EP1364114B1 - Fluiddosiervorrichtung mit drosselstelle - Google Patents

Fluiddosiervorrichtung mit drosselstelle Download PDF

Info

Publication number
EP1364114B1
EP1364114B1 EP01992833A EP01992833A EP1364114B1 EP 1364114 B1 EP1364114 B1 EP 1364114B1 EP 01992833 A EP01992833 A EP 01992833A EP 01992833 A EP01992833 A EP 01992833A EP 1364114 B1 EP1364114 B1 EP 1364114B1
Authority
EP
European Patent Office
Prior art keywords
chamber
valve needle
dosing device
fluid dosing
metal bellows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01992833A
Other languages
English (en)
French (fr)
Other versions
EP1364114A2 (de
Inventor
Andreas Kappel
Bernhard Fischer
Randolf Mock
Bernhard Gottlieb
Enrico Ulivieri
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE2000154182 external-priority patent/DE10054182A1/de
Priority claimed from DE2000160939 external-priority patent/DE10060939A1/de
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1364114A2 publication Critical patent/EP1364114A2/de
Application granted granted Critical
Publication of EP1364114B1 publication Critical patent/EP1364114B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/0603Injectors peculiar thereto with means directly operating the valve needle using piezoelectric or magnetostrictive operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/08Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series the valves opening in direction of fuel flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/16Sealing of fuel injection apparatus not otherwise provided for

Definitions

  • the present invention relates to a Fluiddosiervoriques for a pressurized fluid having a chamber located in a housing, which is supplied through a fluid supply line, the pressurized fluid, and with a valve needle guided through the chamber, the first end portion is acted upon outside the chamber with a stroke and whose second end portion forms a valve seat connected to the chamber with a valve seat provided on the housing.
  • valve needle can continue to take place similar to diesel injectors by a clearance of the needle in a cylindrical housing bore.
  • the disadvantage here is the unavoidable leakage along the needle feedthrough. By the larger hydraulic losses also reduce the overall efficiency of the engine.
  • a fluid device according to the preamble of claim 1 is known from EP1046809 A2.
  • Object of the present invention is to provide in a generic Fluiddosiervorraum particular dense implementation of the valve needle, which achieves a required creep rupture strength.
  • a Fluiddosiervorraum according to the preamble of claim 1, characterized in that circumferentially provided between the valve needle and the chamber inner wall at least one throttle point in the chamber section between the lead-through element and the mouth of the fluid supply line into the chamber.
  • the metal bellows fail when used in a high-pressure injection valve at a static pressure load of 200 bar already after about 10 min. This is due to the fact that when opening and closing the injector or injector pressure waves in the fuel chamber of the injector are triggered, in response to the opening and closing time of the injector with an amplitude of up to ⁇ 50% of the set fuel pressure and a frequency from about 500 Hz - 10 kHz, typically in the range of about 500 - 800 Hz, to swing the set basic pressure. The occurrence of such pressure oscillations leads to failure of the metal bellows seal when pressure waves are triggered.
  • the throttle points provided according to the invention protect the metal bellows against the destructive effect of these pressure oscillations.
  • the invention thus a sufficient tightness of the fuel chamber is realized by the metal bellows, the bellows seal is protected from the pressure waves occurring during operation and thereby a motor vehicle technically typical creep rupture strength of at least 10 9 load cycles (about 2000 operating hours) is reached.
  • the metal bellows has a wall thickness of 25 to 500 ⁇ m. These low wall thicknesses have proven to be completely sufficient at high pressures of for example 300 bar. Experiments have shown that a formation of the metal bellows in the form of - visible in longitudinal section - juxtaposed semicircular segments provides particular advantages. These semicircular segments can each be supplemented by intervening straight sections.
  • the elastic feedthrough element is fastened to a mounting sleeve, in particular by a welded connection.
  • a metal bellows can be attached directly to the valve needle only with comparatively great effort.
  • the mounting sleeve is also an element ready, can be realized by a simple way a precisely dimensioned throttle in the fuel chamber.
  • an upper guide sleeve is an alternative or in addition to the suitably dimensioned mounting sleeve designed such that a tight and long as possible clearance fit is realized by this valve needle guide. Since the upper valve needle guide is provided anyway at the fuel injector, additional components can be omitted.
  • the free cross section between the valve needle and the chamber inner wall is changed abruptly in the region of the throttle point. This results in the desired reflection of the pressure waves at the chamber inner wall section extending transversely to the propagation direction of the pressure waves.
  • the gap width of the throttle point is selected as a function of the position of the throttle point in the fuel chamber and the length of the throttle gap, taking into account the static and dynamic pressure conditions. There have been some microns as a typical value for the gap width of the throttle point in the fuel chamber of a high pressure fuel injector.
  • the fuel injection valve 1 has a housing 3 with a central bore in which a valve body 5 is mounted.
  • a valve needle 9 is guided axially displaceable.
  • a lower and front and an upper or rear guide sleeve 11, 13 are attached, forming the corresponding valve needle guides.
  • the constrictions realized thereby are designed so that they do not hinder or restrict a liquid flow when opening and closing the valve 1.
  • valve needle 9 is provided both at the level of the lower and the upper guide sleeve 11, 13 and the two valve needle guides with a circumferentially protruding, rounded square section according to Fig. 1a, b (section AA and section BB).
  • the free gap between the four side surfaces of the square of the valve needle 9 and the cylindrical inner wall of the guide sleeves 11, 13 is designed to be significantly larger in order to avoid any throttling effect.
  • valve plate 15 formed on the front end portion of the valve needle 15 closes a valve seat 16 in the valve body.
  • the valve body has a valve body fuel supply line 17 which, viewed in the axial extent, lies between the lower and upper guide sleeves 11, 13 with a junction 19 the valve body bore 7 opens. Accordingly, a housing fuel supply line 21 is provided in the valve housing 3.
  • a spring plate 23 is attached to this. In this presses a nozzle spring 25, which is supported on the housing side and thereby biases the valve needle 9 in the closing direction.
  • an outer mounting sleeve 27 is fixed in the central bore of the valve housing 3.
  • the outer mounting sleeve 27 has at the lower end a sleeve collar 44 which rests on an annular bearing surface 45 on the housing 3.
  • the sleeve collar has an outer surface 46, which is arranged an inner wall 47 of the housing 3. Between the outer surface 46 and the inner wall 47, a sealing element 48 is inserted in the form of a sealing ring.
  • the sleeve collar 44 is sealed with an annular circumferential weld 49 tightly welded to the inner wall 47. This forms through an opening in a sleeve bottom 29 a needle feedthrough, which is sealed as described below.
  • the outer mounting sleeve 27 whose inner wall forms a bottleneck described in more detail below with the outer wall of an inner mounting sleeve 31, which in turn is attached to the valve needle 9.
  • 31 is welded to the outer and inner mounting sleeve 27, 31 is welded a cylindrical metal bellows 33, through which the valve needle 9 is guided to the outside.
  • the metal bellows 33 serves to hermetically seal the fuel chamber 35 with respect to a pressureless, air-filled gap 36.
  • the metal bellows 33 in the region of the opening on Sleeve bottom 29 and mounted on a surface of the inner mounting sleeve 31, which faces the sleeve bottom 29.
  • the use of the metal bellows 33 in the needle feedthrough allows a complete, permanent and reliable sealing of the high-pressure region in the chamber 35 of the injection valve 1 with respect to the gap 36 with the drive region, not shown.
  • the metal bellows 33 despite a small wall thickness of, for example, 50 to 500 ⁇ m, withstand very high pressures due to its high radial rigidity, without being irreversibly deformed.
  • the metal bellows 33 may be further configured to provide high mechanical compliance, i. a small spring constant in the direction of movement of the valve needle or axial direction is achieved. This ensures that the deflection of the valve needle 9 is not affected, and that caused by temperature-induced changes in length of the needle feedthrough into the valve needle forces are kept as small as possible. Furthermore, the fuel leakage can be prevented by the use of the metal bellows 33 in the needle feedthrough with high reliability.
  • the metal bellows-sealed needle feedthrough in the outer mounting sleeve 27 can also be designed so that the forces acting on the valve needle 9 pressure-related forces compensate each other. As a result, the valve needle 9 is kept completely free of pressure.
  • the hydraulically effective diameter of the metal bellows is selected so that it corresponds exactly to the diameter of the valve seat 16 (not shown).
  • the metal bellows 33 Due to its metallic material, the metal bellows 33 furthermore have a wide operating temperature range with constant functionality. Thermal changes in length of the metal bellows 33 themselves lead due to the small axial spring constant of the metal bellows only negligible force changes to the valve needle 9 in the axial direction. The metal bellows can also partially or completely replace the nozzle spring 25 due to its mechanical spring action in the axial direction.
  • the outer mounting sleeve 27 is shown in FIG. 1a now designed so that it forms a close and long as possible clearance together with the inner mounting sleeve 31.
  • the game is only a few microns. Due to the throttling effect of this long cylindrical fit, rapid pressure changes in the fuel chamber 35 are kept away from the metal bellows 33, while static pressures can act unimpeded on the bellows wall.
  • the pressure waves in the region of the jump in cross section of the first throttle body 37 are reflected at the chamber wall section or the sleeve end face extending transversely to the axial direction so that only a pressure wave with a greatly reduced pressure amplitude continues into the annular gap formed by the first throttle restriction 37.
  • a fuel injection valve 1 according to the second embodiment in contrast to the valve 1 according to the first embodiment, only a modification in the first throttle body 37 made in that the free inner diameter of the sleeve collar 44 of the outer mounting sleeve 27 at the same throttle gap dimensions in favor of Outer diameter of the inner mounting sleeve 31 is reduced.
  • the throttle gap between inner and outer Mounting sleeve 27, 31 chosen so small and long that a sufficient throttling effect is realized.
  • the triggered during the opening and closing of the valve 1 in the fuel chamber 35 pressure waves can not or only slightly act on the metal bellows 33 due to the small distance between the inner and outer mounting sleeve 27, 31.
  • a fuel injection valve 1 according to the third embodiment shown in Fig. 3a, b instead of the first throttle point according to the first two embodiments, alternatively, a second throttle point 39 in the region of the upper valve needle guide and the upper guide sleeve 13. Since the fuel supply line 17 opens below the upper valve needle guide 13 into the space between the valve needle 9 and the valve body 5 or the fuel chamber 35, the fuel to be injected therein does not have to pass the upper valve needle guide 13. Therefore, the upper valve needle guide itself can be formed as a tight, long cylindrical clearance of the valve needle 9 in the upper guide sleeve 13, as shown in section BB in Fig. 3b.
  • valve needle 9 in contrast to the lower valve needle guide (section AA) is not formed as a square, but cylindrical (section BB).
  • the pressure waves triggered during opening and closing operations are reflected and a dynamic volume exchange in the direction of the metal bellows 33 is strongly throttled.
  • the throttling action of the upper valve needle guide 13 separates the fuel chamber 35 into two sub-volumes, namely first and second chamber sub-volumes 41, 43.
  • the throttling points 37, 39 shown in FIGS. 1, 2 and 3 are realized together in one valve.
  • the first throttle body 37 is formed by the inner and outer mounting sleeves 27, 31 and the second throttle body 39 is formed by the upper guide sleeve 13 and the upper valve needle guide, respectively.
  • a bellows in the form of a metal bellows has been described as an elastic feedthrough element.
  • the invention is not limited to this type of elastic feedthrough element but can also be applied to other types of elastic feedthrough elements such as e.g. a membrane or a resilient plastic or rubber sleeve are used.
  • the membrane is preferably made of metal.
  • the membrane and the sleeve are glued or welded according to the described metal bellows with the inner and outer mounting sleeve 27, 31.
  • the pressure in the second chamber sub-volume 43 can be adjusted by the choice of the diameter of the clearance fit of the valve needle 9 compared to the hydraulically effective diameter of the metal bellows 33.
  • the diameter of the clearance larger (or smaller) than the hydraulically effective diameter of the metal bellows 33 is achieved that the pressure in the second chamber sub-volume 43 when opening the injector decreases (or increases). It is particularly advantageous if the diameter of the clearance fits the hydraulically effective diameter of the metal bellows 33, because in this way the pressure in the second chamber sub-volume 43 remains substantially constant when the injection valve is opened; the metal bellows 33 is then exposed in all operating conditions only a constant pressure load.

Description

  • Die vorliegende Erfindung betrifft eine Fluiddosiervorrichtung für ein unter Druck stehendes Fluid mit einer in einem Gehäuse befindlichen Kammer, der durch eine Fluidzuleitung das druckbeaufschlagte Fluid zugeführt wird, und mit einer durch die Kammer geführten Ventilnadel, deren erster Endabschnitt außerhalb der Kammer mit einem Hub beaufschlagbar ist und deren zweiter Endabschnitt mit einem am Gehäuse vorgesehenen Ventilsitz ein mit der Kammer in Verbindung stehendes Ventil bildet.
  • Im Stand der Technik sind verschiedene Abdichtungs- oder Durchführungselemente für Fluiddosiervorrichtungen bekannt. Für den Anwendungsfall der Dosierung von unter Druck stehendem Kraftstoff mit einem Druck von bis zu beispielsweise 300 bar und einer Arbeitstemperatur von -40°C bis +150°C werden besondere Anforderungen an ein serientaugliches Produkt gestellt. Insbesondere müssen hohe Anforderungen hinsichtlich der Versprödung, des Verschleißes und der Zuverlässigkeit erfüllt werden. Dabei entspricht die Dauerstandfestigkeit von bisher verwendeten O-Ring-Dichtungen den obigen Anforderungen nicht. Anstelle von O-Ringen können auch Membrandichtungen wie z.B. Metallsicken o. Ä. verwendet werden. Beim Einsatz derartiger Membranen als Durchführungselement einer Ventilnadel durch eine druckbeaufschlagte Kammer können jedoch die Anforderungen bezüglich einer hohen axialen Nachgiebigkeit bei gleichzeitig ausreichender Druckfestigkeit nicht erfüllt werden.
  • Die Ventilnadel kann weiterhin ähnlich wie bei Dieselinjektoren auch durch eine Spielpassung der Nadel in einer zylindrischen Gehäusebohrung erfolgen. Nachteilig hierbei ist die unvermeidbare Leckage längs der Nadeldurchführung. Durch die größeren hydraulischen Verluste wird außerdem der Gesamtwirkungsgrad des Motors herabgesetzt.
  • Eine Fluidvorrichtung laut Oberbegriff von Anspruch 1 ist aus der EP1046809 A2 bekannt.
  • Aufgabe der vorliegenden Erfindung ist es, bei einer gattungsgemäßen Fluiddosiervorrichtung insbesondere eine dichte Durchführung der Ventilnadel bereitzustellen, die eine geforderte Dauerstandfestigkeit erreicht.
  • Erfindungsgemäß ist dies bei einer Fluiddosiervorrichtung nach dem Oberbegriff des Patentanspruches 1 dadurch erreicht, dass umfangsmäßig zwischen der Ventilnadel und der Kammerinnenwand zumindest eine Drosselstelle im Kammerabschnitt zwischen dem Durchführungselement und der Einmündung der Fluidzuleitung in die Kammer vorgesehen ist. Aus Messungen hat sich ergeben, dass für den Einsatz in Hochdruckeinspritzventilen, beispielsweise der Fahrzeugtechnik, als Durchführungselemente konzipierte Metallbälge problemlos statischen Druckbelastungen bis zu ca. 200 bar standhalten können. Durch eine Erhöhung der Wanddicke kann auch eine weit höhere Druckfestigkeit erreicht werden. Weitere Untersuchungen an bewegten Metallbalgabdichtungen zeigten zudem, dass ein hochdruckbelasteter Metallbalg beim Ausführen einer für die Einspritzventile typischen Axialbewegung von bis zu 50 µm mit einer Frequenz von 50 Hz keine Degradation erleidet. Durch den Einsatz eines Metallbalges ist also eine hermetische Abdichtung der Kraftstoffkammer bei ausreichender Druckfestigkeit erreicht.
  • Es wurde jedoch überraschenderweise festgestellt, dass die Metallbälge beim betriebsgemäßen Einsatz in einem Hochdruckeinspritzventil bei einer statischen Druckbelastung von 200 bar bereits nach ca. 10 min versagen. Dies hat seine Ursache darin, dass beim Öffnen und Schließen des Einspritzventils bzw. Injektors Druckwellen in der Kraftstoffkammer des Injektors ausgelöst werden, die in Abhängigkeit von der Öffnungs-und Schließzeit des Injektors mit einer Amplitude von bis zu ±50% des eingestellten Kraftstoffdruckes und einer Frequenz von ca. 500 Hz - 10 kHz, typischerweise im Bereich von ca. 500 - 800 Hz, um den eingestellten Grunddruck schwingen. Das Auftreten derartiger Druckoszillationen führt bei ausgelösten Druckwellen zum Versagen der Metallbalgabdichtung. Die erfindungsgemäß vorgesehenen Drosselstellen schützen den Metallbalg vor der zerstörenden Wirkung dieser Druckoszillationen.
  • Zusammenfassend ist erfindungsgemäß also eine ausreichende Dichtigkeit der Kraftstoffkammer durch den Metallbalg realisiert, wobei die Metallbalgabdichtung vor den im Betrieb auftretenden Druckwellen geschützt ist und dadurch eine kraftfahrzeugtechnisch typische Dauerstandfestigkeit von mindestens 109 Lastzyklen (ca. 2000 Betriebsstunden) erreicht ist.
  • Vorteilhafterweise weist der Metallbalg eine Wandstärke von 25 bis 500 µm auf. Diese geringen Wandstärken haben sich bei hohen Drücken von beispielsweise 300 bar als völlig ausreichend erwiesen. Versuche haben ergeben, dass eine Ausbildung des Metallbalges in Form von - im Längsschnitt sichtbaren - aneinander gereihten Halbkreissegmenten besondere Vorteile erbringt. Diese Halbkreissegmente können jeweils durch dazwischenliegende gerade Teilstücke ergänzt werden.
  • Gemäß einer bevorzugten Ausführungsform ist vorgesehen, dass das elastische Durchführungselement an einer Montagehülse befestigt ist, insbesondere durch eine Schweißverbindung. Dies ist fertigungstechnisch besonders günstig, da sich insbesondere ein Metallbalg nur mit vergleichsweise großem Aufwand direkt an der Ventilnadel befestigen lässt. Mit der Montagehülse steht auch ein Element bereit, durch das sich auf einfache Weise eine genau dimensionierte Drosselstelle in der Kraftstoffkammer realisieren lässt.
  • Um eine geeignete Drosselstelle in der Kraftstoffkammer bereitstellen zu können, ist alternativ oder zusätzlich zu der passend dimensionierten Montagehülse eine obere Führungshülse derart ausgebildet, dass durch diese Ventilnadelführung eine enge und möglichst lange Spielpassung realisiert ist. Da die obere Ventilnadelführung ohnehin beim Kraftstoffinjektor vorgesehen ist, können zusätzliche Komponenten entfallen.
  • Wenn beide Drosselstellen - "Montagehülse" und "obere Ventilnadelführung" - gleichzeitig bei der Fluiddosiervorrichtung realisiert sind, können die jeweiligen Drosselspalte größer und/oder in axialer Richtung kürzer ausgeführt werden, ohne die Schutzwirkung der Drosselstellen für den Metallbalg negativ zu beeinflussen. Zudem können Fehlpassungen, die zu einem Klemmen der Ventilnadel führen könnten, vermieden werden. Dies gilt jedoch auch, wenn auf die durch die Montagehülsen gebildete Drosselstelle verzichtet wird, wobei die durch die obere Führungshülse gebildete Drosselstelle entsprechend auszulegen ist.
  • Um die Ausbreitung der Druckwellen in der Kraftstoffkammer in Richtung des Metallbalges verhindern bzw. stark beschränken zu können, ist im Bereich der Drosselstelle der freie Querschnitt zwischen der Ventilnadel und der Kammerinnenwand sprunghaft geändert. Dies führt an dem sich quer zur Ausbreitungsrichtung der Druckwellen erstreckenden Kammerinnenwandabschnitt zur gewünschten Reflexion der Druckwellen.
  • Die Spaltbreite der Drosselstelle wird in Abhängigkeit von der Lage der Drosselstelle in der Kraftstoffkammer und der Länge des Drosselspaltes unter Berücksichtigung der statischen und dynamischen Druckverhältnisse gewählt. Es haben sich einige µm als typischer Wert für die Spaltbreite der Drosselstelle in der Kraftstoffkammer eines Hochdruck Kraftstoffinjektors ergeben.
  • Nachfolgend sind anhand schematischer Darstellungen vier Ausführungsbeispiele der erfindungsgemäßen Fluiddosiervorrichtung beschrieben. Es zeigen:
  • Fig. 1a
    in einem Längsschnitt das erste Ausführungsbeispiel der Fluiddosiervorrichtung,
    Fig. 1b
    zwei Querschnittdarstellungen entlang der Linien A-A und B-B in Fig. 1a,
    Fig. 2
    in einem Längsschnitt das zweite Ausführungsbeispiel,
    Fig. 3a
    in einem Längsschnitt das dritte Ausführungsbeispiel der Fluiddosiervorrichtung, sowie
    Fig. 3b
    zwei Querschnittdarstellungen entlang der Linien A-A und B-B in Fig. 3a.
  • Bei einem in Fig. 1a, b schematisch gezeigten Einspritzventil 1 gemäß einem ersten Ausführungsbeispiel ist aus Vereinfachungsgründen die an sich allgemein bekannte Aktoreinheit nicht dargestellt. Das Kraftstoffeinspritzventil 1 weist ein Gehäuse 3 mit einer Zentralbohrung auf, in der ein Ventilkörper 5 montiert ist. In einer Ventilkörperbohrung 7 des Ventilkörpers ist eine Ventilnadel 9 axial verschiebbar geführt. Dazu sind in der Ventilkörperbohrung 7 an deren unteren und oberen Endabschnitt am Ventilkörper 5 eine untere bzw. vordere und eine obere bzw. hintere Führungshülse 11, 13 befestigt, die entsprechende Ventilnadelführungen bilden. Die dadurch realisierten Engstellen sind dabei so ausgelegt, dass sie einen Flüssigkeitsstrom beim Öffnen und Schließen des Ventils 1 nicht behindern bzw. drosseln. Dazu ist die Ventilnadel 9 sowohl in Höhe der unteren als auch der oberen Führungshülse 11, 13 bzw. der beiden Ventilnadelführungen mit einem umfangsmäßig hervorspringenden, verrundeten Vierkantquerschnitt gemäß Fig. 1a, b versehen (Schnitt A-A und Schnitt B-B). Dabei ist die Ventilnadel 9 mit den verrundeten Kantenbereichen 14 mit einem Spiel von weniger als 2 µm in die beiden Führungshülsen 11, 13 eingepasst. Der freie Spalt zwischen den vier Seitenflächen des Vierkantes der Ventilnadel 9 und der zylinderförmigen Innenwand der Führungshülsen 11, 13 ist dabei deutlich größer ausgebildet, um jegliche Drosselwirkung zu vermeiden.
  • Im Grundzustand verschließt ein am vorderen Endabschnitt der Ventilnadel 9 ausgebildeter Ventilteller 15 einen Ventilsitz 16 am Ventilkörper 5. Im Ventilkörper ist eine Ventilkörper-Kraftstoffzuleitung 17 vorgesehen, die in axialer Erstreckung gesehen zwischen der unteren und der oberen Führungshülse 11, 13 mit einer Einmündung 19 in die Ventilkörperbohrung 7 mündet. Entsprechend ist auch im Ventilgehäuse 3 eine Gehäuse-Kraftstoffzuleitung 21 vorgesehen. Am oberen Endabschnitt der Ventilnadel 9 ist an dieser eine Federplatte 23 befestigt. Auf diese drückt eine Düsenfeder 25, die sich gehäuseseitig abstützt und dadurch die Ventilnadel 9 in Schließrichtung vorspannt. Oberhalb der oberen Führungshülse 13 ist in der Zentralbohrung des Ventilgehäuses 3 eine äußere Montagehülse 27 befestigt. Die äußere Montagehülse 27 weist am unteren Ende einen Hülsenkragen 44 auf, der auf einer ringförmigen Auflagefläche 45 auf dem Gehäuse 3 aufliegt. Der Hülsenkragen weist eine Außenfläche 46 auf, die einer Innenwandung 47 des Gehäuses 3 angeordnet ist. Zwischen der Außenfläche 46 und der Innenwandung 47 ist ein Dichtelement 48 in Form eines Dichtringes eingelegt. Der Hülsenkragen 44 ist mit einer ringförmig umlaufenden Schweißnaht 49 dicht mit der Innenwandung 47 verschweißt. Diese bildet durch eine Öffnung in einem Hülsenboden 29 eine Nadeldurchführung, die wie nachfolgend beschrieben abgedichtet ist. In einem sich beschränkt in axialer Richtung erstreckenden Teilabschnitt der äußeren Montagehülse 27 bildet deren Innenwand eine nachfolgend ausführlicher beschriebene Engstelle mit der Außenwand einer inneren Montagehülse 31, die wiederum an der Ventilnadel 9 befestigt ist. An die äußere und innere Montagehülse 27, 31 angeschweißt ist ein zylindrischer Metallbalg 33, durch den die Ventilnadel 9 nach außen geführt ist. Der Metallbalg 33 dient dabei zur hermetischen Abdichtung der Kraftstoffkammer 35 gegenüber einem drucklosen, luftgefüllten Zwischenraum 36. Vorzugsweise ist der Metallbalg 33 im Bereich der Öffnung am Hülsenboden 29 und auf einer Fläche der inneren Montagehülse 31 befestigt, die dem Hülsenboden 29 zugewandt ist.
  • Die Verwendung des Metallbalges 33 in der Nadeldurchführung ermöglicht eine vollständige, dauerhafte und zuverlässige Abdichtung des Hochdruckbereiches in der Kammer 35 des Einspritzventils 1 gegenüber dem Zwischenraum 36 mit dem nicht dargestellten Antriebsbereich. Der Metallbalg 33 hält trotz geringer Wandstärke von beispielsweise 50 bis 500 µm aufgrund seiner hohen radialen Steifigkeit sehr hohen Drücken stand, ohne irreversibel verformt zu werden. Der Metallbalg 33 kann weiterhin so ausgelegt werden, dass eine hohe mechanische Nachgiebigkeit, d.h. eine kleine Federkonstante in Bewegungsrichtung der Ventilnadel bzw. axialer Richtung erreicht wird. Dadurch ist erreicht, dass die Auslenkung der Ventilnadel 9 nicht beeinträchtigt wird, und dass durch temperaturbedingte Längenänderungen der Nadeldurchführung in die Ventilnadel eingeleitete Kräfte so klein wie möglich gehalten werden. Weiterhin kann durch den Einsatz des Metallbalges 33 in der Nadeldurchführung mit hoher Zuverlässigkeit die Kraftstoffleckage verhindert werden.
  • Die metallbalgabgedichtete Nadeldurchführung in der äußeren Montagehülse 27 kann außerdem so gestaltet werden, dass die auf die Ventilnadel 9 wirkenden druckbedingten Kräfte sich gegenseitig kompensieren. Dadurch ist die Ventilnadel 9 insgesamt druckfrei gehalten. Hierzu wird der hydraulisch wirksame Durchmesser des Metallbalges so gewählt, dass er genau dem Durchmesser des Ventilsitzes 16 entspricht (nicht gezeigt). Hierdurch wird erreicht, dass sich die von dem unter Druck stehenden Kraftstoff auf die Ventilnadel 9 mit dem Ventilteller 15 ausgelöste Druckkraft und die vom Metallbalg 33 in die Ventilnadel eingeleitete druckbedingte Kraft gegenseitig kompensieren. Somit wirkt keine resultierende Druckkraftkomponente auf die Ventilnadel 9. Dies gewährleistet, dass das Einspritzventil 1 ein vom Kraftstoffdruck nahezu unabhängiges Schaltverhalten zeigt, da die Öffnungs- und Schließkräfte alleine vom Aktorelement, beispielsweise von in einer Rohrfeder vorgespannten Piezoaktoren, und der Kraft der vorgespannten Düsenfeder 25 bestimmt werden. Der Metallbalg 33 verfügt weiterhin aufgrund seines metallischen Werkstoffes über einen weiten Arbeitstemperaturbereich mit gleich bleibender Funktionsfähigkeit. Thermische Längenänderungen des Metallbalges 33 selbst führen aufgrund der kleinen axialen Federkonstante des Metallbalges nur zu vernachlässigbar geringen Kraftänderungen an der Ventilnadel 9 in axialer Richtung. Der Metallbalg kann darüber hinaus aufgrund seiner mechanischen Federwirkung in axialer Richtung auch die Düsenfeder 25 teilweise oder vollständig ersetzen.
  • Die äußere Montagehülse 27 ist gemäß Fig. 1a nun so gestaltet, dass sie zusammen mit der inneren Montagehülse 31 eine enge und möglichst lange Spielpassung bildet. Dabei beträgt das Spiel nur wenige µm. Durch die Drosselwirkung dieser langen zylindrischen Passung werden schnelle Druckänderungen in der Kraftstoffkammer 35 vom Metallbalg 33 ferngehalten, während statische Drücke ungehindert auf die Balgwand wirken können. Zudem werden die Druckwellen im Bereich des Querschnittssprunges der ersten Drosselstelle 37 an dem sich quer zur Axialrichtung erstreckenden Kammerwandabschnitt bzw. der Hülsenstirnfläche reflektiert, so dass sich überhaupt nur eine Druckwelle mit stark reduzierter Druckamplitude in den durch die erste Drosselstelle 37 gebildeten ringförmigen Spalt hinein fortsetzt.
  • Bei einem Kraftstoffeinspritzventil 1 gemäß dem zweiten Ausführungsbeispiel ist in Fig. 2 im Unterschied zum Ventil 1 gemäß dem ersten Ausführungsbeispiel lediglich eine Abwandlung im Bereich der ersten Drosselstelle 37 dahingehend vorgenommen, dass der freie Innendurchmesser des Hülsenkragens 44 der äußeren Montagehülse 27 bei gleichen Drosselspaltmaßen zugunsten des Außendurchmessers der inneren Montagehülse 31 verkleinert ist. Wie im Ventil gemäß dem ersten Ausführungsbeispiel ist der Drosselspalt zwischen innerer und äußerer Montagehülse 27, 31 so klein und lang gewählt, dass ein ausreichender Drosseleffekt realisiert ist. Die beim Öffnen und Schließen des Ventils 1 in der Kraftstoffkammer 35 ausgelösten Druckwellen können infolge des geringen Abstandes zwischen der inneren und der äußeren Montagehülse 27, 31 nicht bzw. nur geringfügig auf den Metallbalg 33 einwirken.
  • Ein Kraftstoffeinspritzventil 1 gemäß dem dritten in Fig. 3a, b gezeigten Ausführungsbeispiel weist anstelle der ersten Drosselstelle gemäß den ersten beiden Ausführungsbeispielen alternativ eine zweite Drosselstelle 39 im Bereich der oberen Ventilnadelführung bzw. der oberen Führungshülse 13 auf. Da die Kraftstoffzuleitung 17 unterhalb der oberen Ventilnadelführung 13 in den Raum zwischen der Ventilnadel 9 und dem Ventilkörper 5 bzw. die Kraftstoffkammer 35 mündet, muss der in diese einzuspritzende Kraftstoff die obere Ventilnadelführung 13 nicht passieren. Deshalb kann die obere Ventilnadelführung selbst als enge, lange zylindrische Spielpassung der Ventilnadel 9 in der oberen Führungshülse 13 ausgebildet werden, wie im Schnitt B-B in Fig. 3b dargestellt ist. Dabei ist die Ventilnadel 9 im Unterschied zur unteren Ventilnadelführung (Schnitt A-A) nicht als Vierkant ausgebildet, sondern zylinderförmig (Schnitt B-B). An dieser zweiten Drosselstelle 39 werden die bei Öffnungs- und Schließvorgängen ausgelösten Druckwellen reflektiert und ein dynamischer Volumenaustausch in Richtung auf den Metallbalg 33 wird stark gedrosselt. Durch die Integration der Drosselstelle 39 in die Ventilnadelführung können auch Mehrfachpassungen vermieden werden. Die Drosselwirkung der oberen Ventilnadelführung 13 trennt die Kraftstoffkammer 35 in zwei Teilvolumina, nämlich einem ersten und einem zweiten Kammerteilvolumen 41, 43. Obwohl im unteren ersten Teilvolumen 41 der Kraftstoffkammer 35 durch das Öffnen und Schließen der Einspritzdüse dynamische Druckänderungen mit großer Amplitude erzeugt werden, können diese durch die dynamische Dichtwirkung der zweiten Drosselstelle 39 stark abgeschwächt in das obere zweite Teilvolumen 43 der Kraftstoffkammer 35 wirken, in welchem sich die Metallbalg-Nadeldurchführung befindet. Damit ist der Metallbalg 33 gegenüber dynamischen Druckänderungen geschützt.
  • Gemäß dem vierten Ausführungsbeispiel eines Kraftstoffeinspritzventils (nicht gezeigt) sind die in den Figuren 1 bzw. 2 und 3 gezeigten Drosselstellen 37, 39 gemeinsam in einem Ventil realisiert. Die erste Drosselstelle 37 ist durch die innere und die äußere Montagehülse 27, 31 gebildet und die zweite Drosselstelle 39 ist durch die obere Führungshülse 13 bzw. die obere Ventilnadelführung gebildet.
  • In den beschriebenen Ausführungsbeispielen wurde als elastisches Durchführungselement ein Faltenbalg in Form eines Metallbalges beschrieben. Die Erfindung ist jedoch nicht auf diese Art von elastischem Durchführungselement beschränkt, sondern kann auch bei anderen Arten von elastischen Durchführungselementen wie z.B. einer Membran oder einer elastischen Kunststoff- oder Gummihülse eingesetzt werden. Die Membran ist vorzugsweise aus Metall hergestellt. Die Membran und die Hülse sind entsprechend dem beschriebenen Metallbalg mit der inneren und äußeren Montagehülse 27, 31 verklebt oder verschweißt.
  • Allgemein kann durch die Wahl des Durchmessers der Spielpassung der Ventilnadel 9 im Vergleich zum hydraulisch wirksamen Durchmesser des Metallbalgs 33 der Druck im zweiten Kammerteilvolumen 43 eingestellt werden. Durch Einstellung des Durchmessers der Spielpassung größer (bzw. kleiner) als dem hydraulisch wirksamen Durchmesser des Metallbalgs 33 wird erreicht, dass der Druck im zweiten Kammerteilvolumen 43 beim Öffnen des Einspritzventils absinkt (bzw. ansteigt). Besonders vorteilhaft ist es, wenn der Durchmesser der Spielpassung dem hydraulisch wirksamen Durchmesser des Metallbalgs 33 entspricht, weil so der Druck im zweiten Kammerteilvolumen 43 beim Öffnen des Einspritzventils im wesentlichen konstant bleibt; der Metallbalg 33 ist dann in allen Betriebszuständen nur einer Konstantdruckbelastung ausgesetzt.

Claims (9)

  1. Fluiddosiervorrichtung für ein unter Druck stehendes Fluid mit einer in einem Gehäuse (3) befindlichen Kammer (35), der durch eine Fluidzuleitung (17, 21) das druckbeaufschlagte Fluid zugeführt wird, und mit einer durch die Kammer (35) geführten Ventilnadel (9), deren erster Endabschnitt außerhalb der Kammer mit einem Hub beaufschlagbar ist und deren zweiter Endabschnitt mit einem am Gehäuse (3) vorgesehenen Ventilsitz (16) ein mit der Kammer (35) in Verbindung stehendes Ventil bildet, wobei ein elastisches Durchführungselement (33) für den ersten Endabschnitt der Ventilnadel (9) von der Kammer (35) nach außen vorgesehen ist, das die Kammer in diesem Bereich dicht verschließt,
    dadurch gekennzeichnet, dass
    umfangsmäßig zwischen der Ventilnadel (9) und der Kammerinnenwand zumindest eine Drosselstelle (37, 39) im Kammerabschnitt zwischen dem Durchführungselement (33) und der Einmündung (19) der Fluidzuleitung (17) in die Kammer (35) vorgesehen ist, wobei ein die Drosselstelle (37, 39) darstellender Spalt wenige µm breit ist.
  2. Fluiddosiervorrichtung nach Anspruch 1,
    dadurch gekennzeichnet,
    dass als Durchführungselement ein Faltenbalg, insbesondere ein Metallbalg (33) vorgesehen ist.
  3. Fluiddosiervorrichtung nach Anspruch 2,
    dadurch gekennzeichnet,
    dass der Metallbalg (33) eine Wandstärke von 25 bis 500 µm aufweist.
  4. Fluiddosiervorrichtung nach Anspruch 1 bis 3,
    dadurch gekennzeichnet,
    dass das Durchführungselement (33) an einer Montagehülse (31) befestigt ist, insbesondere durch eine Schweißverbindung.
  5. Fluiddosiervorrichtung nach Anspruch 4,
    dadurch gekennzeichnet,
    dass durch die Montagehülse (31) die Drosselstelle (37) in der Kammer (35) gebildet ist.
  6. Fluiddosiervorrichtung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass eine obere Ventilnadelführung (13) vorgesehen ist, und dass durch die obere Ventilnadelführung die Drosselstelle (39) in der Kammer (35) gebildet ist.
  7. Fluiddosiervorrichtung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass im Bereich der Drosselstelle (37, 39) der freie Querschnitt zwischen der Ventilnadel (9) und der Kammerinnenwand sprunghaft geändert ist.
  8. Fluiddosiervorrichtung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass als Fluid Kraftstoff verwendet wird, und
    dass der Kraftstoffdruck im Bereich zwischen 1 bis 500 bar liegt.
  9. Fluiddosiervorrichtung nach einem der vorhergehenden Ansprüche,
       dadurch gekennzeichnet,
    dass der Durchmesser einer Spielpassung der Ventilnadel (9) einem hydraulisch wirksamen Durchmesser des Metallbalgs (33) entspricht.
EP01992833A 2000-11-02 2001-10-29 Fluiddosiervorrichtung mit drosselstelle Expired - Lifetime EP1364114B1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE2000154182 DE10054182A1 (de) 2000-11-02 2000-11-02 Fluiddosiervorrichtung mit Drosselstelle
DE10054182 2000-11-02
DE2000160939 DE10060939A1 (de) 2000-12-07 2000-12-07 Fluiddosiervorrichtung mit Drosselstelle
DE10060939 2000-12-07
PCT/DE2001/004089 WO2002036959A2 (de) 2000-11-02 2001-10-29 Fluiddosiervorrichtung mit drosselstelle

Publications (2)

Publication Number Publication Date
EP1364114A2 EP1364114A2 (de) 2003-11-26
EP1364114B1 true EP1364114B1 (de) 2005-09-21

Family

ID=26007546

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01992833A Expired - Lifetime EP1364114B1 (de) 2000-11-02 2001-10-29 Fluiddosiervorrichtung mit drosselstelle

Country Status (6)

Country Link
US (1) US7044407B2 (de)
EP (1) EP1364114B1 (de)
JP (1) JP3914875B2 (de)
KR (1) KR100588766B1 (de)
DE (1) DE50107526D1 (de)
WO (1) WO2002036959A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202007012345U1 (de) * 2007-09-04 2009-01-08 Witzenmann Gmbh Metallbalg

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1497553B1 (de) * 2002-04-22 2010-01-13 Continental Automotive GmbH Dosiervorrichtung für fluide, insbesondere kraftfahrzeug-einspritzventil
EP1413743B1 (de) * 2002-10-22 2007-09-12 Siemens VDO Automotive S.p.A. Brennstoffeinspritzdüse
DE102004024119B4 (de) * 2004-05-14 2006-04-20 Siemens Ag Düsenbaugruppe und Einspritzventil
EP1602825A1 (de) * 2004-06-03 2005-12-07 Delphi Technologies, Inc. Brennstoffeinspritzventil
EP1602824A1 (de) * 2004-06-03 2005-12-07 Delphi Technologies, Inc. Brennstoffeinspritzventil
JP4079144B2 (ja) * 2004-12-20 2008-04-23 株式会社豊田中央研究所 燃料噴射弁
US7494263B2 (en) 2005-04-14 2009-02-24 Halliburton Energy Services, Inc. Control system design for a mixing system with multiple inputs
US7353874B2 (en) 2005-04-14 2008-04-08 Halliburton Energy Services, Inc. Method for servicing a well bore using a mixing control system
DE102005025952B4 (de) * 2005-06-06 2009-01-29 Continental Automotive Gmbh Verfahren zum Herstellen eines Ventils
JP4438760B2 (ja) * 2005-06-10 2010-03-24 株式会社デンソー 燃料噴射弁
DE602005003964T2 (de) * 2005-11-02 2008-05-08 Delphi Technologies, Inc., Troy Verfahren zur Auslegung eines Kraftstoffeinspritzventils
DE102006057425A1 (de) * 2006-05-23 2007-11-29 Robert Bosch Gmbh Vorrichtung zur Regeneration, zur Temperaturbeaufschlagung und/oder zum Thermomanagement, zugehöriges Einspritzventil und Verfahren
US20100001094A1 (en) * 2008-07-03 2010-01-07 Caterpillar Inc. Apparatus and method for cooling a fuel injector including a piezoelectric element
US7913929B2 (en) * 2008-11-18 2011-03-29 Continental Automotive Systems Us, Inc. Modular outward opening piezo direct fuel injector
DE102009000186A1 (de) * 2009-01-13 2010-07-15 Robert Bosch Gmbh Vorrichtung zur Einspritzung von Kraftstoff
EP2366888A1 (de) * 2010-03-17 2011-09-21 Continental Automotive GmbH Ventilgruppe für ein Einspritzventil, Einspritzventil und Verfahren zum Zusammenbauen einer Ventilgruppe eines Einspritzventils
DE102010042476A1 (de) * 2010-10-14 2012-04-19 Robert Bosch Gmbh Vorrichtung zum Einspritzen von Kraftstoff
DE102011003163A1 (de) * 2011-01-26 2012-07-26 Robert Bosch Gmbh Einspritzventil mit Durchflussbegrenzer
EP2500550A1 (de) * 2011-03-16 2012-09-19 Siemens Aktiengesellschaft Hubübertrager für Gasturbinen
EP2568155B1 (de) * 2011-09-09 2018-11-14 Continental Automotive GmbH Ventilanordnung und Einspritzventil
DE102012203607A1 (de) * 2012-03-07 2013-09-12 Robert Bosch Gmbh Ventil zum Zumessen eines Fluids
DE102012203700A1 (de) * 2012-03-08 2013-09-12 Man Diesel & Turbo Se Vorrichtung zum Freigeben eines Strömungsquerschnitts einer Gasleitung
US9416709B2 (en) * 2012-06-15 2016-08-16 Continental Automotive Systems, Inc. Coking resistant after-treatment dosing value
DE102013012444A1 (de) * 2013-07-29 2015-01-29 Astrium Gmbh Ventilanordnung zum Schalten und/oder Regeln eines Medienstroms eines Raumfahrttriebwerks und Raumfahrttriebwerk
EP2863048B1 (de) * 2013-10-21 2017-12-06 C.R.F. Società Consortile Per Azioni Kraftstoff-Elektro-Einspritzelement für ein Kraftstoffeinspritzsystem für eine Brennkraftmaschine
DE102014200756A1 (de) * 2014-01-17 2015-07-23 Robert Bosch Gmbh Gasinjektor zum Direkteinblasen von gasförmigem Kraftstoff in einen Brennraum
CN114653540B (zh) * 2022-04-19 2023-12-22 深圳市启扬智能装备有限公司 关节式喷射阀
CN114791051B (zh) * 2022-04-26 2023-12-26 浙江三花智能控制股份有限公司 一种节流阀装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE81262C (de)
US2613998A (en) * 1948-09-15 1952-10-14 Thompson Prod Inc Variable area fuel nozzle
US3282512A (en) * 1963-12-09 1966-11-01 Gen Motors Corp Unit fuel injector with fluid injection valve spring
US4803393A (en) * 1986-07-31 1989-02-07 Toyota Jidosha Kabushiki Kaisha Piezoelectric actuator
US5205492A (en) * 1991-12-16 1993-04-27 Gregory Khinchuk Fuel injection valve
DE50010902D1 (de) * 1999-04-20 2005-09-15 Siemens Ag Fluiddosiervorrichtung
DE19958704C2 (de) 1999-12-06 2002-10-02 Siemens Ag Vorrichtung zum Übertragen einer Aktorbewegung und Fluiddosierer mit einer solchen Vorrichtung
DE10007733A1 (de) 2000-02-19 2001-08-23 Daimler Chrysler Ag Einspritzventil
EP1325225B1 (de) * 2000-10-11 2007-08-08 Siemens VDO Automotive Corporation Ausgleichsvorrichtung für ein einspritzventil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202007012345U1 (de) * 2007-09-04 2009-01-08 Witzenmann Gmbh Metallbalg

Also Published As

Publication number Publication date
US7044407B2 (en) 2006-05-16
KR20030051777A (ko) 2003-06-25
JP2004513286A (ja) 2004-04-30
EP1364114A2 (de) 2003-11-26
US20040004139A1 (en) 2004-01-08
WO2002036959A3 (de) 2003-09-12
DE50107526D1 (de) 2005-10-27
JP3914875B2 (ja) 2007-05-16
WO2002036959A2 (de) 2002-05-10
KR100588766B1 (ko) 2006-06-14

Similar Documents

Publication Publication Date Title
EP1364114B1 (de) Fluiddosiervorrichtung mit drosselstelle
EP1046809B1 (de) Fluiddosiervorrichtung
EP2035686B1 (de) Kraftstoffinjektor
EP1497553B1 (de) Dosiervorrichtung für fluide, insbesondere kraftfahrzeug-einspritzventil
DE19962177A1 (de) Hydraulische Vorrichtung zum Übertragen einer Aktorbewegung
EP1421271B1 (de) Brennstoffeinspritzventil
EP3822475B1 (de) Ventil zum zumessen eines fluids
EP1456527B1 (de) Vorrichtung zum übersetzen einer auslenkung eines aktors, insbesondere für ein einspritzventil
DE10054182A1 (de) Fluiddosiervorrichtung mit Drosselstelle
EP1516116A1 (de) Dosiervorrichtung für fluide, insbesondere kraftfahrzeug-einspritzventil
DE10217594A1 (de) Brennstoffeinspritzventil
EP1378657B1 (de) Brennstoffeinspritzventil
DE19928916B4 (de) Brennstoffeinspritzventil
DE19946603B4 (de) Brennstoffeinspritzventil mit kompensierenden Dichtelementen
EP2494182B1 (de) Kraftstoffeinspritzvorrichtung
DE102010046929A1 (de) Dichtbuchsenanordnung und hydraulisches Gerät
EP1972779B1 (de) Hydraulischer Koppler
EP2388467B1 (de) Kraftstoffinjektor mit hydraulischer Kopplereinheit
EP1488096B1 (de) Brennstoffeinspritzventil
DE10060939A1 (de) Fluiddosiervorrichtung mit Drosselstelle
EP1664525B1 (de) Dosiervorrichtung
DE60318546T2 (de) Dosiervorrichtung mit dynamischer Dichtung
EP1544454B1 (de) Brennstoffeinspritzventil
DE102004060533A1 (de) Brennstoffeinspritzventil
EP3611412B1 (de) Ventil mit schutzeinrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030331

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050921

REF Corresponds to:

Ref document number: 50107526

Country of ref document: DE

Date of ref document: 20051027

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060622

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20151027

Year of fee payment: 15

Ref country code: GB

Payment date: 20151005

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20151016

Year of fee payment: 15

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161029

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161029

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161029

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50107526

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190429

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190501