna 1 with signals to be radiated from the spiral antenna 1 and can additionally or alternatively also be used to receive signals by the spiral antenna 1.
  • the spiral antenna 1 is said to be self-complementary if its spiral arms 11, 12, 13, 14 are completely mapped onto the areas that formed the free spaces between the spiral arms 11, 12, 13, 14 before the rotation. Correspondingly, with such a rotation, the free spaces existing before the rotation are completely mapped onto areas which, before the rotation, the spiral arms 11, 12, 13, 14 formed. In both cases, the axis of rotation passes through the center of the spiral antenna 1, perpendicular to the plane of the spiral antenna 1, and is referred to below as the central axis.
  • the width of the spiral arms 11, 12, 13, 14 is selected so that the spiral is self-complementary, then there is an input impedance of 94 ⁇ on the inner spiral arm ends 5, 6, 7, 8.
  • the input impedance increases with thinning spiral arms and decreases with wider spiral arms, in each case in relation to the width of the free spaces between the spiral arms 11, 12, 13, 14.
  • the adaptation of this impedance to the conventionally required impedance of 50 ⁇ requires an impedance transformation, for example by tapering the coplanar line 2 can be achieved.
  • the coplanar line 2 is shown again alone, the same reference numerals identifying the same elements as in Fig. 1. According to FIG. 1 and FIG. 2, the first inner conductor 21, the first reference potential area 22 and the second reference potential area 23 broaden starting from the
  • Non-linear tapering of the coplanar line can also be provided, for example exponential tapering.
  • the length over which the coplanar line 2 is taped must be at least a quarter of the wavelength of the mean operating frequency of the spiral antenna 1.
  • this input impedance can be matched to the required by tapering the coplanar line 2 50 ⁇ can be adjusted so that the coplanar line 2 can be flexibly adapted to the geometry of the spiral antenna 1 by tapering.
  • the spiral antenna 1 can be fed in a simple manner for the radiation of signals, two different radiation characteristics being able to be generated.
  • this is an omnidirectional radiation characteristic with a zero point perpendicular to the plane of the spiral antenna 1.
  • the omnidirectional radiation characteristic is particularly advantageously suitable for mobile use with terrestrial radio services.
  • this is a radiation characteristic with a main beam direction perpendicular to the plane of the spiral antenna 1, which using circular polarization for use with satellite-based navigation u. Communication services is particularly suitable.
  • the spiral antenna 1 can thus be used to implement a first or omnidirectional mode with an omnidirectional radiation characteristic and a second or zenith mode with a radiation characteristic which has a main beam direction perpendicular to the plane of the spiral antenna 1 and is referred to below as zenith radiation ,
  • FIG. 3 and FIG. 4 Radiation characteristics are shown in FIG. 3 and FIG. 4, the same spiral antenna 1, the same reference symbols denoting the same elements.
  • the single arrows in FIGS. 3 and 4 show current vectors on the spiral arms 11, 12, 13, 14 in a snapshot. 3 shows a current distribution for the omnidirectional mode, while FIG. 4 shows a current distribution for the zenith mode.
  • the first spiral arm 11 and the third spiral arm 13 are fed in phase.
  • the second spiral arm 12 and the fourth spiral arm 14 are also fed in phase, but out of phase by 180 ° with respect to the first spiral arm 11 and the third spiral arm 13.
  • the current vectors of adjacent spiral arms at their inner spiral arm ends are each out of phase, that is to say out of phase by 180 °.
  • a radiation region of the spiral antenna 1 can be determined.
  • the spiral antenna 1 emits where currents are in phase in adjacent spiral arms. Due to the different path lengths of the spiral arms from a first fixed angle ⁇ 0 to a second fixed angle ⁇ _, the phase difference between the waves running in neighboring spiral arms changes.
  • the two fixed angles ⁇ 0 , ⁇ ⁇ are defined in a cylindrical coordinate system, the central axis of which runs perpendicularly through the center of the spiral antenna 1.
  • the phase difference of 180 ° between adjacent spiral arms at the feed points or at the inner spiral arm ends in the middle of the spiral antenna is reduced to 0 ° at a first radius r ⁇ .
  • In-phase between adjacent spiral arms can be achieved with a path difference of a wavelength ⁇ or a multiple of the wavelength ⁇ between points of these spiral arms which are opposite one another point symmetrically to the central axis of the spiral antenna 1, since currents at such point symmetrically opposite points regardless of their distance from the center of the spiral antenna 1 in opposite spatial directions are directed.
  • This path difference corresponds to that between the distance to be traveled on the neighboring spiral arms.
  • the currents are then directed in opposite spatial directions as shown in FIG. 3.
  • the path difference mentioned corresponds to the wavelength ⁇ .
  • the radiation thus occurs where the circumference of the spiral arms is 2 ⁇ , where ⁇ is the wavelength of the wave
  • the speed of propagation of the wave on the spiral antenna 1 is indicated by c.
  • the spiral antenna 1 In omnidirectional mode, the spiral antenna 1 only radiates above the first lower cut-off frequency f in l a ⁇ • Due to the fact that currents at points symmetrically opposite one another are directed in opposite spatial directions, the radiation contributions of these currents cancel each other perpendicular to the plane of the spiral antenna 1 and constructively overlap in directions parallel to the plane of the
  • Spiral antenna 1 This achieves the omnidirectional radiation mode.
  • the second spiral arm 12 and the fourth spiral arm 14 are fed with a 180 ° phase difference, while the first spiral arm 11 and the third spiral arm 13, which are connected via the first bridge 40 to the first inner conductor 21 of the coplanar line 2 , are at a fixed zero potential midway between the potentials on the second spiral arm 12 and the fourth spiral arm 14. This results in only one on the second spiral arm 12 and the fourth spiral arm 14
  • the radiation region can be determined in the zenith mode. Radiation also occurs in the zenith mode where currents in neighboring spiral arms are in phase, even if they are separated by a currentless spiral arm.
  • the currents in adjacent spiral arms 12, 14 separated only by the first spiral arm 11 or the third spiral arm 13 are in phase when the path difference on the second spiral arm 12 or on the fourth spiral arm 14 between points ⁇ / 2 which are symmetrically opposite one another or odd multiples of it.
  • the circumference of the second spiral arm 12 or the fourth spiral arm 14 is equal to the wavelength ⁇ .
  • the limit condition is also given here in that the second radius X cannot become larger than the radius r of the spiral antenna 1.
  • a second lower limit frequency fi n 2 becomes
  • spiral antenna 1 in the form of an Archimedean spiral has been described.
  • shape of the However, spiral antenna 1 is not limited to purely Archimedean spirals.
  • the spiral structure can, for example, also be logarithmic-periodic.
  • Coplanar line 2 for feeding the spiral antenna 1 is explained below with reference to FIG. 5 and FIG. 6.
  • 55 denotes a so-called three-gate with a first gate 60, a second gate 65 and a third gate 70.
  • the three-gate 55 comprises a third carrier material 75, which is identical or different to the first carrier material 45 or to the second carrier material Can be 50.
  • a second inner conductor 30 and a third inner conductor 31 perpendicular to it are arranged on this third carrier material 75, the second inner conductor 30 and the third inner conductor 31 being galvanically separated from one another and thus not being in electrically conductive contact with one another.
  • the three-port 55 further includes a third reference potential surface 35 and a fourth reference potential surface 36.
  • the second inner conductor 30, the third inner conductor 31, the third reference potential surface 35 and the fourth reference potential surface 36 are electrically conductive, for example metallic.
  • the second inner conductor 30 and the third inner conductor 31 are electrically insulated by the third carrier material 75 from the third reference potential surface 35 and the fourth reference potential surface 36 in the form of a slot surrounding the respective inner conductor 30, 31.
  • the second inner conductor 30 divides the three-port 55 into a left and a right half. In the left half, the third inner conductor 31 runs perpendicular to the second inner conductor 30.
  • the third reference potential area 35 is located exclusively in the left half of the three-way gate 55.
  • the fourth reference potential area 36 is located exclusively in the right half of the three-port 55.
  • the first gate 60 of the three Tors 55 is connected to the end of the coplanar line 2 facing away from the spiral antenna 1, the second inner conductor 30 being connected to the first inner conductor 21.
  • the third reference potential area 35 is connected to the second reference potential area 23 at the first gate 60.
  • the fourth reference potential surface 36 is connected to the first reference potential surface 22 at the first gate 60.
  • the three-gate 55 comprises the second gate 65, which is likewise formed from the first inner conductor 30, the third reference potential area 35 and the fourth reference potential area 36 and for feeding in signals for the omnidirectional Fashion serves.
  • the third gate 70 is formed by the third inner conductor 31 and the third reference potential surface 35 and is used to feed signals for radiation in the zenith mode.
  • the third reference potential area 35 and the fourth reference potential area 36 are electrically conductively connected to one another via a second electrically conductive, for example metallic, bridge 32.
  • the third inner conductor 31 is electrically conductively connected to the fourth reference potential surface 36 by a third electrically conductive, for example metallic, bridge 33.
  • the second bridge 32 is spaced from the third bridge 33 in the direction of the second gate 65.
  • the generation of the omnidirectional radiation characteristic is achieved in that the electrical field distribution on the feeding coplanar line 2 is symmetrical. This corresponds to the so-called “odd mode”.
  • This symmetrical electrical field distribution is shown in a snapshot according to FIG. 5 by arrows in the slots formed by the third carrier material 75 between the third reference potential area 35 or the fourth reference potential area 36 and the second inner conductor 30 shown.
  • the second bridge 32 which keeps the third reference potential area 35 and the fourth reference potential area 36 on both sides of the second inner conductor 30 at the same potential, does not have a disruptive effect here, since in the “odd mode” the third reference potential area 35 and the fourth reference potential area 36 open from the start
  • the third bridge 33 which connects the fourth reference potential surface 36 to the third inner conductor 31, is likewise not disturbing, since it also connects the third inner conductor 31 to the potential of the fourth reference potential surface 36.
  • the third inner conductor 31 is thus decoupled from the second inner conductor 30.
  • the generation of the zenith mode on the spiral antenna 1 is achieved by an asymmetrical electrical field distribution on the feeding coplanar line 2 and the second inner conductor 30.
  • FIG. 6 outlines this field distribution, which is referred to as “even mode”, with corresponding arrows in the slots formed by the third carrier material 75 between the third reference potential area 35 or the fourth reference potential area 36 and the second inner conductor 30.
  • the asymmetrical electric field distribution can be achieved by the arrangement of the second inner conductor 30, the third inner conductor 31, the second bridge 32 and the third bridge 33 on the three -Tor 55 are generated.
  • the "Odd mode” is generated at the third gate 70, which leads to a symmetrical electrical field distribution between the third inner conductor 31 and the third reference potential surface 35, as indicated by the arrows in the formed by the third carrier material 75 Slits between the third Reference potential surface 35 and the third inner conductor 31 according to Figure 6 is shown.
  • the coupling of the easy-to-generate “odd mode” from the third gate 70 to the first gate 60 is described in “Uniplanar MMIC-A Proposed New MMIC Structure” by Thirota, Y. Tararusawa, H. Agawa, IEEE Transactions on Microwave Theory and Technics, vol .35, no.6, pp. 576-581, June 1987.
  • the "odd mode" generated at the third gate 70 generates a potential difference between the third inner conductor 31 and the third reference potential area 35.
  • the fourth reference potential area 36 is at the same potential as the third inner conductor 31 through the third bridge 33. This creates a potential difference between the third reference potential area 35 and the fourth reference potential area 36. This potential difference causes the “even mode”, which spreads in both directions between the first port 60 and the second port 65.
  • the second bridge 32 is provided, which is the third reference potential area 35 and the fourth
  • the generation of the omnidirectional mode with the described combined supply is frequency-independent, while depending on the position of the second bridge 32, the generation of the zenith mode is limited to certain frequency bands.
  • the omnidirectional mode and the zenith mode can be fed simultaneously via the three-port 55. Also a simultaneous one
  • Receiving in omnidirectional mode and in zenith mode is possible with the three-port 55 described. Simultaneous transmission in one mode and receiving in another mode is also possible with the three-gate 55 described.
  • the lower limit frequency for the radiation from the spiral antenna 1 in the omnidirectional mode or in the zenith mode is also influenced by the length of the tapering on the coplanar line 2.
  • the lower limit frequency can be reduced if the tapering on the coplanar line 2 is extended.
  • the transition from the coplanar line 2 to the spiral antenna 1 is independent of the jump in the dielectric constant of the carrier materials.
  • a low-premititive first carrier material 45 can be selected for the spiral antenna 1, with which good radiation is achieved, while at the same time a high-permittivity second carrier material 50 is selected for the coplanar line 2, which enables a reduction in the length of the coplanar line 2 and Suppresses parasitic radiation from the coplanar line 2 or makes the coplanar line 2 independent of the radiation field of the spiral antenna 1.
  • the spiral antenna 1 is particularly suitable for flat installation in the body of a motor vehicle, in particular in the roof or in the trunk lid of the motor vehicle, since an aerodynamic and aesthetic installation can be achieved with it. This results in a simple, hole-free assembly of the
  • Spiral antenna in the body of the motor vehicle which prevents corrosion spots in the body.

Abstract

The invention relates to a helical antenna (1) which can be supplied with various radiating characteristics in different modes. The helical antenna (1) comprises four electrically conductive helical limbs (11, 12, 13, 14) which are guided in an approximately parallel manner. The helical limbs (11, 12, 13, 14) are connected via their respective inner helical limb ends (5, 6, 7, 8) to a coplanar line (2) for supplying and/or receiving signals.

Description

Spiralantennespiral antenna
Stand der TechnikState of the art
Die Erfindung geht von einer Spiralantenne nach der Gattung des Hauptanspruchs aus .The invention is based on a spiral antenna according to the preamble of the main claim.
Aus dem Buch „Four-Arm Spiral Antennas" von R.G. Corzine, J.A. Moskos, Artech House, 1990 sind bereits vierarmige Spiral- antennen bekannt.Four-arm spiral antennas are already known from the book "Four-Arm Spiral Antennas" by R.G. Corzine, J.A. Moskos, Artech House, 1990.
Vorteile der ErfindungAdvantages of the invention
Die erfindungsgemäße Spiralantenne mit den Merkmalen des Hauptanspruchs hat demgegenüber den Vorteil, daß die Spiralarme an ihrem jeweiligen inneren Spiralarmende an eine Koplanarleitung zur Speisung und /oder zum Empfang von Signalen angeschlossen sind. Durch Verwendung derThe spiral antenna according to the invention with the features of the main claim has the advantage that the spiral arms are connected at their respective inner spiral arm end to a coplanar line for supplying and / or receiving signals. By using the
Koplanarleitung kann auf Speisenetzwerke zur Einstellung der Phasenlagen an den Einspeisepunkten der Spiralantenne beziehungsweise zur Symmetrierung oder Asymmetrierung des einzuspeisenden elektrischen Feldes verzichtet und damit Aufwand eingespart werden.Coplanar lines can be dispensed with feed networks for setting the phase positions at the feed points of the spiral antenna or for balancing or asymmetrizing the electrical field to be fed in, and thus saving effort.
Ein weiterer Vorteil besteht darin, daß die Spiralantenne durch die Verwendung der Koplanarleitung sowohl in einem ersten Mode zur Erzeugung einer omnidirektionalen Abstrahlcharakteristik als auch in einem zweiten Mode zu Erzeugung einer gerichteten Abstrahlcharakteristik senkrecht zur Spiralebene betrieben werden kann. Auf diese Weise läßt sich die Spiralantenne als Kombinationsantenne für verschiedene Funkdienste nutzen.Another advantage is that by using the coplanar line, the spiral antenna increases both in a first mode for generating an omnidirectional radiation characteristic and in a second mode Generation of a directional radiation characteristic can be operated perpendicular to the spiral plane. In this way, the spiral antenna can be used as a combination antenna for various radio services.
Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der im Hauptanspruch angegebenen Spiralantenne möglich.The measures listed in the subclaims permit advantageous developments and improvements of the spiral antenna specified in the main claim.
Besonders vorteilhaft ist es, daß die Koplanarleitung und die Spiralantenne auf verschiedenen Trägermaterialien aufgebracht werden können. Der Übergang von der Koplanarleitung zur Spiralantenne ist unabhängig von einem eventuellen Sprung der Dielektrizitätskonstanten. Damit kann ein niederpermittives Trägermaterial für die Spiralantenne gewählt werden, womit eine gute Abstrahlung erreicht wird. Gleichzeitig kann ein hochpermittives Trägermaterial für die Koplanarleitung gewählt werden, wodurch eine Reduktion der Länge der Koplanarleitung ermöglicht und eine parasitäre Abstrahlung von der Koplanarleitung unterdrückt wird, so daß die Koplanarleitung vom Strahlungsfeld der Spiralantenne unabhängig gemacht werden kann.It is particularly advantageous that the coplanar line and the spiral antenna can be applied to different carrier materials. The transition from the coplanar line to the spiral antenna is independent of a possible jump in the dielectric constant. In this way, a low-permittivity carrier material can be selected for the spiral antenna, with which good radiation is achieved. At the same time, a highly permeable carrier material can be selected for the coplanar line, which enables a reduction in the length of the coplanar line and suppresses parasitic radiation from the coplanar line, so that the coplanar line can be made independent of the radiation field of the spiral antenna.
Ein weiterer Vorteil besteht darin, daß die Koplanarleitung zumindest teilweise als Taper ausgebildet ist. Auf diese Weise ist kein zusätzliches Netzwerk zur Anpassung der Impedanz der Koplanarleitung an die Eingangsimpedanz der Spiralantenne erforderlich.Another advantage is that the coplanar line is at least partially designed as a taper. In this way, no additional network is required to match the impedance of the coplanar line to the input impedance of the spiral antenna.
Zeichnungdrawing
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 eine dreidimensionale Ansicht einer Spiralantenne mit einer Koplanarleitung, Figur 2 eine Draufsicht auf eine getaperte Koplanarleitung, Figur 3 eine Draufsicht auf eine Spiralantenne mit Stromvektoren für einen omnidirektionalen Strahlungsmode, Figur 4 eine Spiralantenne mit Stromvektoren für einen Strahlungsmode mit gerichteter Abstrahlung, Figur 5 ein Dreitor mit symmetrischer elektrischer Feldverteilung und Figur 6 ein Dreitor mit asymmetrischer elektrischer Feldverteilung.An embodiment of the invention is shown in the drawing and explained in more detail in the following description. FIG. 1 shows a three-dimensional view of a spiral antenna with a coplanar line, FIG. 2 shows a Top view of a tapered coplanar line, FIG. 3 a top view of a spiral antenna with current vectors for an omnidirectional radiation mode, FIG. 4 a spiral antenna with current vectors for a radiation mode with directional radiation, FIG. 5 a three-port with symmetrical electrical field distribution and FIG. 6 a three-port with asymmetrical electrical field distribution ,
Beschreibung des AusführungsbeispielsDescription of the embodiment
In Figur 1 kennzeichnet 1 eine Spiralantenne, die einen ersten Spiralarm 11, einen zweiten Spiralarm 12, einen dritten Sprialarm 13 und einen vierten Spiralarm 14 umfaßt . Im Zentrum der Spiralantenne weist der erste Spiralarm 11 ein erstes inneres Spiralarmende 5, der zweite Spiralarm 12 ein zweites inneres Spiralarmende 6, der dritte Spiralarm 13 ein drittes inneres Spiralarmende 7 und der vierte Spiralarm 14 ein viertes inneres Spiralarmende 8 auf . Das dritte innere Spiralarmende 7 ist aufgrund der perspektivischen Darstellung in Figur 1 nicht erkennbar, ist jedoch in der Draufsicht gemäß Figur 3 und Figur 4 dargestellt. Die vier Spiralarme 11, 12, 13, 14 sind etwa parallel geführt. Weiterhin kennzeichnet in Figur 1, 2 eine Koplanarleitung mit einem ersten Innenleiter 21, einer ersten Bezugspotentialfläche 22 und einer zweitenIn FIG. 1, 1 denotes a spiral antenna which comprises a first spiral arm 11, a second spiral arm 12, a third spiral arm 13 and a fourth spiral arm 14. In the center of the spiral antenna, the first spiral arm 11 has a first inner spiral arm end 5, the second spiral arm 12 a second inner spiral arm end 6, the third spiral arm 13 a third inner spiral arm end 7 and the fourth spiral arm 14 a fourth inner spiral arm end 8. The third inner spiral arm end 7 cannot be seen on the basis of the perspective illustration in FIG. 1, but is shown in the top view according to FIGS. 3 and 4. The four spiral arms 11, 12, 13, 14 are guided approximately in parallel. Furthermore, in FIG. 1, 2 characterizes a coplanar line with a first inner conductor 21, a first reference potential area 22 and a second one
Bezugspotentialfläche 23. Die vier Spiralarme 11, 12, 13, 14 sind aus elektrisch leitfähigem Material gebildet und auf einem ersten Trägermaterial 45 aufgebracht. Die Spiralarme 11, 12, 13, 14 können beispielsweise aus einem Metall gebildet sein. Der erste Innenleiter 21, die erste Bezugspotentialfläche 22 und die zweite Bezugspotentialfläche 23 sind ebenfalls aus elektrisch leitfähigem Material ausgebildet und auf einem zweiten Trägermaterial 50 aufgebracht. Bei dem ersten Trägermaterial 45 und dem zweiten Trägermaterial 50 kann es sich um das gleiche Trägermaterial handeln. Das erste Trägermaterial 45, kann jedoch vom zweiten Trägermaterial 50 auch verschieden sein. Über eine elektrisch leitfähige erste Brücke 40, die beispielsweise auf das erste Trägermaterial 45 aufgebracht ist, ist das erste innere Spiralarmende 5 mit dem dritten inneren Spiralarmende 7 elektrisch leitend verbunden. Dabei liegen das erste innere Spiralarmende 5 und das dritte innere Spiralarmende 7 gemäß Figur 3 und Figur 4 einander gegenüber. Auch das zweite innere Spiralarmende 6 und das vierte innere Spiralarmende 8 liegen gemäß Figur 3 und Figur 4 einander gegenüber, ohne jedoch durch eine elektrisch leitfähige Brücke miteinander verbunden zu sein. Die Speisung der Spiralarme 11, 12, 13, 14 mit von der Spiralantenne 1 abzustrahlenden Signalen erfolgt über die entsprechenden inneren Spiralarmenden 5, 6, 7, 8 und dieReference potential surface 23. The four spiral arms 11, 12, 13, 14 are formed from electrically conductive material and applied to a first carrier material 45. The spiral arms 11, 12, 13, 14 can be formed, for example, from a metal. The first inner conductor 21, the first reference potential area 22 and the second reference potential area 23 are likewise formed from electrically conductive material and applied to a second carrier material 50. The first carrier material 45 and the second carrier material 50 can be the act the same carrier material. The first carrier material 45, however, can also be different from the second carrier material 50. The first inner spiral arm end 5 is electrically conductively connected to the third inner spiral arm end 7 via an electrically conductive first bridge 40, which is applied, for example, to the first carrier material 45. The first inner spiral arm end 5 and the third inner spiral arm end 7 according to FIG. 3 and FIG. 4 lie opposite one another. According to FIGS. 3 and 4, the second inner spiral arm end 6 and the fourth inner spiral arm end 8 also lie opposite one another, but without being connected to one another by an electrically conductive bridge. The supply of the spiral arms 11, 12, 13, 14 with signals to be radiated from the spiral antenna 1 takes place via the corresponding inner spiral arm ends 5, 6, 7, 8 and
Koplanarleitung 2. Gemäß Figur 1 ist die Koplanarleitung 2 senkrecht zur Ebene der Spiralantenne 1 angeordnet und in die Mitte der Spiralantenne 1 geführt. Dabei ist der erste Innenleiter 21 elektrisch leitend mit der ersten Brücke 40 verbunden. Die erste Bezugspotentialfläche 22 ist elektrisch leitend mit dem zweiten inneren Spiralarmende 6 verbunden. Die zweite Bezugspotentialfläche 23 ist elektrisch leitend mit dem vierten inneren Spiralarmende 8 verbunden. Die Koplanarleitung 2 dient zur Speisung der Spiralantenne 1 mit von der Spiralantenne 1 abzustrahlenden Signalen und kann zusätzlich oder alternativ auch zum Empfang von Signalen durch die Spiralantenne 1 verwendet werden.Coplanar line 2. According to FIG. 1, the coplanar line 2 is arranged perpendicular to the plane of the spiral antenna 1 and guided into the center of the spiral antenna 1. The first inner conductor 21 is electrically conductively connected to the first bridge 40. The first reference potential surface 22 is electrically conductively connected to the second inner spiral arm end 6. The second reference potential surface 23 is electrically conductively connected to the fourth inner spiral arm end 8. The coplanar line 2 serves to supply the spiral antenna 1 with signals to be radiated from the spiral antenna 1 and can additionally or alternatively also be used to receive signals by the spiral antenna 1.
Die Spiralantenne 1 wird als selbstkomplementär bezeichnet, wenn ihre Spiralarme 11, 12, 13, 14 bei einer Drehung um 45° vollständig auf die Bereiche abgebildet werden, die vor der Drehung die Freiräume zwischen den Spiralarmen 11, 12, 13, 14 bildeten. Entsprechend werden bei einer solchen Drehung die vor der Drehung bestehenden Freiräume vollständig auf Bereiche abgebildet, die vor der Drehung die Spiralarme 11, 12, 13, 14 bildeten. Die Drehachse geht in beiden Fällen durch die Mitte der Spiralantenne 1, senkrecht zur Ebene der Spiralantenne 1, und wird im folgenden als Mittelachse bezeichnet .The spiral antenna 1 is said to be self-complementary if its spiral arms 11, 12, 13, 14 are completely mapped onto the areas that formed the free spaces between the spiral arms 11, 12, 13, 14 before the rotation. Correspondingly, with such a rotation, the free spaces existing before the rotation are completely mapped onto areas which, before the rotation, the spiral arms 11, 12, 13, 14 formed. In both cases, the axis of rotation passes through the center of the spiral antenna 1, perpendicular to the plane of the spiral antenna 1, and is referred to below as the central axis.
Wenn die Breite der Spiralarme 11, 12, 13, 14 so gewählt ist, daß die Spirale selbstkomplementär ist, dann ergibt sich eine Eingangsimpedanz an den inneren Spiralarmenden 5, 6, 7, 8 von 94Ω. Die Eingangsimpedanz steigt mit dünner werdenden Spiralarmen und sinkt mit breiteren Spiralarmen, jeweils im Verhältnis zur Breite der Freiräume zwischen den Spiralarmen 11, 12, 13, 14. Die Anpassung dieser Impedanz an die herkömmlich geforderte Impedanz von 50Ω erfordert eine Impedanztransformation, die beispielsweise durch Taperung der Koplanarleitung 2 erzielt werden kann. In Figur 2 ist die Koplanarleitung 2 nochmals allein dargestellt, wobei gleiche Bezugszeichen gleiche Elemente wie in Fig. 1 kennzeichnen. Gemäß Figur 1 und Figur 2 verbreitern sich der erste Innenleiter 21, die erste Bezugspotentialfläche 22 und die zweite Bezugspotentialfläche 23 ausgehend von denIf the width of the spiral arms 11, 12, 13, 14 is selected so that the spiral is self-complementary, then there is an input impedance of 94Ω on the inner spiral arm ends 5, 6, 7, 8. The input impedance increases with thinning spiral arms and decreases with wider spiral arms, in each case in relation to the width of the free spaces between the spiral arms 11, 12, 13, 14. The adaptation of this impedance to the conventionally required impedance of 50Ω requires an impedance transformation, for example by tapering the coplanar line 2 can be achieved. In Figure 2, the coplanar line 2 is shown again alone, the same reference numerals identifying the same elements as in Fig. 1. According to FIG. 1 and FIG. 2, the first inner conductor 21, the first reference potential area 22 and the second reference potential area 23 broaden starting from the
Anschlüssen an die Spiralantenne 1 in Richtung zu einem in Figur 1 und Figur 2 nicht dargestellten Speise- und/oder Empfangsnetzwerk auf der der Spiralantenne 1 abgewandten Seite der Koplanarleitung 2. Die Verbreitung ist dabei gemäß Figur 1 und Figur 2 linear, so daß sich eine lineareConnections to the spiral antenna 1 in the direction of a feed and / or reception network (not shown in FIG. 1 and FIG. 2) on the side of the coplanar line 2 facing away from the spiral antenna 1. The distribution is linear in accordance with FIG. 1 and FIG. 2, so that a linear
Taperung der Koplanarleitung 2 ergibt. Es kann jedoch auch eine nichtlineare Taperung der Koplanarleitung vorgesehen sein, beispielsweise eine exponentielle Taperung. Die Länge, auf der die Koplanarleitung 2 getapert ist, muß mindestens ein Viertel der Wellenlänge der mittleren Betriebsfrequenz der Spiralantenne 1 betragen. Je nachdem, wie breit die Spiralarme 11, 12, 13, 14 sind und welche Eingangsimpedanz sich dadurch an den inneren Spiralarmenden 5, 6, 7, 8 ergibt, kann durch entsprechende Taperung der Koplanarleitung 2 diese Eingangsimpedanz an die geforderten 50Ω angepaßt werden, so daß durch die Taperung die Koplanarleitung 2 flexibel an die Geometrie der Spiralantenne 1 angepaßt werden kann.Tapering of the coplanar line 2 results. However, non-linear tapering of the coplanar line can also be provided, for example exponential tapering. The length over which the coplanar line 2 is taped must be at least a quarter of the wavelength of the mean operating frequency of the spiral antenna 1. Depending on how wide the spiral arms 11, 12, 13, 14 are and what input impedance this results at the inner spiral arm ends 5, 6, 7, 8, this input impedance can be matched to the required by tapering the coplanar line 2 50Ω can be adjusted so that the coplanar line 2 can be flexibly adapted to the geometry of the spiral antenna 1 by tapering.
Über die Koplanarleitung 2 kann die Spiralantenne 1 auf einfache Weise zum Abstrahlen von Signalen gespeist werden, wobei zwei verschiedene Abstrahlcharakteristiken erzeugt werden können. Zum einen ist dies eine omnidirektionale Abstrahlcharakteristik mit einer Nullstelle senkrecht zur Ebene der Spiralantenne 1. Die omnidirektionale Abstrahlcharakteristik ist besonders vorteilhaft für den mobilen Einsatz mit terrestrischen Funkdiensten geeignet. Zum andern ist dies eine Abstrahlcharakteristik mit einer Hauptstrahlrichtung senkrecht zur Ebene der Spiralantenne 1, die unter Verwendung von zirkularer Polarisation für den Einsatz mit satellitengestützten Navigations- u. Kommunikationsdiensten besonders geeignet ist . Mit der Spiralantenne 1 läßt sich also ein erster oder omnidirektionaler Mode mit einer omnidirektionalen Abstrahl- Charakteristik und ein zweiter oder Zenit-Mode mit einer Abstrahlcharakteristik, die eine Hauptstrahlrichtung senkrecht zur Ebene der Spiralantenne 1 aufweist und im folgenden als Zenit-Strahlung bezeichnet wird, realisieren.Via the coplanar line 2, the spiral antenna 1 can be fed in a simple manner for the radiation of signals, two different radiation characteristics being able to be generated. On the one hand, this is an omnidirectional radiation characteristic with a zero point perpendicular to the plane of the spiral antenna 1. The omnidirectional radiation characteristic is particularly advantageously suitable for mobile use with terrestrial radio services. On the other hand, this is a radiation characteristic with a main beam direction perpendicular to the plane of the spiral antenna 1, which using circular polarization for use with satellite-based navigation u. Communication services is particularly suitable. The spiral antenna 1 can thus be used to implement a first or omnidirectional mode with an omnidirectional radiation characteristic and a second or zenith mode with a radiation characteristic which has a main beam direction perpendicular to the plane of the spiral antenna 1 and is referred to below as zenith radiation ,
Zur Erläuterung der Erzeugung der verschiedenen Modes oderTo explain the generation of the different modes or
Abstrahlcharakteristiken ist in Figur 3 und Figur 4 dieselbe Spiralantenne 1 dargestellt, wobei gleiche Bezugszeichen gleiche Elemente kennzeichnen. Die Einfach-Pfeile in den Figuren 3 und 4 geben dabei Stromvektoren auf den Spiralarmen 11, 12, 13, 14 in einer Momentaufnahme wieder. In Fig. 3 ist dabei eine Stromverteilung für den omnidirektionalen Mode dargestellt, während in Figur 4 eine Stromverteilung für den Zenit-Mode gezeigt ist. Beim omnidirektionalen Mode gemäß Figur 3 werden der erste Spiralarm 11 und der dritte Spiralarm 13 gleichphasig gespeist . Auch der zweite Spiralarm 12 und der vierte Spiralarm 14 werden gleichphasig gespeist, jedoch um 180° phasenverschoben gegenüber dem ersten Spiralarm 11 und dem dritten Spiralarm 13. Dies ist durch die Richtung der Stromvektoren an den inneren Spiralarmenden 5, 6, 7, 8, also an den Einspeisepunkten, gemäß der in Figur 3 skizzierten Momentaufnahme der Stromverteilung dargestellt. Gemäß Figur 3 sind dabei die Stromvektoren benachbarter Spiralarme an deren inneren Spiralarmenden jeweils gegenphasig, also um 180° phasenverschoben. Mit Hilfe dieser Stromverteilung an den Einspeisepunkten und geometrischer Betrachtungen läßt sich eine Abstrahlregion der Spiralantenne 1 bestimmen. Die Spiralantenne 1 strahlt dort ab, wo Ströme in benachbarten Spiralarmen in Phase sind. Aufgrund der unterschiedlichen Weglängen der Spiralarme von einem ersten festen Winkel φ0 bis zu einem zweiten festen Winkel φ_ verändert sich der Phasenunterschied zwischen den in benachbarten Spiralarmen laufenden Wellen. Dabei sind die beiden festen Winkel φ0, φ^ in einem zylindrischen Koordinatensystem definiert, dessen Mittelachse senkrecht durch die Mitte der Spiralantenne 1 läuft. Der Phasenunterschied von 180° zwischen benachbarten Spiralarmen an den Einspeisepunkten beziehungsweise an den inneren Spiralarmenden in der Mitte der Spiralantenne wird bei einem ersten Radius r^ auf 0° reduziert. Gleichphasigkeit zwischen benachbarten Spiralarmen kann bei einem Wegunterschied von einer Wellenlänge λ oder einem Vielfachen der Wellenlänge λ zwischen punktsymmetrisch zur Mittelachse der Spiralantenne 1 einander gegenüberliegenden Punkten dieser Spiralarme erreicht werden, da Ströme an solchen punktsymmetrisch gegenüberliegenden Punkten unabhängig von deren Abstand zur Mitte der Spiralantenne 1 in entgegengesetzte Raumrichtungen gerichtet sind. Dieser Wegunterschied entspricht dabei der zwischen den gegenüberliegenden Punkten zurückzulegende Strecke auf den benachbarten Spiralarmen. An diesen einander gegenüberliegenden Punkten der Spiralarme sind die Ströme dann wie in Figur 3 dargestellt in entgegengesetzte Raumrichtungen gerichtet. Bei der unter dieser Bedingung am nächsten zur Mitte der Spiralantenne 1 liegenden Abstrahlregion der Spiralantenne 1 entspricht der genannte Wegunterschied der Wellenlänge λ. Damit tritt die Abstrahlung dort auf, wo der Umfang der Spiralarme 2λ beträgt, wobei λ die Wellenlänge der Welle auf denRadiation characteristics are shown in FIG. 3 and FIG. 4, the same spiral antenna 1, the same reference symbols denoting the same elements. The single arrows in FIGS. 3 and 4 show current vectors on the spiral arms 11, 12, 13, 14 in a snapshot. 3 shows a current distribution for the omnidirectional mode, while FIG. 4 shows a current distribution for the zenith mode. In the omnidirectional mode according to FIG. 3, the first spiral arm 11 and the third spiral arm 13 are fed in phase. The second spiral arm 12 and the fourth spiral arm 14 are also fed in phase, but out of phase by 180 ° with respect to the first spiral arm 11 and the third spiral arm 13. This is due to the direction of the current vectors at the inner spiral arm ends 5, 6, 7, 8, that is at the feed-in points, according to the snapshot of the current distribution sketched in FIG. 3. According to FIG. 3, the current vectors of adjacent spiral arms at their inner spiral arm ends are each out of phase, that is to say out of phase by 180 °. With the aid of this current distribution at the feed-in points and geometric considerations, a radiation region of the spiral antenna 1 can be determined. The spiral antenna 1 emits where currents are in phase in adjacent spiral arms. Due to the different path lengths of the spiral arms from a first fixed angle φ 0 to a second fixed angle φ_, the phase difference between the waves running in neighboring spiral arms changes. The two fixed angles φ 0 , φ ^ are defined in a cylindrical coordinate system, the central axis of which runs perpendicularly through the center of the spiral antenna 1. The phase difference of 180 ° between adjacent spiral arms at the feed points or at the inner spiral arm ends in the middle of the spiral antenna is reduced to 0 ° at a first radius r ^. In-phase between adjacent spiral arms can be achieved with a path difference of a wavelength λ or a multiple of the wavelength λ between points of these spiral arms which are opposite one another point symmetrically to the central axis of the spiral antenna 1, since currents at such point symmetrically opposite points regardless of their distance from the center of the spiral antenna 1 in opposite spatial directions are directed. This path difference corresponds to that between the distance to be traveled on the neighboring spiral arms. At these opposite points of the spiral arms, the currents are then directed in opposite spatial directions as shown in FIG. 3. In the radiation region of the spiral antenna 1 closest to the center of the spiral antenna 1 under this condition, the path difference mentioned corresponds to the wavelength λ. The radiation thus occurs where the circumference of the spiral arms is 2λ, where λ is the wavelength of the wave
Spiralarmen ist. Da der erste Radius r^ nicht größer sein kann als der Radius r der Spiralantenne 1 ist mitIs spiral arms. Since the first radius r ^ can not be greater than the radius r of the spiral antenna 1 is with
2λ = 2πr1= 2πr2λ = 2πr 1 = 2πr
eine Grenzbedingung gegeben. Daraus ergibt sich eine erste untere Grenzfrequenz fminl der Spiralantenne 1 im omnidirektionalen Mode zugiven a boundary condition. This results in a first lower limit frequency f m in l of the spiral antenna 1 in omnidirectional mode
fminl = c/(πr) . f minl = c / ( πr ) .
Die Ausbreitungsgeschwindigkeit der Welle auf der Spiralantenne 1 ist mit c angegeben. Die Spiralantenne 1 strahlt im omnidirektionalen Mode nur oberhalb der ersten unteren Grenzfrequenz f inl a^ • Aufgrund der Tatsache, daß Ströme an punktsymmetrisch einander gegenüberliegenden Punkten in entgegengesetzte Raumrichtungen gerichtet sind, heben sich die Strahlungsbeiträge dieser Ströme senkrecht zur Ebene der Spiralantenne 1 auf und überlagern sich konstruktiv in Richtungen parallel zur Ebene derThe speed of propagation of the wave on the spiral antenna 1 is indicated by c. In omnidirectional mode, the spiral antenna 1 only radiates above the first lower cut-off frequency f in l a ^ • Due to the fact that currents at points symmetrically opposite one another are directed in opposite spatial directions, the radiation contributions of these currents cancel each other perpendicular to the plane of the spiral antenna 1 and constructively overlap in directions parallel to the plane of the
Spiralantenne 1. Dadurch wird der omnidirektionale Strahlungsmode erzielt .Spiral antenna 1. This achieves the omnidirectional radiation mode.
In Figur 3 ist der halbe für die Abstrahlung erforderliche Wegunterschied durch einen Doppelpfeil dargestellt, wobei der halbe Wegunterschied der halben Wellenlänge λ/2 entspricht, wobei bei Zürücklegung dieses Weges auf den benachbarten Spiralarmen eine Umkehr der Phasenlage erfolgt, wie an der Umkehrung der Stromvektoren in Fig. 3 dargestellt ist.In Figure 3, half of the path difference required for the radiation is shown by a double arrow, wherein half the path difference corresponds to half the wavelength λ / 2, the phase position being reversed when this path is covered on the neighboring spiral arms, as shown by the reversal of the current vectors in FIG. 3.
Beim Zenit-Mode gemäß Figur 4 werden der zweite Spiralarm 12 und der vierte Spiralarm 14 mit 180° Phasendifferenz gespeist, während der erste Spiralarm 11 und der dritte Spiralarm 13, die über die erste Brücke 40 mit dem ersten Innenleiter 21 der Koplanarleitung 2 verbunden sind, auf einem festen Null-Potential in der Mitte zwischen den Potentialen auf dem zweiten Spiralarm 12 und dem vierten Spiralarm 14 liegen. Damit ergibt sich nur auf dem zweiten Spiralarm 12 und dem vierten Spiralarm 14 eineIn the zenith mode according to FIG. 4, the second spiral arm 12 and the fourth spiral arm 14 are fed with a 180 ° phase difference, while the first spiral arm 11 and the third spiral arm 13, which are connected via the first bridge 40 to the first inner conductor 21 of the coplanar line 2 , are at a fixed zero potential midway between the potentials on the second spiral arm 12 and the fourth spiral arm 14. This results in only one on the second spiral arm 12 and the fourth spiral arm 14
Stromverteilung, die durch die Einfachpfeile gemäß Figur 4 angegeben ist, während auf dem ersten Spiralarm 11 und dem dritten Spiralarm 13 kein Strom fließt, wobei Koppelströme von benachbarten stromführenden Spiralarmen nicht berücksichtigt werden sollen. Ebenfalls mit Hilfe derCurrent distribution, which is indicated by the single arrows according to FIG. 4, while no current flows on the first spiral arm 11 and the third spiral arm 13, coupling currents from adjacent current-carrying spiral arms not to be taken into account. Also with the help of
Stromverteilung an den durch das zweite innere Spiralarmende 6 und das vierte innere Spiralarmende 8 gebildeten Einspeisepunkten und geometrischen Betrachtungen wie im Fall des omnidirektionalen Modes läßt sich beim Zenit-Mode die Abstrahlregion bestimmen. Abstrahlung tritt auch beim Zenit- Mode dort auf, wo Ströme in benachbarten Spiralarmen, auch wenn diese durch einen stromlosen weiteren Spiralarm getrennt sind, in Phase sind. Die Ströme in benachbarten, nur durch den ersten Spiralarm 11 oder den dritten Spiralarm 13 getrennten Spiralarmen 12, 14 sind dann in Phase, wenn der Wegunterschied auf dem zweiten Spiralarm 12 beziehungsweise auf dem vierten Spiralarm 14 zwischen punkt- symmetrisch einander gegenüberliegenden Punkten λ/2 oder ungeradzahlige Vielfache davon beträgt. Da die Ströme an den einander gegenüberliegenden Einspeisepunkten beziehungsweise am zweiten inneren Spiralarmende 6 und am vierten inneren Spiralarmende 8 in dieselbe Raumrichtung weisen, weisen unter der genannten Bedingung für den Wegunterschied die Ströme an allen jeweils punktsymmetrisch gegenüberliegenden Punkten des zweiten Spiralarms 12 und des vierten Spiralarms 14 in dieselbe Raumrichtung, so daß der Phasenunterschied auf dem zweiten Spiralarm 12 beziehungsweise auf dem vierten Spiralarm 14 zwischen diesen punktsymmetrisch gegenüberliegenden Punkten 180° beträgt. Also tritt Abstrahlung bei einem zweiten Radius ^2 auf, bei dem derCurrent distribution at the feed points formed by the second inner spiral arm end 6 and the fourth inner spiral arm end 8 and geometric considerations as in the case of the omnidirectional mode, the radiation region can be determined in the zenith mode. Radiation also occurs in the zenith mode where currents in neighboring spiral arms are in phase, even if they are separated by a currentless spiral arm. The currents in adjacent spiral arms 12, 14 separated only by the first spiral arm 11 or the third spiral arm 13 are in phase when the path difference on the second spiral arm 12 or on the fourth spiral arm 14 between points λ / 2 which are symmetrically opposite one another or odd multiples of it. Since the currents at the opposite entry points respectively at the second inner spiral arm end 6 and at the fourth inner spiral arm end 8 point in the same spatial direction, under the condition mentioned for the path difference, the currents at all points of the second spiral arm 12 and the fourth spiral arm 14 which are opposite each other in a point-symmetrical manner point in the same spatial direction, so that the phase difference the second spiral arm 12 or on the fourth spiral arm 14 between these point-symmetrically opposite points is 180 °. So radiation occurs at a second radius ^ 2 au f, in which the
Umfang des zweiten Spiralarms 12 beziehungsweise des vierten Spiralarms 14 gleich der Wellenlänge λ ist. Die Grenzbedingung wird auch hier dadurch gegeben, daß der zweite Radius X nicht größer werden kann, als der Radius r der Spiralantenne 1. Also wird eine zweite untere Grenzfrequenz f in2 durchThe circumference of the second spiral arm 12 or the fourth spiral arm 14 is equal to the wavelength λ. The limit condition is also given here in that the second radius X cannot become larger than the radius r of the spiral antenna 1. Thus, a second lower limit frequency fi n 2 becomes
λ = 2πr2 = 2πrλ = 2πr 2 = 2πr
hergeleitet und durchderived and by
fmin2 = c/(2πr) f min 2 = c / (2πr)
definiert. Aufgrund der Tatsache, daß Ströme an punkt- symmetrisch einander gegenüberliegenden Punkten des zweiten Spiralarms 12 beziehungsweise des vierten Spiralarms 14 in gleiche Raumrichtung gerichtet sind, überlagern sich die Strahlungsbeiträge der Ströme senkrecht zur Ebene der Spiralantenne 1 konstruktiv. Dadurch wird eine Abstrahlcharakteristik mit einem Maximum senkrecht zur Ebene der Spiralantenne 1 erzielt, die als Zenit-Strahlung bezeichnet wird.Are defined. Due to the fact that currents at points of the second spiral arm 12 or the fourth spiral arm 14 which are symmetrically opposite one another are directed in the same spatial direction, the radiation contributions of the currents are superimposed constructively perpendicular to the plane of the spiral antenna 1. This achieves a radiation characteristic with a maximum perpendicular to the plane of the spiral antenna 1, which is referred to as zenith radiation.
Gemäß den Figuren 3 und 4 wurde eine Spiralantenne in Form einer archimedischen Spirale beschrieben. Die Form der Spiralantenne 1 ist jedoch nicht auf rein archimedische Spiralen beschränkt. Die Spiralstruktur kann beispielsweise auch logarithmisch-periodisch sein.According to FIGS. 3 and 4, a spiral antenna in the form of an Archimedean spiral has been described. The shape of the However, spiral antenna 1 is not limited to purely Archimedean spirals. The spiral structure can, for example, also be logarithmic-periodic.
Die Möglichkeit der Erzeugung der beiden Moden mit derThe possibility of generating the two modes with the
Koplanarleitung 2 zur Speisung der Spiralantenne 1 wird im folgenden anhand der Figur 5 und der Figur 6 erläutert . In Fig. 5 kennzeichnet 55 ein sogenanntes Drei-Tor mit einem ersten Tor 60, einem zweiten Tor 65 und einem dritten Tor 70. Das Drei-Tor 55 umfaßt ein drittes Trägermaterial 75, das gleich oder verschieden zum ersten Trägermaterial 45 beziehungsweise zum zweiten Trägermaterial 50 sein kann. Auf diesem dritten Trägermaterial 75 ist ein zweiter Innenleiter 30 und senkrecht dazu ein dritter Innenleiter 31 angeordnet, wobei der zweite Innenleiter 30 und der dritte Innenleiter 31 galvanisch voneinander getrennt sind und somit nicht in elektrisch leitfähigem Kontakt zueinander stehen. Das Drei- Tor 55 umfaßt ferner eine dritte Bezugspotentialfläche 35 und eine vierte Bezugspotentialfläche 36. Der zweite Innenleiter 30, der dritte Innenleiter 31, die dritte Bezugspotentialfläche 35 und die vierte Bezugspotentialfläche 36 sind elektrisch leitfähig, beispielsweise metallisch, ausgebildet. Der zweite Innenleiter 30 und der dritte Innenleiter 31 sind durch das dritte Trägermaterial 75 elektrisch von der dritten Bezugspotentialfläche 35 und der vierten Bezugspotentialfläche 36 in Form eines den jeweiligen Innenleiter 30, 31 umgebenden Schlitzes isoliert. Der zweite Innenleiter 30 teilt das Dreittors 55 in eine linke und eine rechte Hälfte auf. In der linken Hälfte verläuft der dritte Innenleiter 31 senkrecht zum zweiten Innenleiter 30. Die dritte Bezugspotentialfläche 35 befindet sich ausschließlich in der linken Hälfte des Dreitors 55. Die vierte Bezugspotentialfläche 36 befindet sich ausschließlich in der rechten Hälfte des Drei-Tor 55. Das erste Tor 60 des Drei- tors 55 ist an das der Spiralantenne 1 abgewandte Ende der Koplanarleitung 2 angeschlossen, wobei der zweite Innenleiter 30 mit dem ersten Innenleiter 21 verbunden ist. Die dritte Bezugspotentialfläche 35 ist mit der zweiten Bezugspotentialfläche 23 am ersten Tor 60 verbunden. Die vierte Bezugspotentialfläche 36 ist am ersten Tor 60 mit der ersten Bezugspotentialfläche 22 verbunden. An dem dem ersten Tor 60 gegenüberliegenden Ende des zweiten Innenleiters 30 umfaßt der Drei-Tor 55 das zweite Tor 65, daß ebenfalls aus dem ersten Innenleiter 30, der dritten Bezugspotentialfläche 35 und der vierten Bezugspotentialfläche 36 gebildet wird und zur Einspeisung von Signalen für den omnidirektionalen Mode dient. Das dritte Tor 70 wird gebildet durch den dritten Innenleiter 31 und die dritte Bezugspotentialfläche 35 und dient der Einspeisung von Signalen zur Abstrahlung im Zenit-Mode. Über eine zweite elektrisch leitfähige, beispielsweise metallische Brücke 32 sind die dritte Bezugspotentialfläche 35 und die vierte Bezugspotentialfläche 36 elektrisch leitend miteinander verbunden. Durch eine dritte elektrisch leitfähige, beispielsweise metallische Brücke 33 ist der dritte Innenleiter 31 mit der vierten Bezugspotentialfläche 36 elektrisch leitend verbunden. Die zweite Brücke 32 ist dabei von der dritten Brücke 33 in Richtung zum zweiten Tor 65 hin beabstandet.Coplanar line 2 for feeding the spiral antenna 1 is explained below with reference to FIG. 5 and FIG. 6. In FIG. 5, 55 denotes a so-called three-gate with a first gate 60, a second gate 65 and a third gate 70. The three-gate 55 comprises a third carrier material 75, which is identical or different to the first carrier material 45 or to the second carrier material Can be 50. A second inner conductor 30 and a third inner conductor 31 perpendicular to it are arranged on this third carrier material 75, the second inner conductor 30 and the third inner conductor 31 being galvanically separated from one another and thus not being in electrically conductive contact with one another. The three-port 55 further includes a third reference potential surface 35 and a fourth reference potential surface 36. The second inner conductor 30, the third inner conductor 31, the third reference potential surface 35 and the fourth reference potential surface 36 are electrically conductive, for example metallic. The second inner conductor 30 and the third inner conductor 31 are electrically insulated by the third carrier material 75 from the third reference potential surface 35 and the fourth reference potential surface 36 in the form of a slot surrounding the respective inner conductor 30, 31. The second inner conductor 30 divides the three-port 55 into a left and a right half. In the left half, the third inner conductor 31 runs perpendicular to the second inner conductor 30. The third reference potential area 35 is located exclusively in the left half of the three-way gate 55. The fourth reference potential area 36 is located exclusively in the right half of the three-port 55. The first gate 60 of the three Tors 55 is connected to the end of the coplanar line 2 facing away from the spiral antenna 1, the second inner conductor 30 being connected to the first inner conductor 21. The third reference potential area 35 is connected to the second reference potential area 23 at the first gate 60. The fourth reference potential surface 36 is connected to the first reference potential surface 22 at the first gate 60. At the end of the second inner conductor 30 opposite the first gate 60, the three-gate 55 comprises the second gate 65, which is likewise formed from the first inner conductor 30, the third reference potential area 35 and the fourth reference potential area 36 and for feeding in signals for the omnidirectional Fashion serves. The third gate 70 is formed by the third inner conductor 31 and the third reference potential surface 35 and is used to feed signals for radiation in the zenith mode. The third reference potential area 35 and the fourth reference potential area 36 are electrically conductively connected to one another via a second electrically conductive, for example metallic, bridge 32. The third inner conductor 31 is electrically conductively connected to the fourth reference potential surface 36 by a third electrically conductive, for example metallic, bridge 33. The second bridge 32 is spaced from the third bridge 33 in the direction of the second gate 65.
Die Erzeugung der omnidirektionalen Abstrahlcharakteristik wird dadurch erreicht, daß die elektrische Feldverteilung auf der speisenden Koplanarleitung 2 symmetrisch ist. Dies entspricht dem sogenannten „Odd Mode". Diese symmetrische elektrische Feldverteilung ist in einer Momentaufnahme gemäß Figur 5 durch Pfeile in den durch das dritte Trägermaterial 75 gebildeten Schlitzen zwischen der dritten Bezugspotentialfläche 35 beziehungsweise der vierten Bezugspotentialfläche 36 und dem zweiten Innenleiter 30 dargestellt. Die zweite Brücke 32, die die dritte Bezugspotentialfläche 35 und die vierte Bezugspotentialfläche 36 zu beiden Seiten des zweiten Innenleiters 30 auf gleichem Potential hält, wirkt dabei nicht störend, da beim „Odd Mode" die dritte Bezugspotentialfläche 35 und die vierte Bezugspotentialfläche 36 von vornherein auf gleiches Potential gelegt werden. Damit ist die dritte Brücke 33, die die vierte Bezugspotentialfläche 36 mit dem dritten Innenleiter 31 verbindet, ebenfalls nicht störend, da sie den dritten Innenleiter 31 ebenfalls auf das Potential der vierten Bezugspotentialfläche 36 legt. Der dritte Innenleiter 31 ist somit vom zweiten Innenleiter 30 entkoppelt .The generation of the omnidirectional radiation characteristic is achieved in that the electrical field distribution on the feeding coplanar line 2 is symmetrical. This corresponds to the so-called “odd mode”. This symmetrical electrical field distribution is shown in a snapshot according to FIG. 5 by arrows in the slots formed by the third carrier material 75 between the third reference potential area 35 or the fourth reference potential area 36 and the second inner conductor 30 shown. The second bridge 32, which keeps the third reference potential area 35 and the fourth reference potential area 36 on both sides of the second inner conductor 30 at the same potential, does not have a disruptive effect here, since in the “odd mode” the third reference potential area 35 and the fourth reference potential area 36 open from the start Thus, the third bridge 33, which connects the fourth reference potential surface 36 to the third inner conductor 31, is likewise not disturbing, since it also connects the third inner conductor 31 to the potential of the fourth reference potential surface 36. The third inner conductor 31 is thus decoupled from the second inner conductor 30.
Die Erzeugung des Zenit-Modes auf der Spiralantenne 1 wird durch eine asymmetrische elektrische Feldverteilung auf der speisenden Koplanarleitung 2 und dem zweiten Innenleiter 30 erreicht. Figur 6 skizziert diese Feldverteilung, die als „Even-Mode" bezeichnet wird, mit entsprechenden Pfeilen in den durch das dritte Trägermaterial 75 gebildeten Schlitzen zwischen der dritten Bezugspotentialfläche 35 beziehungsweise der vierten Bezugspotentialfläche 36 und dem zweiten Innenleiter 30. In Figur 6 kennzeichnen dabei gleiche Bezugszeichen gleiche Elemente wie in Figur 5, da es sich um dasselbe Drei-Tor 55 handelt. Die asymmentrische elektrische Feldverteilung kann durch die beschriebene Anordnung des zweiten Innenleiters 30, des dritten Innenleiters 31, der zweiten Brücke 32 und der dritten Brücke 33 auf dem Drei-Tor 55 erzeugt werden. Dabei wird am dritten Tor 70 der „Odd-Mode" erzeugt, der zu einer symmetrischen elektrischen Feldverteilung zwischen dem dritten Innenleiter 31 und der dritten Bezugspotentialfläche 35 führt, wie durch die Pfeile in den durch das dritte Trägermaterial 75 gebildeten Schlitzen zwischen der dritten Bezugspotentialfläche 35 und dem dritten Innenleiter 31 gemäß Figur 6 dargestellt ist. Die Kopplung des einfach zu erzeugenden „Odd Modes" vom dritten Tor 70 zum ersten Tor 60 wird in „Uniplanar MMIC-A Proposed New MMIC Structure" von Thirota, Y.Tarusawa, H.Agawa, IEEE Transactions on Microwave Theory and Technics, vol.35, no.6,pp .576-581, June 1987 beschrieben. Der am dritten Tor 70 erzeugte „Odd Mode" erzeugt einen Potentialunterschied zwischen dem dritten Innenleiter 31 und der dritten Bezugspotentialfläche 35. Die vierte Bezugspotentialfläche 36 ist durch die dritte Brücke 33 auf dem gleichen Potential wie der dritte Innenleiter 31. Dadurch entsteht ein Potentialunterschied zwischen der dritten Bezugspotentialfläche 35 und der vierten Bezugspotentialfläche 36. Dieser Potentialunterschied ruft den „Even Mode" hervor, der sich in beide Richtungen zwischen dem ersten Tor 60 und dem zweiten Tor 65 ausbreitet . Zur Unterdrückung der Ausbreitung des „Even Mode" in Richtung des zweiten Tors 65 und damit in Richtung der Einspeisung für den omnidirektionalen Mode ist die zweite Brücke 32 vorgesehen, die die dritte Bezugspotentialfläche 35 und die vierteThe generation of the zenith mode on the spiral antenna 1 is achieved by an asymmetrical electrical field distribution on the feeding coplanar line 2 and the second inner conductor 30. FIG. 6 outlines this field distribution, which is referred to as “even mode”, with corresponding arrows in the slots formed by the third carrier material 75 between the third reference potential area 35 or the fourth reference potential area 36 and the second inner conductor 30. In FIG 5, since it is the same three-port 55. The asymmetrical electric field distribution can be achieved by the arrangement of the second inner conductor 30, the third inner conductor 31, the second bridge 32 and the third bridge 33 on the three -Tor 55 are generated. The "Odd mode" is generated at the third gate 70, which leads to a symmetrical electrical field distribution between the third inner conductor 31 and the third reference potential surface 35, as indicated by the arrows in the formed by the third carrier material 75 Slits between the third Reference potential surface 35 and the third inner conductor 31 according to Figure 6 is shown. The coupling of the easy-to-generate “odd mode” from the third gate 70 to the first gate 60 is described in “Uniplanar MMIC-A Proposed New MMIC Structure” by Thirota, Y. Tararusawa, H. Agawa, IEEE Transactions on Microwave Theory and Technics, vol .35, no.6, pp. 576-581, June 1987. The "odd mode" generated at the third gate 70 generates a potential difference between the third inner conductor 31 and the third reference potential area 35. The fourth reference potential area 36 is at the same potential as the third inner conductor 31 through the third bridge 33. This creates a potential difference between the third reference potential area 35 and the fourth reference potential area 36. This potential difference causes the “even mode”, which spreads in both directions between the first port 60 and the second port 65. In order to suppress the spread of the "even mode" in the direction of the second gate 65 and thus in the direction of the feed for the omnidirectional mode, the second bridge 32 is provided, which is the third reference potential area 35 and the fourth
Bezugspotentialfläche 36 auf gleichem Potential hält und damit die Ausbreitung des „Even Mode" unterdrückt. Dieser wird an der zweiten Brücke 32 reflektiert und breitet sich in entgegengesetzte Richtung zum ersten Tor 60 aus. Bei Anbringen der zweiten Brücke 32 in einem Abstand einer viertel Wellenlänge von der dritten Brücke 33 bezogen auf die mittlere verwendete Betriebsfrequenz überlagern sich der an der zweiten Brücke 32 reflektierte „Even-Mode" und der vom dritten Tor 70 direkt in Richtung zum ersten Tor 60 eingekoppelte „Even Mode" konstruktiv und breiten sich als „Even-Mode" in Richtung zum ersten Tor 60 und damit zur Spiralantenne 1 aus . Auf diese Weise ist das dritte Tor 70 vom zweiten Tor 65 entkoppelt. Da die beschriebene Funktionsweise sowohl für das Senden als auch für den Empfang mit der Spiralantenne 1 gilt, können am zweiten Tor 65 und am dritten Tor 70 zwei voneinander entkoppelte Signale empfangen werden, die aus verschiedenen Raumrichtungen auf die Spiralantenne 1 treffen.Keeps reference potential surface 36 at the same potential and thus suppresses the spread of the "even mode". This is reflected on the second bridge 32 and spreads in the opposite direction to the first gate 60. When the second bridge 32 is attached at a distance of a quarter wavelength of The "even mode" reflected on the second bridge 32 and the "even mode" coupled directly from the third gate 70 in the direction of the first gate 60 are superimposed on the third bridge 33 in relation to the average operating frequency used and spread as "even Mode "towards the first gate 60 and thus towards the spiral antenna 1. In this way, the third gate 70 is decoupled from the second gate 65. Since the described mode of operation applies to both transmission and reception with the spiral antenna 1, two decoupled signals can be received at the second gate 65 and the third gate 70, which impinge on the spiral antenna 1 from different spatial directions.
Die Erzeugung des omnidirektionalen Modes mit der beschriebenen kombinierten Speisung erfolgt frequenzunabhängig, während abhängig durch die Position der zweiten Brücke 32 die Erzeugung des Zenit-Modes auf bestimmte Frequenzbänder begrenzt ist. Dabei kann über das Drei-Tor 55 gleichzeitig der omnidirektionale Mode und der Zenit-Mode gespeist werden. Auch ein gleichzeitigesThe generation of the omnidirectional mode with the described combined supply is frequency-independent, while depending on the position of the second bridge 32, the generation of the zenith mode is limited to certain frequency bands. The omnidirectional mode and the zenith mode can be fed simultaneously via the three-port 55. Also a simultaneous one
Empfangen im omnidirektionalen Mode und im Zenit-Mode ist mit dem beschriebenen Drei-Tor 55 möglich. Auch das gleichzeitige Senden im einen und Empfangen im entsprechend anderen Mode ist mit dem beschriebenen Drei -Tor 55 möglich.Receiving in omnidirectional mode and in zenith mode is possible with the three-port 55 described. Simultaneous transmission in one mode and receiving in another mode is also possible with the three-gate 55 described.
Die untere Grenzfrequenz für die Abstrahlung von der Spiralantenne 1 im omnidirektionalen Mode oder im Zenit-Mode wird auch durch die Länge der Taperung auf der Koplanarleitung 2 beeinflußt . Dabei kann die untere Grenzfrequenz gesenkt werden, wenn die Taperung auf der Koplanarleitung 2 verlängert wird.The lower limit frequency for the radiation from the spiral antenna 1 in the omnidirectional mode or in the zenith mode is also influenced by the length of the tapering on the coplanar line 2. The lower limit frequency can be reduced if the tapering on the coplanar line 2 is extended.
Der Übergang von der Koplanarleitung 2 auf die Spiralantenne 1 ist unabhängig vom Sprung in der Dielektrizitäts- konstanten der Trägermaterialien. Dabei kann ein nieder- premittives erstes Trägermaterial 45 für die Spiralantenne 1 gewählt werden, womit gute Abstrahlung erreicht wird, bei gleichzeitiger Wahl eines hochpermittiven zweiten Trägermaterials 50 für die Koplanarleitung 2, was eine Längenreduktion der Koplanarleitung 2 ermöglicht und parasitäre Abstrahlung von der Koplanarleitung 2 unterdrückt beziehungsweise die Koplanarleitung 2 vom Strahlungsfeld der Spiralantenne 1 unabhängig macht .The transition from the coplanar line 2 to the spiral antenna 1 is independent of the jump in the dielectric constant of the carrier materials. In this case, a low-premititive first carrier material 45 can be selected for the spiral antenna 1, with which good radiation is achieved, while at the same time a high-permittivity second carrier material 50 is selected for the coplanar line 2, which enables a reduction in the length of the coplanar line 2 and Suppresses parasitic radiation from the coplanar line 2 or makes the coplanar line 2 independent of the radiation field of the spiral antenna 1.
Die Spiralantenne 1 ist insbesondere für den flachen Einbau in die Karosserie eines Kraftfahrzeugs geeignet, insbesondere in das Dach oder in den Kofferraumdeckel des Kraftfahrzeugs, da hiermit ein aerodynamischer und ästhetischer Einbau realisiert werden kann. Auf diese Weise ergibt sich eine einfache, lochlose Montage derThe spiral antenna 1 is particularly suitable for flat installation in the body of a motor vehicle, in particular in the roof or in the trunk lid of the motor vehicle, since an aerodynamic and aesthetic installation can be achieved with it. This results in a simple, hole-free assembly of the
Spiralantenne in die Karosserie des Kraftfahrzeugs, wodurch Korrosionsherde in der Karosserie vermieden werden. Spiral antenna in the body of the motor vehicle, which prevents corrosion spots in the body.

Claims

Ansprüche Expectations
1. Spiralantenne (1) mit vier etwa parallel geführten und elektrisch leitfähigen Spiralarmen (11, 12, 13, 14), dadurch gekennzeichnet, daß die Spiralarme (11, 12, 13, 14) an ihrem jeweiligen inneren Spiralarmende (5, 6, 7, 8) an eine Koplanarleitung (2) zur Speisung und/oder zum Empfang von Signalen angeschlossen sind.1. spiral antenna (1) with four approximately parallel and electrically conductive spiral arms (11, 12, 13, 14), characterized in that the spiral arms (11, 12, 13, 14) at their respective inner spiral arm end (5, 6, 7, 8) are connected to a coplanar line (2) for supplying and / or receiving signals.
2. Spiralantenne (1) nach Anspruch 1, dadurch gekennzeichnet, daß die Koplanarleitung (2) einen Innenleiter (21; 30) und mindestens eine Bezugspotentialfläche (22, 23; 35, 36) umfaßt, wobei der Innenleiter (21; 30) und die mindestens eine2. Spiral antenna (1) according to claim 1, characterized in that the coplanar line (2) comprises an inner conductor (21; 30) and at least one reference potential surface (22, 23; 35, 36), the inner conductor (21; 30) and the at least one
Bezugspotentialfläche (22, 23; 35, 36) jeweils mit zwei der vier inneren Spiralarmenden (5, 6, 7, 8) verbunden ist.Reference potential surface (22, 23; 35, 36) is each connected to two of the four inner spiral arm ends (5, 6, 7, 8).
3. Spiralantenne (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Koplanarleitung (2) senkrecht zur Ebene der Spiralantenne (1) angeordnet ist.3. Spiral antenna (1) according to claim 1 or 2, characterized in that the coplanar line (2) is arranged perpendicular to the plane of the spiral antenna (1).
4. Spiralantenne (1) nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß die Koplanarleitung (2) und die4. spiral antenna (1) according to claim 1, 2 or 3, characterized in that the coplanar line (2) and the
Spiralantenne (1) auf verschiedenem Trägermaterial (45, 50) aufgebracht sind.Spiral antenna (1) on different carrier material (45, 50) are applied.
5. Spiralantenne (1) nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß die Koplanarleitung (2) und die Spiralantenne (1) auf gleichem Trägermaterial aufgebracht sind.5. spiral antenna (1) according to claim 1, 2 or 3, characterized in that the coplanar line (2) and the Spiral antenna (1) are applied to the same carrier material.
6. Spiralantenne (1) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß die Koplanarleitung (2) zumindest teilweise als Taper ausgebildet ist.6. Spiral antenna (1) according to one of the preceding claims, characterized in that the coplanar line (2) is at least partially designed as a taper.
7. Spiralantenne (1) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß die Spiralantenne (1) in Form einer archimedischen Spirale oder als logarithmische7. Spiral antenna (1) according to one of the preceding claims, characterized in that the spiral antenna (1) in the form of an Archimedean spiral or as a logarithmic
Spirale ausgeführt ist.Spiral is executed.
8. Spiralantenne (1) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß eine Speisung der Spiralantenne (1) mit symmetrischer elektrischer8. spiral antenna (1) according to any one of the preceding claims, characterized in that a supply of the spiral antenna (1) with symmetrical electrical
Feldverteilung auf der Koplanarleitung (2) erfolgt, so daß sich eine omnidirektionale Abstrahlcharakteristik ergibt .Field distribution on the coplanar line (2) takes place, so that there is an omnidirectional radiation characteristic.
9. Spiralantenne (1) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß eine Speisung der Spiralantenne (1) mit asymmetrischer elektrischer Feldverteilung auf der Koplanarleitung (2) erfolgt, so daß sich eine gerichtete Abstrahlcharakteristik ergibt.9. Spiral antenna (1) according to one of the preceding claims, characterized in that the spiral antenna (1) is supplied with an asymmetrical electrical field distribution on the coplanar line (2), so that there is a directional radiation characteristic.
10. Spiralantenne (1) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß die Spiralantenne (1) in oder auf der Karosserie eines Fahrzeugs angeordnet ist. 10. Spiral antenna (1) according to one of the preceding claims, characterized in that the spiral antenna (1) is arranged in or on the body of a vehicle.
EP00947810A 1999-06-29 2000-06-26 Helical antenna Expired - Lifetime EP1196965B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19929879A DE19929879A1 (en) 1999-06-29 1999-06-29 Spiral antenna
DE19929879 1999-06-29
PCT/DE2000/001991 WO2001003239A1 (en) 1999-06-29 2000-06-26 Helical antenna

Publications (2)

Publication Number Publication Date
EP1196965A1 true EP1196965A1 (en) 2002-04-17
EP1196965B1 EP1196965B1 (en) 2005-02-16

Family

ID=7912996

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00947810A Expired - Lifetime EP1196965B1 (en) 1999-06-29 2000-06-26 Helical antenna

Country Status (6)

Country Link
US (1) US6750828B1 (en)
EP (1) EP1196965B1 (en)
JP (1) JP2003521848A (en)
KR (1) KR100663658B1 (en)
DE (2) DE19929879A1 (en)
WO (1) WO2001003239A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10108993B4 (en) 2001-02-23 2004-12-16 Endress + Hauser Gmbh + Co. Kg Device for determining the level of a product in a container
DE10110230A1 (en) * 2001-03-02 2002-09-05 Endress & Hauser Gmbh & Co Kg Device for determining the filling level of a material or liquid in a reservoir using radar based measuring with a spiral antenna that provides more accurate measurements when the fluid level approaches the antenna
US7075500B2 (en) * 2004-09-24 2006-07-11 Avocent California Corporation Antenna for wireless KVM, and housing therefor
US7750861B2 (en) * 2007-05-15 2010-07-06 Harris Corporation Hybrid antenna including spiral antenna and periodic array, and associated methods
US9024840B2 (en) * 2010-06-30 2015-05-05 Bae Systems Plc Antenna structure
JP2014168108A (en) * 2011-06-27 2014-09-11 Toyohashi Univ Of Technology Wireless transmitter
US9450300B2 (en) * 2012-11-15 2016-09-20 3M Innovative Properties Company Spiral antenna for distributed wireless communications systems
US10944157B2 (en) 2019-04-19 2021-03-09 Bose Corporation Multi-arm spiral antenna for a wireless device
KR102096620B1 (en) * 2019-05-15 2020-04-02 숭실대학교산학협력단 Apparatus and method for radiating a circularly polarized impulse
US11525703B2 (en) 2020-03-02 2022-12-13 Bose Corporation Integrated capacitor and antenna

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3019439A (en) * 1957-09-19 1962-01-30 Martin Marietta Corp Elliptically polarized spiral antenna
US3562756A (en) * 1968-06-03 1971-02-09 Texas Instruments Inc Multiple polarization spiral antenna
US3681772A (en) * 1970-12-31 1972-08-01 Trw Inc Modulated arm width spiral antenna
US3925784A (en) * 1971-10-27 1975-12-09 Radiation Inc Antenna arrays of internally phased elements
US3906514A (en) * 1971-10-27 1975-09-16 Harris Intertype Corp Dual polarization spiral antenna
US3949407A (en) * 1972-12-25 1976-04-06 Harris Corporation Direct fed spiral antenna
US4609888A (en) 1980-10-02 1986-09-02 The United States Of America As Represented By The Secretary Of The Navy Direction finding antenna interface
US4605934A (en) * 1984-08-02 1986-08-12 The Boeing Company Broad band spiral antenna with tapered arm width modulation
GB2207556B (en) * 1986-04-12 1989-11-29 Plessey Co Plc Improvements in or relating to spiral antennas.
GB8717579D0 (en) * 1987-07-24 1987-09-03 Gen Electric Co Plc Protective electric fuses
US5146234A (en) * 1989-09-08 1992-09-08 Ball Corporation Dual polarized spiral antenna
ES2021522A6 (en) * 1990-04-20 1991-11-01 Consejo Superior Investigacion microstrip radiator for circular polarization free of welds and floating potentials.
JPH1075114A (en) * 1996-08-29 1998-03-17 Nippon Dengiyou Kosaku Kk Helical spiral antenna
US5936595A (en) * 1997-05-15 1999-08-10 Wang Electro-Opto Corporation Integrated antenna phase shifter
US6130652A (en) * 1999-06-15 2000-10-10 Trw Inc. Wideband, dual RHCP, LHCP single aperture direction finding antenna system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0103239A1 *

Also Published As

Publication number Publication date
KR20020013595A (en) 2002-02-20
DE50009557D1 (en) 2005-03-24
DE19929879A1 (en) 2001-01-18
KR100663658B1 (en) 2007-01-03
EP1196965B1 (en) 2005-02-16
JP2003521848A (en) 2003-07-15
US6750828B1 (en) 2004-06-15
WO2001003239A1 (en) 2001-01-11

Similar Documents

Publication Publication Date Title
EP2256864B1 (en) Antenna for circular polarisation with a conductive base
DE69531655T2 (en) Broadband monopole antenna in uniplanar printed circuit technology and transmitting and / or receiving device with such an antenna
DE69723093T2 (en) RADIO COMMUNICATION DEVICE
EP2226895B1 (en) Antenna for receiving satellite radio signals emitted circularly in a polarisation direction
EP2664025B1 (en) Multiband reception antenna for the combined reception of satellite signals and terrestrially emitted radio signals
DE60319306T2 (en) Directional antenna / omnidirectional antenna for dual-band operation
DE69732975T2 (en) SMALL ANTENNA FOR PORTABLE RADIO
DE102005008063B4 (en) antenna
DE69832696T2 (en) Phase delay line for collinear array antenna
DE69936903T2 (en) Antenna for two frequencies for radio communication in the form of a microstrip antenna
DE102014112467B4 (en) FOOD NETWORK FOR ANTENNA SYSTEMS
DE102016207434A1 (en) antenna device
DE69725972T2 (en) COOLING ANTENNA WITH INTEGRATED DUPLEXER AND METHOD FOR THE PRODUCTION THEREOF
EP1196965A1 (en) Helical antenna
DE69914579T2 (en) Antenna arrangement and communication device with such an antenna arrangement
EP3244483A1 (en) Screened casing for use in hf applications
DE102006057144B4 (en) Waveguide radiators
DE19729664C2 (en) Planar broadband antenna
DE3702362A1 (en) FLAT AERIAL
DE2136759C2 (en) Car radio windscreen aerial - comprises rectangular metal frame with an electrical width of approximately half signal wavelength and a unipole
EP1297590A1 (en) Slot antenna
EP1454381A1 (en) Wide band slot cavity antenna
DE102014016851B3 (en) MIMO slot antenna for motor vehicles
WO1999004282A1 (en) Device for sending and receiving radar waves, especially for a distance sensor
DE102022109407A1 (en) Antenna element for wireless communication

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020129

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20030502

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50009557

Country of ref document: DE

Date of ref document: 20050324

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050601

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20051117

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20091222

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100706

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100401

Year of fee payment: 11

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110626

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110627

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150804

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50009557

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170103