EP1399219A2 - Magnetresonanzanlage und verfahren zum betrieb - Google Patents

Magnetresonanzanlage und verfahren zum betrieb

Info

Publication number
EP1399219A2
EP1399219A2 EP02754226A EP02754226A EP1399219A2 EP 1399219 A2 EP1399219 A2 EP 1399219A2 EP 02754226 A EP02754226 A EP 02754226A EP 02754226 A EP02754226 A EP 02754226A EP 1399219 A2 EP1399219 A2 EP 1399219A2
Authority
EP
European Patent Office
Prior art keywords
magnetic resonance
amplitude
resonance system
phase
antennas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02754226A
Other languages
English (en)
French (fr)
Inventor
Horst KRÖCKEL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1399219A2 publication Critical patent/EP1399219A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/02Magnetotherapy using magnetic fields produced by coils, including single turn loops or electromagnets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/40Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals
    • A61N1/403Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals for thermotherapy, e.g. hyperthermia
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/4804Spatially selective measurement of temperature or pH
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/4808Multimodal MR, e.g. MR combined with positron emission tomography [PET], MR combined with ultrasound or MR combined with computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/561Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reduction of the scanning time, i.e. fast acquiring systems, e.g. using echo-planar pulse sequences
    • G01R33/5611Parallel magnetic resonance imaging, e.g. sensitivity encoding [SENSE], simultaneous acquisition of spatial harmonics [SMASH], unaliasing by Fourier encoding of the overlaps using the temporal dimension [UNFOLD], k-t-broad-use linear acquisition speed-up technique [k-t-BLAST], k-t-SENSE
    • G01R33/5612Parallel RF transmission, i.e. RF pulse transmission using a plurality of independent transmission channels

Definitions

  • the present invention relates to a magnetic resonance system with a basic field magnet, a plurality of gradient field coils, an RF transmitter and receiver unit and a control unit for controlling the gradient field coils and the RF transmitter and receiver unit for carrying out magnetic resonance measurements.
  • the invention further relates to a method for operating such a magnetic resonance system.
  • Magnetic resonance systems are used in medical diagnostics for imaging the inside of a patient's body. Magnetic resonance systems can be used for imaging, for example in neurology, angiography or cardiology.
  • a common field of application of magnetic resonance imaging is the visualization or monitoring of tumors in cancer treatment.
  • targeted heating of the tumorous area is carried out by means of focused radiation of high frequency (HF) energy in order to support or instead of chemotherapy or radiation treatment.
  • HF high frequency
  • This newer technique is known as selective hyperthermia.
  • the patient is positioned in a hyperthermia applicator so that the area of the body to be treated is located approximately in the middle under the applicator.
  • the hyperthermia applicator is composed of a number of arrayed RF dipoles, each of which is supplied with pulse-shaped or time-constant RF power of a defined amplitude and phase position.
  • the phase position and amplitude of the radio frequency on each individual dipole is selected so that the RF energy radiated by the individual dipoles is located at the location of the area to be treated, ie the tumor superimposed so that the maximum field strength is reached there.
  • Part of the focused RF energy is absorbed by the tissue in the area of the tumor, so that this area heats up depending on the radiated RF energy. Since the tumorous tissue is thermally more sensitive than healthy tissue, the warming damages it more than the surrounding healthy tissue. Such targeted heat treatment can cause the tumorous tissue to die.
  • a fundamental problem with hyperthermia treatment is the different speed of propagation of electromagnetic waves in the tissue and the surrounding air.
  • the propagation distance of the electromagnetic waves from the transmitter dipoles to the tumor is more or less filled with tissue or air.
  • the air space between the patient and the applicator is filled with a water cushion, which is filled with a special water solution after the patient has been positioned. Through this water cushion, the rates of propagation of RF radiation in the patient's body and between the
  • Body and hyperthermia applicator approximated so that a sufficiently good focus is achieved even with different patient anatomies.
  • this procedure is perceived as uncomfortable, particularly in claustrophobic patients.
  • other applicators for example for physiological monitoring of the patient during hyperthermia treatment, is made more difficult by the water cushion, since there is little space for the positioning of additional applicators.
  • Magnetic resonance measurements are also being considered in the search for improved techniques to measure tissue temperature during hyperthermia treatment.
  • the temperature is determined by means of a magnetic resonance examination which is carried out simultaneously with the hyperthermia treatment.
  • the hyperthermia applicator is inserted into the examination room of a magnetic resonance system and a magnetic resonance measurement is carried out simultaneously with the heating.
  • the temperature of the tissue can be derived from the T1-T2 shift of the magnetic resonance signals obtained from the region of interest.
  • the accuracy of the temperature measurement is a problem when using this new approach to temperature measurement.
  • This accuracy is currently hardly sufficient, since the hyperthermia applicator is arranged between the RF transmitter and receiver unit of the magnetic resonance system and the patient, so that the received signal of the magnetic resonance echo is received only very weakly by the RF transmitting and receiving unit of the magnetic resonance system.
  • the magnetic resonance signal is damped by the water cushions arranged between the thermal applicator and the patient.
  • Another reason for the lack of accuracy of such a temperature measurement is the choice of the RF transmission frequency of the magnetic resonance system.
  • These magnetic resonance frequencies must maintain a sufficient distance from the radio frequency of the hyperthermia applicator in order to decouple the magnetic resonance system from the hyperthermia system and to have disruptive mutual influences between the two systems avoid.
  • Known hyperthermia applicators operate in the frequency range of 100 MHz in order to achieve sufficient focusability of the high-frequency field in the patient's body. Therefore, the magnetic resonance frequencies are usually chosen in the range of 8-64 MHz in order to maintain a sufficient distance from the 100 MHz of the hyperthermia applicator.
  • the selected magnetic resonance frequencies require magnetic field strengths of the basic field magnet between 0.2 T and 1.5 T for the excitation of the magnetic resonance. With such basic field strengths, however, the temperature-dependent Tl-T2 shift is not very clear, so that this also impairs the accuracy of the temperature determination becomes.
  • the object of the present invention is to provide a device for selective hyperthermia treatment, which enables sufficient focusing of the HF field without the use of water cushions and stress-free temperature measurement with high accuracy.
  • the present magnetic resonance system is designed in a known manner with a basic field magnet, a plurality of gradient field coils, an RF transmitter and receiver unit and a control unit for controlling the gradient field coils and the RF transmitter and receiver unit for carrying out magnetic resonance measurements.
  • the RF transmitter and receiver unit consists of a large number of antennas arranged in an array around an examination room, which can be controlled independently of one another via separate transmission channels for the emission of RF radiation of predeterminable phase and amplitude. For each of the antennas NEN a separate receive channel is also provided.
  • the control unit is designed in such a way that it determines the amplitude and phase of a locally selective magnetic resonance signal received by the antenna and can control the antennas independently of one another to emit HF radiation of predeterminable phase and amplitude in order to generate an RF field focused in the examination room for hyperthermia treatment.
  • the antennas and the gradient field coils are first activated to carry out a location-selective magnetic resonance measurement in the body to be examined.
  • the magnetic resonance signals are received with the antennas and the magnetic resonance signals received from the body area to be treated are processed by the control unit for each individual reception channel, i.e. H. for each individual antenna, evaluated according to amplitude and phase, in order to detect the amplitude attenuation and phase shift of the high-frequency radiation on the way between the body area to be treated and each individual antenna.
  • the individual antennas are then controlled independently of one another by the control unit with a suitable amplitude and phase, taking into account the detected amplitude attenuation and phase shift, in order to generate a correctly focused HF field for hyperthermia treatment at the location of the body area to be treated.
  • the present design of the magnetic resonance system and the operating method mentioned enable hyperthermia treatment of a patient without a water cushion.
  • the control of each individual antenna for the correct focusing of the RF field in the correct phase and in phase is determined in advance by detecting the amplitude and phase of the magnetic resonance signal received from each individual antenna from the area of the body to be treated. In this way, regardless of the patient's anatomy and the space between the antennas and the patient always the correct amplitude and phase control for optimal focusing of the RF field at the location of an area to be treated, especially tumor, reached.
  • the present implementation of the magnetic resonance system with the simultaneous possibility of locally selective hyperthermia treatment is achieved not by an additional installation of a hyperthermia applicator but by a simple redesign of already existing components of a magnetic resonance system.
  • the one or more power transmitters for the antennas are designed in such a way that, on the one hand, they can deliver the continuous power required for hyperthermia treatment, which is of the order of 1-2 kW.
  • the power transmitters must be designed so that they have enough pulse power for magnetic resonance measurements, i. H. Pulse powers in the order of 20-30 kW can deliver.
  • the usual pulse power transmitter used in magnetic resonance systems is preferably replaced by a larger number of power transmitters with a smaller pulse power per transmission channel.
  • the individual antennas are preferably designed as resonance bars or elongated, electrically conductive material layers that correspond to resonance bars in the HF behavior and should have dimensions that are as small as possible.
  • the individual resonator rods are arranged around the cylindrical space for the patient. They are also equipped with a matching device that matches the impedance of the transmission path to the area of the body to be treated, which is influenced by the patient and the geometry in the examination room, to the line impedance of the supply line, which connects the power amplifier to the resonator rod, adapts.
  • the adaptation device can be equipped with a fixed transformation ratio or can be aligned for each patient through individual tuning.
  • a separate power transmitter is provided for each antenna.
  • Each of these power transmitters is equipped with its own transmitter control circuit, which enables the phase control and amplitude control of the antenna.
  • the control circuit should be able to generate any desired RF pulse shapes with widely differing pulse durations, in order to enable both magnetic resonance measurements with pulse-shaped excitation and hyperthermia treatment with continuous radiation.
  • Each of the transmitter control circuits preferably comprises a modulator, which is supplied from a base value table via an analog-digital converter (ADC).
  • ADC analog-digital converter
  • the modulator can be implemented by an analog IQ modulator or a digital NCO.
  • the frequency generation for the transmission frequency can take place with a PLL or a DDS loop.
  • Such circuits for frequency generation are known to the person skilled in the field of magnetic resonance systems.
  • each antenna also has a separate reception channel in order to be able to detect a magnetic resonance echo or signal that is induced in the antennas.
  • a transceiver changeover switch is preferably arranged between the respective matching unit and the power amplifier, which forwards the magnetic resonance signal on each transmitting antenna to a receiver circuit.
  • the receiver circuit itself is implemented by a preamplifier circuit and a demodulator circuit, which can separate each individual received signal according to amplitude and phase.
  • the receiver circuit can either be equipped with an analog IQ demodulator or with a digital demodulator. This receiver circuit enables the detection of the phase shifts and the attenuation of the RF amplitude in the tissue surrounding the tumor.
  • the present magnetic resonance system is designed to generate a sufficiently high magnetic resonance frequency which enables the high-frequency field to be clearly focused at the field strength of the basic field magnet.
  • the field strength of the basic field magnet is selected in such a way that a clear representation of the temperatures in the examined tissue is still achieved at the associated magnetic resonance frequency.
  • a field strength of 3T is suitable for the field strength of the basic field magnet, so that a magnetic resonance frequency of 123.2 MHz is generated.
  • This magnetic resonance frequency corresponds to a wavelength of 10 - 30 cm in the patient's body and 2.5 m in the air, so that a sufficiently strong focusing of the RF energy can be achieved.
  • the operation of the present magnetic resonance system is preferably carried out in such a way that the radiation of the HF energy for heating the desired body area is briefly interrupted several times in order to carry out a magnetic resonance measurement to determine the temperature in the corresponding body area.
  • the temperature is measured using a conventional magnetic resonance measurement with the antennas and subsequent evaluation of the T1-T2 shift.
  • the location information is obtained in a known manner via the frequency and phase coding with the gradient field coils.
  • the temperature is measured several times in the course of the heating process in order to avoid overheating of the corresponding area.
  • the intervals between the individual temperature measurements are selected depending on the radiated RF power, duration of the irradiation and body area. Depending on the type of magnetic resonance measurement, d. H. at the choice of
  • Pulse sequence a range of a few 100 ms, in particular between 100 ms and 1 s, is provided for the temperature measurement. hen. Between the temperature measurements, the radiation of the HF energy for heating the body area to be treated takes place.
  • a reception channel of the magnetic resonance system is connected to a surface coil, which enables a very good signal-to-noise ratio for the magnetic resonance measurements to determine the temperature.
  • a receiver circuit which is designed in accordance with the receiver circuits of the antennas of the RF transmitter and receiver unit.
  • the antennas of the RF transmitter and receiver unit and the surface coils are additionally equipped with a detuning device in order to prevent the part of the resonator that is not being used from being interfered with from the measurement.
  • a detuning device is known from conventional magnetic resonance systems.
  • a tuning sequence is implemented with the magnetic resonance system before the start of the heating sequence, in which the magnetic resonance signals received from a predefinable body area are evaluated with regard to their amplitude and phase position received on the individual antennas.
  • this tuning sequence is implemented as an FID measurement, wherein the emission of echoes from areas of the body that are not of interest can be prevented by suitable activation of the gradient field coils.
  • RF energy When excited, RF energy is emitted from the tumorous area in the form of magnetic resonance signals, which are then transmitted by each antenna. ne is caught at the same time.
  • the phases and amplitudes required to control the individual antennas for generating focused RF radiation in the tumorous body area can be derived from the phase and amplitude differences.
  • the antennas are then controlled precisely with these phases and amplitudes determined in advance for each individual transmitting antenna.
  • Such a magnetic resonance measurement for determining the correct phases and amplitudes for controlling the antennas can of course also be repeated while the heating sequence is being carried out by briefly interrupting it for the magnetic resonance measurement. In this way, optimal focusing results can be achieved even when the patient changes position during treatment.
  • FIG. 1 shows a greatly simplified illustration of a magnetic resonance system
  • FIG. 2 schematically shows an example of the design of the RF transmission and reception unit of a magnetic resonance system according to the present invention
  • 3 shows a sketch to illustrate the superimposition of the RF fields generated by the individual antennas in a tumorous body area of a patient
  • 4 shows an example of the operation of an NGO for generating amplitude and phase correct RF signals
  • FIG. 5 shows an exemplary sequence for a hyperthermia treatment with simultaneous temperature measurement.
  • FIG. 1 shows the basic structure of a magnetic resonance system, as is also implemented in the present invention, in a highly simplified manner. The figure shows the basic field magnet 23, the gradient field coils 24, the RF transmitter and receiver unit 25, which encloses the examination room 27, and a control unit 26 for controlling the gradient field coils 24 and the RF transmitter and receiver unit 25.
  • the units present in magnetic resonance systems such as evaluation computer, memory, pulse sequence control, pulse shape generator or HF generator are summarized in the control unit 26 in this representation.
  • FIG. 2 shows an example of an embodiment of an RF transmitter and receiver unit, as used in a magnetic resonance system according to the present invention.
  • the HF transmitting and receiving unit is composed of a plurality of resonator bars 1 arranged in the form of an array, which are arranged around the cylindrical examination space 27 intended for the patient.
  • Each of the individual resonator rods 1 is connected to its own transmission channel 2 and its own reception channel 3. In the figure, only two of these receive and transmit channels for two resonator rods are indicated by way of example.
  • the transmission channel 2 comprises a memory 6 for storing the envelope curve and the phase curve for the generation of the RF excitation pulses.
  • An NCO operated as a modulator 7 modulates the required pulse shape and phase onto a carrier frequency signal f which is obtained from a frequency generator (not shown).
  • the signal is then converted in a digital-to-analog converter 8 and amplified via the power amplifier 9.
  • the RF signal amplified in this way is fed to the resonator rod 1 via a tuning circuit 11 which serves to adapt the impedance.
  • the individual resonator rods 1 are controlled independently of one another to emit HF radiation or HF pulses of a defined phase and amplitude.
  • the individual resonator rods 1 are first activated to emit an RF pulse for the excitation of a magnetic resonance excitation signal in this body region. Then, or simultaneously with the transmission, the spatial region from which the FID signal is emitted is limited to the tumorous region by controlling gradient fields.
  • the transmit / receive changeover switches 10 are then switched over in order to switch the resonator rods 1 to receive or to connect them to the respective receive channel 3.
  • the magnetic resonance signal is received by each of the resonator rods 1 and fed to an analog-digital converter 13 via a preamplifier 12.
  • the digitized signal is divided in an NGO 14, which is operated as a demodulator, in accordance with the phase and amplitude, and is fed to an evaluation computer 15, which evaluates the amplitude and phase of the magnetic resonance signal for a specific area of the body, in order to determine for each of the resonator rods to obtain the amplitude and phase required for focusing.
  • the individual resonator rods 1 are then driven with the amplitudes and phases determined for them in order to achieve correct focusing in the tumorous body area.
  • the transmit / receive switches 10 are put back on the transmit channel and the individual resonator rods 1 are subjected to a continuous RF power. This continuous power can also be composed of RF pulses.
  • This phase and amplitude correct control enables the RF energy to be focused in the tumorous body region 16 of the patient 17 without the use of water cushions, as is indicated schematically in FIG. 3.
  • resonator rods 1 are indicated in this figure, which are driven with different phase differences ⁇ and amplitudes ⁇ U to emit HF radiation.
  • Figure 2 also shows a possibility of temperature measurement during hyperthermia treatment. For this temperature measurement, the heating phase is briefly interrupted in order to generate an RF pulse via the resonator rods 1 to excite a magnetic resonance signal.
  • the associated pulse sequence is known to the person skilled in the art from conventional magnetic resonance measurements.
  • a surface coil 4 can optionally be positioned directly on the body region of interest of the patient and connected to a separate receiving channel 5.
  • This receive channel 5 like the receive channels 3 of the resonator bars 1, has a preamplifier 12, an analog-digital converter 13, and an NCO 14 and is connected to the evaluation computer 15.
  • the measurement of the resonance signal for temperature measurement with the aid of a surface coil has the advantage of a very good signal-to-noise ratio.
  • FIG. 4 shows an example of the connection of an NCO 7 as a modulator for generating RF radiation of predeterminable amplitude and phase.
  • the NCO can also be operated in the opposite direction to demodulate a received signal.
  • the generation of the digital data streams which represent a sine and cosine signal of the received RF signal in relation to a reference frequency, is carried out in the same way as for the NCO which is used for transmission.
  • the received data stream received and digitized by the ADC is divided between the two multipliers.
  • One signal component is multiplied by a sine data stream, the other by a cosine data stream.
  • the received RF signal is displayed as a real part and imaginary part component based on the reference signal generated by the DDS.
  • FIG. 5 finally shows a control sequence for controlling the resonator rods 1 for the hyperthermia treatment.
  • This heating sequence 20 is briefly interrupted in order to radiate an HF pulse sequence 21 for carrying out a magnetic resonance measurement in a known manner and then to receive the magnetic resonance signal via the individual resonator rods 1 during a defined reception time 22. The heating is then continued with a new heating sequence 20.
  • the control pulses for the gradient field coils for spatial coding in the x, y and z directions, as they occur in a spin-echo sequence can be seen schematically. Other sequence techniques, not shown here, can of course also be used for this purpose.
  • the temperature of the tissue in the region of interest can be derived from the result of the magnetic resonance measurement.
  • the present system is able to carry out all magnetic resonance applications that take place at the radiated RF frequency. These applications are used to carry out the anatomy display or spectroscopy measurements in the patient's area of interest and to measure the temperature distribution in the patient. Furthermore, the present system is able to control the individual resonator rods in such a way that a targeted focusing of the HF field is possible.
  • the heating sequence is divided into time slots in order to be able to interleave it with the magnetic resonance sequence for temperature measurement, so that the
  • the frequency at which the magnetic resonance measurements are carried out here corresponds at least approximately to the frequency at which the hyperthermia treatment is carried out. This enables the correct determination of the phase and amplitude with which each individual resonator rod must be controlled.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Electrotherapy Devices (AREA)

Abstract

Die vorliegende Erfindung betrifft eine Magnetresonanzanlage sowie ein Verfahren zu deren Betrieb. Die Magnetresonanzanlage weist eine Vielzahl von arrayförmig um einen Untersuchungsraum (27) angeordneten Antennen (1) auf, wobei für jede Antenne (1) ein eigener Sendekanal (2) und ein eigener Empfangskanal (3) vorhanden ist. Die Steuereinheit (26) der Magnetresonanzanlage ist derart ausgebildet, dass sie für jede Antenne (1) Amplitude und Phase eines von der Antenne (1) empfangenen Magnetresonanzsignals bestimmen und die Antennen (1) unabhängig voneinander zur Emission von HF-Strahlung vorgebbarer Phase und Amplitude ansteuern kann, um ein im Untersuchungsraum (27) fokussiertes HF-Feld für eine Hyperthermiebehandlung zu erzeugen. Mit der vorliegenden Magnetresonanzanlage lässt sich eine Hyperthermiebehandlung ohne das Erfordernis zusätzlicher Wasserkissen durchführen, wobei quasi gleichzeitig eine exakte Temperaturmessung im beaufschlagten Gewebebereich erfolgen kann.

Description

Beschreibung
Magnetresonanzanlage und Verfahren zum Betrieb
Die vorliegende Erfindung betrifft eine Magnetresonanzanlage mit einem Grundfeldmagneten, mehreren Gradientenfeldspulen, einer HF-Sende- und Empfangseinheit sowie einer Steuereinheit zur Ansteuerung der Gradientenfeldspulen und der HF-Sende- und Empfangseinheit für die Durchführung von Magnetresonanz- messungen. Die Erfindung betrifft weiterhin ein Verfahren zum Betrieb einer derartigen Magnetresonanzanlage.
Gattungsgemäße Magnetresonanzanlagen werden in der medizinischen Diagnostik zur Bilderfassung des Körperinneren eines Patienten eingesetzt. So lassen sich Magnetresonanzanlagen zur Bildgebung bspw. in der Neurologie, der Angiographie oder Kardiologie einsetzen.
Ein häufiges Anwendungsgebiet der Magnetresonanztomographie ist die Sichtbarmachung oder Überwachung von Tumoren in der Krebsbehandlung. Bei einer neueren Technik zur Behandlung derartiger Tumore wird zur Unterstützung oder anstelle einer Chemotherapie oder Strahlenbehandlung auch eine gezielte Erwärmung des tumorösen Bereiches durch fokussierte Einstrah- lung von Hochfrequenz (HF) -Energie durchgeführt. Diese neuere Technik ist unter dem Begriff selektive Hyperthermie bekannt. Bei derzeit verfügbaren Hyperthermiegeräten wird der Patient in einem Hyperthermieapplikator positioniert, so dass der zu behandelnde Bereich des Körpers in etwa in der Mitte unter dem Applikator angeordnet ist. Der Hyperthermieapplikator setzt sich aus einer Anzahl von arrayför ig angeordneten HF- Dipolen zusammen, die jeweils mit pulsförmiger oder zeitlich konstanter HF-Leistung einer definierten Amplituden- und Phasenlage versorgt werden. Die Phasenlage und Amplitude der Hochfrequenz auf jedem einzelnen Dipol wird so gewählt, dass sich an der Stelle des zu behandelnden Bereiches, d. h. des Tumors, die von den einzelnen Dipolen abgestrahlte HF-Energie so überlagert, dass dort die maximale Feldstärke erreicht wird. Ein Teil der fokussierten HF-Energie wird durch das Gewebe im Bereich des Tumors absorbiert, so dass sich dieser Bereich in Abhängigkeit von der eingestrahlten HF-Energie erwärmt. Da das tumoröse Gewebe thermisch sensitiver ist als gesundes Gewebe, wird es durch die Erwärmung stärker geschädigt als das umgebende gesunde Gewebe. Durch eine derartige gezielte Wärmebehandlung kann erreicht werden, dass das tumoröse Gewebe abstirbt.
Ein grundsätzliches Problem bei einer Hyperthermiebehandlung ist die unterschiedliche Ausbreitungsgeschwindigkeit elektromagnetischer Wellen im Gewebe und der umgebenden Luft. Je nach Anatomie des Patienten ist die Ausbreitungsstrecke der elektromagnetischen Wellen von den Sendedipolen zum Tumor mehr oder weniger von Gewebe oder Luft ausgefüllt. Dies be- einflusst jedoch die Fokussierung, so dass eine in jedem Falle optimale Fokussierung der HF-Energie bei der Hyperthermiebehandlung bisher ohne weitere Hilfsmittel nicht zu realisie- ren ist. Bei derzeit verfügbaren Hyperthermiegeräten wird daher der Luftraum zwischen Patient und Applikator mit einem Wasserkissen ausgefüllt, das nach der Positionierung des Patienten mit einer speziellen Wasserlösung gefüllt wird. Durch dieses Wasserkissen werden die Ausbreitungsgeschwindigkeiten der HF-Strahlung im Körper des Patienten und zwischen dem
Körper und dem Hyperthermieapplikator annähernd angeglichen, so dass eine ausreichend gute Fokussierung auch bei unterschiedlichen Patientenanatomien erreicht wird. Diese Verfahrensweise wird jedoch insbesondere bei klaustrophobischen Pa- tienten als unangenehm empfunden. Außerdem wird eine gleichzeitige Anwendung anderer Applikatoren, bspw. zur physiologischen Überwachung des Patienten während der Hyperthermiebehandlung, durch das Wasserkissen erschwert, da wenig Raum für die Positionierung zusätzlicher Applikatoren verbleibt.
Bei einer Hyperthermiebehandlung ist es weiterhin erforderlich, die Gewebetemperatur während der Behandlung zu überwa- chen. Dies wird derzeit über spezielle Temperatursensoren erreicht, die an Kathetern montiert sind. Die Katheter werden bei der Behandlung mit den Temperatursensoren durch die Haut des Patienten eingestochen und an das bestrahlte Gewebe her- angeführt. Diese invasive Methode belastet jedoch den Patienten zusätzlich.
Bei der Suche nach verbesserten Techniken zur Erfassung der Gewebetemperatur während einer Hyperthermiebehandlung wird auch der Einsatz von Magnetresonanzmessungen in Erwägung gezogen. Bei dem hierbei verfolgten Ansatz wird die Temperatur über eine gleichzeitig mit der Hyperthermiebehandlung laufende Magnetresonanz-Üntersuchung bestimmt. Dazu wird der Hyperthermieapplikator in den Untersuchungsraum einer Magnetre- sonanzanlage eingeführt und gleichzeitig mit der Erwärmung eine Magnetresonanzmessung durchgeführt. Aus der T1-T2- Verschiebung der aus dem interessierenden Körperbereich erhaltenen Magnetresonanzsignale kann die Temperatur des Gewebes abgeleitet werden.
Eine Problematik bei der Anwendung dieses neuen Ansatzes zur Temperaturmessung stellt jedoch die Genauigkeit der Temperaturmessung dar. Diese Genauigkeit ist derzeit kaum ausreichend, da zwischen der HF-Sende- und Empfangseinheit der Mag- netresonanzanlage und dem Patienten der Hyperthermieapplikator angeordnet ist, so dass das Empfangssignal des Magnetresonanz-Echos nur sehr schwach von der HF-Sende- und Empfangseinheit der Magnetresonanzanlage empfangen wird. Zusätzlich wird das Magnetresonanzsignal durch die zwischen dem Hy- perthermieapplikator und dem Patienten angeordneten Wasserkissen gedämpft. Eine weitere Ursache für die mangelnde Genauigkeit einer derartigen Temperaturmessung besteht in der Wahl der HF-Sendefrequenz der Magnetresonanzanlage. Diese Magnetresonanzfrequenzen müssen einen ausreichenden Abstand zur Hochfrequenz des Hyperthermieapplikators einhalten, um das Magnetresonanzsystem vom Hyperthermiesystem zu entkoppeln und störende gegenseitige Einflüsse der beiden Systeme zu vermeiden. Bekannte Hyperthermieapplikatoren arbeiten im Frequenzbereich von 100 MHz, um eine ausreichende Fokussierbar- keit des Hochfrequenzfeldes im Körper des Patienten zu erreichen. Daher werden die Magnetresonanzfrequenzen in der Regel im Bereich von 8 - 64 MHz gewählt werden, um einen ausreichenden Abstand zu den 100 MHz des Hyperther ieapplikators einzuhalten. Die gewählten Magnetresonanzfrequenzen erfordern jedoch für die Anregung der magnetischen Resonanz Magnetfeldstärken des Grundfeldmagneten zwischen 0,2 T und 1,5 T. Bei derartigen Grundfeldstärken ist die temperaturabhängige Tl- T2-Verschiebung jedoch nicht sehr deutlich, so dass auch dadurch die Genauigkeit der Temperaturbestimmung beeinträchtigt wird.
Die Aufgabe der vorliegenden Erfindung besteht darin, eine Vorrichtung für die selektive Hyperthermiebehandlung bereitzustellen, die eine ausreichende Fokussierung des HF-Feldes ohne den Einsatz von Wasserkissen und eine belastungsfreie Temperaturmessung mit hoher Genauigkeit ermöglicht.
Die Aufgabe wird mit der Magnetresonanzanlage sowie dem Verfahren zum Betrieb der Magnetresonanzanlage gemäß den Patentansprüchen 1 bzw. 8 gelöst. Vorteilhafte Ausgestaltungen der Magnetresonanzanlage sowie des Verfahrens sind Gegenstand der Unteransprüche.
Die vorliegende Magnetresonanzanlage ist in bekannter Weise mit einem Grundfeldmagneten, mehreren Gradientenfeldspulen, einer HF-Sende- und Empfangseinheit sowie einer Steuereinheit zur Ansteuerung der Gradientenfeldspulen und der HF-Sende- und Empfangseinheit für die Durchführung von Magnetresonanzmessungen ausgebildet. Im Gegensatz zu bekannten Magnetresonanzanlagen besteht die HF-Sende- und Empfangseinheit aus einer Vielzahl von arrayförmig um einen Untersuchungsraum ange- ordneten Antennen, die unabhängig voneinander über getrennte Sendekanäle zur Emission von HF-Strahlung vorgebbarer Phase und Amplitude angesteuert werden können. Für jede der Anten- nen ist weiterhin ein getrennter Empfangskanal vorgesehen. Die Steuereinheit ist derart ausgebildet, dass sie für jede Antenne die Amplitude und Phase eines von der Antenne empfangenen örtlich selektiven Magnetresonanzsignals bestimmen und die Antennen unabhängig voneinander zur Emission von HF- Strahlung vorgebbarer Phase und Amplitude ansteuern kann, um ein im Untersuchungsraum fokussiertes HF-Feld für eine Hyperthermiebehandlung zu erzeugen.
Bei dem vorliegenden Verfahren zum Betrieb der Magnetresonanzanlage werden die Antennen sowie die Gradientenfeldspulen zunächst zur Durchführung einer ortsselektiven Magnetresonanzmessung im zu untersuchenden Körper angesteuert. Die Magnetresonanzsignale werden mit den Antennen empfangen und die aus dem zu behandelnden Körperbereich empfangenen Magnetresonanzsignale werden von der Steuereinheit für jeden einzelnen Empfangskanal, d. h. für jede einzelne Antenne, nach Amplitude und Phase ausgewertet, um die Amplitudendämpfung und Phasenverschiebung der Hochfrequenzstrahlung auf dem Weg zwi- sehen dem zu behandelnden Körperbereich und jeder einzelnen Antenne zu erfassen. Anschließend werden die einzelnen Antennen unter Berücksichtigung der erfassten Amplitudendämpfung und Phasenverschiebung unabhängig voneinander durch die Steuereinheit mit einer geeigneten Amplitude und Phase angesteu- ert, um ein korrekt fokussiertes HF-Feld zur Hyperthermiebehandlung am Ort des zu behandelnden Körperbereiches zu erzeugen.
Durch die vorliegende Ausgestaltung der Magnetresonanzanlage sowie das angeführte Betriebsverfahren wird eine Hyperthermiebehandlung eines Patienten ohne Wasserkissen ermöglicht. Die a plituden- und phasenrichtige Ansteuerung jeder einzelnen Antenne für die korrekte Fokussierung des HF-Feldes wird vorab durch die Erfassung der Amplitude und Phase des von je- der einzelnen Antennen empfangenen Magnetresonanzsignals aus dem zu behandelnden Körperbereich ermittelt. Auf diese Weise wird unabhängig von der Anatomie des Patienten und dem Zwi- schenraum zwischen den Antennen und dem Patienten stets die korrekte Amplituden- und Phasenansteuerung zur optimalen Fokussierung des HF-Feldes am Ort eines zu behandelnden Bereiches, insbesondere Tumors, erreicht. Somit ist es einerseits möglich, zusätzliche Applikatoren, bspw. zur physiologischen Überwachung des Patienten während der Hyperthermiebehandlung vorzusehen, andererseits lässt sich mit der gleichen Magnetresonanzanlage eine Temperaturmessung mit hoher Genauigkeit und ohne Belastung für den Patienten durchführen.
Die vorliegende Realisierung der Magnetresonanzanlage mit gleichzeitiger Möglichkeit zur örtlich selektiven Hyperthermiebehandlung wird nicht durch einen zusätzlichen Einbau eines Hyperthermieapplikators sondern durch eine einfache Um- gestaltung bereits vorhandener Komponenten einer Magnetresonanzanlage erreicht. Hierbei sind die ein oder mehreren Leistungssender für die Antennen so ausgestaltet, dass sie einerseits die erforderliche Dauerleistung für eine Hyperthermiebehandlung liefern können, die in der Größenordnung von 1 - 2 kW liegt. Andererseits müssen die Leistungssender so ausgelegt sein, dass sie genügend Pulsleistung für Magnetresonanzmessungen, d. h. Pulsleistungen in der Größenordnung von 20 - 30 kW, liefern können. Vorzugsweise wird hierzu der übliche in Magnetresonanzanlagen verwendete Pulsleistungssender durch eine größere Anzahl von Leistungssendern mit einer kleineren Pulsleistung je Sendekanal ersetzt.
Die einzelnen Antennen sind vorzugsweise als Resonanzstäbe oder langgestreckte, im HF-Verhalten Resonanzstäben entspre- chende, elektrisch leitende Materialschichten ausgebildet, die möglichst geringe Abmessungen haben sollten. Die einzelnen Resonatorstäbe sind um den zylinderförmigen Raum für den Patienten herum angeordnet. Sie sind weiterhin mit einer Anpasseinrichtung ausgerüstet, die die Impedanz des Übertra- gungsweges zum zu behandelnden Körperbereich, die durch den Patienten und die Geometrie im Untersuchungsraum beeinflusst wird, an die Leitungsimpedanz der Zuleitung, die den jeweili- gen Leistungsverstärker mit dem Resonatorstab verbindet, an- passt. Die Anpasseinrichtung kann mit einem festen Transformationsverhältnis ausgestattet sein oder für jeden Patienten durch individuelles Tuning ausgerichtet werden.
In einer Ausführungsform der vorliegenden Magnetresonanzanlage ist für jede Antenne ein getrennter Leistungssender vorgesehen. Jeder dieser Leistungssender ist mit einer eigenen Senderansteuerschaltung ausgerüstet, die die Phasensteuerung und Amplitudensteuerung der Antenne ermöglicht. Die Ansteuerschaltung sollte beliebige HF-Pulsformen mit stark unterschiedlichen Pulsdauern erzeugen können, um sowohl die Magnetresonanzmessungen mit pulsförmiger Anregung als auch die Hyperthermiebehandlung mit kontinuierlicher Einstrahlung zu ermöglichen. Jede der Senderansteuerschaltungen umfasst vorzugsweise einen Modulator, der aus einer Stützwerttabelle ü- ber einen Analog-Digital-Converter (ADC) versorgt wird. Der Modulator kann durch einen analogen IQ-Modulator oder einen digitalen NCO realisiert werden. Die Frequenzerzeugung für die Sendefrequenz kann mit einer PLL- oder einer DDS-Schleife erfolgen. Derartige Schaltungen zur Frequenzerzeugung sind dem Fachmann auf dem Gebiet der Magnetresonanzanlagen bekannt .
Bei der vorliegenden Magnetresonanzanlage weist jede Antenne auch einen getrennten Empfangskanal auf, um ein Magnetresonanz-Echo bzw. -Signal, das in den Antennen induziert wird, erfassen zu können. Dazu wird vorzugsweise zwischen der jeweiligen Anpasseinheit und dem Leistungsverstärker ein Sende- Empfangs-Umschalter angeordnet, der das Magnetresonanzsignal auf jeder Sendeantenne an eine Empfängerschaltung weiterleitet. Die Empfängerschaltung selbst wird durch eine Vorverstärkerschaltung und eine Demodulatorschaltung realisiert, die jedes einzelne Empfangssignal nach Amplitude und Phase auftrennen kann. Die Empfängerschaltung kann entweder mit einem analogen IQ-Demodulator oder mit einem digitalen Demodu- lator ausgerüstet sein. Diese Empfängerschaltung ermöglicht die Erfassung der Phasenverschiebungen und der Dämpfung der HF-Amplitude in dem den Tumor umgebenden Gewebe.
Die vorliegende Magnetresonanzanlage ist für die Erzeugung einer ausreichend hoch liegenden Magnetresonanzfrequenz ausgebildet, die eine eindeutige Fokussierung des Hochfrequenz- Feldes bei der Feldstärke des Grundfeldmagneten ermöglicht. Andererseits wird die Feldstärke des Grundfeldmagneten derart gewählt, dass bei der zugehörigen Magnetresonanzfrequenz noch eine eindeutige Darstellung der Temperaturen im untersuchten Gewebe erreicht wird. Für die Feldstärke des Grundfeldmagneten ist bspw. eine Feldstärke von 3T geeignet, so dass eine Magnetresonanzfrequenz von 123,2 MHz erzeugt werden uss. Diese Magnetresonanzfrequenz entspricht einer Wellenlänge von 10 - 30 cm im Patientenkörper sowie in der Luft 2,5 m, so dass eine ausreichend starke Fokussierung der HF-Energie erreicht werden kann.
Der Betrieb der vorliegenden Magnetresonanzanlage erfolgt vorzugsweise derart, dass die Einstrahlung der HF-Energie zur Erwärmung des gewünschten Körperbereiches mehrmals kurzzeitig unterbrochen wird, um eine Magnetresonanzmessung zur Ermittlung der Temperatur im entsprechenden Körperbereich durchzuführen. Die Temperaturmessung erfolgt dabei über eine her- kömmliche Magnetresonanzmessung mit den Antennen und anschließende Auswertung der T1-T2-Verschiebung. Die Ortsinformation wird in bekannter Weise über die Frequenz- und Phasencodierung mit den Gradientenfeldspulen erhalten.
Die Temperaturmessung erfolgt mehrmals im Verlaufe des Erwärmungsprozesses, um eine Übererwärmung des entsprechenden Bereiches vermeiden zu können. Die Abstände zwischen den einzelnen Temperaturmessungen werden je nach eingestrahlter HF- Leistung, Dauer der Einstrahlung und Körperbereich gewählt. Je nach Art der Magnetresonanzmessung, d. h. nach Wahl der
Pulsfolge, wird für die Temperaturmessung ein Bereich von einigen 100 ms, insbesondere zwischen 100 ms und 1 s, vorgese- hen. Zwischen den Temperaturmessungen erfolgt wiederum die Einstrahlung der HF-Energie zur Erwärmung des zu behandelnden Körperbereiches .
In einer vorteilhaften Ausführungsform ist ein Empfangskanal der Magnetresonanzanlage mit einer Oberflächenspule verbunden, die ein sehr gutes Signal-Rausch-Verhältnis für die Magnetresonanzmessungen zur Temperaturbestimmung ermöglicht. Dazu ist zusätzlich zu den Oberflächenspulen eine Empfänger- Schaltung vorhanden, die entsprechend den Empfängerschaltungen der Antennen der HF-Sende- und Empfangseinheit ausgestaltet sind. Die Antennen der HF-Sende- und Empfangseinheit und die Oberflächenspulen werden in dieser Ausführungsform zusätzlich mit einer Verstimmeinrichtung ausgestattet, um eine störende Beeinflussung des gerade nicht benutzten Teils des Resonators auf die Messung zu verhindern. Eine derartige Verstimmeinrichtung ist aus herkömmlichen Magnetresonanzanlagen bekannt.
Für die optimale Fokussierung des HF-Feldes bei der Durchführung der Hyperthermiebehandlung sind Informationen über die Phasenverschiebungen und die Amplitudendämpfung auf dem Weg von den einzelnen Antennen zu dem zu behandelnden Bereich des Körpers des Patienten erforderlich, die für jeden Patienten individuell verschieden sind. Zur Ermittlung dieser Informationen wird erfindungsgemäß, wie bereits ausgeführt, mit der Magnetresonanzanlage vor dem Start der Erwärmungssequenz eine Abstimmsequenz realisiert, in der die aus einem vorgebbaren Körperbereich empfangenen Magnetresonanzsignale hinsichtlich ihrer auf den einzelnen Antennen empfangenen Amplituden- und Phasenlage ausgewertet werden. In einer vorteilhaften Ausführungsform wird diese Abstimmsequenz als FID-Messung realisiert, wobei durch eine geeignete Ansteuerung der Gradientenfeldspulen die Ausstrahlung von Echos aus nicht interessie- renden Bereichen des Körpers verhindert werden kann. Aus dem tumorösen Bereich wird bei Anregung HF-Energie in Form von Magnetresonanzsignalen abgestrahlt, die dann von jeder Anten- ne gleichzeitig aufgefangen wird. Aus den Phasen- und Amplitudenunterschieden lassen sich die für das Ansteuern der einzelnen Antennen zur Erzeugung fokussierter HF-Strahlung im tumorösen Körperbereich erforderlichen Phasen und Amplituden ableiten. Die Ansteuerung der Antennen erfolgt dann genau mit diesen vorab für jede einzelne Sendeantenne ermittelten Phasen und Amplituden.
Eine derartige Magnetresonanzmessung zur Ermittlung der kor- rekten Phasen und Amplituden für die Ansteuerung der Antennen kann selbstverständlich auch während der Durchführung der Erwärmungssequenz wiederholt werden, indem diese für die Magnetresonanzmessung kurzzeitig unterbrochen wird. Auf diese Weise können auch bei Lageänderungen des Patienten während der Behandlung optimale Fokussierergebnisse erzielt werden.
Die vorliegende Magnetresonanzanlage sowie das zugehörige Betriebsverfahren werden nachfolgend anhand eines Ausführungsbeispiels in Verbindung mit den Zeichnungen nochmals kurz er- läutert. Hierbei zeigen:
Fig. 1 eine stark vereinfachte Darstellung einer Magnetresonanzanlage;
Fig. 2 schematisch ein Beispiel für die Ausgestaltung der HF-Sende- und Empfangseinheit einer Magnetresonanzanlage gemäß der vorliegenden Erfindung;
Fig. 3 eine Skizze zur Veranschaulichung der Überlagerung der von den einzelnen Antennen erzeugten HF-Felder in einem tumorösen Körperbereich eines Patienten; Fig. 4 ein Beispiel für den Betrieb eines NGO zur Erzeugung amplituden- und phasengerechter HF-Signale; und
Fig. 5 eine beispielhafte Sequenz für eine Hyperthermiebehandlung mit gleichzeitiger Temperaturmessung. In Figur 1 ist stark vereinfacht der prinzipielle Aufbau einer Magnetresonanzanlage dargestellt, wie er auch bei der vorliegenden Erfindung realisiert ist. Die Figur zeigt den Grundfeldmagneten 23, die Gradientenfeldspulen 24, die HF- Sende- und Empfangseinheit 25, die den Untersuchungsraum 27 umschließt, sowie eine Steuereinheit 26 zur Ansteuerung der Gradientenfeldspulen 24 und der HF-Sende- und Empfangseinheit 25. Die bei Magnetresonanzanlagen vorhandenen Einheiten wie bspw. Auswerterechner, Speicher, Pulssequenzsteuerung, Puls- formgenerator oder HF-Generator sind bei dieser Darstellung in der Steuereinheit 26 zusammengefasst .
In Figur 2 ist beispielhaft eine Ausgestaltung einer HF- Sende- und Empfangseinheit ersichtlich, wie sie bei einer Magnetresonanzanlage gemäß der vorliegenden Erfindung eingesetzt wird. Die HF-Sende- und Empfangseinheit setzt sich aus einer Vielzahl von arrayförmig angeordneten Resonatorstäben 1 zusammen, die um den für den Patienten vorgesehenen zylinder- förmigen Untersuchungsraum 27 angeordnet sind. Jeder der ein- zelnen Resonatorstäbe 1 ist mit einem eigenen Sendekanal 2 sowie einem eigenen Empfangskanal 3 verbunden. In der Figur sind beispielhaft nur zwei dieser Empfangs- und Sendekanäle für zwei Resonatorstäbe angedeutet. Der Sendekanal 2 umfasst einen Speicher 6 zur Speicherung der Hüllkurve und des Pha- senverlaufs für die Erzeugung der HF-Anregungsimpulse. Ein als Modulator 7 betriebener NCO moduliert die erforderliche Impulsform und Phase auf ein Trägerfrequenzsignal f, das von einem nicht dargestellten Frequenzgenerator erhalten wird. Das Signal wird anschließend in einem Digital-Analog-Wandler 8 gewandelt und über den Leistungsverstärker 9 verstärkt. Das auf diese Weise verstärkte HF-Signal wird dem Resonatorstab 1 über einen der Impedanzanpassung dienenden Abstimmkreis 11 zugeführt. Auf diese Weise werden die einzelnen Resonatorstäbe 1 unabhängig voneinander zur Abgabe von HF-Strahlung bzw. HF-Pulsen definierter Phase und Amplitude angesteuert. Sollen die für jeden einzelnen Resonatorstab erforderliche Phase und Amplitude für die Fokussierung in einen tumorösen Körperbereich eines Patienten ermittelt werden, so werden die einzelnen Resonatorstäbe 1 zunächst zur Abgabe eines HF- Impulses für die Anregung eines Magnetresonanzanregesignals in diesem Körperbereich angesteuert. Dann, oder auch gleichzeitig mit dem Senden, wird durch Ansteuerung von Gradientenfeldern der räumliche Bereich, aus dem das FID-Signal emittiert wird, auf den tumorösen Bereich begrenzt. Anschließend werden die Sende/Empfangsumschalter 10 umgeschaltet, um die Resonatorstäbe 1 auf Empfang zu schalten bzw. mit dem jeweiligen Empfangskanal 3 zu verbinden. Das Magnetresonanzsignal wird von jedem der Resonatorstäbe 1 empfangen und über einen Vorverstärker 12 einem Analog-Digital-Wandler 13 zugeführt. Das digitalisierte Signal wird in einem NGO 14, der als Demo- dulator betrieben wird, entsprechend der Phase und Amplitude aufgeteilt und einem Auswerterechner 15 zugeführt, der die Amplitude und Phase des Magnetresonanzsignals für einen bestimmten Körperbereich auswertet, um für jeden der Resona- torstäbe die für die Fokussierung erforderliche Amplitude und Phase zu erhalten. Die einzelnen Resonatorstäbe 1 werden dann mit den für sie ermittelten Amplituden und Phasen angesteuert, um eine korrekte Fokussierung in dem tumorösen Körperbereich zu erreichen. Hierzu werden die Sende/Empfangsschalter 10 wieder auf den Sendekanal gestellt und die einzelnen Resonatorstäbe 1 mit einer HF-Dauerleistung beaufschlagt. Diese Dauerleistung kann auch aus HF-Pulsen zusammengesetzt sein.
Durch diese phasen- und amplitudenrichtige Ansteuerung lässt sich eine Fokussierung der HF-Energie in dem tumorösen Körperbereich 16 des Patienten 17 ohne Einsatz von Wasserkissen erreichen, wie dies schematisch in Figur 3 angedeutet ist. In dieser Figur sind zur Vereinfachung lediglich 6 Resonatorstäbe 1 angedeutet, die zur Abgabe von HF-Strahlung mit unter- schiedlichen Phasendifferenzen Δφ und Amplituden ΔU angesteuert werden. Figur 2 zeigt weiterhin eine Möglichkeit der Temperaturmessung während der Hyperthermiebehandlung. Für diese Temperaturmessung wird die Erwärmungsphase kurz unterbrochen um über die Resonatorstäbe 1 einen HF-Puls zur Anregung eines Magnet- resonanzsignals zu erzeugen. Die zugehörige Pulssequenz ist dem Fachmann aus herkömmlichen Magnetresonanzmessungen bekannt. Optional kann zum Empfang des Magnetresonanzsignals eine Oberflächenspule 4 direkt an dem interessierenden Körperbereich des Patienten positioniert und mit einem gesonder- ten Empfangskanal 5 verbunden werden. Dieser Empfangskanal 5 weist ebenso wie die Empfangskanäle 3 der Resonatorstäbe 1 einen Vorverstärker 12, einen Analog-Digital-Wandler 13, und einen NCO 14 auf und ist mit dem Auswerterechner 15 verbunden. Die Messung des Resonanzsignals für die Temperaturmes- sung mit Hilfe einer Oberflächenspule hat den Vorteil eines sehr guten Signal-Rausch-Verhältnisses.
Figur 4 zeigt ein Beispiel für die Verschaltung eines NCO 7 als Modulator zur Erzeugung von HF-Strahlung vorgebbarer Amp- litude und Phase. Der NCO ist auch in umgekehrter Richtung zur Demodulation eines empfangenen Signals betreibbar.
Die Erzeugung der digitalen Datenströme, die ein Sinus- und Cosinussignal des empfangenen HF-Signals bezogen auf eine Re- ferenzfrequenz darstellen, erfolgt in gleicher Weise wie bei dem NCO, der zum Senden benutzt wird. Statt des Addierers wird der empfangene und vom ADC digitalisierte Empfangsdatenstrom auf die beiden Multiplizierer aufgeteilt. Eine Signalkomponente wird mit einem Sinus-Datenstrom, die andere mit einem Cosinus-Datenstrom multipliziert. Nach einer digitalen Tiefpassfilterung beider Datenströme erhält man die Darstellung des empfangenen HF-Signals als Realteil- und Imaginärteilkomponente bezogen auf das vom DDS erzeugte Referenzsignal.
Figur 5 zeigt schließlich eine Steuersequenz zur Ansteuerung der Resonatorstäbe 1 für die Hyperthermiebehandlung. Im obe- ren Teil ist der Sendepuls 20 zum Erwärmen des Gewebes ersichtlich. Diese Erwärmungssequenz 20 wird kurz unterbrochen um eine HF-Pulsfolge 21 zur Durchführung einer Magnetresonanzmessung in bekannter Weise einzustrahlen und anschließend während einer definierten Empfangszeit 22 das Magnetresonanzsignal über die einzelnen Resonatorstäbe 1 zu empfangen. Danach wird die Erwärmung mit einer erneuten Erwärmungssequenz 20 fortgesetzt. Im unteren Teil der Figur sind schematisch die Ansteuerimpulse für die Gradientenfeldspulen für eine Ortskodierung in x-, y- und z- Richtung, wie sie bei einer Spin-Echo-Sequenz vorkommen, zu erkennen. Auch andere, hier nicht dargestellte Sequenztechniken sind selbstverständlich zu diesem Zweck einsetzbar.
In dem Zeitintervall, für das die Erwärmungssequenz kurz unterbrochen wird, lässt sich die Temperatur des Gewebes im interessierenden Körperbereich aus dem Ergebnis der Magnetresonanzmessung ableiten.
Das vorliegende System ist in der Lage, alle Magnetresonanz- Anwendungen, die bei der eingestrahlten HF-Frequenz ablaufen, durchzuführen. Diese Anwendungen werden genutzt, um die Anatomie-Darstellung oder auch Spektroskopiemessungen im interessierenden Bereich des Patienten durchzuführen und die Te - peraturverteilung im Patienten zu messen. Weiterhin ist das vorliegende System in der Lage, die einzelnen Resonatorstäbe so anzusteuern, dass eine gezielte Fokussierung des HF-Feldes möglich ist. Die Erwärmungssequenz wird hierbei in Zeitschlitze aufgeteilt, um diese mit der Magnetresonanzsequenz zur Temperaturmessung verschachteln zu können, so dass die
Temperaturmessung quasi gleichzeitig mit der Erwärmung stattfinden kann.
Die Frequenz, mit der die Magnetresonanzmessungen durchge- führt wird, entspricht hierbei zumindest annähernd der Frequenz, mit der die Hyperthermiebehandlung erfolgt. Dies er- möglicht die korrekte Bestimmung der Phase und Amplitude, mit der jeder einzelne Resonatorstab angesteuert werden muss.

Claims

Patentansprüche
1. Magnetresonanzanlage mit einem Grundfeldmagneten (23), Gradientenfeldspulen (24), einer HF-Sende- und Empfangsein- heit (25) sowie einer Steuereinheit (26) zur Ansteuerung der Gradientenfeldspulen (24) und der HF-Sende- und Empfangseinheit (25) für die Durchführung von Magnetresonanzmessungen, dadurch gekennzeichnet, dass die HF-Sende- und Empfangseinheit (25) eine Vielzahl von arrayförmig um einen Untersuchungsraum (27) angeordneten Antennen (1) aufweist, wobei für jede Antenne (1) ein eigener Sendekanal (2) und ein eigener Empfangs anal (3) vorhanden ist, und dass die Steuereinheit (26) derart ausgebildet ist, dass sie für jede Antenne (1) Amplitude und Phase eines von der Antenne (1) empfangenen Magnetresonanzsignals bestimmen und die Antennen (1) unabhängig voneinander zur Emission von HF- Strahlung vorgebbarer Phase und Amplitude ansteuern kann, um ein im Untersuchungsraum (27) fokussiertes HF-Feld für eine Hyperthermiebehandlung zu erzeugen.
2. Magnetresonanzanlage nach Anspruch 1, dadurch gekennzeichnet, dass jeder Sendekanal (2) einen Leistungsverstärker (9) und einen Modulator (7) aufweist.
3. Magnetresonanzanlage nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Antennen (1) als Resonatorstäbe ausgebildet sind.
4. Magnetresonanzanlage nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Steuereinheit (26) derart ausgebildet ist, dass sie die Erzeugung des fokussierten HF-Feldes während der Hy- perthermiebehandlung zu vorgebbaren Zeiten für ein kurzes Zeitintervall unterbricht, um die Gradientenfeldspulen (24) und die HF-Sendeeinheit (25) zur Durchführung einer Magnetre- sonanzmessung für eine Temperaturbestimmung des mit dem fo- kussierten HF-Feld beaufschlagten Körperbereiches (16) anzusteuern.
5. Magnetresonanzanlage nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass jeder Sendekanal (2) mit einer Anpassschaltung (11) zur Anpassung der Leitungsimpedanz an die Impedanzverhältnisse im Untersuchungsraum (27) verbunden ist.
6. Magnetresonanzanlage nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Antennen (1) eine zylindermantelförmige Anordnung um den Untersuchungsraum (27) bilden.
7. Magnetresonanzanlage nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Grundfeldmagnet (23) zur Erzeugung einer Feldstärke von zumindest 2 T ausgelegt ist.
8. Verfahren zum Betrieb einer Magnetresonanzanlage nach einem oder mehreren der vorangehenden Ansprüche, bei dem für eine Hyperthermiebehandlung eines begrenzten Körperbereiches (16) eines Patienten (17) - die Gradientenfeldspulen (24) und die HF-Sende- und Empfangseinheit (25) zunächst mit einer Abstimmsequenz zur Durchführung einer ortsabhängigen Amplituden- und Phasenmessung in Form einer ersten Magnetresonanzmessung angesteuert werden, - für jede Antenne (1) Amplitude und Phase eines aus dem begrenzten Körperbereich (16) des Patienten (17) empfangenen Magnetresonanzsignals bestimmt und daraus für jede Antenne (1) eine für eine Fokussierung von HF-Strahlung in den begrenzten Körperbereich (16) erforderliche Amplitude und Phase ermittelt wird,
- und die einzelnen Antennen (1) anschließend unabhängig voneinander mit der für sie ermittelten Amplitude und Pha- se zur Emission der HF-Strahlung angesteuert werden, so dass ein auf den begrenzten Körperbereich (16) fokussiertes HF-Feld für die Hyperthermiebehandlung erzeugt wird.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass als Abstimmsequenz zur Durchführung der ersten Magnetresonanzmessung eine FID-Steuersequenz eingesetzt wird.
10. Verfahren nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass die Ansteuerung zur Emission von HF-Strahlung während der Hyperthermiebehandlung mehrmals für ein kurzes Zeitintervall unterbrochen wird, um eine Temperaturbestimmung des be- grenzten Körperbereiches (16) über eine zweite Magnetresonanzmessung durchzuführen.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass das Magnetresonanzsignal bei der zweiten Magnetresonanzmessung zur Temperaturbestimmung über mit der Magnetresonanzanlage verbundene Oberflächenspulen (4) erfasst wird.
12. Verfahren nach einem der Ansprüche 8 bis 11, dadurch gekennzeich et, dass die Antennen (1) für die Durchführung der Magnetresonanzmessung und für die Hyperthermiebehandlung mit den gleichen HF-Frequenzen angesteuert werden.
13. Verfahren nach einem der Ansprüche 8 bis 12, dadurch geken zeich et, dass die Ansteuerung zur Emission von HF-Strahlung während der Hyperthermiebehandlung ein oder mehrmals für ein kurzes Zeitintervall unterbrochen wird, um eine oder mehrere weitere Magnetresonanzmessungen für eine jeweils neue Ermittlung der für die Fokussierung erforderlichen Amplituden und Phasen durchzuführen und die Antennen (1) anschließend unabhängig voneinander mit der für sie neu ermittelten Amplitude und Phase zur Fortsetzung der Hyperthermiebehandlung anzusteuern.
EP02754226A 2001-06-26 2002-06-18 Magnetresonanzanlage und verfahren zum betrieb Withdrawn EP1399219A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10130619 2001-06-26
DE10130619 2001-06-26
PCT/DE2002/002215 WO2003002199A2 (de) 2001-06-26 2002-06-18 Magnetresonanzanlage und verfahren zum betrieb

Publications (1)

Publication Number Publication Date
EP1399219A2 true EP1399219A2 (de) 2004-03-24

Family

ID=7689395

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02754226A Withdrawn EP1399219A2 (de) 2001-06-26 2002-06-18 Magnetresonanzanlage und verfahren zum betrieb

Country Status (6)

Country Link
US (1) US7123010B2 (de)
EP (1) EP1399219A2 (de)
JP (1) JP3842783B2 (de)
KR (1) KR20040015257A (de)
CN (1) CN1283209C (de)
WO (1) WO2003002199A2 (de)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003002199A2 (de) * 2001-06-26 2003-01-09 Siemens Aktiengesellschaft Magnetresonanzanlage und verfahren zum betrieb
DE10356219A1 (de) * 2003-11-25 2005-06-30 Rustemeyer, Peter, Dr. Verfahren und Gerät zur fokussierten Energieübertragung mittels Kernmagnetresonanz zur mikrochirurgischen/radiologisch- interventionellen Therapie
EP1695661B1 (de) * 2003-11-28 2012-04-18 Lazaro Eusebio Hernandez Perez Kernspintomograph
US20050251233A1 (en) * 2004-05-07 2005-11-10 John Kanzius System and method for RF-induced hyperthermia
US7510555B2 (en) * 2004-05-07 2009-03-31 Therm Med, Llc Enhanced systems and methods for RF-induced hyperthermia
US7627381B2 (en) * 2004-05-07 2009-12-01 Therm Med, Llc Systems and methods for combined RF-induced hyperthermia and radioimmunotherapy
US20070250139A1 (en) * 2004-05-07 2007-10-25 John Kanzius Enhanced systems and methods for RF-induced hyperthermia II
EP2240792B1 (de) * 2005-03-10 2013-08-21 The University Of Queensland Phasengruppenspule für mri
JP4821957B2 (ja) * 2005-05-09 2011-11-24 株式会社P・マインド 高周波治療器
JP2007007074A (ja) * 2005-06-29 2007-01-18 Nagaoka Univ Of Technology 温熱治療装置
US20110137147A1 (en) * 2005-10-14 2011-06-09 University Of Utah Research Foundation Minimum time feedback control of efficacy and safety of thermal therapies
US8170643B2 (en) * 2005-11-22 2012-05-01 Bsd Medical Corporation System and method for irradiating a target with electromagnetic radiation to produce a heated region
DE102006042730B4 (de) * 2006-09-12 2010-04-22 Siemens Ag Medizintechnische Einrichtung
US20080167548A1 (en) * 2007-01-04 2008-07-10 Sorensen Alma G Tissue Alteration With MRI RF Field
DE102007023251B4 (de) * 2007-05-18 2017-11-23 Siemens Healthcare Gmbh Verfahren zur Steuerung eines Magnetresonanzsystems
GB0711662D0 (en) * 2007-06-15 2007-07-25 Cancercure As Magnetic resonance guided cancer treatment system
DE102007034492B4 (de) * 2007-07-24 2013-01-17 Siemens Aktiengesellschaft Hochfrequenz-Empfangseinrichtung für ein Magnetresonanztomographiegerät und Magnetresonanztomographiegerät
JP5455926B2 (ja) * 2007-12-21 2014-03-26 コーニンクレッカ フィリップス エヌ ヴェ 磁気共鳴安全性監視システムおよび方法
CN102187252A (zh) * 2008-09-11 2011-09-14 皇家飞利浦电子股份有限公司 用于磁感应断层成像的方法和系统
RU2525747C2 (ru) 2009-04-01 2014-08-20 Конинклейке Филипс Электроникс Н.В. Согласование шума в связанных антенных решетках
US8934990B1 (en) * 2010-03-04 2015-01-13 Fonar Corporation Localized RF heating
US10034709B1 (en) 2010-03-04 2018-07-31 Fonar Corporation Focused radio frequency ablation
JP5725939B2 (ja) * 2010-05-14 2015-05-27 株式会社東芝 磁気共鳴診断装置
CN102551716B (zh) * 2010-12-17 2015-01-21 通用电气公司 磁共振系统及方法
EP2514382A1 (de) * 2011-04-21 2012-10-24 Koninklijke Philips Electronics N.V. MR-Abbildungsgeführtes Therapiesystem
US9116214B2 (en) 2011-05-31 2015-08-25 General Electric Company RF coil array having two or more switches built within each RF coil array element, compatible with both magnetic resonance and a temperature mapping
DE102011079564B4 (de) * 2011-07-21 2015-11-19 Siemens Ag MRT Lokalspule
EP2564894B1 (de) * 2011-09-05 2015-11-18 Venus Concept Ltd Ästhetische Vorrichtung
DE102012212402B3 (de) 2012-03-20 2013-10-17 Siemens Aktiengesellschaft Ermittlung einer MR-Sequenz unter Berücksichtigung der Energieverteilungsfunktion im k-Raum
JP2015514508A (ja) * 2012-04-16 2015-05-21 ザ メディカル カレッジ オブ ウィスコンシン 磁気共鳴画像化法において直接に無線周波数で位相制御するシステムおよび方法
DE102012211581A1 (de) 2012-07-04 2014-01-09 Siemens Aktiengesellschaft Verfahren zur Elastographie und Magnetresonanz-Anlage
WO2014128147A1 (en) * 2013-02-22 2014-08-28 Koninklijke Philips N.V. Hyperthermia for diagnostic imaging
US11759650B2 (en) 2013-03-11 2023-09-19 NeuroEM Therapeutics, Inc. Immunoregulation, brain detoxification, and cognitive protection by electromagnetic treatment
US11813472B2 (en) 2013-03-11 2023-11-14 NeuroEM Therapeutics, Inc. Systems for sensing proper emitter array placement
WO2014164924A1 (en) * 2013-03-11 2014-10-09 NeuroEM Therapeutics, Inc. Electromagnetic treatment of brian and body disorders
US11911629B2 (en) 2013-03-11 2024-02-27 NeurEM Therapeutics, Inc. Treatment of primary and metastatic brain cancers by transcranial electromagnetic treatment
US11752356B2 (en) 2013-03-11 2023-09-12 NeuroEM Therapeutics, Inc. Systems for controlling power to differently loaded antenna arrays
DE102013206570B3 (de) * 2013-04-12 2014-05-22 Siemens Aktiengesellschaft Verfahren zum Betrieb einer zur unabhängigen Ansteuerung mehrerer Spulenelemente ausgebildeten Sendeeinrichtung einer Magnetresonanzeinrichtung und Sendeeinrichtung
DE102013212088B3 (de) * 2013-06-25 2014-10-09 Siemens Aktiengesellschaft Bestrahlungssystem
DE102013216859B4 (de) * 2013-08-23 2018-11-22 Siemens Healthcare Gmbh Magnetresonanzspule und damit arbeitendes Magnetresonanzgerät und Magnetresonanzsystem, sowie Verfahren zum Betrieb der Magnetresonanzspule
US11794028B2 (en) 2014-03-11 2023-10-24 NeuroEM Therapeutics, Inc. Transcranial electromagnetic treatment
US10737106B2 (en) * 2014-05-07 2020-08-11 Pyrexar Medical Inc. Apparatus and method for creating small focus deep hyperthermia in tissues of the brain
CN103990228B (zh) * 2014-05-15 2016-02-17 哈尔滨易奥秘科技发展有限公司 一种可聚焦电磁场的多电极双频谱射频肿瘤热疗仪
JP5943159B2 (ja) * 2016-01-04 2016-06-29 株式会社日立製作所 磁気共鳴イメージング装置
DE102016115216A1 (de) * 2016-08-16 2018-02-22 Mr Comp Gmbh Vorrichtung und Verfahren zur Prüfung der MR-Sicherheit von Implantaten
EP3287805B1 (de) * 2017-05-11 2019-06-26 Siemens Healthcare GmbH Sar sicherheits-vorrichtung und -verfahren zum erkennen von ent-verstimmung von mr antennenspulen.
DE102019119960A1 (de) * 2019-07-24 2021-01-28 Axel Muntermann Gerät zur Kernspinresonanztherapie
KR102531234B1 (ko) * 2019-12-02 2023-05-11 고려대학교 세종산학협력단 자기공명영상시스템의 내부에서 사용될 수 있는 고주파 온열 조사 장치
EP3839540A1 (de) * 2019-12-20 2021-06-23 Siemens Healthcare GmbH Betreiben eines mr-systems sowie mr-system

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2646627B2 (ja) * 1988-03-08 1997-08-27 株式会社日立製作所 核磁気共鳴を用いた検査装置
IL87649A (en) * 1988-09-01 1992-07-15 Elscint Ltd Hyperthermic power delivery system
NL8802608A (nl) * 1988-10-24 1990-05-16 Philips Nv Magnetisch resonantie apparaat met verbeterde rf spoel.
US5284144A (en) * 1989-11-22 1994-02-08 The United States Of America As Represented By The Secretary Of The Dept. Of Health & Human Services Apparatus for hyperthermia treatment of cancer
US5185573A (en) * 1991-04-16 1993-02-09 Hewlett-Packard Company Method for focusing of magnetic resonance images
US5221900A (en) * 1991-04-30 1993-06-22 Hewlett-Packard Company Magnet structure for focusing of magnetic resonance images
US5252922A (en) * 1991-04-30 1993-10-12 Hewlett-Packard Company Radiofrequency focusing of magnetic resonance images
JP3325300B2 (ja) * 1992-02-28 2002-09-17 株式会社東芝 超音波治療装置
JP3160351B2 (ja) 1992-03-13 2001-04-25 株式会社東芝 磁気共鳴診断装置
DE4412446C2 (de) * 1994-04-12 1996-09-12 Bruker Medizintech Verfahren und Vorrichtung zur Erstellung eines NMR-Tomographiebildes
US5492122A (en) * 1994-04-15 1996-02-20 Northrop Grumman Corporation Magnetic resonance guided hyperthermia
DE69533692T2 (de) * 1994-07-28 2005-10-27 Koninklijke Philips Electronics N.V. Anordnung von rf-spulen für ein gerät der magnetischen resonanz
US5462055A (en) * 1994-08-23 1995-10-31 Northrop Grumman Corporation MRI/hyperthermia dual function antenna system
US5543711A (en) * 1994-11-22 1996-08-06 Picker International, Inc. Multiple quadrature volume coils for magnetic resonance imaging
US5661401A (en) * 1995-03-13 1997-08-26 Jeol Ltd. Apparatus for generating corrective magnetic field
WO1997007731A2 (en) * 1995-08-18 1997-03-06 Brigham And Women's Hospital, Inc. Line scan diffusion imaging
JP3537951B2 (ja) * 1996-03-12 2004-06-14 株式会社東芝 磁気共鳴診断装置
DE19707451A1 (de) 1997-02-25 1998-08-27 Werner Alois Prof Dipl Kaiser Anordnung zur Magnetresonanz-Untersuchung und Hyperthermie-Behandlung
DE69840444D1 (de) * 1997-05-23 2009-02-26 Prorhythm Inc Wegwerfbarer fokussierender ultraschallapplikator hoher intensität
DE19721986C1 (de) * 1997-05-26 1998-12-10 Siemens Ag Zirkular polarisierende Antenne für ein Magnetresonanzgerät
DE69937043T2 (de) * 1998-10-20 2008-05-29 Koninklijke Philips Electronics N.V. Ein ein gradientenspulensystem mit korrektionsspule enthaltendes bildgebendes magnetisches resonanzgerät
US6624633B1 (en) * 1999-03-26 2003-09-23 Usa Instruments, Inc. Disjunct MRI array coil system
DE19928452A1 (de) * 1999-06-23 2000-12-28 Siemens Ag Antennensystem zum Empfang von Magnetresonanzsignalen
US6549799B2 (en) * 2001-04-18 2003-04-15 Sunnybrook And Women's College Health Sciences Centre Concurrent MRI of multiple objects
WO2003002199A2 (de) * 2001-06-26 2003-01-09 Siemens Aktiengesellschaft Magnetresonanzanlage und verfahren zum betrieb
US6904323B2 (en) * 2003-05-14 2005-06-07 Duke University Non-invasive apparatus and method for providing RF energy-induced localized hyperthermia

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03002199A2 *

Also Published As

Publication number Publication date
KR20040015257A (ko) 2004-02-18
JP3842783B2 (ja) 2006-11-08
US7123010B2 (en) 2006-10-17
WO2003002199A2 (de) 2003-01-09
CN1533291A (zh) 2004-09-29
CN1283209C (zh) 2006-11-08
JP2004530518A (ja) 2004-10-07
WO2003002199A3 (de) 2003-04-10
US20040199070A1 (en) 2004-10-07

Similar Documents

Publication Publication Date Title
EP1399219A2 (de) Magnetresonanzanlage und verfahren zum betrieb
DE69634714T2 (de) Therapeutisches Ultraschallgerät
US5042486A (en) Catheter locatable with non-ionizing field and method for locating same
DE19629890B4 (de) Magnetresonanz- Abbildungs- und Nachführsystem
EP0928972B1 (de) MR-Verfahren mit einer im Untersuchungsbereich befindlichen Mikrospule
EP2942008B1 (de) Magnetresonanzvorrichtung mit einer bewegungserfassungseinheit sowie ein verfahren zu einer erfassung einer bewegung eines patienten während einer magnetresonanzuntersuchung
US7279901B2 (en) Magnetic resonance apparatus and operating method for generating a homogenous RF field in the examination volume
JPH03236829A (ja) 磁気共鳴イメージング装置
US5936406A (en) Method for determining the position of a local antenna in an examination chamber of a magnetic resonance apparatus
DE102013219128B3 (de) Kabellose Signalübertragung in Magnetresonanz-Systemen
DE102014222938B4 (de) MR-Lokalspulensystem, MR-System und Verfahren zum Betreiben desselben
DE102012210507A1 (de) Lokalspule für ein Magnetresonanzbildgebungssystem und Magnetresonanzbildgebungssystem
DE112011104494T5 (de) Verfahren zur Reduzierung der deponierten Leistung bei Magnetresonanz- Tomografie unter Verwendung von Vielband-Pulsen und Vielkanal-Übertragung
DE102016215044B4 (de) Erzeugung einer Bewegungsinformation
JP3976845B2 (ja) 磁気共鳴イメージング装置
DE102012210827B4 (de) Bestimmung einer Kommunikationslatenz in einem Magnetresonanztomographen
EP0097519B1 (de) Apparat zur Diagnose mittels kernmagnetischer Resonanz
DE102012211581A1 (de) Verfahren zur Elastographie und Magnetresonanz-Anlage
JP6850796B2 (ja) 磁気共鳴画像誘導治療のための高周波アンテナアセンブリ
DE10003712C2 (de) Verfahren zur Selektion einer Lokalantenne
EP2947473B1 (de) Erstellung eines mr-bildes mit hilfe einer kombination aus einer ganzkörperspule und einer lokalen sendespule
US11543475B2 (en) Antenna apparatus including high permittivity materials (HPM) for radio frequency (RF) coils
US7411398B2 (en) MRI apparatus using periodic gradients which change in periodicity within each repetition, in one spatial direction
EP3546974B1 (de) Verfahren und vorrichtung zur korrektur einer b0-inhomogenität mittels eines hochfrequenzsignals
EP3749196B1 (de) Hybridsystem für die durchführung einer magnetresonanztomographie und einer radiofrequenzablation sowie verfahren zu dessen betrieb

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030514

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20090122

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090103