EP1247128A1 - Structure interne a faible contrainte pour boitier optoelectronique - Google Patents

Structure interne a faible contrainte pour boitier optoelectronique

Info

Publication number
EP1247128A1
EP1247128A1 EP01976359A EP01976359A EP1247128A1 EP 1247128 A1 EP1247128 A1 EP 1247128A1 EP 01976359 A EP01976359 A EP 01976359A EP 01976359 A EP01976359 A EP 01976359A EP 1247128 A1 EP1247128 A1 EP 1247128A1
Authority
EP
European Patent Office
Prior art keywords
base
connector
housing
fiber
fixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01976359A
Other languages
German (de)
English (en)
Inventor
Emmanuel Grard
Claude 6 résidence du Petit Chambord ARTIGUE
Pierre Jean Laroulandie
Sylvaine Kerboeuf
Alwin Goeth
Klaus Adam
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oclaro North America Inc
Original Assignee
Alcatel CIT SA
Alcatel SA
Oclaro North America Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel CIT SA, Alcatel SA, Oclaro North America Inc filed Critical Alcatel CIT SA
Publication of EP1247128A1 publication Critical patent/EP1247128A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/421Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical component consisting of a short length of fibre, e.g. fibre stub
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4236Fixing or mounting methods of the aligned elements
    • G02B6/4239Adhesive bonding; Encapsulation with polymer material

Definitions

  • the invention lies in the field of optoelectronic packages or modules, in particular in the field of plastic packages. It relates to a method of fixing an optoelectronic component support base included in the housing.
  • An optoelectronic module or box consists of a box from which optical and electrical connections emerge making it possible to connect the box for example to other modules or to a housing structure of a set of modules.
  • the housing accommodates a base, for example, in silicon in Kovar or possibly in another metal. If, for example, the housing is metallic, the base can be fixed to the housing by welding or by gluing.
  • the base has a surface fixed to a bottom of the housing or to a connector or both to the bottom of the housing and to a connector.
  • the base may include surface silica parts, the silica part housing parts forming a waveguide for a light wave.
  • the base can include grooves, for example V or U, etched from the surface and whose function is to facilitate the positioning of an optical fiber.
  • Optoelectronic components for example, a laser diode and possibly other optical elements such as lenses are mounted on one or more faces of the base, for example on a face of the base opposite the face arranged against the bottom of the housing.
  • the term “optical component” will designate any optical component, whether it is an active component such as a laser or a passive component such as a coupling lens or a waveguide, in particular a silica guide. integrated into the base as indicated above.
  • the optical connection of an optical component is made by means of a connector integrated in the housing.
  • the connector receives one end of an optical fiber.
  • the other end of the fiber is located opposite the optical component, so that an optical signal can pass from the fiber to the component or from the component to the fiber.
  • the assembly sequence requires the fixing of the fiber at each of its two ends.
  • the fiber is first fixed with an adhesive in a groove of the base, for example in V, located opposite an optical component. Then, the other end of the fiber is fixed in the connector and at the same time the base, is fixed to a bottom of the case or to the connector or both to the bottom of the case and to the connector, with the same glue.
  • the fiber is subjected to shocks or thermal cycling. It follows that expansion stresses are induced in the fiber due to the differences in expansion coefficients of the different parts making up the entire fitted housing.
  • the fiber length is of the order of ten centimeters. With a length of this order of magnitude, it is possible to provide a curvature for absorbing differential expansions.
  • the fiber length is of the order of 2 cm. It is no longer possible, under these conditions, to use a curvature of absorption of differential expansions. It is therefore necessary to find another assembly solution so that the ends of the fiber and in particular that which faces the optical component remains at its nominal location despite the constraints of thermal origin.
  • the origin of the stress exerted on the fiber, leading to the displacement of the end facing, for example the optical component and possibly the other end, comes essentially from the difference in expansion between the silica fiber on the one hand and the other elements such as the bottom of the case, the connector, the base, made of plastic, silicon or Kovar, or other metal, on the other hand.
  • the expansion of the housing, the connector or the base leads to a tension stress on the fiber.
  • This constraint can lead to a displacement of one at least of the ends of the fiber, and in particular of the end situated opposite the optoelectronic component.
  • the positioning tolerances for ensuring good optical coupling of this end are generally tighter than the positioning tolerances of the end linked to the connector.
  • the two ends of the fiber are fixed to the base and to the connector in a less deformable manner than is the connection of the base to the bottom of case or connector or bottom of case and connector.
  • the thermal stress exerted on the fiber is thus relaxed, allowing the base to move relative to the elements to which it is itself fixed, for example the bottom of the housing, the connector or both.
  • the bonding adhesive between the base and the elements to which it is itself fixed has a more elastic behavior than that of the adhesive used to fix the fiber to at least one and of preferably at each of its two ends.
  • the elongation at the plasticity threshold of the bonding adhesive between the base and the elements to which it is itself fixed is higher than the elongation at the plasticity threshold of the fixing adhesive from one to the other. minus the ends of the fiber.
  • the invention relates to an optical module comprising a housing having a bottom and housing in particular:
  • an optical connector the connector and the component being coupled by an optical fiber having two ends, one of which is fixed by means of an adhesive on the base in front of the optical component and the other by means of an adhesive on the connector, the base being fixed by means of an adhesive on the bottom of the housing or on the connector or both to the bottom of the housing and to the connector, module characterized in that the fixing glue of the base has a elongation at the plasticity threshold greater than the elongation at the plasticity threshold for the adhesive for fixing at least one of the ends of the fiber to the base or the connector.
  • the glue (s) for fixing the base are deformed more for the same stress as the glue (s) for fixing the ends of the fiber.
  • the base moves for a lower stress level than that which causes the displacement of the ends of the fiber, which causes a relaxation of stress on the fiber.
  • the bonding glue of the base will be 10 to 100 times greater than that of the fiber fixing glue. In general this will imply that the Young's modulus of the glue fixing the base is very lower, for example less than a third, of the Young's modulus of the adhesive fixing the ends of the optical fiber.
  • the connector and the base are coupled by an optical fiber, does not exclude the case where the connector and the base are coupled by several optical fibers, for example 4, 8 or .16.
  • the box may include several bases or several connectors.
  • Figure 2 shows a longitudinal section along the plane A-A of Figure 1 of an optoelectronic box identical or similar to that of Figure 1;
  • FIG. 3 shows a longitudinal section along the same line A-A of Figure 1 of an optoelectronic box identical or similar to that of Figure 1, showing another embodiment.
  • FIG. 1 represents an exploded view of an optoelectronic module 1 comprising, on the one hand, a housing 2 having a bottom 3, on the other hand, a connector
  • the housing also comprises a base 8 whose lower face is fixed to the bottom 3 of the housing 2, an upper face, that is to say opposite to the face fixed to the bottom 3 of the housing 2 supports an optical component 9.
  • the optical component 9 is connected by an optical fiber 5 to the connector 4.
  • the fiber has two ends 6 and 7.
  • the end 6 is fixed to the connector 4, the end 7 is fixed to the base 8 facing the optical component 9.
  • the base 8 is inserted into a hollow part of the connector 4 and the optical fiber 5, in particular, its end 6 is fixed in a housing of the connector 4 in the direction indicated by a horizontal arrow.
  • the assembly composed by the base 8 carrying the optical component 9 and the optical fiber 5 as well as the connector 4 is assembled in the housing 2 as indicated by the vertical arrows. Connections shown but not referenced because not directly relevant to the invention are also shown in this figure.
  • the module as shown and described in relation to Figure 1 is not distinguished from a module as known from the prior art. It will be seen below in connection with FIGS. 2 and 3 that the difference between a module according to the prior art and a module according to the invention comes from the fixing means, that is to say in general, adhesives used for fix the base 8 to the housing 2 or possibly to the connector 4. According to the invention, the elastic force generated by the deformation of the layer or of the adhesive zones fixing the base 8 to the housing 2 or possibly to the connector 4 remains less than the stress necessary to move one of the ends 6, 7 of the fiber 5. Thus all the configurations known from the prior art in which the base and the ends of the fiber are glued can be used with the invention.
  • the base 8 may or may not have a groove for positioning and holding the fiber.
  • the base 8 can be fixed only on the bottom 3 of the housing 2, or partly on the bottom 3 and partly on the connector 4 or even only on the connector 4.
  • the housing 2 shows a longitudinal section of a housing 2, identical or similar to that shown in Figure 1.
  • the housing 2 is equipped with a connector 4 and a base 8 carrying the optical component 9.
  • the optical fiber 5 has one end 6 fixed to the connector 4 and one end 7 fixed to the base 8.
  • the base 8 rests only on the bottom 3 of the housing 2. It will be described in connection with this figure, the way in which the optical fiber 5 is fixed, on the one hand, to the base 8 and , on the other hand, to the connector 4. It will also be described how the base 8 is fixed to the bottom 3 of the housing 2.
  • Vs referenced respectively 10 and 11 symbolize the fact that the ends 6 and 7 of the fiber are fixed so that the fiber does not move relative to, respectively, the connector 4 and the base 8.
  • the base 8 is fixed to the housing 2 by means of an adhesive 12.
  • the layer of adhesive 12 located between the base 8 and the bottom 3 of the housing 2 may be a continuous or discontinuous layer.
  • the adhesive used to fix the base 8 to the bottom 3 of the housing 2 has an elongation at the plasticity threshold of the order of 20% or more. In general, this results in a low Young's modulus, for example less than 2000 MPa.
  • the adhesive serving to fix at least one of the ends 6 or 7 of the fiber 5 respectively or the two ends 6 and 7, respectively on the connector 4 and on the base 8 has an elongation at the plasticity threshold of around 2% or less.
  • such an adhesive is an adhesive with a high Young's modulus, for example equal to or greater than 7000 MPa.
  • the adhesive used to fix the base 8 to the bottom 3 of the housing 2 or both to the bottom 3 of the housing 2 and to the connector 4 or to the connector 4 only has an elongation at the plasticity threshold of 10 to 100 times greater than the elongation at the plasticity threshold of the adhesive serving to fix at least one or both ends 6, 7 of the optical fiber 5 to the connector 4 or to the base 8 respectively.
  • the glue 14 used to fix the end 7 of the fiber 5 on the base 8 may be a UV epoxy glue, that is to say the crosslinking is done by submission to an ultraviolet flux.
  • the adhesive 13 for fixing the end 6 of the optical fiber in the connector 4 may be a hard thermal epoxy adhesive.
  • the adhesives 13 and 14 should preferably have high glass transition temperatures T g , at least higher than the temperature of use of the module.
  • the glue 12 used to fix the base 8 to the bottom 3 of the housing 2, could be a flexible epoxy adhesive.
  • the base 8 is mounted as floating on the bottom 3 of the housing 2 so that a stress due to shocks or thermal cycling will result in a displacement whole of the base 8.
  • the optical fiber 5 mounted more rigidly to the base 8 and to the connector 4 will remain firmly fixed and there will be no displacement of the fiber relative to the components 9 or to the connector 4.
  • FIG. 3 represents another embodiment in which the connector 4 has a part fixed to the bottom 3 of the housing 2.
  • the base 8 rests partly on the bottom 3 of the housing 2 and partly on a bottom of the connector 4.
  • the base 8 is fixed by means of an adhesive 12 to the bottom 3 of the housing 2 and by an adhesive 15 to the connector 4.
  • each of the adhesives 12 and 15 has a deformation at the plasticity threshold 10 to 100 times greater than the deformation at the plasticity threshold of each of the adhesives 13 and 14 used to fix the ends 6 and 7 of the fiber 5 respectively to the connector 4 and to the base 8.
  • the adhesives 12 and 15 are preferably identical in order to minimize supply references and handling.
  • the adhesives 13 and 14 may be identical or different from one another depending on their mode of polymerization.
  • the glue distribution zones 12 and 15 make the base 8 floating at a time, relative to the housing 2 and to connector 4.
  • the adhesives used may be those described in connection with FIG. 2.
  • the base 8 is not fixed or rests only on the connector 4. This case has not been shown in the figures. The latter case is deduced from the case shown in Figure 3 for example simply by removing the glue 12 or by the fact that the base 8 rests entirely on the connector 4.
  • the invention is particularly advantageous when the housing 2 is a plastic housing having a coefficient of expansion significantly higher than the coefficient of expansion of the base.

Abstract

Dans un module optoélectronique (1) composé d'un boîtier (2) plastique logeant une embase (8) fixée au boîtier (2) et supportant un composant optique (9) couplé par une fibre optique (5) à un connecteur optique (4) du boîtier (2), on évite les déplacements de fibre liés aux contraintes thermiques en montant l'embase flottante sur le boîtier (2) et éventuellement le connecteur (4). Le caractère flottant du montage de l'embase (8) est obtenu en utilisant pour la fixation de l'embase une ou des colles (13, 14) ayant une élasticité plus grande que les colles utilisées pour fixer chacune des deux extrémités (6, 7) de la fibre (5) respectivement sur l'embase (8) et le connecteur (4).

Description

STRUCTURE INTERNE A FAIBLE CONTRAINTE POUR BOÎTIER
OPTOELECTRONIQUE
DESCRIPTION
Domaine de 1 ' invention
L'invention se situe dans le domaine des boîtiers ou modules optoélectroniques, en particulier dans le domaine des boîtiers en plastique. Elle concerne un mode de fixation d'une embase support de composant optoélectronique incluse dans le boîtier.
Arrière plan technologique
Un module ou boîtier optoélectronique se compose d'un boîtier d'où émergent des connexions optiques et électriques permettant de raccorder le boîtier par exemple à d'autres modules ou à une structure de logement d'un ensemble de modules.
Le boîtier loge une embase, par exemple, en silicium en Kovar ou éventuellement en un autre métal. Si, par exemple, le boîtier est métallique, l'embase peut être fixée au boîtier par soudure ou par collage. L'embase comporte une surface fixée à un fond du boîtier ou à un connecteur ou à la fois au fond du boîtier et à un connecteur. L'embase peut comporter des parties superficielles en silice, la partie en silice logeant des parties formant guide d'onde pour une onde lumineuse. L'embase peut comporter des rainures, par exemple en V ou en U, gravées à partir de la surface et dont la fonction est de faciliter le positionnement d'une fibre optique. Des composants optoélectroniques, par exemple, une diode laser et éventuellement d'autre éléments optiques tels que des lentilles sont montés sur une ou plusieurs faces de l'embase, par exemple sur une face de 1 ' embase opposée à la face disposée contre le fond du boîtier. Par la suite le terme « composant optique » désignera tout composant optique, qu'il s'agisse d'un composant actif comme un laser ou d'un composant passif comme une lentille de couplage ou un guide d'onde en particulier un guide silice intégré à l'embase comme indiqué plus haut. La connexion optique d'un composant optique s'effectue au moyen d'un connecteur intégré au boîtier. Le connecteur reçoit une extrémité d'une fibre optique. L'autre extrémité de la fibre est située face au composant optique, de sorte qu'un signal optique peut passer de la fibre vers le composant ou du composant vers la fibre.
Pour un module ou un boîtier, la séquence d'assemblage nécessite la fixation de la fibre à chacune de ses deux extrémités. Pour un module en plastique, la fibre est tout d'abord fixée avec une colle dans une rainure de l'embase, par exemple en V, située face à un composant optique. Ensuite, l'autre extrémité de la fibre est fixée dans le connecteur et dans le même temps l'embase, est fixée à un fond du boîtier ou au connecteur ou à la fois au fond du boîtier et au connecteur, avec la même colle.
Pendant l'assemblage des différentes parties du boîtier et au cours de l'utilisation du module, la fibre est soumise à des chocs ou cyclages thermiques. Il s'ensuit que des contraintes de dilatation sont induites dans la fibre en raison des différences de coefficients de dilatation des différentes parties constituant l'ensemble du boîtier équipé.
Ces contraintes sur la fibre peuvent provoquer des déplacements des extrémités de la fibre, notamment de l'extrémité située face au composant optique et ainsi à une perte du couplage optique entre la fibre et le composant optique. En général, dans les modules optoélectroniques, la longueur de fibre est de l'ordre d'une dizaine de centimètres. Avec une longueur de cet ordre de grandeur, il est possible de prévoir une courbure d'absorption des dilatations différentielles.
Par contre dans les technologies avec montage en surface des composants (SMT), qui utilisent en général des boîtiers plus compacts, la longueur de fibre est de l'ordre de 2 cm. Il n'est plus possible, dans ces conditions, d'utiliser une courbure d'absorption des dilatations différentielles. Il convient donc de trouver une autre solution d'assemblage pour que les extrémités de la fibre et en particulier celle qui est face au composant optique reste à son emplacement nominal malgré les contraintes d'origine thermique.
Brève description de l'invention. Selon les inventeurs, l'origine de la contrainte exercée sur la fibre, conduisant au déplacement de l'extrémité faisant face, par exemple au composant optique et éventuellement de l'autre extrémité, provient essentiellement de la différence de dilatation entre la fibre en silice d'une part et les autres éléments tels que le fond du boîtier, le connecteur, l'embase, en plastique, silicium ou Kovar, ou autre métal, d'autre part. La dilatation du boîtier, du connecteur ou de l'embase entraîne une contrainte de tension sur la fibre. Cette contrainte peut conduire à un déplacement de 1 ' une au moins des extrémités de la fibre, et en particulier de l'extrémité située face au composant optoélectronique. Les tolérances de positionnement en vue d'assurer un bon couplage optique de cette extrémité sont en général plus serrées que les tolérances de positionnement de l'extrémité liée au connecteur.
Dans le procédé d'assemblage d'un boîtier, selon l'invention, les deux extrémités de la fibre sont fixées sur l'embase et au connecteur d'une façon moins défor able que ne l'est la liaison de l'embase au fond du boîtier ou au connecteur ou au fond du boîtier et au connecteur. La contrainte d'origine thermique exercée au niveau de la fibre est ainsi relâchée, en permettant à 1 ' embase de se déplacer par rapport aux éléments auxquels elle est elle-même fixée, par exemple le fond du boîtier, le connecteur ou les deux.
Pour obtenir ce résultat, il suffit que la colle de liaison entre l'embase et les éléments auxquels elle est elle-même fixée, ait un comportement plus élastique que celui de la colle utilisée pour fixer la fibre à l'une au moins et de préférence à chacune de ses deux extrémités. Cela signifie que l'élongation au seuil de plasticité de la colle de liaison entre l'embase et les éléments auxquels elle est elle-même fixée est plus élevée que l'élongation au seuil de plasticité de la colle de fixation de l'une au moins des extrémités de la fibre. En résumé l'invention est relative à un module optique comportant un boîtier ayant un fond et logeant notamment :
- une embase sur laquelle est monté un composant optique, et
- un connecteur optique, le connecteur et le composant étant couplés par une fibre optique ayant deux extrémités dont l'une est fixée au moyen d'une colle sur l'embase devant le composant optique et l'autre au moyen d'une colle sur le connecteur, l'embase étant fixée au moyen d'une colle sur le fond du boîtier ou sur le connecteur ou à la fois au fond du boîtier et au connecteur, module caractérisé en ce que la colle de fixation de l'embase présente une elongation au seuil de plasticité plus grande que l'élongation au seuil de plasticité de la colle de fixation de l'une au moins des extrémités de la fibre sur l'embase ou le connecteur.
Avec cette caractéristique la ou les colles de fixation de l'embase, se déforment d'avantage pour une même contrainte que la ou les colles de fixation des extrémités de la fibre. De la sorte l'embase se déplace pour un niveau de contrainte plus faible que celui qui entraîne le déplacement des extrémités de la fibre, ce qui provoque un relâchement de contrainte sur la fibre. De préférence la déformation au seuil de déformation plastique, de la colle de liaison de l'embase sera de 10 à 100 fois supérieure à celle de la colle de fixation de la fibre. En général cela impliquera que le module d'Young de la colle fixant l'embase soit très inférieur, par exemple inférieur au tiers, du module d'Young de la colle fixant les extrémités de la fibre optique.
Naturellement le fait que le connecteur et l'embase sont couplés par une fibre optique, n'exclut pas le cas où le connecteur et l'embase sont couplés par plusieurs fibres optiques, par exemple 4, 8 ou .16. De même le boîtier pourra comporter plusieurs embases ou plusieurs connecteurs.
Brève description des dessins.
Des exemples de réalisation de l'invention seront maintenant commentés en liaison avec les dessins annexés dans lesquels : - la figure 1 représente une vue en perspective éclatée d'un module optoélectronique ;
- la figure 2 représente une coupe longitudinale selon le plan A-A de la figure 1 d'un boîtier optoélectronique identique ou semblable à celui de la figure 1 ;
- la figure 3 représente une coupe longitudinale selon la même ligne A-A de la figure 1 d'un boîtier optoélectronique identique ou semblable à celui de la figure 1, faisant apparaître une autre forme de réalisation.
Description d'exemples de réalisation
La figure 1 représente une vue éclatée d'un module optoélectronique 1 comportant, d'une part, un boîtier 2 ayant un fond 3, d'autre part, un connecteur
4 venant s'insérer comme indiqué par des flèches verticales dans le boîtier 2, le fond du connecteur 4 étant fixé au fond 3 du boîtier 2. Le boîtier comporte aussi une embase 8 dont la face inférieure est fixée sur le fond 3 du boîtier 2, une face supérieure, c'est-à-dire opposée à la face fixée au fond 3 du boîtier 2 supporte un composant optique 9. Le composant optique 9 est relié par une fibre optique 5 au connecteur 4. La fibre présente deux extrémités 6 et 7. L ' extrémité 6 est fixée au connecteur 4 , 1 ' extrémité 7 est fixée à l'embase 8 face au composant optique 9. L'embase 8 s'insère dans une partie creuse du connecteur 4 et la fibre optique 5, en particulier, son extrémité 6 vient se fixer dans un logement du connecteur 4 dans le sens indiqué par une flèche horizontale. L'ensemble composé par l'embase 8 portant le composant optique 9 et la fibre optique 5 ainsi que le connecteur 4 vient s'assembler dans le boîtier 2 comme indiqué par les flèches verticales. Des connexions représentées mais non référencées car n'intéressant pas directement l'invention sont également représentées sur cette figure.
Le module tel que représenté et décrit en relation avec la figure 1 ne se distingue pas d'un module tel que connu de l'art antérieur. Il sera vu ci- après en liaison avec les figures 2 et 3 que la différence entre un module selon l'art antérieur et un module selon l'invention provient des moyens de fixation, c'est à dire en général, des colles employées pour fixer l'embase 8 au boîtier 2 ou éventuellement au connecteur 4. Selon l'invention la force élastique engendrée par la déformation de la couche ou des zones de colle fixant l'embase 8 au boîtier 2 ou éventuellement au connecteur 4 reste inférieure à la contrainte nécessaire pour déplacer l'une des extrémités 6, 7 de la fibre 5. Ainsi toute les configurations connues de l'art antérieur dans lesquelles l'embase et les extrémités de la fibre sont collées peuvent être employées avec l'invention. En particulier l'embase 8 peut ou non comporter une rainure de positionnement et de maintien de la fibre. L'embase 8 peut n'être fixée que sur le fond 3 du boîtier 2, ou pour partie sur le fond 3 et pour partie sur le connecteur 4 ou encore uniquement sur le connecteur 4.
La figure 2 représente une coupe longitudinale d'un boîtier 2, identique ou semblable à celui représenté figure 1. Sur cette figure, comme sur la suivante, les éléments ayant les mêmes références que ceux décrits en liaison avec la figure 1 ne seront pas nécessairement commentés. Le boîtier 2 est équipé d'un connecteur 4 et d'une embase 8 portant le composant optique 9. La fibre optique 5 a une extrémité 6 fixée au connecteur 4 et une extrémité 7 fixée sur l'embase 8. Sur cette figure il est décrit un cas dans lequel l'embase 8 ne repose que sur le fond 3 du boîtier 2. Il sera décrit en liaison avec cette figure, la façon dont la fibre optique 5 est fixée, d'une part, à l'embase 8 et, d'autre part, au connecteur 4. Il sera également décrit comment 1 ' embase 8 est fixée au fond 3 du boîtier 2. Des V référencés respectivement 10 et 11 symbolisent le fait que les extrémités 6 et 7 de la fibre sont fixées de façon à ce que la fibre ne bouge pas par rapport, respectivement, au connecteur 4 et à l'embase 8. L'embase 8 est fixée au boîtier 2 par l'intermédiaire d'une colle 12. La couche de colle 12 se situant entre l'embase 8 et le fond 3 du boîtier 2, peut être une couche continue ou discontinue. Selon une caractéristique importante de l'invention, la colle servant à fixer l'embase 8 sur le fond 3 du boîtier 2 a une elongation au seuil de plasticité de l'ordre de 20% ou plus. En général cela se traduit par un module d'Young faible, par exemple inférieur à 2000 MPa. Par contre, la colle servant à fixer au moins l'une des extrémités 6 ou 7 de la fibre 5 respectivement ou les deux extrémités 6 et 7, respectivement sur le connecteur 4 et sur l'embase 8 a une elongation au seuil de plasticité de l'ordre de 2% ou moins. En général une telle colle est une colle à fort module d'Young par exemple égale ou supérieure à 7000 MPa. Ainsi la colle servant à fixer l'embase 8 au fond 3 du boîtier 2 ou à la fois au fond 3 du boîtier 2 et au connecteur 4 ou au connecteur 4 seulement, a une elongation au seuil de plasticité de 10 à 100 fois supérieure à l' elongation au seuil de plasticité de la colle servant à fixer au moins l'une ou les deux extrémités 6, 7 de la fibre optique 5 au connecteur 4 ou à l'embase 8 respectivement.
La colle 14 servant à fixer l'extrémité 7 de la fibre 5 sur l'embase 8 pourra être une colle époxy UV, c'est-à-dire dont la reticulation se fait par soumission à un flux ultraviolet. La colle 13 de fixation de 1 ' extrémité 6 de la fibre optique dans le connecteur 4 pourra être une colle époxy thermique dure. Les colles 13 et 14 devront avoir, de préférence, des températures Tg de transition vitreuse élevées, au moins supérieure à la température d'utilisation du module. La colle 12 servant à fixer l'embase 8 sur le fond 3 du boîtier 2, pourra être une colle époxy souple.
Compte tenu de la différence dans le comportement élastique des colles 12, 13 et 14 l'embase 8 est montée comme flottante sur le fond 3 du boîtier 2 en sorte qu'une contrainte due à des chocs ou des cyclages thermiques se traduira par un déplacement entier de l'embase 8. Par contre, la fibre optique 5 montée de façon plus rigide à 1 ' embase 8 et au connecteur 4 restera solidement fixée et il n'y aura pas de déplacement de la fibre par rapport au composants 9 ou au connecteur 4.
La figure 3 représente un autre mode de réalisation dans lequel le connecteur 4 a une partie fixée au fond 3 du boîtier 2. L'embase 8 repose pour partie sur le fond 3 du boîtier 2 et pour partie sur un fond du connecteur 4. Dans l'exemple représenté, l'embase 8 est fixée au moyen d'une colle 12 au fond 3 du boîtier 2 et par une colle 15 au connecteur 4. Dans ce cas, chacune des colles 12 et 15 a une déformation au seuil de plasticité 10 à 100 fois supérieure à la déformation au seuil de plasticité de chacune des colles 13 et 14 utilisées pour fixer les extrémités 6 et 7 de la fibre 5 respectivement au connecteur 4 et à l'embase 8. Les colles 12 et 15 seront de préférence identiques de façon à minimiser les références d'approvisionnement et les manipulations. Les colles 13 et 14 pourront être identiques ou différentes l'une de l'autre en fonction de leur mode de polymérisation. Les zones de répartition des colles 12 et 15 rendent l'embase 8 flottante à la fois, par rapport au boîtier 2 et au connecteur 4. Les colles employées pourront être celles décrites en liaison avec la figure 2.
Dans certains montages il peut arriver que l'embase 8 ne soit fixée ou ne repose que sur le connecteur 4. Ce cas n'a pas été représenté sur les figures. Ce dernier cas se déduit du cas représenté figure 3 par exemple simplement en supprimant la colle 12 ou encore par le fait que l'embase 8 repose entièrement sur le connecteur 4. L'invention est particulièrement intéressante lorsque le boîtier 2 est un boîtier plastique présentant un coefficient de dilatation nettement plus élevé que le coefficient de dilatation de l'embase.

Claims

REVENDICATIONS
1. Module optique ( 1 ) comportant un boîtier ( 2 ) ayant un fond ( 3 ) et logeant notamment : - une embase (8) sur laquelle est monté un composant optique ( 9 ) , et - un connecteur optique ( 4 ) , le connecteur (4) et le composant (9) étant couplés par une fibre optique (5) ayant deux extrémités (6,7) dont l'une (7) est collée par une première colle (14) sur l'embase (8) devant le composant optique (9) et l'autre (6) par une seconde colle (13) sur le connecteur (4), l'embase (8) étant collée au fond (3) du boîtier (2) ou au connecteur (4) ou à la fois au fond (3) du boîtier (2) et au connecteur (4) par une troisième (12) et éventuellement une quatrième (15) colle, module caractérisé en ce que une colle (12, 15) de fixation de l'embase (8) présente une elongation au seuil de plasticité plus grande que l'élongation au seuil de plasticité d'une colle (13, 14) de fixation de l'une au moins des extrémités (6, 7) de la fibre (5) sur l'embase (8) ou le connecteur (4).
2. Module optique ( 1 ) selon la revendication
1, caractérisé en ce que l'élongation au seuil de plasticité d'une colle (12, 15) de fixation de l'embase
(8) est de 10 à 100 fois plus grande que l'élongation au seuil de plasticité d'une colle (13, 14) de fixation de l'une au moins des extrémités (6, 7) de la fibre (5) sur l'embase (8) ou le connecteur (4).
3. Module optique (1) selon la revendication
2, caractérisé en ce que l'élongation au seuil de plasticité de chacune des colles (12, 15) fixant l'embase (8) est de 10 à 100 fois plus grande que l'élongation au seuil de plasticité de chacune des colles (13, 14) de fixation de l'une au moins des extrémités (6, 7) de la fibre (5) sur l'embase (8) ou le connecteur (4).
4. Module optique (1) selon la revendications 1, 2 ou 3, caractérisé en ce que chacune des colles (12, 15) fixant l'embase (8) a un module d'Young très inférieur à celui de chacune des colles (13,14) fixant chacune des extrémités ( 6 , 7 ) de la fibre optique ( 5 ) respectivement au connecteur (4) et à l'embase (8).
5. Module optique selon la revendication 4 caractérisé en ce que chacune des colles (12,15) fixant l'embase a un module d'Young inférieur au tiers de celui de chacune des colles fixant chacune des extrémités (6,7) de la fibre optique (5).
6. Module optique (1) selon la revendication 1, dans lequel l'embase (8) est fixée non seulement au boîtier (2) mais aussi au connecteur (4), caractérisé en ce que chacune des colles (12,15) de fixation de l'embase (8) sur le boîtier (2) et le connecteur (4) respectivement présente une elongation au seuil de plasticité plus grande que l'élongation au seuil de plasticité de la colle de fixation de l'une au moins des extrémités (6, 7) de la fibre (5) sur l'embase (8) ou le connecteur ( 4 ) .
EP01976359A 2000-10-05 2001-10-04 Structure interne a faible contrainte pour boitier optoelectronique Withdrawn EP1247128A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0012729 2000-10-05
FR0012729A FR2815138B1 (fr) 2000-10-05 2000-10-05 Structure interne a faible contrainte pour boitier optoelectrique
PCT/FR2001/003057 WO2002029464A1 (fr) 2000-10-05 2001-10-04 Structure interne a faible contrainte pour boitier optoelectronique

Publications (1)

Publication Number Publication Date
EP1247128A1 true EP1247128A1 (fr) 2002-10-09

Family

ID=8855034

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01976359A Withdrawn EP1247128A1 (fr) 2000-10-05 2001-10-04 Structure interne a faible contrainte pour boitier optoelectronique

Country Status (5)

Country Link
US (1) US6736554B2 (fr)
EP (1) EP1247128A1 (fr)
JP (1) JP2004511009A (fr)
FR (1) FR2815138B1 (fr)
WO (1) WO2002029464A1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030077052A1 (en) * 2001-10-23 2003-04-24 Joyce William B. Laser module platform
EP2232656A4 (fr) 2007-12-17 2014-04-16 Ii Vi Laser Entpr Gmbh Modules emetteurs laser et procedes d'assemblage
US8804246B2 (en) 2008-05-08 2014-08-12 Ii-Vi Laser Enterprise Gmbh High brightness diode output methods and devices
WO2011038165A2 (fr) * 2009-09-23 2011-03-31 Hoya Corporation Usa Dispositif optoélectronique à couplage par fibres optiques monté sur une carte de circuits imprimés
JP5740654B2 (ja) 2010-01-22 2015-06-24 トゥー−シックス レイザー エンタープライズ ゲーエムベーハー 遠視野ファイバ結合放射の均質化
US8644357B2 (en) 2011-01-11 2014-02-04 Ii-Vi Incorporated High reliability laser emitter modules
US9213138B2 (en) 2013-03-26 2015-12-15 Lumentum Operations Llc Packaging an arcuate planar lightwave circuit
US9921378B2 (en) * 2015-04-17 2018-03-20 Cisco Technology, Inc. Optical bench for aligning an optical device
JP2022135003A (ja) * 2021-03-04 2022-09-15 住友電気工業株式会社 光コネクタケーブル
US20220291462A1 (en) * 2021-03-11 2022-09-15 Intel Corporation Method to couple light using integrated heat spreader

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2026194A (en) * 1978-07-24 1980-01-30 Gen Electric Co Ltd Optical fibre coupling
JPH0534540A (ja) * 1991-08-01 1993-02-12 Sumitomo Electric Ind Ltd 光フアイバカプラの補強方法
US5327517A (en) * 1991-08-05 1994-07-05 Nippon Telegraph And Telephone Corporation Guided-wave circuit module and wave-guiding optical component equipped with the module
JPH06222238A (ja) * 1993-01-21 1994-08-12 Sumitomo Electric Ind Ltd 光ファイバカップラの保護構造および保護方法
DE69420990T2 (de) * 1993-02-02 2000-03-09 Sumitomo Electric Industries Optische Steckerhülse mit Klebstoff-Füllung
JPH06337328A (ja) * 1993-03-29 1994-12-06 Sumitomo Electric Ind Ltd 光コネクタ
WO1996000920A1 (fr) * 1994-06-30 1996-01-11 The Whitaker Corporation Boitier opto-electronique et emetteur-recepteur optique bidirectionnel s'utilisant a l'interieur de celui-ci
DE19643072A1 (de) * 1996-10-18 1998-04-23 Alsthom Cge Alcatel Optoelektronisches Bauelement
US5923803A (en) * 1997-07-28 1999-07-13 Molex Incorporated Method of fabricating a fiber optic connector ferrule
US6130444A (en) * 1998-02-27 2000-10-10 Nec Corporation Optical fiber secured with a photosetting resin covered with a UV light-transmissive plate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0229464A1 *

Also Published As

Publication number Publication date
WO2002029464A1 (fr) 2002-04-11
US20020172473A1 (en) 2002-11-21
JP2004511009A (ja) 2004-04-08
US6736554B2 (en) 2004-05-18
FR2815138A1 (fr) 2002-04-12
FR2815138B1 (fr) 2003-01-31

Similar Documents

Publication Publication Date Title
US6185347B1 (en) Wavelength division multiplexed coupler
JP2614018B2 (ja) 光ファイバ導入部の気密封止構造と気密封止方法
US8164043B2 (en) Optical module with fiber holding ferrule
US20060002664A1 (en) Packaging for a fiber-coupled optical device
EP1247128A1 (fr) Structure interne a faible contrainte pour boitier optoelectronique
EP0183124A1 (fr) Source optique
FR2767929A1 (fr) Module de matrice de fibres optiques revetues de metal
EP0860724A1 (fr) Procédé d'assemblage d'un dispositif opto-hybride
FR2748123A1 (fr) Ensemble optique pour coupler un guide de lumiere et procede pour sa fabrication
US6603906B2 (en) Multi-port optical power monitoring package and method of manufacturing
FR2760099A1 (fr) Procede d'emballage d'une partie optique et procede d'assemblage d'un collimateur
FR2835653A1 (fr) Dispositif semi-conducteur optique
EP1442480B1 (fr) Dispositif d'encapsulation hermetique de composant devant etre protege de toute contrainte
EP2216663A1 (fr) Structure et procédé d'alignement d'une fibre optique et d'un guide d'ondes submicronique
EP0898187B1 (fr) Dispositif semi-conducteur à moyen électronique d'échanges à distance de signaux
US6853779B2 (en) Floating optical carrier
EP1190270B1 (fr) Connexion optique pour circuit electronique integre et application aux interconnexions de tels circuits
CA2041235A1 (fr) Dispositif optique a composant d'optique integree et procede de fabrication
US20030044126A1 (en) Optical module and method of manufacturing the optical module
US6613980B1 (en) Environmental protection for an optical assembly and method therefor
EP0730327B1 (fr) Ensemble modulaire incluant deux circuits électroniques à relier électriquement pour la transmission d'un signal hyperfréquence
FR3091932A1 (fr) Système photonique et son procédé de fabrication
US20060204182A1 (en) Apparatus and method for coupling a fiber to a photodetector
JP3107155B2 (ja) 半導体レーザモジュール
FR2756640A1 (fr) Dispositif de raccordement par fibrage entre deux composants optiques

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17P Request for examination filed

Effective date: 20030506

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AVANEX CORPORATION

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20041102