EP1390329B1 - Verfahren zur herstellung eines mikrokristallinen paraffins - Google Patents

Verfahren zur herstellung eines mikrokristallinen paraffins Download PDF

Info

Publication number
EP1390329B1
EP1390329B1 EP02732741.0A EP02732741A EP1390329B1 EP 1390329 B1 EP1390329 B1 EP 1390329B1 EP 02732741 A EP02732741 A EP 02732741A EP 1390329 B1 EP1390329 B1 EP 1390329B1
Authority
EP
European Patent Office
Prior art keywords
paraffin
catalyst
paraffins
microcrystalline
process according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02732741.0A
Other languages
English (en)
French (fr)
Other versions
EP1390329A2 (de
Inventor
Michael Matthäi
Günter Hildebrand
Helmuth Schulze-Trautmann
Thorsten Butz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hywax GmbH
Original Assignee
Sasol Wax GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasol Wax GmbH filed Critical Sasol Wax GmbH
Publication of EP1390329A2 publication Critical patent/EP1390329A2/de
Application granted granted Critical
Publication of EP1390329B1 publication Critical patent/EP1390329B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • C10G45/64Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1022Fischer-Tropsch products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S208/00Mineral oils: processes and products
    • Y10S208/95Processing of "fischer-tropsch" crude

Definitions

  • the invention relates to a method for producing a microcrystalline paraffin.
  • microcrystalline paraffin also known as microwaxes
  • n-alkanes branched isoalkanes and alkyl-substituted cycloalkanes (naphthenes) as well as - albeit usually small - proportions of aromatics.
  • the content of iso-alkanes and naphthenes ranges between 40 and 70% as determined by the EWF Standard Test Method for Analysis of Hydrocarbon Wax by Gas Chromatography. The quantitative dominance of isoalkanes (and naphthenes) determines their microcrystalline structure.
  • the solidification range is between 50 and 100 ° C according to DIN ISO 2207.
  • the needle penetration has values between 2 x 10 -1 and 160 x 10 -1 mm according to DIN 51579.
  • the solidification point and the needle penetration are used to distinguish between the microcrystalline paraffins between plastic and hard microcrystalline paraffins.
  • Soft plastic microcrystalline paraffins (so-called petrolatum) are fast with pronounced adhesiveness and have solidification points of 65 to 70 ° C and penetration values of 45 to 160 x 10 -1 mm.
  • the oil contents are between 1 and 15%.
  • Plastic microcrystalline paraffins are readily malleable and kneadable and have solidification points between 65 and 80 ° C and penetration values of 10 to 30 x 10 -1 mm.
  • the oil contents can be up to 5%.
  • the hard microcrystalline paraffins are tough and weakly adhesive with solidification points of 80 to 95 ° C and penetration values 2 to 15 x 10 -1 mm.
  • the oil contents amount to a maximum of 2% (see Ullmann's Encyclopedia of Industrial Chemistry, VCH Verlagsgesellschaft 1996 ).
  • Microcrystalline paraffins have a high molecular weight and thus high boiling points. They are so far from the residues of vacuum distillation of petroleum, especially in the production of lube oil (residue waxes), as well as from the precipitation of petroleum in its promotion, its transport and its storage won, in technologically very complex and costly process with several Stages, for example deasphalting, solvent extraction, dewaxing, de-oiling and refining.
  • the de-oiled microcrystalline paraffins contain sulfur, nitrogen and oxygen compounds as impurities. They are therefore not completely odorless and have a dark yellow to dark brown color. The refining required therefore takes place depending on the later use by bleaching (technical applications) or by hydrorefining (applications in the food and pharmaceutical industries).
  • Microcrystalline paraffins are mainly used as a mixture component in paraffin or wax mixtures.
  • the use is usually in areas up to 5%.
  • the hardness and melting point of these mixtures should be increased and flexibility and oil-binding improved.
  • Typical applications include, for example, the manufacture of waxes for impregnation, coating and laminating for the packaging and textile industries, heat seal and hot melt adhesives, and pharmaceutical and cosmetic products, including chewing gum.
  • they are used in potting and cable compounds as well as plastics in general but also in the candle, rubber and tire industries as well as in care, anti-slip and corrosion protection agents.
  • zeolites Omega zeolite, ZSN-5, X zeolite, Y zeolite and other zeolites.
  • the catalyst is based on a catalyzing metal component on a porous, heat-resistant metal oxide support (see page 2, paragraph 1), in particular 0.1 to 5 wt .-% of platinum on alumina or zeolites, such as Offretit, zeolite X, Zeolite Y, ZSM -5, ZSM-2, etc. (see page 3, center).
  • the feed to be isomerized may be any wax or waxy material, especially a Fischer-Tropsch wax (see page 5, center).
  • the hydrogen is fed to the reactor at a rate of 1,000 to 10,000 SCF / bbl and the wax at 0.1 to 10 LHSV (see page 6, center).
  • the isomerization product is liquid (see page 7, line 7). It can be fractionated by distillation or by treatment with solvents, eg with an MEK / toluene mixture (see page 7, last paragraph).
  • the entire liquid product from the isomerization unit is more advantageously treated in a second stage under mild conditions using the Group VIII noble metal isomerization catalyst and a refractory metal oxide to reduce PNA and other impurities in the isomerate and thus an improved oil To provide daylight resistance (see page 8, paragraph 2).
  • mild conditions are meant: A temperature in the range of about 170 ° to 270 ° C, a pressure of about 300 to 1500 psi, a hydrogen gas rate of about 500 to 1000 SCF / bbl and a flow rate of about 0.25 to 10 vol./vol./hr.
  • the catalyst has a decisive influence on the transformation.
  • it is based on platinum and a ⁇ -zeolite having a pore diameter of about 0.7 nm, the desired conversion to a middle distillate product is not observed, especially as the temperature decreases to 293.9 ° C. (see Example 3).
  • a process for hydroisomerization of FT paraffin is known using a zeolite based catalyst.
  • the US-A-4419220 describes the conversion of paraffin fractions in a liquid starting product by hydroisomerization and optionally cracking to liquid fractions.
  • the catalyst used is based on a B-zeolite and a metal of group VIII A.
  • Die EP 435619 A1 describes the conversion of FT paraffin to a low melting point lubricant by hydroisomerization. It is a titanium-based catalyst with a metal of VIII. Subgroup used as hydrogenation.
  • the invention has the object to provide a novel method for producing a microcrystalline paraffin.
  • microcrystalline paraffin is prepared by catalytic hydroisomerization at temperatures of 200 ° C. -300 ° C. from paraffins (FT paraffins) obtained by Fischer-Tropsch synthesis with a C chain length distribution in the range from C 20 to C 105 becomes.
  • the FT paraffins are paraffins prepared by the Fischer-Tropsch process in a known way from synthesis gas (CO and H2) in the presence of a catalyst at elevated temperature. They represent the highest-boiling fraction of the hydrocarbon mixture. The result is essentially long-chain, less branched alkanes, which are free of naphthenes and aromatics and of oxygen and sulfur compounds.
  • Such FT paraffins with a high proportion of n-paraffins and a C chain length in the range of C 20 to C 105 are converted by the method described here to high-melting, microcrystalline paraffins with a high proportion of iso-paraffins.
  • the loading of the reactor with the FT paraffin is in the range of 0.1 to 2.0, especially 0.2 to 0.8 v / v. h (volume of FT paraffin per volume of the reactor within one hour).
  • the yield of hydroisomerates is between 90 and 96% by mass, based on the particular FT paraffin used.
  • the catalytic hydroisomerization of the FT paraffins is carried out continuously in a flow-through reactor with a fixed catalyst, in particular in the form of extrudates, spheres or tablets, the reactor being oriented vertically, as desired, both top to bottom and from bottom to top can be flowed through.
  • the process may also be discontinuous in e.g. a stirred autoclave be carried out in a batch process, wherein the catalyst is contained in a permeable network or finely divided is used as granules or powder in FT paraffin.
  • the process parameters of the continuous as well as the discontinuous process are the same.
  • the degree of crystallinity is determined by an X-ray diffraction analysis. It denotes the crystalline content in the product obtained in relation to the amorphous share. The amorphous portions lead to a different diffraction of the X-rays than the crystalline portions.
  • the needle penetration at 25 ° C in the products of the invention is in the range of 20 to 160, measured according to DIN 51579. The products obtained are solid at 20 ° C, in the sense that they do not run.
  • the crystalline fraction is reduced in particular as follows: While the starting material, a crystalline content in a range of 60 to 75% occurs, is observed in the hydroisomerizate such from 30 to 45%. Especially in the range of 35 to 40 (36,37,38,39)%.
  • the crystalline fractions and the amorphous fractions are indicated by the aforementioned X-ray diffraction analysis in each case in MA.%.
  • microcrystalline paraffins produced according to the invention from FT paraffins have physical and material properties which are similar or comparable to those of petroleum-based microcrystalline paraffins (microwaxes).
  • the microcrystalline hydroisomerate prepared according to the invention and the corresponding deoiled microcrystalline hydroisomerizate, such as a microwax can be used (see introduction).
  • the resulting hydroisomerizate can also be oxidized.
  • oxidized products which differed by melting range and degree of oxidation and are used mainly as corrosion inhibitors and as a cavity and underbody protection for motor vehicles. They are also used in emulsions as care and release agents and as an additive for printing and carbon paper colorants.
  • the acid and ester groups which are statistically distributed over hydrocarbon chains, can be reacted with inorganic or organic bases to form water-dispersible formulations (emulsifying waxes) and lead to products with very good metal adhesion.
  • sunscreen waxes for the tire industry electrical insulation materials scaffolding and model waxes for the investment casting industry and wax formulation for the explosives, ammunition andkulturstatztechnik.
  • such products are suitable as release agents in the pressing of wood, chipboard and fibreboard in the manufacture of ceramic parts and because of their retention capacity for the preparation of solvent-based care products, grinding and polishing pastes and matting agents for paints.
  • these products can be used for the formulation of adhesive waxes, cheese waxes, cosmetic preparations, chewing gum bases, cast and cable compounds, sprayable pesticides, vaselines, artificial chimney logs, lubricants and hot melt adhesives.
  • An examination for food authenticity is made, for example, according to FDA, ⁇ 175. 250.
  • the hydroisomerizate is white, odorless and slightly sticky and thus differs significantly from the brittle-hard feedstock.
  • the isoalkane content is increased by about 6-fold, which is due to the increased penetration value, the decreased crystalline proportion and the reduced enthalpy of fusion is occupied.
  • the synthetic microcrystalline paraffin thus prepared is classified according to its characteristics between a plastic and a hard micron oil based on petroleum With the hydroisomerisate thus a paraffin was obtained with pronounced microcrystalline structure whose C-chain length distribution based on the carbon atoms with 23 to 91 in about that of the starting material with 27 to 95, but just shifted towards smaller chain lengths, corresponds. The chain length was determined by gas chromatography.
  • An FT paraffin having a solidification point at 70 ° C was catalytically isomerized with hydrogen at a pressure of 5 MPa (50 bar), a temperature of 250 ° C and a v / vh ratio of 0.3.
  • the structural change that occurred was confirmed by the key figures in the table.
  • the hydroisomerizate is white and odorless as well as pasty and slightly sticky.
  • the isoalkane content is increased by about 5-fold.
  • the high degree of isomerization finds expression in the significantly increased penetration value, the reduced crystalline content and the reduced enthalpy of fusion.
  • the resulting microcrystalline paraffin has a similar but slightly smaller C chain length than the FT paraffin, as evidenced by the carbon atoms: 23 to 42 in the hydroisomerate and 25 to 48 in the FT paraffin.
  • the resulting synthetic microcrystalline paraffin is comparable to a petroleum based soft plastic microcrystalline paraffin according to its characteristics.
  • Examples 1 and 2 show that the FT-paraffins, which consist predominantly of n-alkanes and have a finely crystalline structure and a brittle-hard consistency, in the non-flowing, pasty or solid paraffins that have lower melting temperatures than the feeds.
  • These paraffins are characterized by a high content of branched alkanes and consequently have a microcrystalline structure with a significantly reduced degree of crystallization and a plastic to slightly sticky consistency.
  • the branched alkanes are predominantly methylalkanes, with the methyl groups preferably occurring in the 2, 3, 4 or 5 position. To a lesser extent methyl branched alkanes were formed several times.
  • a catalyst (cylindrical extrudate, diameter 1.5 mm, length about 5 mm) was used without comminution.
  • Into the reactor tube (total volume 172 ml, inner diameter 22 mm) 92 ml of catalyst were fed undiluted.
  • the catalyst zone was also overcoated with the earth material.
  • a thermocouple was positioned in the reactor so that the temperature was measured at a depth of 2 cm and 17 cm of catalyst bed.
  • the catalysts were dried and activated (by high temperature, water is expelled and platinum is reduced).
  • the paraffin feed used was an FT paraffin C80 (solidification point 81 ° C., mass ratio n- / iso-paraffins: 93.9 / 6.1).
  • the oil content of the starting product was 0.5%.
  • the catalyst was a platinum catalyst on ⁇ -zeolite.
  • ⁇ -zeolites is referred to the reference " Atlas of Zeolites Structure Type", Elsevier Fourth Revised Edition, 1996 , pointed out.
  • Gas chromatograms obtained for this example are attached as an annex.
  • the fully synthetic microcrystalline paraffins produced by the hydroisomerization according to the invention contain no strongly branched isoalkanes, no cyclic hydrocarbons (naphthenes) and in particular no aromatics and sulfur compounds. They therefore meet the highest purity requirements for microcrystalline paraffins, making them ideally suited for use in the cosmetics and pharmaceutical industries as well as for packaging and preservation in the food industry.

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung einer mikrokristalline Paraffins.
  • Herkömmliches, aus Erdöl gewonnenes mikrokristallines Paraffin (auch als Mikrowachse bekannt) besteht aus einem Gemisch gesättigter, bei Raumtemperatur fester Kohlenwasserstoffe mit einer Kettenlängenverteilung von C25 bis C80. Die mikrokristallinen Paraffine enthalten neben n-Alkanen vielfach verzweigte iso-Alkane und alkylsubstituierte Zykloalkane (Naphthene) sowie - wenn auch in der Regel geringe - Anteile an Aromaten. Der Gehalt an iso-Alkanen und an Naphthenen bewegt sich zwischen 40 und 70 % bestimmt nach EWF-Standard Test Method for Analysis of Hydrocarbonwax by Gaschromatography. Die mengenmäßige Dominanz der iso-Alkane (und der Naphthene) bedingt ihre mikrokristalline Struktur.
  • Der Erstarrungsbereich liegt zwischen 50 und 100 ° C nach DIN ISO 2207. Die Nadelpenetration weist Werte zwischen 2 x 10-1 und 160 x 10-1 mm nach DIN 51579 auf. Der Erstarrungspunkt und die Nadelpenetration werden verwendet um unter den mikrokristallinen Paraffinen zu unterscheiden zwischen plastischen und harten mikrokristallinen Paraffinen. Weichplastische mikrokristalline Paraffine (sogenannte Petrolate) sind zügig mit stark ausgeprägtem Klebevermögen, und sie weisen Erstarrungspunkte von 65 bis 70 ° C und Penetrationswerte von 45 bis 160 x 10-1 mm auf. Die Ölgehalte liegen zwischen 1 und 15 %. Plastische mikrokristalline Paraffine sind leicht formbar und knetbar und haben Erstarrungspunkte zwischen 65 und 80 ° C und Penetrationswerten von 10 bis 30 x 10-1 mm. Die Ölgehalte können bis zu 5 % betragen. Die harten mikrokristallinen Paraffine sind zähhart und schwachklebend mit Erstarrungspunkten von 80 bis 95 ° C und Penetrations werten 2 bis 15 x 10-1 mm. Die Ölgehalte betragen maximal 2% (siehe Ullmanns Enzyklopädia of Industrial Chemistry, VCH-Verlagsgesellschaft 1996).
  • Mikrokristalline Paraffine besitzen eine hohe Molmasse und damit hohe Siedepunkte. Sie werden bislang aus den Rückständen von Vakuum-Destillation von Erdöl, insbesondere bei der Schmierölgewinnung (Rückstands-wachse), sowie aus Ausscheidungen des Erdöls bei seiner Förderung, seinem Transport und seiner Lagerung gewonnen, und zwar in technologisch sehr aufwendigen und kostenintensiven Verfahren mit mehreren Stufen, zum Beispiel Entasphaltierung, Lösungsmittelextraktion, Entparaffinierung, Entölung und Raffination. Die entölten mikrokristallinen Paraffine enthalten als Verunreinigung Schwefel-, Stickstoff- und Sauerstoff-Verbindungen. Sie sind demzufolge nicht ganz geruchlos und weisen eine dunkelgelbe bis dunkelbraune Farbe auf. Die deshalb erforderliche Raffination erfolgt in Abhängigkeit von der späteren Verwendung durch Bleichung (technische Anwendungen) oder durch Hydroraffination (Anwendungen in der Lebensmittel- sowie Pharma-Industrie).
  • Mikrokristalline Paraffine werden überwiegend als Mischungskomponente in Paraffin- bzw. Wachsmischungen eingesetzt. Der Einsatz erfolgt aber meist in Bereichen bis 5 %. Dabei sollen vor allem Härte und Schmelzpunkt dieser Mischungen erhöht sowie Flexibilität und Ölbindigkeit verbessert werden. Typische Anwendungen sind zum Beispiel die Herstellung von Wachsen zum Imprägnieren, Beschichten und Kaschieren für die Verpackungs- und Textilindustrie, von Heißsiegel- und Schmelzklebstoffen sowie von pharmazeutischen und kosmetischen Produkten, einschließlich Kaugummi. Weiterhin werden sie bei Verguss- und KabelMassen sowie allgemein bei Kunststoffen verwendet aber auch in der Kerzen-, Gummi- und Reifenindustrie sowie in Pflege-, Gleitschutz- und Korosionsschutz-Mitteln.
  • Aus der DE 69 418 388 T2 ist eine Hydroisomerisierung von bei Raumtemperatur festen n-Paraffinen mit mehr als 15 C-Atomen unter Verwerdung eines Katalysators auf der Basis eines Metalls der Gruppe VIII, insbesondere Platin, und einem Bor-Silikat mit einer Struktur von ß-Zeolithen zu Produkten beschrieben, die zur Herstellung von Schmierölen geeignet sind. (Seite 1)
  • Konkret wurden folgende Zeolithe genannt: Omega-Zeolith, ZSN-5, X-Zeolith, Y-Zeolith sowie weitere Zeolithe.
  • In der DE 695 15 959 T2 wird die Hydroisomerisierung von wachshaltigen Einsatzmaterialien zu Produkten beschrieben, die sich zur Herstellung von Schmierölen eignen. Dabei wird eine Temperatur von 270° bis 360°C und ein Druck von 500 bis 1.500 psi bzw. von 3,44 MPa bis 10,36 MPa angewendet. Der Katalysator basiert auf einer katalysierenden Metall-Komponente auf porösem, hitzebeständigem Metalloxyd-Träger (siehe Seite 2, Absatz 1), insbesondere auf 0,1 bis 5 Gew.-% an Platin auf Aluminiumoxid oder Zeolithen, wie z.B. Offretit, Zeolith X, Zeolith Y, ZSM -5, ZSM-2 usw. (siehe Seite 3, Mitte). Das zu isomerisierende Einsatzmaterial kann jedes Wachs oder wachshaltige Material sein, insbesondere auch ein Fischer-Tropsch-Wachs (siehe Seite 5, Mitte). Der Wasserstoff wird dem Reaktor mit einer Geschwindigkeit von 1.000 bis 10.000 SCF/bbl zugeführt und das Wachs mit 0,1 bis 10 LHSV (siehe Seite 6, Mitte). Das Isomerisierungsprodukt ist flüssig (siehe Seite 7, Zeile 7). Es kann durch Destillation fraktioniert werden oder durch Behandlung mit Lösungsmitteln, z.B. mit einem MEK/Toluol-Gemisch (siehe Seite 7, letzter Absatz).
  • Das gesamte flüssige Produkt aus der Isomersierungsanlage wird vorteilhafter in einer zweiten Stufe bei milden Bedingungen unter Verwendung des Isomerisierungskatalysators auf der Basis eines Edelmetalls der Gruppe VIII sowie einem hitzebeständigen Metalloxid behandelt, um PNA und andere Verunreinigungen in dem Isomerisat zu reduzieren und somit ein Öl mit verbesserter Tageslichtbeständigkeit zu ergeben (siehe Seite 8, Absatz 2). Unter milden Bedingungen sind zu verstehen: Eine Temperatur im Bereich von etwa 170° bis 270°C, ein Druck von etwa 300 bis 1.500 psi, eine Wasserstoffgasrate von etwa 500 bis 1000 SCF/bbl und eine Strömungsgeschwindigkeit von etwa 0,25 bis 10 vol./vol./Std.
  • In der DE 38 72 851 T2 ist die Herstellung eines Mitteldestillatsbrennstoffes aus einem Paraffin-Wachs, insbesondere einem FT-Wachs (siehe Anspruch 2) beschrieben, bei dem das Wachs unter Hydroisomerisierungs-Bedingungen in Gegenwart eines bestimmten Katalysators auf der Basis eines Metalls der VIII. Gruppe, insbesondere Platin (Anspruch 12), und Aluminium-Oxid als Trägermaterial mit Wasserstoff behandelt wird, so dass ein Mitteldestellat-Produkt und ein Sumpf-Produkt mit einem anfänglichen Siedepunkt oberhalb von 371°C erhalten wird (siehe Anspruch 1), insbesondere eine Schmierölfraktion mit niedrigem Fließpunkt (siehe Anspruch 5). Das Wachs wird dem Reaktor mit einer Geschwindigkeit von 0,2 bis 2 V/ V zugeführt. Der Wasserstoff wird dem Reaktor mit einer Geschwindigkeit von etwa 0,089 bis 2,67 m3 H2 pro 11 Wachs zugeführt. Der Katalysator hat auf die Umwandlung einen entscheidenden Einfluss. Basiert er auf Platin und einem β-Zeolithen mit einem Porendurchmesser von etwa 0,7nm, so wird nicht die erwünschte Umwandlung zu einem Mitteldestillatprodukt beobachtet, insbesondere bei abnehmender Temperatur auf 293,9°C. (siehe Beispiel 3).
  • Aus der WO 01/74969 A2 ist ein Verfahren zur Hydroisomerisierung von FT-Paraffin bekannt unter Einsatz eines Katalysators auf Basis eines Zeolithen. Die US -A-4419220 beschreibt die Umwandlung von Paraffinanteilen in einem flüssigen Ausgangsprodukt durch Hydroisomerisierung und ggf. Cracking zu flüssigen Anteilen. Der eingesetzte Katalysator basiert auf einem B-Zeolith und einem Metall der Gruppe VIII A. Die EP 435619 A1 beschreibt die Umwandlung von FT-Paraffin zu einem Schmiermittel mit niedrigem Schmelzpunkt durch Hydroisomerisierung. Es wird ein titanbasierter Katalysator mit einem Metall der VIII. Nebengruppe als Hydrogenisierungskomponente eingesetzt.
  • Demgegenüber beschäftigt sich die Erfindung mit der Aufgabe ein neuartiges Verfahren zur Herstellung eines mikrokristallinen Paraffins anzugeben.
  • Diese Aufgabe ist beim Gegenstand des Anspruches 1 gelöst. Hierbei ist darauf angestellt dass das mikrokristalline Paraffin bar durch katalytische Hydroisomerisierung bei Temperaturen von 200 ° C -300°C aus durch Fischer-Tropsch-Synthese enthaltenen Paraffinen (FT-Paraffinen) mit einer C-Kettenlängenverteilung im Bereich von C20 bis C105 hergestellt wird.
  • Überraschend hat sich herausgestellt, dass ein solches mikrokristallines Paraffin frei von Naphthenen und Aromaten ist. Weiter ist überraschend, dass trotz Isomerisierung eine Kristallinität erhalten geblieben ist. Eine kontinuierliche Herstellung mit definierten Eigenschaften ist ermöglicht. Es ist ein als Mikrowachs zu bezeichnendes Produkt im niedrigen und hohen Erstarrungspunktbereich bereitgestellt. Eine kontinuierliche oder diskontinuierliche katalytische Hydroisomerisierung von Fischer-Tropsch-Paraffinen (FT-Paraffinen) kann durchgeführt werden. Hinsichtlich FT-Paraffinen als solchen ist insbesondere auf die Ausführungen von A. Kühnle in Fette. Seifen. Anstrichmittel, 84. Jahrgang, Seiten 156 ff." Fischer-Tropsch-Wachse Synthese, Struktur, Eigenschaften und Anwendungen" zu verweisen. Kurzgefasst handelt es sich bei den FT-Paraffinen um Paraffine, die nach dem Fischer-Tropsch-Verfahren auf bekanntem Wege aus Synthesegas (CO und H2) in Gegenwart eines Katalysators bei erhöhter Temperatur hergestellt wurden. Sie stellen die am höchsten siedende Fraktion des Kohlenwasserstoff-Gemisches dar. Es entstehen dabei im Wesentlichen langkettige, wenig verzweigte Alkane, die frei von Naphthenen und Aromaten sowie von Sauerstoff- und Schwefel-Verbindungen sind.
  • Solche FT-Paraffine mit einem hohen Anteil an n-Paraffinen und einer C-Kettenlänge im Bereich von C20 bis C105 werden nach dem hier beschriebenen Verfahren zu hochschmelzenden, mikrokristallinen Paraffinen mit einem hohen Anteil an iso-Paraffinen umgewandelt.
  • Das mikrokristalline Paraffin ist gemäß dem Verfahrens-Aspekt der Erfindung durch katalytische Isomerisierung wie folgt herstellbar:
    1. A. Einsatz von FT-Paraffin als Ausgangsmaterial
      1. a) mit einer C-Kettenlänge im Bereich von C20 bis C105,
      2. b) vorzugsweise mit einem Erstarrungspunkt im Bereich von 70 bis 105°C, insbesondere ca. 70, 80, 95 oder 105 ° C nach DIN ISO 2207,
      3. c) einer Penetration bei 25° C von 1 bis 15;
      4. d) einem Verhältnis von iso- zu n-Alkanen von 1 : 5 bis 1 : 11
    2. B. Verwendung eines Katalysators, vorzugsweise in Form von Extrudaten, Kugeln, Tabletten, Granulaten oder Pulvern, zweckmäßigerweise auf der Basis von
      1. a) 0,1 bis 2,0, insbesondere 0,4 bis 1,0 MA.-%, bezogen auf den bei 800°C geglühten Katalysator, an hydrierendem Metall der achten Nebengruppe, insbesondere Platin, sowie
      2. b) eines Trägermaterials aus einem β-Zeolithen mit einem Porendurchmesser im Bereich von 0,5 bis 0,8 nm (5,0 bis 8,0 Å),
    3. C. Anwendung einer Prozess-Temperatur von 230 bis 270°C,
    4. D. Anwendung eines Drucks von 2,0 bis 20,0, insbesondere von ca. 3 bis 8 MPa in Gegenwart von Wasserstoff und einem Verhältnis von Wasserstoff zu FT-Paraffin von 100 : 1 bis 1000 : 1, insbesondere etwa 250 : 1 bis 600 : 1 Nm3 / m3.
  • Zweckmäßigerweise ist der Belastung des Reaktors mit dem FT-Paraffin im Bereich von 0,1 bis 2,0, insbesondere mit 0,2 bis 0,8 v/v. h (Volumen FT-Paraffin pro Volumen des Reaktors innerhalb einer Stunde).
  • Die Ausbeute an Hydroisomerisaten liegt zwischen 90 und 96 Ma%, bezogen auf das jeweils eingesetzte FT-Paraffin. Die erhaltenen Hydroisomerisate enthielten in Bezug auf niedrig schmelzende Alkane noch Alkane in C-Kettenlängenbereich <= C20 bis zu 5 % (in der Regel bis zu 3%). Diese Alkane konnten problemlos durch Vakuum-Destillation mit Wasserdampf abgetrennt werden.
  • Vorzugsweise wird die katalytische Hydroisomerisierung der FT-Paraffine kontinuierlich in einem Durchflussreaktor mit einem fest angeordneten Katalysator, insbesondere in Form von Extrudaten, Kugeln oder Tabletten durchgeführt, wobei der Reaktor, wenn er, wie bevozugt, senkrecht ausgerichtet ist sowohl von oben nach unten als auch von unten nach oben durchströmt werden kann. Das Verfahren kann aber auch diskontinuierlich in z.B. einem Rührautoklaven in einem Batch-Verfahren durchgeführt werden, wobei der Katalysator in einem durchlässigen Netz enthalten ist oder fein verteilt als Granulat oder Pulver im FT-Paraffin eingesetzt ist. Die Prozess-Parameter des kontinuierlich sowie des diskontinuierlichen Verfahrens sind gleich.
  • Die erfindungsgemäß erhaltenen mikrokristallinen Paraffine haben folgende Eigenschaften:
    • Verglichen mit den eingesetzten FT-Paraffinen haben sie niedrigere Erstarrungspunkte und enthalten neben n-Alkanen einen hohen, insbesondere höheren Gewichtsanteil an iso- als an n-Alkanen. Der Anteil an n-bzw. iso-Alkanen wird durch die Gaschromatografie bestimmt. Der durch die Hydroisomerisierung erreichte erhöhte Isomerisierungsgrad findet seinen Ausdruck in erhöhten Penetrationswerten, einem verringerten Kristallisationsgrad und einer abgesenkten Schmelzenthalpie. Außerdem weisen diese Produkte eine pastöse bis zähklebrige Konsistenz auf bei etwas krümeliger Erscheinungsform.
  • Der Kristallisationsgrad wird durch eine Röntgenbeugungsanalyse festgestellt. Er bezeichnet den kristallinen Anteil im erhaltenen Produkt im Verhältnis zu dem amorphen Anteil. Die amorphen Anteile führen zu einer anderen Beugung der Röntgenstrahlen als die kristallinen Anteile. Die Nadelpenetration bei 25 ° C bei den erfindungsgemäßen Produkten ist im Bereich von 20 bis 160, gemessen nach DIN 51579. Die erhaltenen Produkte sind bei 20 ° C fest, in dem Sinne, dass sie nicht verlaufen.
  • Der kristalline Anteil ist insbesondere wie folgt verringert: Während beim Einsatzgut ein kristalliner Anteil in einer Bandbreite von 60 bis 75 % auftritt, ist beim Hydroisomerisat ein solcher von 30 bis 45 % zu beobachten. Insbesondere im Bereich von 35 bis 40 (36,37,38,39)%.
  • Die kristallinen Anteile und die amorphen Anteile werden durch die genannten Röntgenbeugungsanalyse jeweils in MA.-% angegeben.
  • Die erfindungsgemäß aus FT-Paraffinen hergestellten mikrokristallinen Paraffine haben physikalische und stoffliche Eigenschaften, die denen von mikrokristallinen Paraffinen auf Erdölbasis (Mikrowachse) ähnlich bzw. vergleichbar sind.
  • Die durch katalytische Hydroisomerisierung hergestellten mikrokristallinen Paraffine können auch mit einem Lösungsmittel entölt werden. Hiermit ist jedoch nicht ausgesagt, dass die beschrieben Hydroisomerisierungsprodukte einen Gehalt an herkömmlichem Öl aufweisen. Es werden jedenfalls aber sehr kurzkettige n- bzw. iso-Alkane entfernt. Bei Verwendung eines Lösungsmittelgemischs von Dichloräthan : Toluol von 95: 5 Volumenteilen und einem Produkt-Lösemittelverhältnis von 1 : 3,6 Teilen bei 22 ° C wird ein entöltes mikrokristallines Paraffin in einer Ausbeute von 80 bis 90 Gew.-%, bezogen auf das eingesetzte Hydroisomerisat, erhalten. Es hat folgende Eigenschaften Es hat folgende Eigenschaften:
    • Nadelpenetration: von 1 x 10-1 bis 7 x 10-1, insbesondere 3 x 10-1 bis 6 x 10-1 mm, bestimmt nach DIN 51579,
    • Ölgehalt: 1,0 bis 2 Gew.-% insbesondere 1,2 bis 1,6 Gew.-%, bestimmt durch MIBK nach modifizierter ASTM D 721/87
    • Erstarrungspunkt: ca. 60 bis ca. 95°C, insbesondere 70 bis 85 °C, bestimmt nach DIN ISO 2207.
  • Durch die Entfernung des Öls wurde also aus dem mittelharten Produkt ein hartes Produkt, wenn man es mit den Typen auf Erdölbasis vergleicht. Dann ist das entölte Hydroisomerisat mit den härtesten Typen auf Erdölbasis vergleichbar.
  • Aufgrund seiner Eigenschaften kann das erfindungsgemäß hergestellte mikrokristalline Hydroisomerisat sowie das entsprechende entölte mikrokristalline Hydroisomerisat wie ein Mikrowachs verwendet werden (siehe Einleitung). Insbesondere kann das erhaltene Hydroisomerisat auch oxidiert werden. Es werden oxidierte Produkte erhalten, die nach Schmelzbereich und Oxidationsgrad unterschieden und vor allem als Korrosionsschutzmittel und als Hohlraum- und Unterbodenschutzmittel für Kraftfahrzeuge eingesetzt werden. Sie werden darüber hinaus in Emulsionen als Pflege- und Trennmittel und als Additiv für Druck- und Kohlepapierfarbmassen verwendet.
  • Die Säure- und Estergruppen, die statistisch über Kohlenwasserstoffketten verteilt sind, können mit anorganischen oder organischen Basen zu in Wasser dispergierfähigen Formulierungen umgesetzt werden (Emulgierwachse) und führen zu Produkten mit sehr guter Metallhaftung.
  • Weitere Anwendungsgebiete sind die Herstellung von Imprägnierungs-, Beschichtungs- und Kaschierwachsen für die Verpackungs- und Textilindustrie Heißsiegel- und Schmelzklebstoffen als Blendkomponente in Kerzen und anderen Wachswaren in Wachsmischungen für Malkreiden, Fußboden- und Autopflegemitteln sowie für die Dentaltechnik und die Pyrochemie.
  • Sie sind ferner Bestandteil von Lichtschutzwachsen für die Reifenindustrie elektrischen Isoliermaterialien Gerüst- und Modellwachsen für die Feingussindustrie sowie Wachsformulierung für die Sprengstoff-, Munition- und Treibstatztechnik.
  • Weiterhin eignen sich derartige Produkte als Trennmittel bei der Verpressung von Holz-, Span- und Faserplatten bei der Herstellung von Keramikteilen und aufgrund ihres Retentionsvermögens zur Herstellung lösemittelhaltiger Pflegemittel, Schleif- und Polierpasten sowie als Mattierungsmittel für Lacke.
  • Weiterhin können diese Produkte zur Rezeptierung von Klebwachsen, Käsewachsen, kosmetischen Präparaten, Kaugummigrundlagen, Guss- und Kabelmassen, sprühfähigen Schädlingsbekämpfungsmitteln, Vaselinen, künstlichen Kaminscheiten, Gleitmitteln und Schmelzklebstoffen eingesetzt werden.
  • Eine Prüfung auf Lebensmittelechtheit wird beispielweise nach FDA, § 175. 250 vorgenommen.
  • Die Erfindung wird nun anhand von Beispielen im Einzelnen erläutert.
  • Beispiel 1:
  • Ein FT-Paraffin mit einem Erstarrungspunkt bei 97 ° C wurde mit Wasserstoff bei einem Druck von 5 MPa (50 bar), einer Temperatur von 270 ° C und einem v/vh-Verhältnis von 0,3 katalytisch isomerisiert. Die eingetretene Hydroisomerisierung wurde durch Kennzahlen in Tabelle 1 belegt.
  • Das Hydroisomerisat ist weiß, geruchlos und leicht klebrig und unterscheidet sich damit deutlich von dem spröd-harten Einsatzprodukt. Der Iso-Alkan-Anteil ist um ca. das 6-fache erhöht, was durch den erhöhten Penetrationswert, den verringteren kristallinen Anteil und die abgesenkte Schmelzeenthalpie belegt wird. Das so hergestellte synthetische, mikrokristalline Paraffin ist entsprechend seinen Kennwerten zwischen einem plastischen und einem hartem Mikrowachs auf Erdölbasis einzuordnen Mit dem Hydroisomerisat wurde somit ein Paraffin mit ausgeprägter mikrokristalliner Struktur erhalten, dessen C-Kettenlängenverteilung anhand der Kohlenstoffatome mit 23 bis 91 in etwa der des Einsatzproduktes mit 27 bis 95, jedoch eben verschoben zu kleineren Kettenlängen hin, entspricht. Die Kettenlänge wurde durch Gaschromatografie bestimmt.
  • Beispiel 2:
  • Ein FT-Paraffin mit einem Erstarrungspunkt bei 70 ° C wurde mit Wasserstoff bei einem Druck von 5 MPa (50 bar) einer Temperatur von 250 ° C und einem v/vh-Verhältnis von 0,3 katalytisch isomerisiert. Die eingetretene strukturelle Umwandlung wurde durch die Kennzahlen in der Tabelle belegt.
  • Das Hydroisomerisat ist weiß und geruchlos sowie pastös und leicht klebrig.Der iso-Alkan-Anteil ist um das ca. 5-fache erhöht. Der hohe Isomerisierungsgrad findet seinen Ausdruck in dem deutlich erhöhten Penetrationswert, dem verringertem kristallinen Anteil und der abgesenkten Schmelzenthalpie. Das so erhaltene mikrokristalline Paraffin hat eine ähnliche allerdings etwas verkleinerte C-Kettenlänge wie das FT-Paraffin, was anhand der Kohlenstoffatome deutlich wird: 23 bis 42 beim Hydroisomerisat und 25 bis 48 beim FT-Paraffin. Das so hergestellte synthetische mikrokristalline Paraffin ist entsprechend seinen Kennwerten einem auf Erdölbasis gewonnenen weichplastischen mikrokristallinen Paraffin vergleichbar.
  • Die Beispiele 1 und 2 zeigen, dass durch das erfindungsgemäße Verfahren die FT-Paraffine, die überwiegend aus n-Alkane bestehen und eine feinkristalline Struktur sowie eine spröd-harte Konsistenz aufweisen, in nicht fließende, pastöse oder feste Paraffine umgewandelt wurden, die niedriger Schmelztemperaturen als die Einsatzprodukte aufweisen. Diese Paraffine zeichnen sich durch einen hohen Gehalt an verzweigten Alkanen aus und weisen infolgedessen eine mikrokristalline Struktur mit deutlich verringertem Kristallisationsgrad sowie eine plastische bis leicht klebrige Konsistenz auf. Bei den verzweigten Alkanen handelt es sich überwiegend um Methyl-Alkane, wobei die Methyl-Gruppen vorzugsweise in der 2-, 3-, 4- oder 5-Position auftritt. Im geringen Maße wurden auch mehrfach Methylverzweigte Alkane gebildet.
  • Die Ergebnisse der Beispiele 1 und 2, verglichen auch mit dem Einsatzprodukt sind in der beigefügten Tabelle 1 zusammengestellt.
  • Beispiel 3:
  • Es wurde ein Katalysator (zylinderförmiges Extrudat, Durchmesser 1,5 mm, Länge ca. 5 mm) unzerkleinert eingesetzt. In das Reaktorrohr (Gesamtvolumen 172 ml, Innendurchmesser 22 mm) wurden 92 ml Katalysator unverdünnt eingefüllt. Die Katalysatorzone wurde auch mit dem Erdmaterial überschichtet. Ein Thermoelement wurde so im Reaktor positioniert, dass die Temperatur in einer Tiefe von 2 cm und 17 cm der Katalysatorschüttung gemessen wurde. Die Katalysatoren waren getrocknet und aktiviert (durch hohe Temperatur wird Wasser ausgetrieben und Platin reduziert).
  • Als Paraffin-Einsatzprodukt wurde ein FT-Paraffin C80 (Erstarrungspunkt 81 ° C, Masse-Verhältnis n-/iso-Paraffine: 93,9/6,1) verwendet. Der Ölgehalt des Ausgangsproduktes betrug 0,5 %. Der Nadelpenetrationswert 6,0.
  • Die Versuche wurden bei einem Wasserstoffdruck von 50 bar durchgeführt.
  • Es wurde folgende Ergebnisse erzielt: Bei 260 ° C und 0,96 v/vh erhöhte sich der iso-Anteil (MA.-%) von 6,1 (FT-Paraffin) auf 42 (Hydroisomerisat). Der Erstarrungspunkt war 77 ° C, der Ölgehalt 18,8 %. Der Nadelpenetrationswert 32.
  • Der Katalysator war ein Platinkatalysator auf β - Zeolith. β -Zeolithen wird auf die Literaturstelle "Atlas of Zeolithe Structure-Typs", Elsevier Fourth Revised Edition, 1996, hingewiesen.
  • Zu diesem Beispiel erhaltene Gaschromatogramme sind als Anlage beigefügt.
  • Im Unterschied zu den aus der Erdöl gewonnenen mikrokristallinen Paraffinen enthalten die durch die erfindungsgemäße Hydroisomerisierung hergestellten vollsynthetischen mikrokristallinen Paraffine keine stark verzweigten iso-Alkane, keine zyklischen Kohlenwasserstoffen (Naphthene) und insbesondere keine Aromaten sowie Schwefel-Verbindungen. Sie entsprechen damit höchsten Reinheitsanforderungen für mikrokristalline Paraffine und sind damit hervorragend prädestiniert für den Einsatz in der kosmetischen und pharmazeutischen Industrie sowie zur Verpackung und Konservierung in der Lebensmittelindustrie. Tabelle: Kennwerte von Ausgangsstoffen und Reaktionsprodukten
    Kennwerte Einheit Meßmethode Beispiel 1 Beispiel 2
    FT-Paraffin Hydroiso -merisat FT-Paraffin Hydroiso -merisat
    Erstarrungspunkt ° C DIN ISO 2207 97,0 86,5 71,5 61,5
    Penetration N bei 25 ° C 0,1 mm DIN 51579 2 42 13 98
    Schmelzenthalpine J/g ASTM D4419 221 127 195 120
    kristalline Anteile MA.-% Röntgenbeugungsanalyse 70,7 43,5 62,4 38,8
    Gewichtsverhältnis n/ iso-Alkane % Gaschromatografie 88/12 37/63 91/9 43/57
    Ölgehalt (MIBK) MA.-% ASTM D721-87 (modifiziert) 0,66 14,6 0,4 23,1

Claims (9)

  1. Verfahren zur Herstellung eines mikrokristallinen Paraffins durch katalytische Hydroisomerisierung durch
    A. Einsatz von FT-Paraffinen als Ausgangsmaterial mit KohlenstoffAtomen im Bereich von 20 bis 105 und
    B. Verwendung eines Katalysators und
    C. Einwirkung von Druck in Gegenwart von Wasserstoff, dadurch gekennzeichnet, daß ein Katalysator auf der Basis eines β -Zeolithen mit einer Porengröße zwischen 0,50 und 0,80 nm als Trägermaterial und einem Metalls der 8. Nebengruppe als aktive Komponente eingesetzt wird, daß mit eine Prozess-Temperatur von 200 bis 300 °C. gearbeitet wird bei einem (Druck 2 bis 20 MPa) und einem Feed-Verhältnis von Wasserstoff zu FT-Paraffin von 100 :1 bis 1.000 : 1 Nm3 pro m3
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Druck 3 bis 8 MPa beträgt.
  3. Verfahren nach einem der Ansprüche 1 oder 2, gekennzeichnet durch eine Prozesstemperatur von 230 bis 270 °C.
  4. Verfahren nach einem der Ansprüche 1 bis 3, gekennzeichnet durch ein Feed-Verhältnis von Wasserstoff zu FT-Paraffin von 250 : 1 bis 600 : 1 Nm3 pro m3.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die mit einer Belastung von 0,1 bis 2,0 v/vh, bevorzugt 0, 2 bis 0,8 v/vh gearbeitet wird.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Katalysator eine Porengröße zwischen 0,55 bis 0,76 nm aufweist.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Katalysator als Hydrierme tall Platin aufweist.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass der Platinanteil des Katalysators 0,1 bis 2,0 MA.-% bevorzugt 0,4 bis 1,0 MA.-% beträgt, bezogen auf den bei 800 ° C geglühten Katalysator.
  9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das FT-Paraffin in einem Erstar rungspunkt-Bereich von 70 bis 105 ° C, bevorzugt mit Erstarrungspunk ten von 70, 80, 95 oder 105 ° C eingesetzt wird.
EP02732741.0A 2001-05-30 2002-05-31 Verfahren zur herstellung eines mikrokristallinen paraffins Expired - Lifetime EP1390329B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10126516 2001-05-30
DE10126516A DE10126516A1 (de) 2001-05-30 2001-05-30 Verfahren zur Herstellung von mikrokristallinen Paraffinen
PCT/EP2002/005970 WO2002096842A2 (de) 2001-05-30 2002-05-31 Mikrokristallines paraffin

Publications (2)

Publication Number Publication Date
EP1390329A2 EP1390329A2 (de) 2004-02-25
EP1390329B1 true EP1390329B1 (de) 2013-04-10

Family

ID=7686764

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02732741.0A Expired - Lifetime EP1390329B1 (de) 2001-05-30 2002-05-31 Verfahren zur herstellung eines mikrokristallinen paraffins

Country Status (11)

Country Link
US (1) US7875166B2 (de)
EP (1) EP1390329B1 (de)
JP (1) JP2004529192A (de)
CN (2) CN1668722B (de)
AU (1) AU2002304654A1 (de)
DE (1) DE10126516A1 (de)
ES (1) ES2408810T3 (de)
PL (1) PL203361B1 (de)
RU (1) RU2276184C2 (de)
WO (1) WO2002096842A2 (de)
ZA (1) ZA200300781B (de)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR0207091A (pt) * 2001-02-13 2004-01-20 Shell Int Research Composição lubrificante, e, uso da mesma
AR032941A1 (es) 2001-03-05 2003-12-03 Shell Int Research Un procedimiento para preparar un aceite base lubricante y aceite base obtenido, con sus diversas utilizaciones
MY139353A (en) 2001-03-05 2009-09-30 Shell Int Research Process to prepare a lubricating base oil and a gas oil
AR032932A1 (es) * 2001-03-05 2003-12-03 Shell Int Research Procedimiento para preparar un aceite de base lubricante y un gas oil
DE60214724T2 (de) * 2001-06-15 2007-09-06 Shell Internationale Research Maatschappij B.V. Verfahren zur herstellung eines mikrokristallinen wachses
EP1509583B1 (de) * 2002-05-31 2014-06-04 Sasol Wax GmbH Mikrokristallines paraffin, verfahren zur herstellung von mikrokristallinen paraffinen
DE10256431A1 (de) 2002-05-31 2004-01-15 SCHÜMANN SASOL GmbH Mikrokristallines Paraffin, Verfahren zur Herstellung von mikrokristallinen Paraffine und Verwendung der mikrokristallinen Paraffine
AU2003255058A1 (en) 2002-07-18 2004-02-09 Shell Internationale Research Maatschappij B.V. Process to prepare a microcrystalline wax and a middle distillate fuel
US20090101542A1 (en) * 2005-05-20 2009-04-23 Volker Klaus Null Compositions comprising a fischer-tropsch derived white oil as carrier oil
US7851663B2 (en) * 2007-04-16 2010-12-14 Syntroleum Corporation Process for producing synthetic petroleum jelly
EP2078743A1 (de) * 2008-01-10 2009-07-15 Shell Internationale Researchmaatschappij B.V. Kraftstoffzusammensetzung
US9415363B2 (en) * 2009-02-20 2016-08-16 Marine Power Products Corporation Method and apparatus for efficient on-demand production of H2 and O2 from water using waste heat and environmentally safe metals
US9067186B2 (en) 2009-02-20 2015-06-30 Marine Power Products Incorporated Stability control of a hydrogen generating system and method
US10145015B2 (en) 2012-12-05 2018-12-04 Marine Power Products Incorporated Hydrogen generating system and method using geothermal energy
US9206043B2 (en) 2009-02-20 2015-12-08 Marine Power Products Incorporated Method of and device for optimizing a hydrogen generating system
US11214486B2 (en) 2009-02-20 2022-01-04 Marine Power Products Incorporated Desalination methods and devices using geothermal energy
PL2785312T3 (pl) 2011-11-29 2016-08-31 Sasol Chemical Industries Ltd Kompozycja petrolatum
US10370595B2 (en) 2012-03-13 2019-08-06 Marine Power Products Incorporated System for and method of using on-site excess heat to convert CO2 emissions into hydrocarbons income at coal-fired power plants
PL400139A1 (pl) 2012-07-25 2014-02-03 Terra Trade Spólka Z Ograniczona Odpowiedzialnoscia Sposób otrzymywania wosków parafinowych oraz zastosowanie wosków parafinowych
CN110511576A (zh) * 2019-07-23 2019-11-29 肥东县云武研发有限公司 一种玻璃失蜡法浇铸用石蜡及其制备方法
JP2022543314A (ja) 2019-08-08 2022-10-11 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ マイクロクリスタリンワックス

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4419220A (en) * 1982-05-18 1983-12-06 Mobil Oil Corporation Catalytic dewaxing process
US4919786A (en) 1987-12-18 1990-04-24 Exxon Research And Engineering Company Process for the hydroisomerization of was to produce middle distillate products (OP-3403)
US4995962A (en) * 1989-12-29 1991-02-26 Mobil Oil Corporation Wax hydroisomerization process
CN1066870A (zh) * 1992-06-17 1992-12-09 洛阳市石油化工研究所 非临氢异构化工艺
IT1265041B1 (it) * 1993-07-23 1996-10-28 Eniricerche Spa Catalizzatore bifunzionale efficace nella idroisomerizzazione di cere e procedimento per la sua preparazione
EP0668342B1 (de) 1994-02-08 1999-08-04 Shell Internationale Researchmaatschappij B.V. Verfahren zur Herstellung von Basisschmieröl
MY115180A (en) * 1994-10-24 2003-04-30 Shell Int Research Synthetic wax for food applications
US5565086A (en) 1994-11-01 1996-10-15 Exxon Research And Engineering Company Catalyst combination for improved wax isomerization
EP1365005B1 (de) 1995-11-28 2005-10-19 Shell Internationale Researchmaatschappij B.V. Verfahren zur Herstellung von Schmierölen
CN1064990C (zh) * 1996-09-12 2001-04-25 中国石油化工集团公司抚顺石油化工研究院 一种石油蜡催化加氢精制的工艺方法
US6179994B1 (en) * 1998-09-04 2001-01-30 Exxon Research And Engineering Company Isoparaffinic base stocks by dewaxing fischer-tropsch wax hydroisomerate over Pt/H-mordenite
US6475960B1 (en) * 1998-09-04 2002-11-05 Exxonmobil Research And Engineering Co. Premium synthetic lubricants
US6080301A (en) * 1998-09-04 2000-06-27 Exxonmobil Research And Engineering Company Premium synthetic lubricant base stock having at least 95% non-cyclic isoparaffins
US6310265B1 (en) * 1999-11-01 2001-10-30 Exxonmobil Chemical Patents Inc. Isomerization of paraffins
US6776898B1 (en) * 2000-04-04 2004-08-17 Exxonmobil Research And Engineering Company Process for softening fischer-tropsch wax with mild hydrotreating
US6773578B1 (en) * 2000-12-05 2004-08-10 Chevron U.S.A. Inc. Process for preparing lubes with high viscosity index values
DE60214724T2 (de) 2001-06-15 2007-09-06 Shell Internationale Research Maatschappij B.V. Verfahren zur herstellung eines mikrokristallinen wachses
FR2834655B1 (fr) * 2002-01-17 2004-12-03 Sicat COMPOSITES ZEOLITHE/SiC ET LEUR UTILISATION EN CATALYSE
DE10256404B4 (de) * 2002-05-31 2009-02-05 Kataleuna Gmbh Catalysts Katalysator zur Isomerisierung von festen Fischer-Tropsch-Paraffinen und Verfahren zu seiner Herstellung
DE10256431A1 (de) * 2002-05-31 2004-01-15 SCHÜMANN SASOL GmbH Mikrokristallines Paraffin, Verfahren zur Herstellung von mikrokristallinen Paraffine und Verwendung der mikrokristallinen Paraffine

Also Published As

Publication number Publication date
RU2276184C2 (ru) 2006-05-10
ES2408810T3 (es) 2013-06-21
AU2002304654A1 (en) 2002-12-09
EP1390329A2 (de) 2004-02-25
DE10126516A1 (de) 2002-12-05
US20040192979A1 (en) 2004-09-30
CN101892080B (zh) 2012-12-19
JP2004529192A (ja) 2004-09-24
CN1668722A (zh) 2005-09-14
CN101892080A (zh) 2010-11-24
PL368411A1 (en) 2005-03-21
WO2002096842A3 (de) 2003-11-13
WO2002096842A2 (de) 2002-12-05
ZA200300781B (en) 2004-02-10
CN1668722B (zh) 2010-05-26
US7875166B2 (en) 2011-01-25
RU2003137572A (ru) 2005-05-27
PL203361B1 (pl) 2009-09-30

Similar Documents

Publication Publication Date Title
EP1390329B1 (de) Verfahren zur herstellung eines mikrokristallinen paraffins
DE69818993T2 (de) Verfahren zur herstellung von hochkonzentriertem dieselkraftstoff
DE69632920T3 (de) Verfahren zur herstellung von biologisch abbaubare hochleistungs-kohlenwasserstoff-basisöle
DE60207386T3 (de) Verfahren zur herstellung eines schmierbaseöls und ein gasöl
DE69929803T3 (de) Synthetisches basisschmieröl
DE60121435T2 (de) Anpassungsfähiges verfahren zur herstellung von ölen mit zeolit zsm-48
DE2316882C2 (de) Verfahren zur Herstellung von Schmieröl
DE69533139T2 (de) Wachshydroisomerisierverfahren
DE602004009073T2 (de) Verfahren zur herstellung von grundölen aus einem produkt der fischer-tropsch-synthese
DE69825339T2 (de) Auf einem Molekularsieb basierender Katalysator und Verfahren zur selektiven Hydroisimerisierung von langen geradkettigen und/oder verzweigten Paraffinen
DE60112805T2 (de) Verfahren zur herstellung von spindelölen, leichten maschinenölen und mittleren maschinenölen
DE69533716T3 (de) Schmierölherstellung mit einem viskositätsindexselektiven katalysator
DE60104835T2 (de) Weichmachungsverfahren für fischer-tropschwachsen durch hydrobehandlung unter milden bedingungen
DE69131616T3 (de) Wachsisomerisierung unter verwendung von katalysatoren mit spezieller porengeometrie
DE69824850T2 (de) Benzol-umwandlung in einem verbesserten verfahren zur ausreichung von kohlenwasserstoffen
US5612273A (en) Catalyst for the hydroisomerization of contaminated hydrocarbon feedstock
DE2326834A1 (de) Verfahren zur verarbeitung von kohlenwasserstoffnaphtha zu einem fluessigen produkt mit einem hohen aromatengehalt
DE2343238A1 (de) Verfahren zur behandlung von mineralschmieroel-ausgangsmaterialien
DE10256431A1 (de) Mikrokristallines Paraffin, Verfahren zur Herstellung von mikrokristallinen Paraffine und Verwendung der mikrokristallinen Paraffine
DE69932186T2 (de) Anpassungsfähiges verfahren zur herstellung medizinischer öle und gegebenenfalls mitteldestillaten
DE2143972A1 (de) Verfahren zur Herstellung von Schmier öl mit verbessertem Viskositätsindex
DE1198952B (de) Verfahren zur katalytischen Umwandlung von Kohlenwasserstoffdestillaten in niedriger siedende Produkte
DE19827951B4 (de) Verfahren zur Verbesserung des Stockpunktes von Paraffine enthaltenden Chargen
EP1509583B1 (de) Mikrokristallines paraffin, verfahren zur herstellung von mikrokristallinen paraffinen
DE60105997T2 (de) Verfahren zum einstellen der härte von fischer-tropschwachs durch mischung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031115

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20100825

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 50215742

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C07C0004000000

Ipc: C10G0045640000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C10G 45/64 20060101AFI20120926BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 606014

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130415

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50215742

Country of ref document: DE

Effective date: 20130606

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2408810

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20130621

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130812

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130711

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20140113

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50215742

Country of ref document: DE

Effective date: 20140113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 606014

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20200319

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200515

Year of fee payment: 19

Ref country code: ES

Payment date: 20200619

Year of fee payment: 19

Ref country code: DE

Payment date: 20200515

Year of fee payment: 19

Ref country code: NL

Payment date: 20200515

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200515

Year of fee payment: 19

Ref country code: BE

Payment date: 20200514

Year of fee payment: 19

Ref country code: IT

Payment date: 20200525

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50215742

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20210601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210531

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210601

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531